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a b s t r a c t 

Image segmentation is a key issue in image processing. New image segmentation algorithms have been

proposed in the last years. However, there is no optimal algorithm for every image processing task.

The selection of the most suitable algorithm usually occurs by testing every possible algorithm or using

knowledge from previous problems. These processes can have a high computational cost. Meta-learning

has been successfully used in the machine learning research community for the recommendation of the

most suitable machine learning algorithm for a new dataset. We believe that meta-learning can also be

useful to select the most suitable image segmentation algorithm. This hypothesis is investigated in this

paper. For such, we perform experiments with eight segmentation algorithms from two approaches using

a segmentation benchmark of 300 images and 2100 augmented images. The experimental results showed

that meta-learning can recommend the most suitable segmentation algorithm with more than 80% of

accuracy for one group of algorithms and with 69% for the other group, overcoming the baselines used

regarding recommendation and segmentation performance.
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1. Introduction

Image segmentation is one of the most studied problems in

computer science [15,42] . Besides, it is also one of the most

challenging tasks to be automatically performed [12,33,34,43] . As

stated by [15] , segmentation is usually a step in an image pro-

cessing chain or pipeline. When the image segmentation step is

inadequate, it harms the performance of the whole pipeline. Al-

though additional operations can reduce the drawbacks of a poor

quality segmentation, they will increase the pipeline size and com-

plexity [18] . Therefore, the selection of the most suitable segmen-

tation algorithm can improve the image processing performance as

a whole. 

Additionally, adapting the No free lunch theorem often used in

Machine Learning (ML) [37] , no segmentation algorithm will be the

most suitable for every image. The authors believe that look for the

most suitable segmentation algorithm for each image would be the
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est alternative. However, this alternative has a high computational

ost. A similar alternative with lower cost would be to recommend,

f not the best, at least a suitable segmentation algorithm for each

ew image. This paper proposes and experimentally investigates a

achine Learning (ML)-based recommender system to deal with

his task [12,31,41] . 

A similar problem occurs when recommending the most suit-

ble ML algorithm for a new dataset. This problem has been suc-

essfully investigated using Meta-learning (MtL) [8,19] . MtL is a ML

pproach to learn from previous ML experiences. For such, each al-

orithm induces a meta-model able to map description of a dataset

y a set of meta-features to the performance of a set of ML algo-

ithms when applied to this dataset. 

MtL has been successfully employed to select the best algo-

ithm, or ranking a set of algorithms, for a new dataset [9,16,27–

9] .

In image analysis, MtL has also been applied to image segmen-

ation [5,12] , to object detection and localisation [2] , and to search

imilar images [39] . Campos et al. [12] addressed the algorithm

ecommendation problem for image segmentation. The authors

sed MtL to recommend one among three conventional image

egmentation algorithms for three restricted scenarios [21,26,36] .
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heir study did not include the most recent image segmentation

pproaches [4,22,24,38] . Furthermore, the authors employed hun-

reds of images from each image domain. However, in most real-

ife image segmentation, it is only possible to deal with a few im-

ges. 

In this study, we investigate the use of MtL to recommend seg-

entation algorithms for a new image. For such, we describe each

mage by a set of meta-features extracted from itself. These meta-

eatures should provide the necessary information to allow the

ecommendation of suitable segmentation algorithms. In order to

eal with trade-offs associated with the automatic image process-

ng system, segmentation performance and computational com-

lexity, the algorithms used in this work were separated into two

roups: Gradient-based [24] and Machine Learning-based [4,22,38] .

he experiments were conducted using a well-known database of

egmentation benchmarking, the Berkeley Segmentation Dataset

nd Benchmark (BSDB500). This dataset was already used in sev-

ral tasks, mainly for the evaluation of new segmentation algo-

ithms [1,4,25,32] . In our experiments, three supervised classifi-

ation algorithms, Random Forest (RF), Support Vector Machine

SVM) and Extreme Gradient Boosting (XGBoost), were evaluated

s meta-learners. Their predictive performances were compared

ith two different baselines ( OneR and Random ).
This paper is structured as follows. Related work is reviewed

n Section 2 . The materials and methods are covered on Section 3 .

xperimental results are presented and analysed in Section 4 . Fi-

ally, main conclusions and future work directions are discussed

n Section 5 . 

. Related work

MtL has been successfully used for algorithm selection [3] . In

he last years, it has been applied to solve a variety of problems

n Computer Vision. In [41] , the authors proposed a learning-based

pproach to select image segmentation algorithms. The approach

as explored with SVM for modelling a recommender based on

0 0 0 images. The recommender was compared with the manual

election of thresholding algorithms (Otsu, enhanced histogram, re-

ion growing and Kapur’s maximum entropy). Although the results

resented a high predictive performance, only grayscale synthetic

mages, described by their histogram values, were used in the ex-

eriments. Thus, the contributions were limited to specific scenar-

os using simple image segmentation algorithms, with low applica-

ility to real-life images. 

A novel framework for intracellular image segmentation based

n effective algorithm selection was proposed by [31] . When rec-

mmending an algorithm for a new image, the system compares

he segmented regions with user-supervised regions based on sim-

larity measures. The authors’ framework was able to recommend

uitable algorithms using intensity and texture meta-features (pixel

ntensity and normalised moment), as well as to define the hyper-

arameter of each segmentation algorithm. Although the authors

resented a segmentation solution based on SVM and Approxi-

ated Nearest Neighbour (ANN), the contribution was limited to a

ery specific domain. They explored just two image features with

wo types of hyperparameter settings. 

In [5] , MtL was used to identify the best set of hyperparame-

er values to perform watershed segmentation. The authors used

ierarchical clustering to identify similar images. They used only

ine images of different types (biological images, faces, and an-

mals). If an image was considered similar to a well-segmented

mage, it was segmented using the same hyperparameter values

sed for that image. The authors used meta-features from image

escriptions (statistical and texture features). In order to improve

erformance, they computed particular weight values to the statis-

ical and texture features. In our work, we explored the image fea-
2

ure importance to understand the meta-features contribution and

se this information to automate the segmentation recommenda-

ion task. 

MtL was successfully used to select segmentation algorithms in

12] . In the experiments, the authors applied 3 segmentation algo-

ithms to 4 image datasets. According to the results, MtL was able

o select suitable segmentation algorithms. However, the datasets

ere limited to restricted domains, which does not allow a gener-

lisation to other image domains. Besides, the segmentation eval-

ation was subjective, provided by domain experts, increasing the

ost of the framework. 

[2] proposed a framework to generalised object detection and

ocalisation based on MtL. The authors reported AdaBoost as the

ost promising meta-learner, when compare with Decision Stump

DS) and SVMs. Their framework did not include hyperparameter

uning. The Experiment was run on three different datasets, with a

otal of 2242 images. Despite the high performance and the identi-

cation of the most relevant meta-features, the proposed frame-

ork presented a high computational cost. Besides, the experi-

ents were restricted to only three application domains. 

A variant of the Particle Swarm Optimization (PSO) meta-

euristic using MtL was proposed by [39] . The authors investigated

he problem of searching for satellite images by similarity in a dy-

amically changed problem space. They took advantage of trans-

er learning, a MtL technique that transfer knowledge acquired in

 dataset to model another dataset. The obtained results were ex-

lored in a ML perspective of a single application domain (satellite

maging), without a general contribution to image processing. Dif-

erent from the other works, the authors explored shape descrip-

ors as meta-features. 

It is possible to identify relevant contributions in different do-

ains for image segmentation algorithm recommendation. How-

ver, most of the proposed approaches are restricted to a single

pplication domain. Further, they do not explore new segmenta-

ion algorithms. Finally, the importance of image features was not

aken into account. Table 1 summarises the main aspects of the re-

ated works highlighting important comparison items. In this work,

e investigate the use of MtL for image segmentation algorithm

ecommendation using novel image segmentation algorithms. We

lso use image features in the recommendation process and per-

orm experiments with images from several different domains. 

. Materials and methods

The experiments carried out in this paper assess the use of MtL

o recommend image segmentation algorithms. Fig. 1 presents

he modelling task, exploring previously acquired knowledge from

imilar tasks, while Fig. 2 illustrates the recommending step. Fur-

her subsections describe in details each one of their components. 

In the modelling task, a set of images are segmented by a

roup of image segmentation algorithms (A) and characterised by

eta-features ” (C). Next, each segmented image is evaluated us-

ng the benchmark method proposed by [24] , which computes the

-score evaluation measure using a ground-truth boundary map

B). The benchmark/evaluation step defines the “meta-targets ”, the

lasses/labels to be predicted by the MtL recommender system.

his process generates a meta-dataset. 

Finally, ML algorithms (“meta-learners ”) are applied to a train-

ng subset of the meta-dataset to induce a “meta-model ”. The

eta-model maps the relations between the meta-features and the

eta-target. Thus, as illustrated in Fig. 2 , the meta-model can be

pplied to a new image, represented by the values of its meta-

eatures, and return the most suitable image segmentation algo-

ithm for that image. 



Table 1

Summary of related studies applying recommendation for image segmentation tasks. Fields without information in the related study are marked with a hyphen.

Task

# of

algorithms # of images Image features Image domains

Evaluation

criteria

Feature

analysis Reference

Segmentation Algorithm Selection 4 9000 Histogram Synthetic Manual – [41]

2 6 Intensity,

Boundary

Intracellular Automatic – [31]

3 366 Color, Intensity,

Texture,

Chicken, Cloud,

Wound

Manual • [11]

Histogram,

Image quality

Hyperparameter recommendation 1 9 Statistical,

Texture

Biological,

Faces, Animals

Manual • [5]

Fig. 1. General modelling overview of the framework.

Fig. 2. Meta-learning system to recommend image segmentation algorithms.
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3.1. Meta-dataset 

For the experiments, we used the Berkeley Segmenta-

tion Dataset and Benchmark (BSDB500) [23] . The BSDB500

is widely known and used for evaluating segmentation algo-

rithms [1,4,24,30] . This dataset is composed of 500 real images

separated into three disjoint groups: training (200 images), test
3

200 images) and validation (100 images). In the experiments, the

alidation and test set were combined into a set of 300 images for

eta-learning purposes. Since the training set was used to build

he ML-based segmentation algorithms, they were not used in the

ext experiments. 

To improve the generalisation of the induced meta-models, we

reated additional learning examples by means of image augmen-

ation. For each original BSDB500 image, we created 7 different

istortions by rotating and flipping the image. We made rotations

ith 90, 180 and 270 degrees around the origin, and flipped the

riginal and rotated images horizontally. At the end, our meta-

ataset was composed by 300 + (300 × 7) = 2400 images (meta-

xamples). 

Eight different segmentation algorithms were applied to each

mage from BSDB500 dataset. The performance obtained by these

lgorithms were used to define the target feature for each meta-

nstance in the meta-dataset. Thus, the value of the target of each

eta-instance is one of the eight possible labels (segmentation al-

orithms). 

.2. Meta-features 

The description of each image by the meta-features produced

ne meta-instance in the meta-dataset. A meta-feature is a func-

ion that extracts a relevant characteristic from an image. The de-

cription of each image by a set of meta-features produces a vector

f numerical values. In this paper, we extracted 98 meta-features

rom each image. These meta-features can be organised into five

roups: 

• Colour-based [20] : Simple statistical measures from colour

channels;
• Border-based: Statistical measures obtained after applying

border-detector filters;
• Histograms [6] : Statistics from histograms of colour and inten-

sity;
• Texture [17] : Values from the texture of an image using Fast

Fourier Transform (FFT) and Local Binary Patterns (LBP) meth-

ods; and
• Image Quality [40] : Quality assessment metrics.

A list of all meta-features used in our experiments can be seen in

able 2 . 

.3. Meta-targets 

The value of the meta-target indicates which image segmenta-

ion algorithm is the most suitable for a given image. The eight

egmentation algorithms applied to each image can produce seg-

entation with different qualities and demand different processing

imes. 

As the main goal of this paper is to recommend the best al-

orithm for each new image, we avoided the comparison of algo-



Table 2

Category, acronym and description of meta-features used in the experiments.

Category Acronym Description

Colour- 

based

cor_ ∗ Spearman correlation value between ∗ channels pairwise (RGB, HSV and Intensity). 

mean_ ∗ Mean of the ∗ channel (RGB, HSV) 

std_ ∗ Standard deviation of the ∗ channel (RGB, HSV and Intensity) 

entropy_I Entropy of the Intensity Channel

Image

Quality

SNM Statistical Naturalness Measure

EME Measure of Enhancement

Border nump_sobel Number of white pixels in a Sobel Image

hu_sobel[1–7] Hu Moments of Sobel Image

hu_canny[1–7] Hu Moments of Canny

Histogram std_hist_ ∗ Standard deviation of the histogram of ∗ channel (RGB, HSV and Intensity) 

kurt_hist_ ∗ Kurtosis of the histogram of ∗ channel (RGB, HSV and Intensity) 

skew_hist_ ∗ Skewness of the histogram of ∗ channel (RGB, HSV and Intensity) 

Texture lbp [0–9] LBP Vector

com_entropy Entropy of Co-occurence Matrix

com_inertia Inertia of Co-occurence Matrix

com_energy Energy of Co-occurence Matrix

com_correlation Correlation of Co-occurence Matrix

com_homogeniety Homogeneity of Co-occurence Matrix

FFT_energy Energy of FFT

FFT_entropy Entropy of FFT

FFT_intertia Inertia of FFT

FFT_homogeneity Homogeneity of FFT

Table 3

Meta-datasets of each group, the meta-targets and the number of times (and %) they were the most

suitable in the group.

Meta-Dataset Meta-Target Number of

Wins

Number of

Meta-examples

Percentage

of Wins

Gradient-based CGTG 1495 170 62.29

BGTG 331 170 13.79

TG 202 170 8.42

CG 193 170 8.04

BG 179 170 7.46

ML-based gPb-ucm 1348 170 56.17

SPC 879 170 36.63

gPb 173 170 7.21
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1 https://www.r-project.org .
2 https://mlr-org.github.io/mlr-tutorial/release/html/index.html .
ithms with very different computational complexities. Thus, we

ivided the segmentation algorithms into two groups: 

• ML-based algorithms: Includes the algorithms with high

computationally complexity, in this study: Sparse Code

Gradients (SPCs) [38] , Global Probability of Boundary

(gPb) [22] and Global Probability of Boundary Ultrametric

Contour Maps (gPBucm) [4] . These algorithms are based on

ML;
• Gradient-based algorithms: algorithms with low complexity,

based on Colour, Texture and Brightness Gradients: Colour Gra-

dient (CG), Texture Gradient (TG), Brightness Gradient (BG),

Colour/Texture Gradient (CGTG), Brightness/Texture Gradient

(BGTG) [24] .

n the evaluation of the segmentation algorithms, they were as-

igned a continuous score between 0 and 1, according to the

ethodology proposed by [24] . The higher the value, the better

he algorithm. The algorithm with the highest score in an image

ecomes the image label (meta-target) value. Table 3 presents the

lass distribution for each group of algorithms. It is important to

ention that both scenarios are imbalanced since classes differ

ubstantially in the number of examples because one of the al-

orithms is the best segmentation algorithm for a large number

f images. Considering the superior number of algorithms (meta-

argets) from both meta-datasets, and to deal with the high im-

alanced meta-dataset, we applied under-sampling for both meta-
4

atasets. Since the minority class in the Gradient-based (BG) had

79 wins, 170 images were randomly selected for each class. The

ame approach was adopted for the ML-based group. Thus, the

radient-based meta-dasaset was composed with 850 examples

170 images × 5 algorithms.) and the ML-based with 510 exam-

les (170 images × 3 algorithms). 

.4. Meta-learners 

Three ML algorithms were used as meta-learners: RF [10] ,

VM [35] and XGBoost [13] . They induce models following differ-

nt learning biases and have been used with success in multiple

redictive tasks. They were implemented using the R language 1

nd the mlr package 2 [7] along with their default hyperparame-

er values. 

The predictive performance of the meta-learners was evaluated

sing the Leave-One-Out Cross Validation (LOO-CV) strategy. Two

ifferent baselines were also used in the experimental compar-

sons: a model that always recommends a unique class for the

hole dataset ( OneR ) and a model that provides random rec-

mmendations ( Random ). Additionally, we used an upperbound

s the ground-truth ( Truth ), related to the segmentation algo-

https://www.r-project.org
https://mlr-org.github.io/mlr-tutorial/release/html/index.html


Fig. 3. Performance of the meta-models for Gradient-based algorithms.

Fig. 4. Performance of the meta-models for ML-based algorithms.
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rithm that obtained the best segmentation performance according

to [24] . 

Seven evaluation metrics were used to assess the predictive

performance of the induced models: Accuracy, Balanced per class

accuracy, Precision, Recall, F-score (f1), Sensitivity and Specificity. 

4. Experimental results and discussion

The predictive performances obtained by the three meta-

learners in the test subset of the two meta-datasets are presented

as a radar chart in Figs. 3 and 4 . In these figures, each line repre-

sents a meta-model and each vertex accounts for a different per-

formance measure. The larger the area in the radar chart, the bet-

ter the meta-model. 

Regarding the Gradient-based meta-datasets, the radar charts

shows that the meta-models outperformed the baselines. The best

segmentation algorithm was not recommended only in 51 out of

850 meta-instances (6%). All meta-models overcame the OneR and

Random baselines for both datasets. It is also possible to see in

the results ( Table 4 ) that RF obtained the best results with 89% of

accuracy, precision, and recall and 0.89 of F-score. 

The predictive performances for the ML-based meta-dataset

show that in the ML-based group, considering all meta-models,
5

nly in 109 out of 510 (21.3%) meta-instances the best image seg-

entation algorithm was not recommended. This reduction, when

ompared with the Gradient-based meta-datasets, occurred be-

ause the predictive performance of the baselines are closer to the

redictive performance of the ML-based segmentation algorithms.

he results also show that the meta-model induced by RF obtained

he best predictive performance, with 69% of accuracy, precision,

nd recall and 0.69 of F-score, as in Table 5 . 

The superiority of the MtL recommending system regarding the

aselines was confirmed by statistical tests. We used the Friedman

est, with a significance level of α = 0 . 05 . The null hypothesis is

hat the recommendation by the meta-models and by the base-

ines are similar. Anytime the null hypothesis is rejected, the Ne-

enyi post hoc test can be applied, stating that the performance of

he two approaches are significantly different if their correspond-

ng average ranks differ by at least a Critical Difference (CD) value.

hen multiple algorithms are compared in this way, a graphic rep-

esentation can be used to represent the results with the CD dia-

ram, as proposed in [14] . 

Considering the Gradient-based set, the meta-models (RF, SVM,

GBoost) were compared with Truth (expected algorithm sugges-

ion), the use of the single segmentation algorithms as OneR (CG,

TG, BG, CGTG and BGTG), and the random selection of segmenta-

ion algorithm for each image (Random), using their F-Score values

s performance metric. This analysis is shown in Fig. 5 , using the

esults from the Nemenyi test. 

As shown in Fig. 5 , the RF meta-model is connected to the

ruth baseline at the top of the ranking. Thus, this meta-model

ecommends the best segmentation algorithm, which is statisti-

ally similar to Truth . In sequence, RF, SVM, XGBoost are con-

ected, supporting the benefit of using MtL in comparison to select

 specific algorithm to the whole dataset. When applying a single

egmentation algorithm ( OneR ), CGTG and BGTG were superior to

he others. In particular, the CG, TG and BG algorithms were simi-

ar to a random choice of algorithms, presenting the worst F-score

erformance. 

Evaluating the ML-based recommending using Truth , meta-

odels (RF, SVM, and XGBoost), OneR (gPb-ucm, SPC and gPb)

nd Random , Fig. 6 shows that no solution was similar to the

xpected Truth value. However, the meta-model recommend-

ng results were superior to Random or OneR with RF provid-

ng the best recommendations, with similar results for SVM and

GBoost. 

Finally, the segmentation performance obtained by the segmen-

ation algorithms recommended by meta-models was superior to

lways using the same segmentation algorithm or a segmentation

lgorithm randomly chosen. Regarding the predictive performance

f the meta-models, RF induced the best meta-models in both

ets of segmentation algorithms. Moreover, when recommending

radient-based algorithms, RF was similar to the ground-truth so-

ution. 

.1. Relative feature importance 

It is also possible to assess the importance of each image fea-

ure for the induction of the meta-models by using the RF Feature

mportance metric. This inner RF’s metric is calculated by permut-

ng the values of a feature in the Out-of-Bag (OOB) examples and

ecalculating the OOB Error. In this way, if substituting the values

f a feature by random values results in error increase, this fea-

ure was considered important. Otherwise, if the error decreases,

he resulting importance is negative, and the feature is considered

ot important [10] . 

We used the RF Feature Importance to investigate the contri-

ution of each feature in selecting segmentation algorithms. Fig. 7

hows the feature importance for both datasets. In the Gradient-



Table 4

Gradient-based predictive performance.

Meta Accuracy Sensitivity Specificity Precision Recall F1 Balanced

Model Accuracy

SVM 82% 0.82 0.95 0.85 0.82 0.82 88%

RF 89% 0.89 0.97 0.89 0.89 0.89 93%

XGBoost 77% 0.77 0.94 0.76 0.77 0.76 85%

Random 19% 0.19 0.79 0.19 0.19 0.19 49%

OneR 2% 0.20 0.80 0.04 0.20 0.06 50%

Table 5

ML-based predictive performance.

Meta Model Accuracy Sensitivity Specificity Precision Recall F1 Balanced Accuracy

SVM 53% 0.53 0.76 0.53 0.53 0.53 65%

RF 69% 0.69 0.84 0.69 0.69 0.69 76%

XGBoost 61% 0.61 0.80 0.61 0.61 0.61 71%

Random 36% 0.36 0.68 0.36 0.36 0.36 52%

OneR 33% 0.33 0.66 0.11 0.33 0.16 50%

Fig. 5. Comparison of the F-Score values obtained by meta-models when recommending Gradient-based segmentation algorithms according to the Nemenyi test. Groups of

meta-learners that are not significantly different ( α= 0.05 and CD = 0.46) are connected. 

Fig. 6. Comparison of the F-score values obtained by meta-models when recommending ML-based segmentation algorithms according to the Nemenyi test. Groups that are

not significantly different ( α= 0.05 and CD = 0.46) are connected. 
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ased meta-dataset, the Texture and Colour meta-features were

onsidered the most important, especially FFT Entropy (12.88),

ean (13.99) and Standard Deviation of Blue Channel (12.01),

nd Standard Deviation of Saturation Channel (14.184). Once the

radient-based algorithms are grounded on information from Tex-

ure and Colour attributes of image regions to segment images,

heir selection makes sense. 

ML-based segmentation algorithms were suggested by meta-

odels with high meta-feature importance ( > 20) from mean _ h

25.77), cor _ hs (22.86), skew _ hist _ H(22 . 01 ), kurt _ hist _ H(21 . 22 ) and

bp _ 3(20 . 73 ). Some of them are extracted from H colour chan-
6

el and histogram. However, the high importance of meta-features

rom LBP Vector (Texture category) suggests that a more precise

egmentation algorithm, supported by ML-based, requires a plural

f image descriptors. Another example was SNM from Image Qual-

ty (twentieth most important with 16.79 of importance), which

as more important than other colours, histogram and intensity

eatures. 

In both meta-datasets, the border meta-features ( hu _ sobel{ 1 . 7 }
nd hu _ canny { 1 . 7 } ) had low importance at the point of be-

ng removed from the meta-features without compromising the

esults. 



Fig. 7. Average relative importance of the meta-features obtained from RF importance. The names of the meta-features in the x-axis follow the acronyms presented in

Tables 2 sorted by the most important features for the ML-based set.
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5. Conclusion

This paper presented a framework to recommend segmentation

algorithms using Meta-learning (MtL) for automatic image seg-

mentation. In the experiments carried out, for each image, two

segmentation algorithms were suggested, from a set of 8 algo-

rithms, one from a group with more computationally costly solu-

tions (ML-based) and another from a group with less complex and

faster techniques (Gradient-based). Experiments were performed

with 2400 images, from general domains, 300 from the BSDB500

dataset and 2100 augmented images. 

Three Machine Learning (ML) algorithms were compared for

meta-model induction. The meta-models produced by the RF algo-

rithm presented the best predictive performance for both groups

of segmentation algorithms. The predictive performance obtained

by the meta-models induced by the SVM and XGBoost were not as

high as those from RF algorithm, but were superior to both base-

lines for all images: the OneR and Random models.

This paper also investigated the importance of the meta-

features given by the RF algorithm. The results of the analysis

performed highlight colour and histogram meta-features as the

most important for Gradient-based segmentation algorithms. The

analysis also showed that the recommendation of the ML-based

segmentation algorithms considered important meta-features from

different categories. As future work, we intend to use features

extracted using Convolutional Neural Networks (CNN), instead of

handcrafted features. We believe that these meta-features will in-

crease the predictive performance. CNNs could also be used to

evaluate if a segmentation was adequate or not. Finally, we plan

to increase the number of segmentation algorithms in future ex-

periments. 
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