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ABSTRACT

In this paper, we present an alternating gradient descent algorithm for estimating parameters of a spher-
ical Gaussian mixture model by the method of moments (AGD-MoM). We formulate the problem as
a constrained optimisation problem which simultaneously matches the third order moments from the
data, represented as a tensor, and the second order moment, which is the empirical covariance matrix.
We derive the necessary gradients (and second derivatives), and use them to implement alternating gra-
dient search to estimate the parameters of the model. We show that the proposed method is applicable
in both a batch as well as in a streaming (online) setting. Using synthetic and benchmark datasets, we
demonstrate empirically that the proposed algorithm outperforms the more classical algorithms like
Expectation Maximisation and variational Bayes.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction
The Gaussian mixture model (GMM) is a widely used and

extremely practical probabilistic modelling tool used in statis-
tics and machine learning. It is a powerful model for data clus-
tering problems where the data is assumed to be generated from
a mixture of several distinct underlying probability distribu-
tions. Central to a successful application of a GMM is the pa-
rameter estimation technique. This topic dates back more than
a hundred years [1], and the most commonly used method is
the Expectation-Maximisation (EM) algorithm which is based
on maximum likelihood estimation. However, it has long been
known that the EM algorithm may be slow to converge (as first
noted in [2] and expanded in [3, 4]). Generally speaking, the
EM algorithm works best when the component densities are
well separated, but convergence may be exorbitantly slow and
result in estimates with high variance when they are poorly sep-
arated [3]. In addition, the computational complexity for the
EM algorithm depends significantly on the number of samples.
When clustering N samples of D-dimensional data into K clus-
ters this complexity grows as O(DN + KN2), [5]. As an alterna-
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tive, in this paper, we investigate a variant of the Method of Mo-
ments (MoM) based on Alternating Gradient Descent (AGD).
The earliest known application of the MoM was provided by
Chebyshev (1887) in his study of the central limit theorem in
statistics. This was then followed by Karl Pearson in his classic
work on MoM in 1894, [6]. Pearson first used the MoM to esti-
mate the five parameters of a two-component univariate Gaus-
sian mixture. After Pearson, the MoM became one of the most
popular ways of estimating the parameters of a finite mixture
distribution (see [7, 1, 8]). One reason is that MoM estimators
impose fewer restrictions on the model compared to MLE.

The basic idea behind a MoM estimator is that, given a suffi-
cient number of moments, one may match the theoretical and
sample moments to estimate the parameters. More specifi-
cally, the moment based approach solves systems of multivari-
ate polynomial equations for computing all solutions of a given
model without any prerequisite assumption. However, this can
be computationally challenging. One approach proposed in [7]
suggests that to speed up the computation one can transform
the moment equations into a set of related linear equations (in
essence marginal distributions, which can be solved efficiently),
and one non-linear equation (which is cubic and can also be
solved efficiently). In addition, a successful implementation
of the MoM should yield estimators that are statistically effi-
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cient in the sense that their expectations maximise the likeli-
hood function, [7]. Thus, the challenge in using the MoM ap-
proach is to preserve high statistical efficiency while reducing
the computational burden.

In recent years, tensor based methods have received much
attention together with the development of computationally ef-
ficient algorithms (see [9] for an excellent overview). These
methods can be directly used for computing MoM estimators.
For example, n−order moments can be regarded as an n−mode
tensor which can then be simplified using one of several tensor
decomposition methods. This is the core of the MoM approach
used by [8] and also by Anadkumar et al. in [10]. They pro-
pose a moment matching estimator for mixtures of spherical
Gaussians using a simple spectral decomposition of lower or-
der moments obtained from the data. Their method uses the
eigenvalue decomposition of symmetric matrices (see [8]) to
decrease the computational complexity of the MoM. Note that
the eigenvalues are found via the power iteration method and
deflation method which may introduce errors in the parameter
estimates due to approximation inherent in deflation methods.

In this paper, we propose an alternative approach to this prob-
lem. In particular, we reformulate the moment matching prob-
lem as a constrained optimisation problem which can be solved
via Alternating Gradient Descent (AGD-MoM). This allows us
to obtain the required estimators by a direct computation rather
than through an iterative procedure. As will be seen, this leads
to estimates with increased accuracy over the competing tech-
niques. Furthermore, we demonstrate that in the case of online
streaming data the algorithm tracks the evolution of the cluster
centres with greater accuracy and less computational expense.
In addition, as our method requires storage of the moments of
the streaming data, the memory requirements are efficient and
independent of the number of samples.

The remainder of the paper is organised as follows. In Sec-
tion 2 we briefly review the moment-based estimation problem.
Section 3 presents our proposed algorithm. Section 4 demon-
strates how AGD-MoM can be adapted in an online setting.
Section 5 compares AGD-MoM with several competing meth-
ods using both synthetic and real data. Finally, Section 6 draws
conclusions and suggests avenues for future work.1

2. Moment-based estimation

A spherical GMM assumes that the D dimensional data ob-
servations are sampled from K clusters. The probability of sam-
pling cluster k ∈ {1, . . . ,K} is given by a mixing weight vector,

¯
w = (w1, . . . ,wK), wk ∈ [0, 1], and

∑
k wk = 1. Each cluster has

a centre denoted by
¯
µ

k
∈ RD with an associated isometric co-

variance matrix σ2
k I. Denote a sample from this data generating

process as
¯
x =

¯
µh+

¯
z where

¯
x ∈ RD,

¯
z is assumed to be a random

vector whose conditional distribution given h = k is N(0, σ2
hI),

and P(h = k) = wk for k ∈ [K]. The goal of GMM estimation
is to optimally recover the parameters {

¯
µ1:K , σ

2
1:K ,w1:K} given a

set of observations
¯
x.

1An implementation of our algorithm in tensorflow may be found here:
https://github.com/drahmani/AGD-MoM.

With respect to GMM, the MoM solves multivariate poly-
nomial equations, pairs the sample moments with their cor-
responding theoretical moments, to find the parameters of
the model. In this paper, we examine a computationally
efficient optimisation procedure to recover the parameters
of GMM using the MoM. Our method assumes the non-
degeneracy condition [8] is met. We recall that the non-
degeneracy condition states that the component mean vectors,

¯
µ1,

¯
µ2, . . . ,

¯
µK , are linearly independent, and the mixing compo-

nents w1,w2, . . . ,wK > 0, are strictly positive and sum to one.
Note also that the non-degeneracy condition places a weaker re-
striction on the data generating process than the spreading con-
dition from standard (e.g., EM) density estimation approaches
(see [11, 12] for specifics). Given the non-degeneracy condi-
tion, the sample moments can be expressed as a sum of rank
one tensors and therefore the relationship between the GMM
parameters and their corresponding moments can be expressed
by the following theorem.
Theorem 1. (Hsu and Kakade, 2012) Assume D ≥ K. The
average variance σ̄2 =

∑K
k=1 wkσ

2
k is the smallest eigenvalue of

the covariance matrix C
¯
x = E[

¯
x ⊗

¯
x] − E[

¯
x] ⊗ E[

¯
x]. Let,

¯
ν be

any unit norm eigenvector corresponding to the eigenvalue σ̄2.
Furthermore, if

¯
µ = E[

¯
x(

¯
νT (

¯
x − E[

¯
x]))2],

M = E[
¯
x ⊗

¯
x] − σ̄2I,

T = E[
¯
x ⊗

¯
x ⊗

¯
x] − (

D∑
i=1 ¯
µ ⊗ ei ⊗ ei + ei ⊗

¯
µ ⊗ ei + ei ⊗ ei ⊗

¯
µ),

where
¯
µ ∈ RD,M ∈ RD×D and T ∈ RD×D×D, then

M =

K∑
k=1

wk
¯
µk ⊗

¯
µk, T =

K∑
k=1

wk
¯
µk ⊗

¯
µk ⊗

¯
µk.

The empirical moments converge to the exact moments at a
rate of O(N

−1
2 ) [8]. As the lower order moments, M and T , are

orthogonally decomposable tensors consequently the moment
matching problem can be cast as eigenvalue decomposition of
symmetric matrices. Such orthogonal decomposition problems
can be efficiently solved by iterative approaches like the power
iteration method, fixed-point iteration and gradient descent, see
[13, 10, 8]. An orthogonal decomposition of a symmetric ten-
sor T ∈ RD×D×D is a collection of orthonormal (unit) vec-
tors

¯
v1, ¯

v2, . . . , ¯
vK together with corresponding positive scalars

λk > 0 such that T =
∑K

k=1 λk¯
v⊗3

k . Anadkumar et al. [10]
use the tensor power method of Lathauwer et. al. proposed in
[13] to obtain robust estimates of eigenvector/eigenvalue pairs,
{(

¯
vk, λk)}, for orthogonal tensor decomposition. Note that the

orthogonality is required only for the whitened mean vectors
(not original

¯
µi’s), and this is guaranteed under the aforemen-

tioned non-degeneracy conditions. It is also worth pointing out
that orthogonal decompositions do not necessarily exist for ev-
ery symmetric tensor. A thorough review of these models goes
beyond the scope of this paper.

We propose here an alternative approach to extract the or-
thogonal decomposition of M and T by reformulating the mo-
ment matching problem as a constrained optimisation problem.
We provide a detailed description in the following section.
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3. Learning mixture of spherical Gaussian via alternating
gradient descent: AGD-MoM

In this section, we first reformulate the moment matching
problem as a constrained optimisation problem and then present
an AGD algorithm for GMM parameter estimation. We start by
reformulating Theorem 1 in terms of minimising the objective
function:

min
w1,...,wk

¯
µ1,...,

¯
µk

||T −

K∑
k=1

wk
¯
µk ⊗

¯
µk ⊗

¯
µk ||

2
F , (1)

subject to M =

K∑
k=1

wk
¯
µk ⊗

¯
µk,

where ||.||F denotes the Frobenius tensor norm, which is the
square root of the sum of the squares of all its elements. Our
constrained optimisation problem involves minimising the dis-
crepancy between the empirical tensor and exact tensor subject
to a constraint. Examples of such problems for non-negative
tensor factorisation can be found in [14, 15, 16].

Here, we require a more robust approach to find a set of ef-
ficient and optimal solutions to minimise the objective function
(1). We use the quadratic penalty method [17] which is one way
to solve this type of constrained optimisation problem. Note
that equation (1) can be presented in a quadratic penalty format
by adding the square of the violation of the equality constrained
terms to the cost function (see [17]) as follows:

min
w1,...,wk

¯
µ1,...,

¯
µk

F(w1, . . . ,wk,
¯
µ1, . . . ,

¯
µk) = f + λg, (2)

where

f = ||T −

K∑
k=1

wk
¯
µk⊗

¯
µk⊗

¯
µk ||

2
F and g = ||M−

K∑
k=1

wk
¯
µk⊗

¯
µk ||

2
F ,

and λ is the penalty parameter which can be changed adaptively,
according to the difficulty in minimising the equality constraint
at each iteration. To examine the convergence properties of
equation (2), we rely on Theorem 17.1 from [17]. According
to this theorem, every limit point x∗ of the sequence of {xt},
where xt is the exact global minimiser of f (xt) + λt

∑
i g2

i (xt), is
a global solution of the problem as λt → ∞.

As we now see, this unconstrained problem can be solved
by an AGD based algorithm, alternating between updates of the
two sets of parameters: mixing weight

¯
w and component means

¯
µ1, . . . ,

¯
µ

K
. Note that AGD is one such algorithms to solve un-

constrained optimisation problems, [14, 18]. Using AGD to re-
cover the model parameters,

¯
µ1, . . . ,

¯
µ

K
results in the following

solutions:
Fix wk and update

¯
µk :

¯
µt+1

k =
¯
µt

k − αt

(
∇ f (

¯
µt

k |w
t
k) + λt∇g(

¯
µt

k |w
t
k)
)
,

Fix
¯
µk and update wk : wt+1

k = wt
k − βt

(
∇ f (wt

k |
¯
µt

k) + λt∇g(wt
k |

¯
µt

k)
)
.

Note that ∇ f (
¯
µt

k |w
t
k), ∇g(

¯
µt

k |w
t
k), ∇ f (wt

k |¯
µt

k) and ∇g(wt
k |¯
µt

k) are

the necessary gradients of the cost function, f +λg, with respect
to the parameters

¯
µ and

¯
w and learning rates {αt, βt}. The first

step in finding these derivatives is to rewrite the error norm as a
sum of quadratic terms:

f =

D∑
l=1

D∑
j=1

D∑
i=1

(ti jl −

K∑
k=1

wkµkiµk jµkl)2, (3)

g =

D∑
j=1

D∑
i=1

(mi j −

K∑
k=1

wkµkiµk j)2. (4)

We remark that T and M are symmetric, meaning the val-
ues of the elements2, ti jl and mi j, are the same under any
permutation of the indices, allowing efficient computation.3

Next, differentiating equations (3) and (4) with respect to the
(κ, d) component of

¯
µ and the κth component of

¯
w, where

κ = 1, . . . ,K; d = 1, . . . ,D, we have:4

∂ f
∂µκd

= 6wκ

D∑
i=1

µ2
κi

( K∑
k=1

wkµkdµ
2
ki − tidi

)
+ 12wκ

D∑
i, j=1

j,i j,d

µκiµκ j

( K∑
k=1

wkµkdµkiµk j − tid j

)
, (5)

∂g
∂µκd

= 4wκ

D∑
i=1

µκi
( K∑

k=1

wkµkdµki − mid

)
, (6)

∂ f
∂wκ

= 2
D∑

i=1

µ3
κi

( K∑
k=1

wkµ
3
ki − tiii

)
+ 6

D∑
i, j=1

j,i

µ2
κiµκ j

( K∑
k=1

wkµ
2
kiµk j − ti ji

)
,

+ 12
D∑

i, j,l=1
l, j,i

µκiµκ jµκl
( K∑

k=1

D∑
i, j,l=1
i, j,l

wkµκiµκ jµκl − tid j

)
, (7)

∂g
∂wκ

= 2
D∑

i=1

µ2
κi

( K∑
k=1

wkµ
2
ki − mii

)
+ 4

D∑
i, j=1

j>i

µκiµκ j

( K∑
k=1

wkµκiµκ j − mi j

)
.

(8)
Although the component-by-component differentiation in-
volves cumbersome calculations, it is useful to note the corre-
spondence between several terms in Equations (5) to (8) which
need only be computed once. This can be more readily seen
when expressed in vector form, following the notation of [19]
which results in:

∂ f
∂

¯
µκ

= −6wκT
¯
µ2
κ + 6wκ

K∑
k=1

wk

(
¯
µT
κ

¯
µk

)2

¯
µk, (9)

∂g
∂

¯
µκ

= 4wκ

K∑
k=1

wk

(
¯
µT
κ

¯
µk

)
¯
µk − 4wκM

¯
µκ, (10)

∂ f
∂wκ

= −2T
¯
µ3
κ + 2

K∑
k=1

wk

(
¯
µT
κ

¯
µk

)3
, (11)

∂g
∂wκ

= −2M
¯
µ2
κ + 2

K∑
k=1

wk

(
¯
µT
κ

¯
µk

)2
, (12)

where T
¯
µ3

k =
∑

i∈I Ti(
¯
µk)3

i for i ∈ I = {(i1, i2, i3)|i1, i2, i3 ∈
{1, . . . ,D}}; and i1, i2, i3 ∈ {1, 2, 3}. In fact, [19] defines I as
an index representation which is a set of unique entries of the
tensor (due to symmetry). For each i ∈ I, a corresponding
monomial is defined as c, which belongs to the following set:

2The ith entry of a vector
¯
µk is denoted by µki, element (i, j) of a matrix M is

denoted by mi j , and element (i, j, l) of a third-order tensor T is denoted by ti jl.
3For instance, in the tensor case ti jl = til j = t jil = t jli = tli j = tl ji for all

i, j, l = 1, . . . ,D, [9].
4Note that the differentials have been validated with the symbolic toolbox

in MATLAB.
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C =
{
(c1, c2, . . . , cD)|c1, . . . , cD ∈ {0, . . . , 3}

}
,

where we assume that c1 + . . . + cD = 3. It is shown in [19]
that the multiplicity of the entry corresponding to a monomial
representation c ∈ C is:

σc =

(
3

c1, c2, . . . , cD

)
=

3!
c1!c2! . . . , cD!

.

Therefore, ||T ||2F =
∑

i∈R ti =
∑

i∈I σiti =
∑

c∈C σctc and
(
¯
µ3

k)i =
¯
µi1k

¯
µi2k

¯
µi3k = (

¯
µ3

k)c =
¯
µc1

1k ¯
µc2

2k . . . ¯
µcD

Dk. As can be seen,
this representation gives a more compact formulation compared
to component-wise differentiation. Similar expressions can also
be derived for the second derivative of the cost function. In
particular, second derivatives are useful in performing Newton-
type updates with quadratic convergences. However, this in-
volves inverting a matrix making each step computationally ex-
pensive. Though we have not used the second derivatives in our
empirical work here, in the Supplementary Material we give the
required expressions for completeness. Algorithm 1 presents
the pseudo-code for AGD-MoM . We provide a complete im-
plementation of our code in MATLAB, and a Tensorflow imple-
mentation which uses automatic gradient computation. Exper-
iments confirmed that the differences between the two imple-
mentations is within negligible numerical limits.

Before turning to the application of AGD-MoM and present-
ing our results, we discuss some points that need attention when
specifying an optimisation model. First, in terms of conver-
gence, our algorithm will eventually converge to a local opti-
mum of the objective function. As with any gradient descent
approach, the speed of convergence will depend on the choice
of the learning rate parameter. A learning rate which is too
small leads to a slow convergence, whereas a large learning
rate causes the loss function to oscillate around the minimum or
even to diverge. Various techniques are known to speed up the
convergence. These include the use of a Momentum term [20],
Nesterov accelerated gradient [21], Adaptive moment estima-
tion (Adam) [22], etc. In our implementation we found faster
convergences using a Momentum term and adaptive learning
rate.5

Second, the computational complexity of AGD-MoM is
O
(
KDlog(1/ε)

)
for accuracy ε whereas the total running time

of the power iteration method is O
(
K5+δ

(
log(K) + loglog(1/ε)

))
for at most K1+δ random starts to find each eigenvectors,
O
(
log(K) + loglog(1/ε)

)
iteration per start and each iteration

needs O(K3) operations. In terms of computation complexity
it seems that the AGD is more efficient than the power itera-
tion method. However, as will be seen in Section 5, the power
iteration method converges faster than AGD.

5Momentum helps to accelerate GD in the relevant direction and dampens
oscillations [20]. Basically a fraction γ of the update vector of the previous
step is added to the current update vector. On the other hand, Adam adapts
the learning rate for each parameter individually, performing larger updates for
infrequent and smaller updates for frequent parameters [23]. Essentially, the
learning rate α and β are tuned according to the scale of the smoothness of the
gradient function. More details can be found in [22].

Algorithm 1 AGD-MoM for learning GMM parameters:

1: Input:
Third-order moment as 3-mode tensor
T ∈ RD×D×D,
Second order moment as matrix M ∈ RD×D.

2: Initialise:
Choose an initial vectors of parameters

¯
µ1, . . . ,

¯
µK ,

¯
w and learning rates α, β, and

penalty parameter λ.
3: for n = 1, 2, ...,epochs do
4: for k = 1, 2, ...,K do
5: Compute ∇ f (

¯
µn

k |wk
n), ∇g(

¯
µn

k |wk
n), ∇ f (wk

n|
¯
µn

k) and
∇g(wk

n|
¯
µn

k) from equations (5) to (8);
6: Update ˆ

¯
µ

k
n+1 ← ˆ

¯
µk

n−αn(∇ f (
¯
µn

k |w
n
k)+λ∇g(

¯
µn

k |w
n
k));

7: Update ŵk
n+1 ← ŵk

n−βn(∇ f (wn
k | ¯
µn

k)+λ∇g(wn
k |¯
µn

k));
8: end for
9: end for

10: Output:
Return ˆ

¯
µ

1
, . . . , ˆ

¯
µ

K
and ˆ

¯
w.
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Fig. 1: Visualising the convergence of Algorithm 1 for synthetic data: spherical
Gaussian mixture (K = 2, D = 2). Dots in different colours show different
starting points for the algorithm. Only 5 paths are shown for clarity.

To illustrate AGD-MoM in operation, Figure 1 shows 5 dif-
ferent pairs of initial points and their sample paths as the algo-
rithm progresses. Specifically, a simple two-dimensional two-
components GMM (K = 2 and D = 2) is illustrated. Given two
pairs of randomly selected points, gradient descent results in
estimates close to the true (known) mean for both clusters and
eventually converges to a local optimum. As far as convergence
is concerned, AGD-MoM eventually converges to the correct
solution in this case, regardless of the initial starting points; full
analysis of convergence is left to Section 5.

4. Application to streaming data
In this Section we show how our algorithm may be extended

to cater for streaming data in which the cluster centres are
evolving over time. In streaming scenarios, it is typical that
a significant amount of data needs to be quickly processed in
real time, while historical data is typically jettisoned and no
longer available. There exist few algorithms for performing on-
line clustering via GMM; see, for example [24, 25, 26, 27] and
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references therein. The majority of these algorithms are based
on a split and merge criterion to add or remove clusters, fol-
lowed by a rearrangement with an EM approach (see [24]). The
IGMM algorithm proposed in [24] has been further extended to
allow for evolving data either by dropping old data entirely [28]
or by use of an exponential filter (i.e. a forgetting factor) as
in [29]. In [26] it is argued that merge and split approaches are
either too slow for online learning [25] or do not guarantee the
accuracy of the resulting model. So later, a modification of the
tensor decomposition algorithm for such online setting has been
explored in [30], for community detection and topic modelling
but not for GMM. Their study shows that although a moment-
based formulation may seem computationally expensive and
complicated at first sight, implementing implicit tensor oper-
ations leads to significant speed-ups and guarantees a learning
process as opposed to several heuristic approaches [30]. The
above would suggest that while split and merge may be appli-
cable to AGD-MoM, the key advantage of our approach is that
tensor updates based on newly arrived data may be computa-
tionally efficient and lead to improved parameter estimates.

Assume that the incoming data points arrive in sequential
batches (or chunks [31]), S 1, S 2, . . . , S m, and that the next data
batch to arrive is S m+1. Upon the arrival S m+1, the empirical
moments must be updated. This involves updating Cx, and then
T ,M; essentially these operations are a weighted combination
of the old and new variables (see [32]); details of the update
function are left to the Supplementary Material. The weight-
ing uses a forgetting factor γ ∈ [0, 1] which allows the updates
to act as an exponential filter, thus allowing the evolving clus-
ter centres to be tracked (as is used in IGMM [29]). Given
updated moments AGD-MoM may be applied with the previ-
ous parameters used as initial estimates, denoted as AGD-MoM
(T m,Mm | { ˆ

¯
µm−1

1:K
, ˆ

¯
wm−1}). Therefore, the number of iterations

taken by gradient descents to converge can be drastically re-
duced. Algorithm 2 gives a pseudo-code for implementing the
Incremental-AGD-MoM (I-AGD-SGD) algorithm.

Algorithm 2 Incremental AGD-MoM for online learning:

1: Input:
An initial data batch, S 1, and exponential
weighting. γ

2: Initialise:
Choose initial parameters {

¯
µ0

1:K , ¯
w0}, α, β, λ.

3: for m = 2, ... do
4: while awaiting batch S m do
5: { ˆ

¯
µm−1

1:K
, ˆ

¯
wm−1} ←AGD-MoM (T m−1,Mm−1 | { ˆ

¯
µm−2

1:K
, ˆ

¯
wm−2}).

6: end while
7: Output:

Return { ˆ
¯
µm−1

1:K
, ˆ

¯
wm−1}

8: {T m,Mm} ← update(T m−1,Mm−1 | Cm, γ)
9: end for

5. Empirical results
In this section, we present the empirical performance of

our algorithm and compare it to the state-of-the-art algorithms
such as the EM algorithm, the Variational Bayes (VB) method,
and Tensor decomposition using the power iteration method

(TPM).6 We perform experiments for both synthetic and real
data. In the first set of experiments, we begin with a simple
2-D case examining the convergence and results in detail. The
analysis is then extended to higher dimensions. The second ex-
periment is conducted on two real datasets from the UCI repos-
itory7: the Iris and Wine datasets. Last but not least, the incre-
mental AGD-MoM is tested on a large set of synthetic stream-
ing data.

Our algorithm settings are as follows for all experiments. The
learning rates of AGD, α and β, are set to lower values between
10−4 to 10−5 in order to ensure that the algorithm does not miss
a local optimum while keeping the computational cost as low
as possible. The maximum number of epochs is set to 1000.
We found λ = 10 as a suitable choice for the penalty parameter.
Each experiment is run 100 time with different random starting
points allowing us to estimate parameter statistics.8 The same
starting points are used for all algorithms.9 The estimation ac-
curacy is measured using the Mean Absolute Percentage Error
(MAPE). The MAPE is considered because of its scale indepen-
dence and also its ease of interpretation.10

5.1. Synthetic data experiments
In the following experiment a synthetic dataset is generated

to examine in detail the convergence rate and results of Algo-
rithm 1. The purpose of this experiment is to determine which
of the three aforementioned optimisation techniques, standard
gradient descent, Momentum and Adam (Section 3), speeds
up the converges rate. To better visualise our results, a set
of two-dimensional data are generated from a two-component
GMM (N=500). Figure 2a shows the average convergence er-
ror rate obtained by standard gradient descent, Momentum and
Adam. As can be seen, Momentum converges slightly faster
than Adam, both having essentially converged after approx-
imately 100 epochs, while GD does not converge until 400
epochs and then requires an asymptotic number of iterations
to reach final convergence.11

Our empirical results further show that GD with a fixed learn-
ing rate achieves the optimum minimum, but requires signifi-
cantly more epochs than Adam and Momentum to do so. In or-
der to provide a closer picture of how these algorithms perform
regarding 100 different starting points, box-plots of w,

¯
µ1 and

¯
µ2 are shown in Figures 2b to 2c. Figure 2b shows the Momen-
tum estimates are slightly more concentrated than Adam, while,
the GD box-plot implies a far wider range for w = 0.5. On the

6The implementation may be found in [4].
7http://archive.ics.uci.edu/ml
8Specifically, the sensitivity of the solutions to the initial starting point.
9We implemented all algorithms for our synthetic data experiments using

MATLAB.
10MAPE is calculated as the average of the unsigned differences between an

estimated value and the known true value divided by the known true value. In
other words, we use the formula 1

n
∑n

i=1 ||¯
ei ||1 where

¯
ei =

( µi1−µ̂i1
µi1

, . . . ,
µin−µ̂id
µid

)
and || . ||1 is `1−norm. is used as the main measure of estimation accuracy.

11Most machine learning algorithms exhibit the behaviour in Figure 2,
quickly obtaining a ’reasonable’ solution and then requiring many more it-
erations to refine that solution. When these algorithms are being run on the
cloud, time equates directly to monetary cost, and so many applications seek
algorithms that provide the fastest reasonable solution.
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Fig. 2: Convergence of algorithm (1) in a synthetic setting over 100 runs: (a)
Summary of average convergence error rate GD, momentum and Adam. Box-
plots for (b) w1 and w2, (c)

¯
µ1 and

¯
µ2. The known true values for each compo-

nent are indicated in y-axis.

other hand, for both mean components,
¯
µ1 and

¯
µ2, GD results

in estimates with a lower variance but a distinct bias. As can be
seen in Figure 2c, both Adam and Momentum span much the
same range of values and their medians are roughly around the
true known values (y-axis). These experiments (together with
other cases presented in the Supplementary Material) indicate
that overall Momentum and Adam provide the fastest conver-
gence with a lower bias. We can conclude that the learning rate
does not need to be tuned according to the scale of the smooth-
ness of the gradient function but likely achieves better results
by dampening the oscillations via Momentum.

In our next experiment, we focus on higher order GMMs to
examine how the algorithm behaves in the presence of multiple
local minima. Figure 3 shows the MAPE achieved by AGD-
MoM, TPM, VB and the EM algorithm for GMM with K =

5, and 10 components. Figures 3a and 3b, for K = 5, show
that AGD performs significantly better than the alternatives in
all cases. Note also, that Figures 3c and 3d show that TPM
performs well when K and D are large.

5.2. Benchmark dataset experiments

Iris datasets. (N = 150,K = 3,D = 4) One of the most well-
known datasets in classification is the Iris dataset. The dataset
contains 3 types of Iris plants, with 50 instances of each. Four
features were measured from each sample, sepal length, sepal
width, petal length, and petal width. The MAPE’s achieved
by each of the competing algorithms are shown in Figures 4a
and 4b. Note that for each parameter the lowest MAPE is al-
ways provided by one of the moment based methods (i.e. TPM
or AGD). AGD does not provide a good estimate for w1 (Fig-
ure 4b) but outperforms the other techniques otherwise.
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Fig. 3: The MAPE achieved by the AGD-MoM, TPM, VB and EM algorithms,
in a GMM with (a) K = 5,D = 5,N = 1000 (b) K = 5,D = 20,N = 1000 (c)
K = 10,D = 20,N = 5000 (d) K = 10,D = 50,N = 5000.
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Fig. 4: The MAPE achieved by the AGD, TPM, VB and EM algorithms (a)

¯
µ (Iris data), (b) w (Iris data), (c)

¯
µ (Wine data) and (d) w (Wine data). The

results are averaged over 100 runs.

Wine data set. (N = 178,K = 3,D = 13) The Wine data
set consists of wine samples from 3 different culitvars (known
classes) grown in the same region in Italy, using 13 features
(derived from chemical tests of constituent elements). Figures
4c and 4d show the MAPE’s achieved by the competing algo-
rithms. As can be seen, AGD results in a better mean estimate
in all cases, however, TPM gives a better result for one of the
weight estimates. In addition to MAPE, we have also reported
the trace of the error covariance matrix [33], the overall un-
certainty reported by the estimators, for the estimates obtained
from AGD-MoM, TPM, EM and VB in Table 1. It is formu-
lated as the empirical sum of square errors over all dimensions,



7Table 1: The sum of the trace of the error covariance matrix
Iris Wine

Methods µ w µ w
AGD 0.36 0.55 0.13 0.73
TPM 1.06 0.53 0.59 0.71
VB 1.34 2.07 1.82 1.04
EM 1.24 1.30 1.46 1.53

tr
(
E
[
(
¯
µk− ˆ

¯
µn

k
)(

¯
µk − ˆ

¯
µn

k
)T ])

where the expectation is over n = 100
runs, where ˆ

¯
µn

k
is the estimated mean obtained at iteration nth.

As can be seen, the AGD-MoM results in significantly better
estimates for the cluster centres. For the cluster weights the
AGD-MoM estimates are comparable to those from TPM and
significantly better than VB and EM. Last but not least we focus
on empirical testing of the convergence rate for AGD and TPM.
Figures 5a, 5b and 5c show the convergence error rate of loss
function obtained by moment-based methods for simulated, Iris
and Wine datasets, respectively. As can be seen TPM converges
to its solution faster than AGD does. Note however, that the two
solutions differ in their accuracies as discussed above.

5.3. Streaming experiments

In our final experiment, we examine Incremental AGD-MoM
for online learning. The scenario we specifically examine is
that in which the cluster centres are evolving over time. This
is a common occurrence in real-world data and occurs when
causal but unmeasured variables also evolve (ex: the weather
influence on wine quality year on year or trending topics on the
internet etc.). The baseline algorithm for comparison is IGMM
from [29] which employs a forgetting factor, γ. Note that γ for
IGMM and I-AGD-SGD play the same role and are set equal
to 0.7 in all experiments. Appropriate selection of forgetting
factors is discussed in many text books (ex:[34]). Here the high
forgetting rate is a consequence of the large batch size.

The basic goal of this experiment is to iteratively move clus-
ter centres to gradually reduce the distances between cluster
centres and their associated data points (Figure 6a). In or-
der to achieve that, we generated two sets of 2-Dimensional
mean vectors from two parametrised curves in R2 given by(
cos( tπ

b1
+a1)t, cos( tπ

b2
+a2)t

)
and

(
cos( tπ

d1
+c1)(t−100), cos( tπ

d2
+

c2)(t − 100)
)
, where t = (1, . . . , 100), a = (a1, a2), b =

(b1, b2), c = (c1, c2) and d = (d1, d2) are chosen from [50, 125]
and [15, 25]. This provides a set of cluster centres which twist
like a rope segment in time providing a nice challenge to the
algorithm. We have generated 500,000 points form these 2-D
mean vectors; 100 batches with size 5000. Figure 6a shows a
heat map of the simulated data points drifting slowly when the
new batch becomes available.

Figure 6b displays cluster centres obtained using the I-AGD-
MoM algorithm given 500 epochs. The result is that the algo-
rithm tracks the centres quite tightly. Next we drop the number
of epochs available to 100 mimicking the event when less time
is available between batches. As Figure 6c demonstrates, ini-
tially the algorithm has trouble tracking the evolution but after a
burn-in period tracks onto the evolution. It then looses this track
again for two subsequent periods examined below. Figures 7a
and 7b show the MAPE as a function of time for I-AGD-MoM
and IGMM. Note that there is an initial burn-in period before

both techniques start to track the evolving centres. We can also
observe that for

¯
µ

2
(7b) there are two periods (times 10, 60)

where the MAPE, for both I-AGD-MoM and IGMM, jump due
to a change in direction of the centre evolution (as seen by the
gradient plotted alongside the MAPE in Figure 7b). However,
as can be seen I-AGD-MoM deviates less from the true track
than IGMM.

6. Conclusion

In this paper, we have presented an alternative approach to
estimate parameters of a spherical Gaussian mixture model.
The approach we present is based on matching second and third
order moments which we solve by an alternating gradient de-
scent approach. The method is shown to converge reliably on
synthetic data where the assumptions about spherical covari-
ances are met. We also demonstrate the performance of the
algorithm on benchmark datasets from classification problems
in which the ground truth of cluster centres is known from the
class labels. Our experiments show that AGD-MoM leads to
better estimates for most parameters but may take longer than
TPM to converge suggesting that the best choice of algorithm
depends on the problem at hand. Furthermore, we show that the
approach is suitable for streaming data in an incremental mode,
using previously estimated parameters to deal with newly arriv-
ing data. In addition, the computational complexity our algo-
rithm is essentially independent of the size of the data set unlike
the classical EM algorithm. Our current work is focused on ex-
tending this framework to relax the assumptions of isotropic
covariances and the applicability of the algorithm to large-scale
clustering problems. In addition, use of (one of the many) adap-
tive forgetting factor algorithms may prove useful.
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ABSTRACT

In this paper, we present an alternating gradient descent algorithm for estimating parameters of a spher-
ical Gaussian mixture model by the method of moments (AGD-MoM). We formulate the problem as
a constrained optimisation problem which simultaneously matches the third order moments from the
data, represented as a tensor, and the second order moment, which is the empirical covariance matrix.
We derive the necessary gradients (and second derivatives), and use them to implement alternating gra-
dient search to estimate the parameters of the model. We show that the proposed method is applicable
in both a batch as well as in a streaming (online) setting. Using synthetic and benchmark datasets, we
demonstrate empirically that the proposed algorithm outperforms the more classical algorithms like
Expectation Maximisation and variational Bayes.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction
The Gaussian mixture model (GMM) is a widely used and

extremely practical probabilistic modelling tool used in statis-
tics and machine learning. It is a powerful model for data clus-
tering problems where the data is assumed to be generated from
a mixture of several distinct underlying probability distribu-
tions. Central to a successful application of a GMM is the pa-
rameter estimation technique. This topic dates back more than
a hundred years [1], and the most commonly used method is
the Expectation-Maximisation (EM) algorithm which is based
on maximum likelihood estimation. However, it has long been
known that the EM algorithm may be slow to converge (as first
noted in [2] and expanded in [3, 4]). Generally speaking, the
EM algorithm works best when the component densities are
well separated, but convergence may be exorbitantly slow and
result in estimates with high variance when they are poorly sep-
arated [3]. In addition, the computational complexity for the
EM algorithm depends significantly on the number of samples.
When clustering N samples of D-dimensional data into K clus-
ters this complexity grows as O(DN + KN2), [5]. As an alterna-

∗∗Corresponding author: Tel.: +0-44-2380525156;
e-mail: d.rahmani@soton.ac.uk (Donya Rahmani)

tive, in this paper, we investigate a variant of the Method of Mo-
ments (MoM) based on Alternating Gradient Descent (AGD).
The earliest known application of the MoM was provided by
Chebyshev (1887) in his study of the central limit theorem in
statistics. This was then followed by Karl Pearson in his classic
work on MoM in 1894, [6]. Pearson first used the MoM to esti-
mate the five parameters of a two-component univariate Gaus-
sian mixture. After Pearson, the MoM became one of the most
popular ways of estimating the parameters of a finite mixture
distribution (see [7, 1, 8]). One reason is that MoM estimators
impose fewer restrictions on the model compared to MLE.

The basic idea behind a MoM estimator is that, given a suffi-
cient number of moments, one may match the theoretical and
sample moments to estimate the parameters. More specifi-
cally, the moment based approach solves systems of multivari-
ate polynomial equations for computing all solutions of a given
model without any prerequisite assumption. However, this can
be computationally challenging. One approach proposed in [7]
suggests that to speed up the computation one can transform
the moment equations into a set of related linear equations (in
essence marginal distributions, which can be solved efficiently),
and one non-linear equation (which is cubic and can also be
solved efficiently). In addition, a successful implementation
of the MoM should yield estimators that are statistically effi-
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cient in the sense that their expectations maximise the likeli-
hood function, [7]. Thus, the challenge in using the MoM ap-
proach is to preserve high statistical efficiency while reducing
the computational burden.

In recent years, tensor based methods have received much
attention together with the development of computationally ef-
ficient algorithms (see [9] for an excellent overview). These
methods can be directly used for computing MoM estimators.
For example, n−order moments can be regarded as an n−mode
tensor which can then be simplified using one of several tensor
decomposition methods. This is the core of the MoM approach
used by [8] and also by Anadkumar et al. in [10]. They pro-
pose a moment matching estimator for mixtures of spherical
Gaussians using a simple spectral decomposition of lower or-
der moments obtained from the data. Their method uses the
eigenvalue decomposition of symmetric matrices (see [8]) to
decrease the computational complexity of the MoM. Note that
the eigenvalues are found via the power iteration method and
deflation method which may introduce errors in the parameter
estimates due to approximation inherent in deflation methods.

In this paper, we propose an alternative approach to this prob-
lem. In particular, we reformulate the moment matching prob-
lem as a constrained optimisation problem which can be solved
via Alternating Gradient Descent (AGD-MoM). This allows us
to obtain the required estimators by a direct computation rather
than through an iterative procedure. As will be seen, this leads
to estimates with increased accuracy over the competing tech-
niques. Furthermore, we demonstrate that in the case of online
streaming data the algorithm tracks the evolution of the cluster
centres with greater accuracy and less computational expense.
In addition, as our method requires storage of the moments of
the streaming data, the memory requirements are efficient and
independent of the number of samples.

The remainder of the paper is organised as follows. In Sec-
tion 2 we briefly review the moment-based estimation problem.
Section 3 presents our proposed algorithm. Section 4 demon-
strates how AGD-MoM can be adapted in an online setting.
Section 5 compares AGD-MoM with several competing meth-
ods using both synthetic and real data. Finally, Section 6 draws
conclusions and suggests avenues for future work.1

2. Moment-based estimation

A spherical GMM assumes that the D dimensional data ob-
servations are sampled from K clusters. The probability of sam-
pling cluster k ∈ {1, . . . ,K} is given by a mixing weight vector,

¯
w = (w1, . . . ,wK), wk ∈ [0, 1], and

∑
k wk = 1. Each cluster has

a centre denoted by
¯
µ

k
∈ RD with an associated isometric co-

variance matrix σ2
k I. Denote a sample from this data generating

process as
¯
x =

¯
µh+

¯
z where

¯
x ∈ RD,

¯
z is assumed to be a random

vector whose conditional distribution given h = k is N(0, σ2
hI),

and P(h = k) = wk for k ∈ [K]. The goal of GMM estimation
is to optimally recover the parameters {

¯
µ1:K , σ

2
1:K ,w1:K} given a

set of observations
¯
x.

1An implementation of our algorithm in tensorflow may be found here:
https://github.com/drahmani/AGD-MoM.

With respect to GMM, the MoM solves multivariate poly-
nomial equations, pairs the sample moments with their cor-
responding theoretical moments, to find the parameters of
the model. In this paper, we examine a computationally
efficient optimisation procedure to recover the parameters
of GMM using the MoM. Our method assumes the non-
degeneracy condition [8] is met. We recall that the non-
degeneracy condition states that the component mean vectors,

¯
µ1,

¯
µ2, . . . ,

¯
µK , are linearly independent, and the mixing compo-

nents w1,w2, . . . ,wK > 0, are strictly positive and sum to one.
Note also that the non-degeneracy condition places a weaker re-
striction on the data generating process than the spreading con-
dition from standard (e.g., EM) density estimation approaches
(see [11, 12] for specifics). Given the non-degeneracy condi-
tion, the sample moments can be expressed as a sum of rank
one tensors and therefore the relationship between the GMM
parameters and their corresponding moments can be expressed
by the following theorem.
Theorem 1. (Hsu and Kakade, 2012) Assume D ≥ K. The
average variance σ̄2 =

∑K
k=1 wkσ

2
k is the smallest eigenvalue of

the covariance matrix C
¯
x = E[

¯
x ⊗

¯
x] − E[

¯
x] ⊗ E[

¯
x]. Let,

¯
ν be

any unit norm eigenvector corresponding to the eigenvalue σ̄2.
Furthermore, if

¯
µ = E[

¯
x(

¯
νT (

¯
x − E[

¯
x]))2],

M = E[
¯
x ⊗

¯
x] − σ̄2I,

T = E[
¯
x ⊗

¯
x ⊗

¯
x] − (

D∑
i=1 ¯
µ ⊗ ei ⊗ ei + ei ⊗

¯
µ ⊗ ei + ei ⊗ ei ⊗

¯
µ),

where
¯
µ ∈ RD,M ∈ RD×D and T ∈ RD×D×D, then

M =

K∑
k=1

wk
¯
µk ⊗

¯
µk, T =

K∑
k=1

wk
¯
µk ⊗

¯
µk ⊗

¯
µk.

The empirical moments converge to the exact moments at a
rate of O(N

−1
2 ) [8]. As the lower order moments, M and T , are

orthogonally decomposable tensors consequently the moment
matching problem can be cast as eigenvalue decomposition of
symmetric matrices. Such orthogonal decomposition problems
can be efficiently solved by iterative approaches like the power
iteration method, fixed-point iteration and gradient descent, see
[13, 10, 8]. An orthogonal decomposition of a symmetric ten-
sor T ∈ RD×D×D is a collection of orthonormal (unit) vec-
tors

¯
v1, ¯

v2, . . . , ¯
vK together with corresponding positive scalars

λk > 0 such that T =
∑K

k=1 λk¯
v⊗3

k . Anadkumar et al. [10]
use the tensor power method of Lathauwer et. al. proposed in
[13] to obtain robust estimates of eigenvector/eigenvalue pairs,
{(

¯
vk, λk)}, for orthogonal tensor decomposition. Note that the

orthogonality is required only for the whitened mean vectors
(not original

¯
µi’s), and this is guaranteed under the aforemen-

tioned non-degeneracy conditions. It is also worth pointing out
that orthogonal decompositions do not necessarily exist for ev-
ery symmetric tensor. A thorough review of these models goes
beyond the scope of this paper.

We propose here an alternative approach to extract the or-
thogonal decomposition of M and T by reformulating the mo-
ment matching problem as a constrained optimisation problem.
We provide a detailed description in the following section.
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3. Learning mixture of spherical Gaussian via alternating
gradient descent: AGD-MoM

In this section, we first reformulate the moment matching
problem as a constrained optimisation problem and then present
an AGD algorithm for GMM parameter estimation. We start by
reformulating Theorem 1 in terms of minimising the objective
function:

min
w1,...,wk

¯
µ1,...,

¯
µk

||T −

K∑
k=1

wk
¯
µk ⊗

¯
µk ⊗

¯
µk ||

2
F , (1)

subject to M =

K∑
k=1

wk
¯
µk ⊗

¯
µk,

where ||.||F denotes the Frobenius tensor norm, which is the
square root of the sum of the squares of all its elements. Our
constrained optimisation problem involves minimising the dis-
crepancy between the empirical tensor and exact tensor subject
to a constraint. Examples of such problems for non-negative
tensor factorisation can be found in [14, 15, 16].

Here, we require a more robust approach to find a set of ef-
ficient and optimal solutions to minimise the objective function
(1). We use the quadratic penalty method [17] which is one way
to solve this type of constrained optimisation problem. Note
that equation (1) can be presented in a quadratic penalty format
by adding the square of the violation of the equality constrained
terms to the cost function (see [17]) as follows:

min
w1,...,wk

¯
µ1,...,

¯
µk

F(w1, . . . ,wk,
¯
µ1, . . . ,

¯
µk) = f + λg, (2)

where

f = ||T −

K∑
k=1

wk
¯
µk⊗

¯
µk⊗

¯
µk ||

2
F and g = ||M−

K∑
k=1

wk
¯
µk⊗

¯
µk ||

2
F ,

and λ is the penalty parameter which can be changed adaptively,
according to the difficulty in minimising the equality constraint
at each iteration. To examine the convergence properties of
equation (2), we rely on Theorem 17.1 from [17]. According
to this theorem, every limit point x∗ of the sequence of {xt},
where xt is the exact global minimiser of f (xt) + λt

∑
i g2

i (xt), is
a global solution of the problem as λt → ∞.

As we now see, this unconstrained problem can be solved
by an AGD based algorithm, alternating between updates of the
two sets of parameters: mixing weight

¯
w and component means

¯
µ1, . . . ,

¯
µ

K
. Note that AGD is one such algorithms to solve un-

constrained optimisation problems, [14, 18]. Using AGD to re-
cover the model parameters,

¯
µ1, . . . ,

¯
µ

K
results in the following

solutions:
Fix wk and update

¯
µk :

¯
µt+1

k =
¯
µt

k − αt

(
∇ f (

¯
µt

k |w
t
k) + λt∇g(

¯
µt

k |w
t
k)
)
,

Fix
¯
µk and update wk : wt+1

k = wt
k − βt

(
∇ f (wt

k |
¯
µt

k) + λt∇g(wt
k |

¯
µt

k)
)
.

Note that ∇ f (
¯
µt

k |w
t
k), ∇g(

¯
µt

k |w
t
k), ∇ f (wt

k |¯
µt

k) and ∇g(wt
k |¯
µt

k) are

the necessary gradients of the cost function, f +λg, with respect
to the parameters

¯
µ and

¯
w and learning rates {αt, βt}. The first

step in finding these derivatives is to rewrite the error norm as a
sum of quadratic terms:

f =

D∑
l=1

D∑
j=1

D∑
i=1

(ti jl −

K∑
k=1

wkµkiµk jµkl)2, (3)

g =

D∑
j=1

D∑
i=1

(mi j −

K∑
k=1

wkµkiµk j)2. (4)

We remark that T and M are symmetric, meaning the val-
ues of the elements2, ti jl and mi j, are the same under any
permutation of the indices, allowing efficient computation.3

Next, differentiating equations (3) and (4) with respect to the
(κ, d) component of

¯
µ and the κth component of

¯
w, where

κ = 1, . . . ,K; d = 1, . . . ,D, we have:4

∂ f
∂µκd

= 6wκ

D∑
i=1

µ2
κi

( K∑
k=1

wkµkdµ
2
ki − tidi

)
+ 12wκ

D∑
i, j=1

j,i j,d

µκiµκ j

( K∑
k=1

wkµkdµkiµk j − tid j

)
, (5)

∂g
∂µκd

= 4wκ

D∑
i=1

µκi
( K∑

k=1

wkµkdµki − mid

)
, (6)

∂ f
∂wκ

= 2
D∑

i=1

µ3
κi

( K∑
k=1

wkµ
3
ki − tiii

)
+ 6

D∑
i, j=1

j,i

µ2
κiµκ j

( K∑
k=1

wkµ
2
kiµk j − ti ji

)
,

+ 12
D∑

i, j,l=1
l, j,i

µκiµκ jµκl
( K∑

k=1

D∑
i, j,l=1
i, j,l

wkµκiµκ jµκl − tid j

)
, (7)

∂g
∂wκ

= 2
D∑

i=1

µ2
κi

( K∑
k=1

wkµ
2
ki − mii

)
+ 4

D∑
i, j=1

j>i

µκiµκ j

( K∑
k=1

wkµκiµκ j − mi j

)
.

(8)
Although the component-by-component differentiation in-
volves cumbersome calculations, it is useful to note the corre-
spondence between several terms in Equations (5) to (8) which
need only be computed once. This can be more readily seen
when expressed in vector form, following the notation of [19]
which results in:

∂ f
∂

¯
µκ

= −6wκT
¯
µ2
κ + 6wκ

K∑
k=1

wk

(
¯
µT
κ

¯
µk

)2

¯
µk, (9)

∂g
∂

¯
µκ

= 4wκ

K∑
k=1

wk

(
¯
µT
κ

¯
µk

)
¯
µk − 4wκM

¯
µκ, (10)

∂ f
∂wκ

= −2T
¯
µ3
κ + 2

K∑
k=1

wk

(
¯
µT
κ

¯
µk

)3
, (11)

∂g
∂wκ

= −2M
¯
µ2
κ + 2

K∑
k=1

wk

(
¯
µT
κ

¯
µk

)2
, (12)

where T
¯
µ3

k =
∑

i∈I Ti(
¯
µk)3

i for i ∈ I = {(i1, i2, i3)|i1, i2, i3 ∈
{1, . . . ,D}}; and i1, i2, i3 ∈ {1, 2, 3}. In fact, [19] defines I as
an index representation which is a set of unique entries of the
tensor (due to symmetry). For each i ∈ I, a corresponding
monomial is defined as c, which belongs to the following set:

2The ith entry of a vector
¯
µk is denoted by µki, element (i, j) of a matrix M is

denoted by mi j , and element (i, j, l) of a third-order tensor T is denoted by ti jl.
3For instance, in the tensor case ti jl = til j = t jil = t jli = tli j = tl ji for all

i, j, l = 1, . . . ,D, [9].
4Note that the differentials have been validated with the symbolic toolbox

in MATLAB.
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C =
{
(c1, c2, . . . , cD)|c1, . . . , cD ∈ {0, . . . , 3}

}
,

where we assume that c1 + . . . + cD = 3. It is shown in [19]
that the multiplicity of the entry corresponding to a monomial
representation c ∈ C is:

σc =

(
3

c1, c2, . . . , cD

)
=

3!
c1!c2! . . . , cD!

.

Therefore, ||T ||2F =
∑

i∈R ti =
∑

i∈I σiti =
∑

c∈C σctc and
(
¯
µ3

k)i =
¯
µi1k

¯
µi2k

¯
µi3k = (

¯
µ3

k)c =
¯
µc1

1k ¯
µc2

2k . . . ¯
µcD

Dk. As can be seen,
this representation gives a more compact formulation compared
to component-wise differentiation. Similar expressions can also
be derived for the second derivative of the cost function. In
particular, second derivatives are useful in performing Newton-
type updates with quadratic convergences. However, this in-
volves inverting a matrix making each step computationally ex-
pensive. Though we have not used the second derivatives in our
empirical work here, in the Supplementary Material we give the
required expressions for completeness. Algorithm 1 presents
the pseudo-code for AGD-MoM . We provide a complete im-
plementation of our code in MATLAB, and a Tensorflow imple-
mentation which uses automatic gradient computation. Exper-
iments confirmed that the differences between the two imple-
mentations is within negligible numerical limits.

Before turning to the application of AGD-MoM and present-
ing our results, we discuss some points that need attention when
specifying an optimisation model. First, in terms of conver-
gence, our algorithm will eventually converge to a local opti-
mum of the objective function. As with any gradient descent
approach, the speed of convergence will depend on the choice
of the learning rate parameter. A learning rate which is too
small leads to a slow convergence, whereas a large learning
rate causes the loss function to oscillate around the minimum or
even to diverge. Various techniques are known to speed up the
convergence. These include the use of a Momentum term [20],
Nesterov accelerated gradient [21], Adaptive moment estima-
tion (Adam) [22], etc. In our implementation we found faster
convergences using a Momentum term and adaptive learning
rate.5

Second, the computational complexity of AGD-MoM is
O
(
KDlog(1/ε)

)
for accuracy ε whereas the total running time

of the power iteration method is O
(
K5+δ

(
log(K) + loglog(1/ε)

))
for at most K1+δ random starts to find each eigenvectors,
O
(
log(K) + loglog(1/ε)

)
iteration per start and each iteration

needs O(K3) operations. In terms of computation complexity
it seems that the AGD is more efficient than the power itera-
tion method. However, as will be seen in Section 5, the power
iteration method converges faster than AGD.

5Momentum helps to accelerate GD in the relevant direction and dampens
oscillations [20]. Basically a fraction γ of the update vector of the previous
step is added to the current update vector. On the other hand, Adam adapts
the learning rate for each parameter individually, performing larger updates for
infrequent and smaller updates for frequent parameters [23]. Essentially, the
learning rate α and β are tuned according to the scale of the smoothness of the
gradient function. More details can be found in [22].

Algorithm 1 AGD-MoM for learning GMM parameters:

1: Input:
Third-order moment as 3-mode tensor
T ∈ RD×D×D,
Second order moment as matrix M ∈ RD×D.

2: Initialise:
Choose an initial vectors of parameters

¯
µ1, . . . ,

¯
µK ,

¯
w and learning rates α, β, and

penalty parameter λ.
3: for n = 1, 2, ...,epochs do
4: for k = 1, 2, ...,K do
5: Compute ∇ f (

¯
µn

k |wk
n), ∇g(

¯
µn

k |wk
n), ∇ f (wk

n|
¯
µn

k) and
∇g(wk

n|
¯
µn

k) from equations (5) to (8);
6: Update ˆ

¯
µ

k
n+1 ← ˆ

¯
µk

n−αn(∇ f (
¯
µn

k |w
n
k)+λ∇g(

¯
µn

k |w
n
k));

7: Update ŵk
n+1 ← ŵk

n−βn(∇ f (wn
k | ¯
µn

k)+λ∇g(wn
k |¯
µn

k));
8: end for
9: end for

10: Output:
Return ˆ

¯
µ

1
, . . . , ˆ

¯
µ

K
and ˆ

¯
w.
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Fig. 1: Visualising the convergence of Algorithm 1 for synthetic data: spherical
Gaussian mixture (K = 2, D = 2). Dots in different colours show different
starting points for the algorithm. Only 5 paths are shown for clarity.

To illustrate AGD-MoM in operation, Figure 1 shows 5 dif-
ferent pairs of initial points and their sample paths as the algo-
rithm progresses. Specifically, a simple two-dimensional two-
components GMM (K = 2 and D = 2) is illustrated. Given two
pairs of randomly selected points, gradient descent results in
estimates close to the true (known) mean for both clusters and
eventually converges to a local optimum. As far as convergence
is concerned, AGD-MoM eventually converges to the correct
solution in this case, regardless of the initial starting points; full
analysis of convergence is left to Section 5.

4. Application to streaming data
In this Section we show how our algorithm may be extended

to cater for streaming data in which the cluster centres are
evolving over time. In streaming scenarios, it is typical that
a significant amount of data needs to be quickly processed in
real time, while historical data is typically jettisoned and no
longer available. There exist few algorithms for performing on-
line clustering via GMM; see, for example [24, 25, 26, 27] and
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references therein. The majority of these algorithms are based
on a split and merge criterion to add or remove clusters, fol-
lowed by a rearrangement with an EM approach (see [24]). The
IGMM algorithm proposed in [24] has been further extended to
allow for evolving data either by dropping old data entirely [28]
or by use of an exponential filter (i.e. a forgetting factor) as
in [29]. In [26] it is argued that merge and split approaches are
either too slow for online learning [25] or do not guarantee the
accuracy of the resulting model. So later, a modification of the
tensor decomposition algorithm for such online setting has been
explored in [30], for community detection and topic modelling
but not for GMM. Their study shows that although a moment-
based formulation may seem computationally expensive and
complicated at first sight, implementing implicit tensor oper-
ations leads to significant speed-ups and guarantees a learning
process as opposed to several heuristic approaches [30]. The
above would suggest that while split and merge may be appli-
cable to AGD-MoM, the key advantage of our approach is that
tensor updates based on newly arrived data may be computa-
tionally efficient and lead to improved parameter estimates.

Assume that the incoming data points arrive in sequential
batches (or chunks [31]), S 1, S 2, . . . , S m, and that the next data
batch to arrive is S m+1. Upon the arrival S m+1, the empirical
moments must be updated. This involves updating Cx, and then
T ,M; essentially these operations are a weighted combination
of the old and new variables (see [32]); details of the update
function are left to the Supplementary Material. The weight-
ing uses a forgetting factor γ ∈ [0, 1] which allows the updates
to act as an exponential filter, thus allowing the evolving clus-
ter centres to be tracked (as is used in IGMM [29]). Given
updated moments AGD-MoM may be applied with the previ-
ous parameters used as initial estimates, denoted as AGD-MoM
(T m,Mm | { ˆ

¯
µm−1

1:K
, ˆ

¯
wm−1}). Therefore, the number of iterations

taken by gradient descents to converge can be drastically re-
duced. Algorithm 2 gives a pseudo-code for implementing the
Incremental-AGD-MoM (I-AGD-SGD) algorithm.

Algorithm 2 Incremental AGD-MoM for online learning:

1: Input:
An initial data batch, S 1, and exponential
weighting. γ

2: Initialise:
Choose initial parameters {

¯
µ0

1:K , ¯
w0}, α, β, λ.

3: for m = 2, ... do
4: while awaiting batch S m do
5: { ˆ

¯
µm−1

1:K
, ˆ

¯
wm−1} ←AGD-MoM (T m−1,Mm−1 | { ˆ

¯
µm−2

1:K
, ˆ

¯
wm−2}).

6: end while
7: Output:

Return { ˆ
¯
µm−1

1:K
, ˆ

¯
wm−1}

8: {T m,Mm} ← update(T m−1,Mm−1 | Cm, γ)
9: end for

5. Empirical results
In this section, we present the empirical performance of

our algorithm and compare it to the state-of-the-art algorithms
such as the EM algorithm, the Variational Bayes (VB) method,
and Tensor decomposition using the power iteration method

(TPM).6 We perform experiments for both synthetic and real
data. In the first set of experiments, we begin with a simple
2-D case examining the convergence and results in detail. The
analysis is then extended to higher dimensions. The second ex-
periment is conducted on two real datasets from the UCI repos-
itory7: the Iris and Wine datasets. Last but not least, the incre-
mental AGD-MoM is tested on a large set of synthetic stream-
ing data.

Our algorithm settings are as follows for all experiments. The
learning rates of AGD, α and β, are set to lower values between
10−4 to 10−5 in order to ensure that the algorithm does not miss
a local optimum while keeping the computational cost as low
as possible. The maximum number of epochs is set to 1000.
We found λ = 10 as a suitable choice for the penalty parameter.
Each experiment is run 100 time with different random starting
points allowing us to estimate parameter statistics.8 The same
starting points are used for all algorithms.9 The estimation ac-
curacy is measured using the Mean Absolute Percentage Error
(MAPE). The MAPE is considered because of its scale inde-
pendence and also its ease of interpretation.10

5.1. Synthetic data experiments
In the following experiment a synthetic dataset is generated

to examine in detail the convergence rate and results of Algo-
rithm 1. The purpose of this experiment is to determine which
of the three aforementioned optimisation techniques, standard
gradient descent, Momentum and Adam (Section 3), speeds
up the converges rate. To better visualise our results, a set
of two-dimensional data are generated from a two-component
GMM (N=500). Figure 2a shows the average convergence er-
ror rate obtained by standard gradient descent, Momentum and
Adam. As can be seen, Momentum converges slightly faster
than Adam, both having essentially converged after approx-
imately 100 epochs, while GD does not converge until 400
epochs and then requires an asymptotic number of iterations
to reach final convergence.11

Our empirical results further show that GD with a fixed learn-
ing rate achieves the optimum minimum, but requires signifi-
cantly more epochs than Adam and Momentum to do so. In or-
der to provide a closer picture of how these algorithms perform
regarding 100 different starting points, box-plots of w,

¯
µ1 and

¯
µ2 are shown in Figures 2b to 2c. Figure 2b shows the Momen-
tum estimates are slightly more concentrated than Adam, while,
the GD box-plot implies a far wider range for w = 0.5. On the

6The implementation may be found in [4].
7http://archive.ics.uci.edu/ml
8Specifically, the sensitivity of the solutions to the initial starting point.
9We implemented all algorithms for our synthetic data experiments using

MATLAB.
10MAPE is calculated as the average of the unsigned differences between an

estimated value and the known true value divided by the known true value. In
other words, we use the formula 1

n
∑n

i=1 ||¯
ei ||1 where

¯
ei =

( µi1−µ̂i1
µi1

, . . . ,
µin−µ̂id
µid

)
and || . ||1 is `1−norm. is used as the main measure of estimation accuracy.

11Most machine learning algorithms exhibit the behaviour in Figure 2,
quickly obtaining a ’reasonable’ solution and then requiring many more it-
erations to refine that solution. When these algorithms are being run on the
cloud, time equates directly to monetary cost, and so many applications seek
algorithms that provide the fastest reasonable solution.
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Fig. 2: Convergence of algorithm (1) in a synthetic setting over 100 runs: (a)
Summary of average convergence error rate GD, momentum and Adam. Box-
plots for (b) w1 and w2, (c)

¯
µ1 and

¯
µ2. The known true values for each compo-

nent are indicated in y-axis.

other hand, for both mean components,
¯
µ1 and

¯
µ2, GD results

in estimates with a lower variance but a distinct bias. As can be
seen in Figure 2c, both Adam and Momentum span much the
same range of values and their medians are roughly around the
true known values (y-axis). These experiments (together with
other cases presented in the Supplementary Material) indicate
that overall Momentum and Adam provide the fastest conver-
gence with a lower bias. We can conclude that the learning rate
does not need to be tuned according to the scale of the smooth-
ness of the gradient function but likely achieves better results
by dampening the oscillations via Momentum.

In our next experiment, we focus on higher order GMMs to
examine how the algorithm behaves in the presence of multiple
local minima. Figure 3 shows the MAPE achieved by AGD-
MoM, TPM, VB and the EM algorithm for GMM with K =

5, and 10 components. Figures 3a and 3b, for K = 5, show
that AGD performs significantly better than the alternatives in
all cases. Note also, that Figures 3c and 3d show that TPM
performs well when K and D are large.

5.2. Benchmark dataset experiments

Iris datasets. (N = 150,K = 3,D = 4) One of the most well-
known datasets in classification is the Iris dataset. The dataset
contains 3 types of Iris plants, with 50 instances of each. Four
features were measured from each sample, sepal length, sepal
width, petal length, and petal width. The MAPE’s achieved
by each of the competing algorithms are shown in Figures 4a
and 4b. Note that for each parameter the lowest MAPE is al-
ways provided by one of the moment based methods (i.e. TPM
or AGD). AGD does not provide a good estimate for w1 (Fig-
ure 4b) but outperforms the other techniques otherwise.
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Fig. 3: The MAPE achieved by the AGD-MoM, TPM, VB and EM algorithms,
in a GMM with (a) K = 5,D = 5,N = 1000 (b) K = 5,D = 20,N = 1000 (c)
K = 10,D = 20,N = 5000 (d) K = 10,D = 50,N = 5000.
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Fig. 4: The MAPE achieved by the AGD, TPM, VB and EM algorithms (a)

¯
µ (Iris data), (b) w (Iris data), (c)

¯
µ (Wine data) and (d) w (Wine data). The

results are averaged over 100 runs.

Wine data set. (N = 178,K = 3,D = 13) The Wine data
set consists of wine samples from 3 different culitvars (known
classes) grown in the same region in Italy, using 13 features
(derived from chemical tests of constituent elements). Figures
4c and 4d show the MAPE’s achieved by the competing algo-
rithms. As can be seen, AGD results in a better mean estimate
in all cases, however, TPM gives a better result for one of the
weight estimates. In addition to MAPE, we have also reported
the trace of the error covariance matrix [33], the overall un-
certainty reported by the estimators, for the estimates obtained
from AGD-MoM, TPM, EM and VB in Table 1. It is formu-
lated as the empirical sum of square errors over all dimensions,



7Table 1: The sum of the trace of the error covariance matrix
Iris Wine

Methods µ w µ w
AGD 0.36 0.55 0.13 0.73
TPM 1.06 0.53 0.59 0.71
VB 1.34 2.07 1.82 1.04
EM 1.24 1.30 1.46 1.53

tr
(
E
[
(
¯
µk− ˆ

¯
µn

k
)(

¯
µk − ˆ

¯
µn

k
)T ])

where the expectation is over n = 100
runs, where ˆ

¯
µn

k
is the estimated mean obtained at iteration nth.

As can be seen, the AGD-MoM results in significantly better
estimates for the cluster centres. For the cluster weights the
AGD-MoM estimates are comparable to those from TPM and
significantly better than VB and EM. Last but not least we focus
on empirical testing of the convergence rate for AGD and TPM.
Figures 5a, 5b and 5c show the convergence error rate of loss
function obtained by moment-based methods for simulated, Iris
and Wine datasets, respectively. As can be seen TPM converges
to its solution faster than AGD does. Note however, that the two
solutions differ in their accuracies as discussed above.

5.3. Streaming experiments

In our final experiment, we examine Incremental AGD-MoM
for online learning. The scenario we specifically examine is
that in which the cluster centres are evolving over time. This
is a common occurrence in real-world data and occurs when
causal but unmeasured variables also evolve (ex: the weather
influence on wine quality year on year or trending topics on the
internet etc.). The baseline algorithm for comparison is IGMM
from [29] which employs a forgetting factor, γ. Note that γ for
IGMM and I-AGD-SGD play the same role and are set equal
to 0.7 in all experiments. Appropriate selection of forgetting
factors is discussed in many text books (ex:[34]). Here the high
forgetting rate is a consequence of the large batch size.

The basic goal of this experiment is to iteratively move clus-
ter centres to gradually reduce the distances between cluster
centres and their associated data points (Figure 6a). In or-
der to achieve that, we generated two sets of 2-Dimensional
mean vectors from two parametrised curves in R2 given by(
cos( tπ

b1
+a1)t, cos( tπ

b2
+a2)t

)
and

(
cos( tπ

d1
+c1)(t−100), cos( tπ

d2
+

c2)(t − 100)
)
, where t = (1, . . . , 100), a = (a1, a2), b =

(b1, b2), c = (c1, c2) and d = (d1, d2) are chosen from [50, 125]
and [15, 25]. This provides a set of cluster centres which twist
like a rope segment in time providing a nice challenge to the
algorithm. We have generated 500,000 points form these 2-D
mean vectors; 100 batches with size 5000. Figure 6a shows a
heat map of the simulated data points drifting slowly when the
new batch becomes available.

Figure 6b displays cluster centres obtained using the I-AGD-
MoM algorithm given 500 epochs. The result is that the algo-
rithm tracks the centres quite tightly. Next we drop the number
of epochs available to 100 mimicking the event when less time
is available between batches. As Figure 6c demonstrates, ini-
tially the algorithm has trouble tracking the evolution but after a
burn-in period tracks onto the evolution. It then looses this track
again for two subsequent periods examined below. Figures 7a
and 7b show the MAPE as a function of time for I-AGD-MoM
and IGMM. Note that there is an initial burn-in period before

both techniques start to track the evolving centres. We can also
observe that for

¯
µ

2
(7b) there are two periods (times 10, 60)

where the MAPE, for both I-AGD-MoM and IGMM, jump due
to a change in direction of the centre evolution (as seen by the
gradient plotted alongside the MAPE in Figure 7b). However,
as can be seen I-AGD-MoM deviates less from the true track
than IGMM.

6. Conclusion

In this paper, we have presented an alternative approach to
estimate parameters of a spherical Gaussian mixture model.
The approach we present is based on matching second and third
order moments which we solve by an alternating gradient de-
scent approach. The method is shown to converge reliably on
synthetic data where the assumptions about spherical covari-
ances are met. We also demonstrate the performance of the
algorithm on benchmark datasets from classification problems
in which the ground truth of cluster centres is known from the
class labels. Our experiments show that AGD-MoM leads to
better estimates for most parameters but may take longer than
TPM to converge suggesting that the best choice of algorithm
depends on the problem at hand. Furthermore, we show that the
approach is suitable for streaming data in an incremental mode,
using previously estimated parameters to deal with newly arriv-
ing data. In addition, the computational complexity our algo-
rithm is essentially independent of the size of the data set unlike
the classical EM algorithm. Our current work is focused on ex-
tending this framework to relax the assumptions of isotropic
covariances and the applicability of the algorithm to large-scale
clustering problems. In addition, use of (one of the many) adap-
tive forgetting factor algorithms may prove useful.
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7. Supplementary material

7.1. Second order di↵erentiability and Hessian

The Newton’s method is yet another method for minimising
the sum-of-squares objective function (2). More specifically,
in this method, it is assumed that the objective function is ap-
proximately quadratic in the parameters near the optimal solu-
tion [35]. In doing so, we have also calculated the Hessian,
(H( f + �g)), the second derivative with respect to each element
µd while  = 1, . . . ,K; d = 1, . . . ,D as follows (for simplicity
we considered � = 1):

@2 f
@µd@µd

= w
DX

i, j=1

�i jµiµ j

KX

k=1

wkµkiµk j + 12w
DX

i=1

µi

(
KX

k=1

wkµ
2
kdµki � Tddi) + 4w(

KX

k=1

wkµ
2
kd � Mdd)

+ 4w2


DX

i=1

µ2
i �i j =

8>>>>><
>>>>>:

6, i = j , d,
12, i , j , d,
18, i = j = d,
24, i = d; j , d.

@2 f
@µd@µ0d

= ww0
DX

i, j=1

�i jµiµ jµ0iµ j + 4ww0
DX

i=1,i,d

µiµ0i

+ 8ww0µdµ0d

@2 f
@µd@µd0

= 12w2
µd0µd

DX

j=1

µ2
 j + 4w2

µdµd0

+ 12w
DX

j=1

µ j(
KX

k=1

wkµkd0µkdµk j � T jdd0)

+ 4w(
KX

k=1

wkµkdµkd0 � Mdd0)

@2 f
@µd@µ0d0

= 12ww0µd0µ0d
DX

i=1,i,d,d,d0
µiµ0i

+ 4wµd0w0µ0d

@2 f
@w@w0

= 2
DX

i=1

µ3
iµ

3
0i + 6

DX

i, j=1, j,i

µ2
iµ jµ

2
0iµ0 j

+ 12
DX

i, j,l=1,l, j,i

µiµ jµlµ0iµ0 jµ0l

+ 4
DX

i, j=1, j,i

µiµ jµ0iµ0 j + 2
DX

i=1

µ2
iµ

2
0i

This can also be organised in a more compact form as:
@ f
@ww0

= 2(
¯
µT


¯
µ0)

3
+ 2(

¯
µT


¯
µ0)

2

@ f
@

¯
µ

¯
µ0
= 18ww0(

¯
µT


¯
µ0)

2
+ 8ww0(

¯
µT


¯
µ0)

@ f
@

¯
µ

¯
µ
= �12wT

¯
µ + 12w

KX

k=1

wk(
¯
µT


¯
µk)

¯
µk � 4wM

+ 4wk

KX

k=1

wk
¯
µ2

k

Note that in the above formula (
¯
µT


¯
µ0 )

2 equals
DP

i=1
µ2
iµ

2
0i +

DP
i, j=1, j,i

µiµ jµ0iµ0 j which can be written based on

index representation and its monomial as:
X

i1

X

i2

X

i3

�c(µ1µ01)c1 . . . (µDµ0D)cD

for c = (c1, . . . , cD) 2 {0, 1, 2}.
Provided that f + �g is a twice-di↵erentiable function then

the Newton’s method with a quadratic rate of convergence to-
wards a local minimum than gradient descent can be used in-
stead of gradient descent. Thus, our method can be easily modi-
fied for solving the problem (2) using the second order informa-
tion which converges with much fewer iterations than gradient
methods. To do so the following modification can be applied
on steps 8 and 10 in Algorithm 1.
First we fix wk and update

¯
µk:

¯
µn+1

k =
¯
µn

k + ↵
n
⇣
O f (

¯
µn

k |wk) + �Og(
¯
µn

k |wk)
⌘h

H

⇣
f (

¯
µn

k |wk) + �g(
¯
µn

k |wk)
⌘i�1

Fix
¯
µk and update w:

wn+1
k = wn

k + �
n
⇣
O f (wn

k |¯
µk) + �Og(wn

k |¯
µk)
⌘h

H[ f (wn
k |¯
µk) + �g(wn

k |¯
µk)
⌘i�1

A refinement of the Newton approach is Levenberg-
Marquardt method which accelerates the chance of local con-
vergence and avoids divergence. Basically, adding up a scaled
version of the diagonal elements of the Hessian matrix to itself,
[H + ⌘diag(H)], results in a faster convergence than the Lev-
enberg damping and Gauss-Newton method. The Levenberg-
Marquardt algorithm adaptively varies the parameter updates
between the gradient descent update and the Gauss-Newton up-
date, where small values of the algorithmic parameter � result
in a Gauss-Newton update and large values of � result in a gra-
dient descent update. The parameter � is initialised to be large
so that first updates are small steps in the steepest descent direc-
tion. If any iteration happens to result in a worse approximation
F(

¯
µn+1,

¯
wn+1) > F(

¯
µn,

¯
wn), then � is increased. Otherwise, as

the solution improves, � is decreased.

7.2. Moment updates for online learning
In this Section we detail the update function used in Algo-

rithm 2. The function combines stored variables from the previ-
ous data sets, S 1, S 2, . . . , S m, with the newly arrived data batch,
S m+1, S m+2, . . ., in a weighted manor allowing for exponential
smoothing of the updates (this is what allows the algorithm to
track evolving centres). Moment and statistic updates using ex-
ponential smoothing are well known and may be found in [32].
The updates consist of 4 steps detailed below.

• 1. Updates for the mean:
¯
µm+1 =

¯
µ1:m+ nm+1

n1:m+nm+1
(
¯
µ1:m
�

¯
µm+1).

• 2. Updates for the covariance matrix: Given an update of the
mean we may now turn to updating the covariance matrix of
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Fig. 8: Summary of average convergence error rate GD, momentum and Adam. (a) K = 5, D = 5, (b) K = 5, D = 20, (c) K = 10, D = 20 and (d) K = 10, D = 50.

the data, i.e. C
¯
x from Theorem 1 at time m denoted C1:m

¯
x .

Note that Cm+1

¯
x is now the covariance matrix of a partitioned

set S 1:m [ S m+1. In general, for two variables
¯
x2, ¯

x2 and two
partitions of the data the cross-covariance of the union may
be expressed as [32] (Eqn. 22) as:

Cm+1

¯
x1¯

x2
=

1
n � 1

0
BBBBB@S

1:m

¯
x1¯

x2
+ Sm+1

¯
x1¯

x2
+

(�2
¯
µ1:m

¯
x1
� �1

¯
µm+1

¯
x1

)(�2
¯
µ1:m

¯
x2
� �1

¯
µm+1

¯
x2

)

�1�2(�1 + �2)

1
CCCCCA ,

(13)

where Cm+1

¯
x1¯

x2
is the combined covariance of

¯
x1 with

¯
x2, n1:m

is the number of samples in S 1, . . . , S m, S1:m

¯
x1¯

x2
is sum of the

dot product of
¯
x1 and

¯
x2 in set S 1, . . . , S m,

¯
µm+1

¯
x1

denotes the
mean of

¯
x1 in set S m+1, and �m and �m+1 are weights which

can allow one to give a greater weight to one set over the
other; this allows for exponential smoothing in an online set-
ting (See [32] Section 4.2). Specifically we set �1 = � and
�2 = 1 � � which implements exponential smoothing.

• 3. Updates for the eigenpairs: Recalculate the first eigen-
value and eigenvector, for Cm+1

¯
x1¯

x2
.

• 4. higher order moment updates: Give updates for M and T
with new data and new eigenvalue and eigenvector.

Mm+1 = (1 � �)Mm + �(x ⌦ x) + �̄2m+1I,

T
m+1 = (1 � �)T m + �(x ⌦ x ⌦ x).

The updated M and T are used as inputs for AGD-MoM al-
gorithm and update parameter estimates for ˆ

¯
µ

1
, . . . , ˆ

¯
µ

K
and

ˆ
¯
w for the next batch.
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7. Supplementary material

7.1. Second order differentiability and Hessian

The Newton’s method is yet another method for minimising
the sum-of-squares objective function (2). More specifically,
in this method, it is assumed that the objective function is ap-
proximately quadratic in the parameters near the optimal solu-
tion [35]. In doing so, we have also calculated the Hessian,
(H( f + λg)), the second derivative with respect to each element
µκd while κ = 1, . . . ,K; d = 1, . . . ,D as follows (for simplicity
we considered λ = 1):

∂2 f
∂µκd∂µκd

= wκ
D∑

i, j=1

δi jµκiµκ j

K∑

k=1

wkµkiµk j + 12wκ
D∑

i=1

µκi

(
K∑

k=1

wkµ
2
kdµki − Tddi) + 4wκ(

K∑

k=1

wkµ
2
kd − Mdd)

+ 4w2
κ

D∑

i=1

µ2
κi δi j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

6, i = j ! d,
12, i ! j ! d,
18, i = j = d,
24, i = d; j ! d.

∂2 f
∂µκd∂µκ′d

= wκwκ′
D∑

i, j=1

δi jµκiµκ jµκ′iµκ j + 4wκw′κ
D∑

i=1,i!d

µκiµκ′i

+ 8wκwκ′µκdµκ′d

∂2 f
∂µκd∂µκd′

= 12w2
κµκd′µκd

D∑

j=1

µ2
κ j + 4w2

κµκdµκd′

+ 12wκ
D∑

j=1

µκ j(
K∑

k=1

wkµkd′µkdµk j − T jdd′)

+ 4wκ(
K∑

k=1

wkµkdµkd′ − Mdd′)

∂2 f
∂µκd∂µκ′d′

= 12wκwκ′µκd′µκ′d
D∑

i=1,i!d,d!d′
µκiµκ′i

+ 4wκµκd′wκ′µκ′d

∂2 f
∂wκ∂wκ′

= 2
D∑

i=1

µ3
κiµ

3
κ′i + 6

D∑

i, j=1, j!i

µ2
κiµκ jµ

2
κ′iµκ′ j

+ 12
D∑

i, j,l=1,l! j!i

µκiµκ jµκlµκ′iµκ′ jµκ′l

+ 4
D∑

i, j=1, j!i

µκiµκ jµκ′iµκ′ j + 2
D∑

i=1

µ2
κiµ

2
κ′i

This can also be organised in a more compact form as:
∂ f
∂wκwκ′

= 2(
¯
µT
κ

¯
µκ′)

3
+ 2(

¯
µT
κ

¯
µκ′)

2

∂ f
∂

¯
µκ

¯
µκ′
= 18wκwκ′(

¯
µT
κ

¯
µκ′)

2
+ 8wκwκ′(

¯
µT
κ

¯
µκ′)

∂ f
∂

¯
µκ

¯
µκ
= −12wκT

¯
µκ + 12wκ

K∑

k=1

wk(
¯
µT
κ

¯
µk)

¯
µk − 4wκM

+ 4wk

K∑

k=1

wk
¯
µ2

k

Note that in the above formula (
¯
µT
κ

¯
µκ′ )

2 equals
D∑

i=1
µ2
κiµ

2
κ′i +

D∑
i, j=1, j!i

µκiµκ jµκ′iµκ′ j which can be written based on

index representation and its monomial as:
∑

i1

∑

i2

∑

i3

δc(µκ1µκ′1)c1 . . . (µκDµκ′D)cD

for c = (c1, . . . , cD) ∈ {0, 1, 2} .
Provided that f + λg is a twice-differentiable function then

the Newton’s method with a quadratic rate of convergence to-
wards a local minimum than gradient descent can be used in-
stead of gradient descent. Thus, our method can be easily modi-
fied for solving the problem (2) using the second order informa-
tion which converges with much fewer iterations than gradient
methods. To do so the following modification can be applied
on steps 8 and 10 in Algorithm 1.
First we fix wk and update

¯
µk:

¯
µn+1

k =
¯
µn

k + α
n
(
▽ f (

¯
µn

k |wk) + λ▽g(
¯
µn

k |wk)
)[

H
(

f (
¯
µn

k |wk) + λg(
¯
µn

k |wk)
)]−1

Fix
¯
µk and update w:

wn+1
k = wn

k + β
n
(
▽ f (wn

k |¯
µk) + λ▽g(wn

k |¯
µk)
)[

H[ f (wn
k |¯
µk) + λg(wn

k |¯
µk)
)]−1

A refinement of the Newton approach is Levenberg-
Marquardt method which accelerates the chance of local con-
vergence and avoids divergence. Basically, adding up a scaled
version of the diagonal elements of the Hessian matrix to itself,
[H + ηdiag(H)], results in a faster convergence than the Lev-
enberg damping and Gauss-Newton method. The Levenberg-
Marquardt algorithm adaptively varies the parameter updates
between the gradient descent update and the Gauss-Newton up-
date, where small values of the algorithmic parameter λ result
in a Gauss-Newton update and large values of λ result in a gra-
dient descent update. The parameter λ is initialised to be large
so that first updates are small steps in the steepest descent direc-
tion. If any iteration happens to result in a worse approximation
F(

¯
µn+1,

¯
wn+1) > F(

¯
µn,

¯
wn), then λ is increased. Otherwise, as

the solution improves, λ is decreased.

7.2. Moment updates for online learning

In this Section we detail the update function used in Algo-
rithm 2. The function combines stored variables from the previ-
ous data sets, S 1, S 2, . . . , S m, with the newly arrived data batch,
S m+1, S m+2, . . ., in a weighted manor allowing for exponential
smoothing of the updates (this is what allows the algorithm to
track evolving centres). Moment and statistic updates using ex-
ponential smoothing are well known and may be found in [32].
The updates consist of 4 steps detailed below.

1. Updates for the mean:
¯
µm+1 =

¯
µ1:m+ nm+1

n1:m+nm+1
(
¯
µ1:m−

¯
µm+1).

2. Updates for the covariance matrix: Given an update of the
mean we may now turn to updating the covariance matrix of
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Fig. 8: Summary of average convergence error rate GD, momentum and Adam. (a) K = 5, D = 5, (b) K = 5, D = 20, (c) K = 10, D = 20 and (d) K = 10, D = 50.

the data, i.e. C
¯
x from Theorem 1 at time m denoted C1:m

¯
x .

Note that Cm+1

¯
x is now the covariance matrix of a partitioned

set S 1:m ∪ S m+1. In general, for two variables
¯
x2, ¯

x2 and two
partitions of the data the cross-covariance of the union may
be expressed as [32] (Eqn. 22) as:

Cm+1

¯
x1¯

x2
=

1
n − 1

⎛
⎜⎜⎜⎜⎜⎝S1:m

¯
x1¯

x2
+ Sm+1

¯
x1¯

x2
+

(γ2
¯
µ1:m

¯
x1
− γ1

¯
µm+1

¯
x1

)(γ2
¯
µ1:m

¯
x2
− γ1

¯
µm+1

¯
x2

)

γ1γ2(γ1 + γ2)

⎞
⎟⎟⎟⎟⎟⎠ ,

(13)
where Cm+1

¯
x1¯

x2
is the combined covariance of

¯
x1 with

¯
x2, n1:m

is the number of samples in S 1, . . . , S m, S1:m

¯
x1¯

x2
is sum of the

dot product of
¯
x1 and

¯
x2 in set S 1, . . . , S m,

¯
µm+1

¯
x1

denotes the
mean of

¯
x1 in set S m+1, and γm and γm+1 are weights which

can allow one to give a greater weight to one set over the
other; this allows for exponential smoothing in an online set-
ting (See [32] Section 4.2). Specifically we set γ1 = γ and
γ2 = 1 − γ which implements exponential smoothing. 3.
Updates for the eigenpairs: Recalculate the first eigenvalue
and eigenvector, for Cm+1

¯
x1¯

x2
. 4. higher order moment updates:

Give updates for M and T with new data and new eigenvalue

and eigenvector.
Mm+1 = (1 − γ)Mm + γ(x ⊗ x) + σ̄2m+1I,

T m+1 = (1 − γ)T m + γ(x ⊗ x ⊗ x).
The updated M and T are used as inputs for AGD-MoM al-
gorithm and update parameter estimates for ˆ

¯
µ1, . . . , ˆ¯

µ
K

and
ˆ
¯
w for the next batch.


