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Quantization based clustering: an iterative approach

Thomas Laloë

Abstract

In this paper we propose a simple new algorithm to perform clustering, based on the Alter algorithm
proposed in [5] but lowering signi�cantly the algorithmic complexity with respect to the number of clusters.
An empirical study states the relevance of our iterative process and a confrontation on simulated multivariate
and functional data shows the bene�ts of our algorithm.

1. Introduction

Clustering consists in partitioning a set of unla-
beled objects into homogeneous groups (or clusters),
so that the data in each subset share some common
trait (see [4] for a thorough introduction to the
subject) . Over the years, many methods have
been proposed to deal with clustering : density
based clustering [10], Hierarchical clustering [11]
and partitioning clustering... We focus in this paper
on the last one. More precisely we use a method
coming from the signal compression theory : the
quantization [7].

The proximity notion is crucial in the de�nition
of what is a "good clustering". We propose here to
rely on the method proposed in [5] which is based
on a L1 (or Manhattan) distance. The algorithm
(called Alter) proposed to perform the clustering
is proved to be consistent but su�ers from a high
complexity. A �rst alternative has been proposed in
[6] to lower the complexity, adapting the X-means
approach proposed in [8].

The purpose of this paper is to propose a new
alternative to lower the complexity of the Alter
algorithm (with respect to the number of clusters),
best preserving its ability to converge to the global
optimum.

The paper is organized as follows: the Alter algo-
rithm and its theoretical properties are summarized
in Section 2. Then our new algorithm is presented in
Section 3. Finally, a comparative study on simulated
data is provided in Section 4.

2. Quantization based clustering

Let us summarize the Alter algorithm. All the the-
oretical results presented in this section come from
[5]. The method is based on quantization, which is a
commonly used technique in signal compression [2, 7].
Consider (H, ‖.‖) a normed space and let X be a H-
valued random variable with distribution µ such as
E‖X‖ <∞. Given a set C of points in Hk, any Borel
function q : H → C is called a quantizer. The set C is
called a codebook, and the error made by replacing
X by q(X) is measured by the distortion:

D(µ, q) = E ‖X − q(X)‖ =
∫
H
‖x− q(x)‖µ(dx).

Note that D(µ, q) < ∞ since E‖X‖ < ∞. For a
given k, the aim is to minimize D(µ, .) among the set
Qk of all possible k-quantizers. The optimal distor-
tion is then de�ned by

D∗k(µ) = inf
q∈Qk

D(µ, q).
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When it exists, a quantizer q∗ satisfying
D(µ, q∗) = D∗k(µ) is said to be an optimal quantizer.

As detailed in [5], a quantizer is characterized by

its codebook C = {yi}ki=1 and a partition of H in cells
Si = {x ∈ H : q(x) = yi}, i = 1, . . . , k via the rule

q(x) = yi ⇐⇒ x ∈ Si.

Moreover it is proved in [5] that for a given code-
book an optimal partition is a nearest neighbor one.
So we can consider only nearest neighbor quantizers,
which means that a quantizer q will be characterized
by its codebook C = {yi}ki=1 and the rule

q(x) = yi ⇐⇒ ∀1 ≤ j ≤ k, j 6= i, ‖x−yi‖ ≤ ‖x−yj‖,

with ties arbitrary broken. Thus, a quantizer can be
de�ned by its codebook only. Moreover the aim is to
minimize the distortion among all possible nearest
neighbor quantizers.

However, in practice, the distribution µ of the ob-
servations is unknown, and we only have at hand n
independent observations X1, . . . , Xn with the same
distribution than X. The goal is then to minimize
the empirical distortion:

1

n

n∑
i=1

‖Xi − q(Xi)‖.

Then, clustering is done by regrouping the observa-
tions that have the same image by q. More precisely,
we de�ne a cluster C by C = {Xi : q(Xi) = x̂C}, x̂C
being the representative of cluster C.

Unfortunately, the minimization of the empirical
distortion is not possible in practice and that is why
an alternative is proposed: the Alter algorithm. The
idea is to select an optimal codebook among the data
set. More precisely the outline of the algorithm is:

1. List all possible code books , i.e., all possible
k-tuples of data;

2. Compute the empirical distortion associated
to the �rst codebook. Each observation Xi is
associated with its closed center;

3. For each successive codebook, compute the
associated empirical distortion. Each time a
codebook has an associated empirical distortion
smaller than the previous smallest one, store
the codebook;

4. Return the codebook that has the smallest dis-
tortion.

It is proved that the convergence rate is of the same
order than the theoretical method described above
(minimization of the empirical distortion over all
possible quantizers). Moreover, this algorithm does
not depend on initial conditions (unlike the K-Means
or K-Medians algorithm) and it converges to the
optimal distortion. Unfortunately its complexity is
O(nk+1) and it is impossible to use it for high values
of n or k. Worse, even for small n, it is not possible
to consider large number of clusters. That is why we
wanted to propose the Iterative Alter algorithm.

3. Iterative Alter

Let us now present our alternative to lower
the complexity of the algorithm. For the sake of
simplicity, let us take the case where the data belong
to R, and where we try to cluster them into two
groups. If we perform Alter, we have to compute
the distortion with centers given by any pair of data.
Figure 1 show the behavior of the distortion with
respect to the values of the two centers and Figure 2
show the behavior of the distortion with respect to
one center while the other is �xed.

Looking at this �gures it seems possible to get the
best pair of centers by successively optimizing each
center (�xing the other). Thus the process could be :

Step 1 : Select (randomly) two data to be the
initial pair of center;

Step 2 : Fix the �rst center and optimize the
distortion on the second;
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Step 3 : Fix the second center (with the value
obtained at Step 1) and optimize the distortion
on the �rst center;

Step 4 : Repeat Steps 2 and 3 until the centers
no longer change.

The generalization to k clusters is then trivial :

Step 1 : Select (randomly) k data to be the
�rst center and optimize the distortion on the
second center;

Steps 2 : For i from 1 to k, �x all centers
expect the ith one and optimize the distortion
on this one;

Step 3 : Iterate until the centers no longer
change.
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Figure 1: Behavior of the distortion with respect to two cen-
ters.

Of course we have to make the assumption that the
data are continuously distributed. Otherwise speci�c

−6 −4 −2 0 2 4 6

1
2

3
4

5
6

Centres 1

D
is

to
rs

io
n

Figure 2: Behavior of the distortion with respect to one center.
Each curve correspond to one value of the �rst center.

counter example can be constructed. Before perform-
ing a comparative study, we empirically justify this
procedure.

3.1. Empirical justi�cation

In this section we propose to empirically justify our
algorithm, showing that we indeed get the global min-
imum of the distortion. We begin by a multivariate
case, before looking at a functional case.

3.1.1. Multivariate case

We simulate data sets (of size n = 50, 100 and 500)
of six clusters in R2 (see Figure 3) and perform our
algorithm with k ∈ {2, 4, 6} clusters. The cluster are
centered around (−7,−5), (−7, 0), (−7, 5), (7,−5),
(7, 0) and (7, 5), and in each cluster the data are nor-
mally distributed around the center (with a standard
deviation equal to 2). Moreover we add a "noise"
cluster containing 10% of the data, centered on 0 and
with standard deviation equal to 8.
For each con�guration (i.e. couple (n, k), Figure 4

present the evolution of the averaged (over M = 50
repetition of the simulation process) distortion ac-
cording to the number of cycles performed (a cycle
is an iteration of Steps 2 and 3). In such a simple
scenario we are also able to compute the real optimal
distortion.
We see in Figure 4 that at the end of the �rst cycle

we almost get the optimal distortion and that the
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Figure 3: Example of multivariate data set for n = 50, 100, 500.
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Figure 4: Multivariate case.Evolution of the distortion with
respect to the number of Cycles. Dashed lines represent the
optimal distortion.

number of cycles required to get the optimal dis-
tortion is really small. Since the complexity of our
algorithm is of the order of (number of cycles) ×
(number of data), this small number of cycles ensure
a reasonable complexity. Note that for each cycle, a
parallelization of the optimization of each center is
possible.

3.1.2. Functional case

Now we want to consider functional data. We
take functions f1(x) = x0.1 + cos(10x+ π/2− 10)/5,
f2(x) = x + cos(10x + π/2 − 10)/5,
f3(x) = x2 + cos(10x + π/2 − 10)/5 and
f4(x) = x10 + cos(10x+ π/2− 10)/5 de�ned on [0, 1]
discretized 20 times. The term cos(10x+π/2−10)/5
is added to disturb functions x0.1, x, x2 and x10.
Each data in R20 is noised with a vector composed
by twenty Gaussian law N(0, σ) where the value of σ
is selected for each data using σ ∼ N(0.1, 0.02). The
idea is to simulate two clusters (of sizes randomly
selected between 15 and 30) around f2 and f3,
and complicate the task by adding a small number
(randomly selected between 1 and 5) of functions
distributed around f1 and f4. Figure 5 shows
examples of some of the functions that we want to
classify.
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Figure 5: Example of multivariate data set.

We simulate 50 di�erent data set to calculate
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averaged distortions, and Figure 6 play the role of
Figure 4: it presents the evolution of the averaged
distortion according to the number of cycles per-
formed (a cycle is an iteration of Steps 2 and 3). As
in the multivariate case we see that the number of
cycles required to get the optimal distortion is really
small.
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Figure 6: Functional case. Evolution of the distortion with
respect to the number of Cycles. Dashed lines represent the
optimal distortion.

Now that we have empirically stated the relevance
of our iterative process, we can perform a compara-
tive study both on simulated data.

4. Comparative study

We perform here an empirical study to show the
relevance of our method. We confront our method
to various simulated data sets, but also on classi-
cal real data sets. In order to evaluate the relevance
we consider the Adjusted Rand Index (A.R.I.) [9, 3].
Moreover, we compare our method to a K-Medians
algorithm proposed by [1].

4.1. Multivariate case

We perform here tests with a little more compli-
cated data sets than in Section 3.1.1: each data
set is composed of k cluster, and each cluster
(Ci, i = 1, . . . , k) contains ni data normally dis-
tributed around mi (in Rd) and with standard de-
viation σi. All the parameters are randomly selected
:

• k is uniformly selected in {2, 3, . . . , 8};

• the ni are uniformly selected between 5 and 25 ;

• each coordinate of eachmi are uniformly selected
between -20 and 20 ;

• the σi are uniformly selected between 2 and 5 .

The K-Medians algorithm may strongly depend
on the initial conditions. However it is possible
to overcome this performing multiple intializations
(we will call this R-K-Median, with R the number
of initializations). Table 1 summaries the results
averaged on 50 simulations (each run is done with a
new set of randomly selected parameters), and for
di�erent values of the dimension of the data (d = 2,
d = 5 and d = 10).

Table 1: Comparative study in the multivariate case.

Algorithm Iter Alter 1-K-Medians 10-K-Medians 20-K-Medians
ARI dim 2 0.7 0.7 0.7 0.7
ARI dim 5 0.96 0.96 0.96 0.96
ARI dim 10 1 0.99 0.99 0.99

It seems here that our algorithm and the K-
Medians have similar performance. However if we
look more precisely things are a little di�erent.
Figures 7, 8, 9 show the distribution (over 300
repetitions of the previous process) of the averaged
ARI for dimension d = 2, 5, and 10. With the
increasing of the dimension, we clearly see the
bene�ts of our algorithm. This is not surprising
since the underlying method of our algorithm (see
[5]) is thought for functional data. This bene�t is
even more signi�cant if we look at the distribution
of the minimal ARI (Figures 10, 11 and 12 below).
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Figure 7: Multivariate case Distributions of the minimal
ARI obtained with R-K-Medians and Alter (d = 2).
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Figure 8: Multivariate case Distributions of the minimal
ARI obtained with R-K-Medians and Alter (d = 5).

In the next section we consider functional data and
we will see that this bene�t is even more pronounced.

4.2. Functional case

Now we want to consider functional data. We
take the same con�guration as in Section 3.1.2: We
take functions f1(x) = x0.1 + cos(10x+ π/2− 10)/5,
f2(x) = x + cos(10x + π/2 − 10)/5, f3(x) = x2 +

R = 1 R = 2 R = 10 R = 20 IterAlter
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5
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Figure 9: Multivariate case Distributions of the minimal
ARI obtained with R-K-Medians and Alter (d = 10).
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Figure 10: Multivariate case (d = 2) Distributions of the
minimal ARI obtained with R-K-Medians and Alter.

cos(10x + π/2 − 10)/5 and f4(x) = x10 + cos(10x +
π/2 − 10)/5 de�ned on [0, 1] discretized 20 times.
Each data in R20 is noised with a vector composed
by twenty Gaussian law N(0, σ) where the value of
σ is selected for each data using σ ∼ N(0.1, 0.02).
We simulate two clusters (of sizes randomly selected
between 15 and 30) around f2 and f3, and compli-
cate the task by adding a small number (randomly
selected between 1 and 5) of functions distributed
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Figure 11: Multivariate case (d = 5) Distributions of the
minimal ARI obtained with R-K-Medians and Alter.
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Figure 12: Multivariate case (d = 10) Distributions of the
minimal ARI obtained with R-K-Medians and Alter.

around f1 and f4 (as a reminder one can look at Fig-
ure 5). The results presented in Table 4.2 are aver-
aged over 50 simulated data sets.

As in the previous section we present in Figure 13
the boxplot of the minimum ARI obtained at each of
the M repetitions. Once again, our method appears
to be more reliable than the R-K-Medians, due to the
consistency properties of the Alter algorithm.

Table 2: Comparative study in the functional case.

Algorithm Iter Alter 1-K-Medians 10-K-Medians 20-K-Medians
ARI 0.99 0.3 0.35 0.37

R = 1 R = 2 R = 10 R = 20 IterALTER
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Distributions of the minimal ARI

Figure 13: Functional case Distributions of the minimal ARI
obtained with R-K-Medians and Alter.

Conclusion

We have presented a simple new algorithm to
perform clustering, based on the Alter algorithm
proposed in [5]. With this algorithm we lower sig-
ni�cantly the algorithmic complexity. An empirical
study stated the relevance of our iterative process
and a confrontation on simulated data showed the
bene�ts of our algorithm. However, theoretical
guarantees remains to be proved and we did not
address the problem of the selection of the numbers
of cluster. This should be the subject of a future
work.
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