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Abstract

Network representation learning (NRL) methods have received significant attention over the last years thanks to their
success in several graph analysis problems, including node classification, link prediction and clustering. Such methods
aim to map each vertex of the network into a low dimensional space in a way that the structural information of the
network is preserved. Of particular interest are methods based on random walks; such methods transform the network
into a collection of node sequences, aiming to learn node representations by predicting the context of each node
within the sequence. In this paper, we introduce TNE, a generic framework to enhance the embeddings of nodes
acquired by means of random walk-based approaches with topic-based information. Similar to the concept of topical
word embeddings in Natural Language Processing, the proposed model first assigns each node to a latent community
with the favor of various statistical graph models and community detection methods, and then learns the enhanced
topic-aware representations. We evaluate our methodology in two downstream tasks: node classification and link
prediction. The experimental results demonstrate that by incorporating node and community embeddings, we are able
to outperform widely-known baseline NRL models.

Keywords: Network representation learning, Node embeddings, Link prediction, Community structure

1. Introduction

Graphs are important mathematical structures com-
monly used to represent objects and their relations in
real-world systems such as the World Wide Web, social
networks, and biological networks. Of particular impor-
tance is how to deal with learning tasks on graphs, such as
the ones of friendship recommendation in social networks
and protein function prediction in protein-protein interac-
tion networks—with the major challenge being how to in-
corporate information about the structure of the graph in
the learning process. To this direction, a plethora of ap-
proaches have emerged under the area of network repre-
sentation learning (NRL) [16]. The main goal of NRL
models is to learn feature vectors corresponding to the

Email addresses: abdcelikkanat@gmail.com (Abdulkadir
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nodes of the graph (also known as node embeddings), by
preserving important structural properties of the network;
those vectors can later be used to perform various analysis
and mining tasks including visualization, node classifica-
tion and link prediction with the favor of machine learning
algorithms.

Initial studies in the field of network representation
learning, have mostly relied on matrix factorization tech-
niques, since various properties and interactions between
nodes can be expressed as matrix operations. Nev-
ertheless, such methods are not scalable to large-scale
networks mainly due to their increased running time
complexity—especially for graphs consisting of millions
of nodes and edges [16]. More recent studies have
concentrated on developing methods suitable for rela-
tively large-scale networks – being able to effectively ap-
proximate the underlying objective functions that capture
meaningful information about the nodes of the graph and
their properties.
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Many node representation learning methods have been
inspired by the advancements in the area of natural lan-
guage processing (NLP), borrowing various ideas orig-
inally developed for computing word embeddings. A
prominent example here is the Skip-Gram architecture
[22], which aims to find latent representations of words
by estimating their context within the sentences of a tex-
tual corpus. To this direction, many pioneer studies in
NRL [26, 15] utilize the idea of random walks to trans-
form graphs into a collection of sentences – as an analogy
to the area of natural language – and these sentences or
walks are later being used to learn node embeddings.

Although random walk-based approaches are strong
enough to capture local connectivity patterns, they mainly
suffer to sufficiently convey information about more
global structural properties. More precisely, real-world
networks have an inherent clustering (or community)
structure, which can be utilized to further improve the
predictive capabilities of node embeddings. One can in-
terpret such structural information based on an analogy to
the concept of topics in a collection of documents. In a
similar way as word embeddings can be enhanced with
topic-based information [21], here we aim at empower-
ing node embeddings by employing information about the
latent community structure of the network—that can be
achieved by a process similar to the one of topic model-
ing.

In this paper, we propose Topical Node Embeddings
(TNE), a framework in which node embeddings are en-
hanced with topic (or community) information towards
learning topic-aware node representations—something
that leads to further improvements in the performance on
downstream tasks. Local clustering patterns are of great
importance on many applications, enabling to better grasp
hidden information of the network. For instance, consider
two individuals sharing common friends or interests, that
are not yet represented by a direct link in the network. A
careful analysis of the local community structure can fur-
ther help to infer the missing information (e.g., missing
links), and therefore boost the predictive capabilities of
node embeddings. Motivated by that, the proposed TNE
framework aims to directly leverage the latent commu-
nity structure of the graph while learning node embedding
vectors. The main contributions of the paper can be sum-
marized as follows:

• Latent graph models and topic representations. We
show how existing latent space discovery models,
such as community detection and topic models, can
be incorporated in the node representation learning
process.

• Node representation learning framework. We pro-
pose a new model, called TNE, which first learns
community embeddings from the graph, and then
uses them to improve the node representations ex-
tracted by random walk-based methods. We examine
various instances of this model, studying their prop-
erties.

• Enriched feature vectors. We perform a detailed em-
pirical evaluation of the embeddings learned by TNE
on the tasks of node classification and link predic-
tion. As the experimental results indicate, the pro-
posed model learn feature vectors which can boost
the performance on downstream tasks.

The rest of the paper is organized as follows. Section 2
describes the related work, and in Section 3, we give the
fundamental concepts for unfamiliar readers and formu-
late the problem. In Section 4, we describe the concept of
topical node representation learning. The proposed TNE
model is presented in Section 5. Section 6 presents the ex-
perimental results, and finally, in Section 7 we conclude
our work providing also future research directions.

2. Related Work

Several methods have been proposed to learn latent
node representations in an unsupervised manner [16, 5].
Traditional unsupervised feature learning methods typi-
cally aim at factorizing a matrix representation, chosen in
a way to properly consider the underlying properties of
a given network. Characteristic examples here constitute
models that preserve first-order proximity of nodes, such
as Laplacian Eigenmaps [1] and IsoMap [35]. More re-
cently, algorithms including LINE [34], GraRep [6] and
HOPE [24] were designed to preserve higher-order prox-
imities of nodes. Nevertheless, despite the fact that matrix
factorization approaches offer an elegant way to capture
the desired properties, they mainly suffer from their time
complexity.
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Figure 1: The topic-community assignments in Zachary’s karate club
network. Each node v is assigned to a community label z maximizing
the posterior probability Pr(z|v) by TNE-Glda model.

Random walk-based methods [16], including
Node2Vec [15], DeepWalk [26], have gained con-
siderable attention, mainly due their elegant way to
define proximity among nodes based on random walks,
as well the computational efficiency of the Skip-Gram
model. Following this line of research, various extensions
have been proposed [20, 30, 10, 23, 12, 9, 8]. Lastly, it
was recently shown that that DeepWalk and Node2Vec
implicitly perform matrix factorizations [28, 29].

To the best of our knowledge, very few models bene-
fit from the community structure of real networks while
learning embeddings. The ComE model [7] proposes a
closed-loop procedure among the encoding of commu-
nities, learning node embeddings and community detec-
tion in the network. M-NMF [38] targets to learn node
representations by incorporating community structure in-
formation in a non-negative matrix factorization formula-
tion. COSINE [40] is a generative model learning the so-
cial network embeddings from information diffusion cas-
cades. A recent approach, GEMSEC [32], learns node
embeddings with an explicitly defined community pre-
serving objective function. As we will present shortly,
our work aims at independently learning node and com-
munity (topic) embeddings, and then combining them into
expressive topical feature vectors.

3. Background Concepts

We will use G = (V,E) to denote a graph, where V
is the set of nodes and E indicates the set of edges. Our
goal is to find a mapping function β : V → RD, where
β[v] will correspond to the representation of node v in a
lower-dimensional space RD; D is generally referred to
as the embedding or dimension size, and is much smaller
than the cardinality of the vertex set, |V|.

Node embedding methods based on the popular Skip-
Gram architecture (e.g., [15, 26, 23]) learn node represen-
tations using node sequences produced by random walks
over a given network. They mainly target to maximize
the likelihood of the occurrences of nodes within a cer-
tain distance with respect to each other, as follows:

FN(α, β) :=arg max
Ω

∑
w∈W

∑
1≤i≤L

∑
−γ≤ j,0≤γ

log Pr(vi+ j| vi; Ω), (1)

where W is the set of random walks w =

(v1, . . . , vi, . . . , vL) ∈ VL, Ω = (α, β) is the model
parameters that we would like to learn and γ refers
to the window size. Any nodes appearing inside the
window size of center node vi are referred to as context
nodes. Note that, we obtain two different representation
vectors α[v] and β[v] for each node v ∈ V, one per role
of the node as center and context; in the experimental
evaluation, we will only consider vector β[v], which
corresponds to the vector if the node is interpreted as a
center node.

4. Learning Topic Representations

Complex networks, such as those arising from social or
biological settings, consist of latent clusters of different
sizes in which the nodes are more likely to be connected
to each other [13, 19, 18]. Our main goal here is to use the
latent clusters of a network in order to obtain enriched rep-
resentations. This can be achieved by enhancing node em-
bedding vectors with topic representations. By replacing
a node vi with its community label zi in a random walk,
we learn community embeddings by predicting the nodes
in the context of a community label. More formally, we
can define our objective function to learn topic represen-
tations as follows:

3



FT (α̃, β̃) :=arg max
Ω̃

∑
w∈W

∑
1≤i≤L

∑
−γ≤ j,0≤γ

log Pr
(
vi+ j | zi; Ω̃

)
. (2)

By maximizing the log-probability above, we obtain the
embedding vectors corresponding to each community la-
bel zi ∈ {1, . . . ,K}, where K indicates the number of la-
tent communities. In this work, we mainly use two ap-
proaches to detect latent communities. The first one is
based on novel combination of generative statistical mod-
els accompanied with random walks, while the second
one is based on traditional community detection algo-
rithms that utilize the network structure itself.

4.1. Random walks and generative graph models

Most real-world networks can be expressed as a combi-
nation of nested or overlapping communities [25]. There-
fore, when a random walk is initialized, it does not only
visit neighboring nodes but also traverses communities in
the network (see Fig. 3b). In that regard, we assume that
each random walk can be represented as random mix-
tures over latent communities, and each community can
be characterized by a distribution over nodes. In other
words, we can write the following generative model for
each walk over the network:

1. For each k ∈ {1, . . . ,K}

• φk ∼ Dir(b0)

2. For each walk w = (v1, . . . , vi, . . . , vL)

• θw ∼ Dir(a0)

• For each vertex vi ∈ w
– zi ∼ Multinomial(θw)
– vi ∼ Multinomial(φzi )

Here, N is the number of walks and L is the walk length.
If we consider each random walk as a document and

the collection of random walks as a corpus, it can be seen
that the statistical process defined above corresponds to
the well known Latent Dirichlet Allocation (LDA) model
[3]. Therefore, each community corresponds to a distinct
topic in the terminology of NLP (we use the terms topic
and community interchangeably in the rest of the paper).
We will refer to this model as Glda (the plate represen-
tation is shown in Fig. 2a). As we show in Lemma 4.1,

the relative frequency of the occurrences of a node in the
generated walks is proportional to its degree in the net-
work for large number of walks or walk lengths. This
property was first empirically demonstrated in the work
of [26], allowing Skip-Gram models to be applied on real-
world graphs. Here we provide a formal argument of this
empirical observation.

Lemma 4.1. Let G = (V,E) be a connected graph, and
{Xl}l≥1 be a Markov chain with state spaceV = {1, . . . ,N}
and transition matrix P, where Pi j is defined as 1/di for
each edge (i, j) ∈ E and 0 otherwise. If the Markov chain
is aperiodic, then

lim
L→∞

1
L
E

[
Oi

L

]
=

di

2|E|
,

where Oi
L is a random variable representing the number

of occurrences of the node i in a random walk of length L.

Proof. Since the graph is connected, each state can be ac-
cessed by any other one. Thus, the Markov chain is also
irreducible having a unique limiting distribution π. Note
that πi is equal to di/

∑
k∈V dk since it satisfies πP = π.

Then, we can write:

lim
L→∞

1
L
E

[
Oi

L

]
= lim

L→∞

1
L
E

 L∑
l=1

1{Xl=i}

= lim
L→∞

1
L

L∑
l=1

E
[
1{Xl=i}

]
= lim

L→∞

1
L

L∑
l=1

Pr (Xl = i) = πi =
di∑

k∈V dk

=
di

2|E|
,

where the equality in the second line follows from Cesàro
theorem [11], since Pr(Xl = i) converges to πi as l goes to
infinity.

In the previous Glda model, the latent community as-
signment of each node is independently chosen from the
community label of the previous node in the random walk.
However, the hidden state of the current node can play
an important role towards determining the next vertex to
visit, as the random walk also traverses through commu-
nities. Therefore, we can write the following generative
process, by modifying the Glda model:

1. For each k ∈ {1, . . . ,K}
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Figure 2: Plate representations of random walk-based topic representation models.

• φk ∼ Dir(b0)
• θk ∼ Dir(a0)

2. π ∼ Dir(p0)
3. For each walk w = (v1, . . . , vi, . . . , vL)

• z1 ∼ Dir(π)
• For each vertex vi ∈ w, for all i < L

– vi ∼ Multinomial(φzi )
– zi+1 ∼ Multinomial(θzi )

• vL ∼ Multinomial(φzL )

The above model, in fact, corresponds to the well-known
Hidden Markov Model (HMM) with symmetric Dirichlet
priors over transition and emission distributions. In our
experiments, we adopt the Infinite Hidden Markov Model
(IHMM) [37] (we will refer to this model as Ghmm; plate
representation is shown in Fig. 2b). Note that, unlike the
Glda model, in the generation of each node sequence the
same transition probabilities are used. Also, vectors θk

and φk contain K and |V| components, respectively.

4.2. Network structure-based modeling
In the previous models, the generated random walks

are used to detect the community (or topic) assignment
of each node in the given node sequence. Here, we uti-
lize two additional community detection models, which
directly target to extract communities of nodes from a
given network. The first one corresponds to the well-
known Louvain algorithm by [4] that extracts communi-
ties based on modularity maximization, while the second
one to the BigClammodel for overlapping community de-
tection [39].

5. Topical Node Embeddings

In this section, we will describe the proposed Topical
Node Embeddings (TNE) model for learning topic-aware
node representations. An overview of the model is given
in Fig. 3. TNE aims to enhance node embeddings using
information about the underlying topics of the graph ob-
tained by the models described in Section 4. This can be
achieved by learning node and topic embedding vectors
independently of each other, jointly maximizing the ob-
jectives defined in Eq. (1) and (2). Combining these two
objectives, we derive the following:

max
Ω,Ω̃

∑
w∈W

∑
vi∈w

∑
−γ≤ j,0≤γ

[
log Pr

(
vi+ j|vi; Ω

)
+ log Pr

(
vi+ j|zi; Ω̃

)]
.

Skip-Gram models the probability measure in the above
equation using the softmax function:

Pr
(
vi+ j|vi

)
:=

exp
(
α[vi+ j]> · β[vi]

)∑
u∈V exp (α[u]> · β[vi])

.

In our approach, though, we use the sigmoid function by
adopting the negative sampling strategy [22], in order to
make our computations more efficient. After obtaining
the node and topic representations, our final step is to ef-
ficiently incorporate these two feature vectors, β[v] and
β̃[z] of node v and community label z respectively, so as
to obtain the final topic-enhanced node embedding. For
this purpose, we concatenate node embedding vector β[v]
with the expected topic vector with respect to the distri-
bution p(·|vi). Our strategy can be formulated as follows:
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Figure 3: Schematic representation of the TNE model. The final representations are learned by combining node and topic embeddings. A node’s rep-
resentation is learned using random walks performed over the network; its topic representation is similarly learned by assigning a topic/community
label based either on random walks (TNE-Glda, TNE-Ghmm) or network structure-based approaches (TNE-Louvain, TNE-BigClam).

β[vi] ⊕
∑

k∈{1,...,K}

Pr(k|v) · β̃[k], (3)

where ⊕ indicates the concatenation operation. We refer
to the final vector obtained after concatenating the node
and topic feature vectors as topical node embedding. Al-
gorithm 1 provides the pseudocode of the proposed TNE
model.

Algorithm 1 Topical Node Embeddings (TNE)
Input: Graph G = (V,E); number of walks: N ; walk

length: L; window size: γ; number of communities:
K , topic representation learning method: T ; node
embedding size: Dn; community embedding size: Dt

Output: Embedding vectors of lengthDn +Dt

1: PerformN random walks of length L for each node.
2: Learn node representations by optimizing Eq. (1).
3: Learn topic representations by optimizing Eq. (2),

using any of the models T of Sec. 4.
4: Concatenate node and topic embeddings with Eq. (3).

The general structure of our framework follows. First,
we need a collection of walks over the network to learn
node and topic embeddings; here we have utilized biased
random walks, similar to Node2Vec. We further produce
node-context pairs and use Skip-Gram to learn node em-
beddings following Eq. (1). Then, we choose a strategy
(shown as T in Alg. 1) to learn topic representations. This
step is quite flexible in the formulation of TNE. One ap-
proach is to generate topic assignments zi of each node

vi ∈ V in the walk w ∈ W, based on the random walk-
based generative graph models Glda and Ghmm, defined
in Sec 4.1. Alternatively, we can directly infer the latent
clustering structure based on BigClam and Louvain mod-
els, as described in Sec. 4.2. Lastly, we combine node and
topic embeddings using Eq. (3) to obtain the final topical
node embedding vectors. Depending on the method used
to learn topical representations, we will refer to the cor-
responding instances of TNE as TNE-Glda, TNE-Ghmm,
TNE-Louvain and TNE-BigClam.

5.1. Running time complexity analysis
The time complexity of TNE varies depending on the

algorithm used to detect latent topics and communities.
The node and topic representations can be learned in
O (D · |V | · S) time [36] using the negative sampling tech-
nique for a given node sequences and topic assignments,
where S is the number of samples. If the Louvain al-
gorithm is chosen, the communities can be detected in
O(|V | · log2 |V |) operations, while O (|V | · K) steps are re-
quired for BigClam when the number of communities is
high. The models that rely on random walks and genera-
tive models (Glda, Ghmm), can be run in O (N · L · K · I),
where I is the number of iterations [27, 37].

6. Experimental Evaluation

In this section, we firstly present the experimental set-
up used in our study, describing the baseline methods and
datasets used in the evaluation. We also provide details
about parameter settings for TNE and baselines. The
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performance of the proposed model is examined in two
downstream tasks: node classification and link predic-
tion. Our model has been implemented in Python and the
source code can be found at: https://abdcelikkanat.
github.io/projects/TNE/.

6.1. Baseline methods

We evaluate the performance of TNE against seven
widely used baseline methods. (i) DeepWalk ap-
plies Skip-Gram [26] with uniform random walks. (ii)
Node2Vec [15] extends DeepWalk following biased ran-
dom walks. (iii) LINE [34] aims at learning representa-
tions relying on first-order and second-order node prox-
imity. (iv) HOPE generates embedding vectors by captur-
ing higher order information of the network; in our exper-
iments we have used the Katz index. (v) NetMF [28] is a
matrix factorization approach based on the pointwise mu-
tual information of node co-occurrences. (vi) GEMSEC
[32] is a random walk model that learns the community
structure and the embeddings simultaneously. (vii) Fi-
nally, M-NMF [38] learns embeddings via a modularity-
preserving matrix factorization scheme.

6.2. Datasets

We have used seven different networks in our experi-
ments. CiteSeer [10] and Cora [33] are citation networks
constructed using articles as nodes, with edges represent-
ing citations. DBLP is a co-authorship graph, where
an edge exists between nodes if two authors have co-
authored at least one paper. The labels used for classi-
fication represent the research areas. AstroPh and HepTh
are both collaboration networks built from the papers sub-
mitted to the ArXiv repository for Physics related topics.
Facebook [17] is a social network obtained from a survey
conducted via a Facebook application. Lastly, Gnutella
[31] is the peer-to-peer file sharing network. In all cases,
we consider networks as undirected to ensure the consis-
tency of the experiments. Table 1 provides more detailed
information about the datasets.

6.3. Parameter settings

In this section, we describe the parameters’ settings that
we have used for our experiments and clarify the strate-
gies that we follow. To be consistent with the related liter-
ature, we have considered walks of length L = 10, num-

Table 1: Statistics of networks. |V|: number of nodes, |E|: number of
edges, |Λ|: number of labels and |C|: number of connected components.

|V| |E| |Λ| |C| Avg. Degree Type

CiteSeer 3,312 4,660 6 438 2.814 Citation
Cora 2,708 5,278 7 78 3.898 Citation

DBLP 27,199 66,832 4 2,115 4.914 Co-authorship

AstroPh 17,903 19,7031 - 1 22.010 Collaboration
HepTh 8,638 24,827 - 1 5.7483 Collaboration

Facebook 4,039 88,234 - 1 43.6910 Social
Gnutella 8,104 26,008 - 1 6.4186 Peer-to-peer

ber of walks N = 80 and window size γ = 10 for GEM-
SEC and for all random walk-based approaches. The re-
maining parameters of the baseline methods are set to
their default values with the embedding size of 128. The
difference instances of TNE are fed with biased random
walks similar to those used in Node2Vec, setting hyper-
parameters p, q to 1.0. To speed up the training process,
we adopt the negative sampling [22] strategy. Stochastic
Gradient Descent has been used for optimization, setting
the initial learning rate to 0.0025 and its minimum value
to 10−5. We learn topic and node embedding vectors of
sizes 32 and 96, respectively, so as the obtain feature vec-
tors of length 128.
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Figure 4: Running time of TNE on Erdös-Rényi graphs of different size.
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In the learning process of topic assignments of nodes
with the TNE-Glda model, we perform collapsed Gibbs
sampling [14] for parameter estimation and for infer-
ence. MCMC approach is used for the parameter es-
timation of TNE-Ghmm, with beam sampling for latent
sequence resampling steps [37]. The number of topics
for TNE-Glda is set to 100 for all networks except Cite-
seer and Cora, which is set to 150 and 125, respectively.
The initial number of states for TNE-Ghmm is set to 20.
For the M-NMF algorithm, we have performed parame-
ter tuning for the number of communities on the set of
{5, 15, 20, 25, 50, 75, 100}.

We have performed all the experiments on an Intel
Xeon 2.4GHz CPU server (32 Cores) with 60GB of mem-
ory. In order to examine the exact running time of the
TNE variants, we have performed an experiment on arti-
ficially generated Erdös-Rényi random graphs of varying
sizes, ranging from 28 to 213 nodes. The running times
are reported in Figure 4. As expected, the TNE-Louvain
is the most scalable instance, due to the efficient way to
infer the community structure.

Table 2: Node classification for varying training sizes over CiteSeer.
For each method, the rows indicates the Micro-F1 and Macro-F1 scores,
respectively. The bold value indicates indicate the highest scores.

10% 20% 30% 40% 50% 60% 70% 80% 90%

0.517 0.548 0.566 0.576 0.584 0.590 0.595 0.591 0.592DeepWalk 0.474 0.505 0.521 0.529 0.537 0.542 0.547 0.541 0.543
0.541 0.570 0.585 0.590 0.597 0.598 0.601 0.596 0.599Node2Vec 0.494 0.525 0.537 0.542 0.549 0.550 0.553 0.548 0.551
0.466 0.513 0.532 0.543 0.551 0.556 0.560 0.568 0.564LINE 0.414 0.459 0.480 0.492 0.498 0.505 0.505 0.514 0.513
0.219 0.228 0.256 0.267 0.277 0.293 0.299 0.300 0.320HOPE 0.078 0.094 0.127 0.136 0.150 0.168 0.178 0.183 0.205
0.552 0.578 0.590 0.596 0.603 0.605 0.604 0.611 0.608NetMF 0.503 0.529 0.542 0.546 0.553 0.554 0.552 0.560 0.554
0.493 0.520 0.536 0.544 0.549 0.554 0.557 0.560 0.556GEMSEC 0.452 0.475 0.488 0.493 0.495 0.498 0.502 0.502 0.496
0.386 0.428 0.443 0.458 0.458 0.466 0.467 0.472 0.471M-NMF 0.315 0.361 0.379 0.394 0.396 0.404 0.406 0.413 0.407

0.535 0.578 0.593 0.605 0.610 0.616 0.616 0.621 0.618TNE-Glda 0.494 0.536 0.548 0.558 0.562 0.567 0.568 0.572 0.567
0.526 0.557 0.568 0.575 0.583 0.584 0.583 0.592 0.594TNE-Ghmm 0.481 0.512 0.521 0.527 0.534 0.535 0.533 0.542 0.543
0.551 0.589 0.604 0.614 0.619 0.624 0.627 0.632 0.638TNE-Louvain 0.506 0.547 0.560 0.570 0.576 0.580 0.582 0.588 0.594
0.546 0.580 0.597 0.607 0.612 0.613 0.619 0.621 0.624TNE-BigClam 0.502 0.536 0.549 0.557 0.562 0.562 0.566 0.569 0.568

Table 3: Node classification for varying training sizes over Cora. For
each method, the rows indicates the Micro-F1 and Macro-F1 scores,
respectively. The bold value indicates indicate the highest scores.

10% 20% 30% 40% 50% 60% 70% 80% 90%

0.747 0.784 0.802 0.810 0.819 0.822 0.826 0.826 0.833DeepWalk 0.734 0.774 0.792 0.800 0.809 0.813 0.816 0.815 0.825
0.769 0.799 0.815 0.824 0.831 0.835 0.839 0.842 0.841Node2Vec 0.755 0.786 0.803 0.812 0.819 0.823 0.826 0.830 0.825
0.661 0.723 0.746 0.758 0.765 0.770 0.774 0.775 0.775LINE 0.642 0.713 0.736 0.747 0.755 0.759 0.762 0.766 0.764
0.302 0.303 0.301 0.303 0.302 0.303 0.303 0.303 0.302HOPE 0.066 0.067 0.067 0.067 0.067 0.067 0.068 0.070 0.072
0.773 0.807 0.821 0.828 0.834 0.839 0.841 0.839 0.844NetMF 0.760 0.797 0.811 0.819 0.824 0.830 0.832 0.831 0.835
0.599 0.643 0.670 0.691 0.707 0.720 0.728 0.740 0.738GEMSEC 0.563 0.616 0.647 0.670 0.688 0.700 0.709 0.722 0.718
0.503 0.573 0.602 0.622 0.636 0.648 0.655 0.648 0.661M-NMF 0.433 0.535 0.573 0.596 0.613 0.626 0.634 0.627 0.637

0.751 0.794 0.817 0.831 0.840 0.846 0.850 0.851 0.856TNE-Glda 0.738 0.782 0.807 0.821 0.829 0.836 0.837 0.838 0.841
0.762 0.791 0.809 0.816 0.824 0.827 0.828 0.832 0.834TNE-Ghmm 0.746 0.780 0.798 0.805 0.812 0.815 0.816 0.819 0.823
0.765 0.797 0.815 0.826 0.835 0.843 0.846 0.853 0.850TNE-Louvain 0.749 0.782 0.802 0.813 0.822 0.830 0.832 0.839 0.836
0.754 0.792 0.809 0.820 0.828 0.836 0.837 0.847 0.851TNE-BigClam 0.739 0.780 0.798 0.810 0.818 0.826 0.828 0.838 0.838

Table 4: Node classification for varying training sizes over DBLP. For
each method, the rows indicates the Micro-F1 and Macro-F1 scores,
respectively. The bold value indicates indicate the highest scores.

10% 20% 30% 40% 50% 60% 70% 80% 90%

0.613 0.622 0.626 0.627 0.628 0.627 0.628 0.629 0.633DeepWalk 0.545 0.552 0.555 0.556 0.556 0.555 0.556 0.557 0.559
0.622 0.632 0.636 0.638 0.638 0.640 0.639 0.640 0.639Node2Vec 0.560 0.569 0.571 0.572 0.572 0.574 0.573 0.574 0.573
0.603 0.613 0.618 0.619 0.621 0.621 0.623 0.623 0.623LINE 0.535 0.548 0.552 0.554 0.556 0.555 0.557 0.558 0.559
0.379 0.378 0.379 0.379 0.379 0.379 0.378 0.379 0.380HOPE 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.138 0.138
0.605 0.613 0.617 0.619 0.620 0.620 0.623 0.623 0.623NetMF 0.522 0.528 0.530 0.532 0.531 0.531 0.533 0.533 0.533
0.602 0.614 0.618 0.620 0.621 0.622 0.622 0.623 0.622GEMSEC 0.531 0.539 0.541 0.542 0.544 0.544 0.544 0.545 0.543
0.541 0.554 0.560 0.563 0.566 0.568 0.569 0.571 0.572M-NMF 0.403 0.423 0.431 0.436 0.439 0.442 0.443 0.444 0.447

0.617 0.627 0.631 0.633 0.634 0.635 0.635 0.636 0.638TNE-Glda 0.554 0.560 0.563 0.565 0.565 0.566 0.566 0.567 0.569
0.619 0.629 0.632 0.634 0.635 0.636 0.636 0.636 0.634TNE-Ghmm 0.552 0.561 0.563 0.565 0.565 0.566 0.567 0.567 0.564
0.625 0.636 0.638 0.641 0.642 0.641 0.642 0.643 0.642TNE-Louvain 0.564 0.572 0.574 0.576 0.577 0.577 0.578 0.579 0.576
0.625 0.635 0.638 0.641 0.641 0.643 0.643 0.644 0.642TNE-BigClam 0.566 0.573 0.576 0.579 0.578 0.580 0.579 0.581 0.579

6.4. Node classification
Experimental setup. In the node classification task, nodes
are associated with labels and the goal is to predict the
correct labels, observing only certain fraction of the net-
work. We split the collection of feature vectors into train-
ing and tests sets, and apply an one-vs-rest logistic regres-
sion classifier with L2 regularization for optimization. In

8



30 50 70 90
Training set ratios (%)

0.54

0.55

0.56

0.57

M
ac

ro
-F

1
Sc

or
e

K = 50
K = 75
K = 100

K = 125
K = 150

K = 175
K = 200

(a) Number of topics on TNE-Glda

30 50 70 90
Training set ratios (%)

0.55

0.56

0.57

0.58

M
ac

ro
-F

1
Sc

or
e

Dt = 16
Dt = 32
Dt = 48

Dt = 64
Dt = 80

Dt = 96
Dt = 112

(b) Topic embedding size of TNE-Louvain

Figure 5: Parameter sensitivity of TNE-Glda and TNE-Louvain models.

order to provide more reliable experimental results, the
same procedure is repeated for 50 times.

Results. The detailed results for the different instances
of TNE framework as well as for the baseline methods
are provided in Tables 2, 3 and 4. Experiments are re-
ported for different ratios of training data (10%-90%). For
each model, the first row corresponds to Micro-F1 scores,
while the second one to Macro-F1 scores.

As we can observe, the TNE-Louvain and TNE-
BigClam models perform quite well, outperforming most
of the baseline methods for almost all different training
ratios over CiteSeer and DBLP datasets. In the case
of the Cora network, TNE-Glda performs better espe-
cially when the train-test split of the dataset is quite bal-
anced. The overall better performance of the two net-
work structure-based instances TNE-Louvain and TNE-
BigClam over random walk-based models (e.g., TNE-
Glda), can possibly be explained by the way that latent
communities are extracted. While with TNE-Glda and
TNE-Ghmm we are able to utilize random walks for both
node and topic representations, it seems that those random
walk are not expressive enough to recover the clustering
structure as effectively as algorithms tailored to this task,
such as BigClam and Louvain. With respect to the base-
line methods, we can observe that NetMF performs well
especially in the case of the Cora network.

6.5. The effect of number of topics and topic embedding
sizes

We have further analyzed the effect of the chosen num-
ber of topics K on the performance of the TNE-Glda
model on the CiteSeer network. As shown in Figure 5a,
the increase in the number of topics makes positive con-
tribution to the classification performance up to a certain
level for TNE-Glda model, reaching its highest F1-score
for K = 150. The chosen number of topics seems to be a
more crucial parameter especially for larger training data
sizes.

The size of the topic embedding vector learned by Eq.
(2) is another factor affecting the performance of TNE.
In this paragraph, we examine the influence of the topic
embedding size on the TNE-Louvain model over Citeseer
network. In the experiment, we have fixed the total em-
bedding length toDn +Dt to 128, and we vary the length
of topic (Dt) and node (Dn) embeddings. As it can be
observed in Figure 5b, for small node embedding sizes,
the scores diminish drastically since topic embeddings
alone do not convey sufficient information to effectively
represent the nodes On the contrary, when we accurately
balance the lengths of topic and node embeddings (for
Dt = 48 in this particular case), the contribution of topic-
enhanced embeddings over purely node embeddings is ev-
ident.
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Table 5: Area Under Curve (AUC) scores for the link prediction task.

Citeseer Cora DBLP AstroPh HepTh Facebook Gnutella

DeepWalk 0.770 0.739 0.919 0.911 0.843 0.980 0.559
Node2Vec 0.780 0.757 0.954 0.969 0.896 0.992 0.605

LINE 0.717 0.686 0.933 0.971 0.854 0.986 0.569
HOPE 0.744 0.712 0.873 0.931 0.836 0.975 0.636

NetMF 0.763 0.794 0.912 0.885 0.869 0.985 0.621
GEMSEC 0.748 0.733 0.920 0.816 0.823 0.473 0.661

M-NMF 0.745 0.726 0.894 0.947 0.864 0.981 0.683

TNE-Glda 0.809 0.775 0.958 0.977 0.903 0.993 0.629
TNE-Ghmm 0.793 0.806 0.959 0.979 0.908 0.993 0.663

TNE-Louvain 0.809 0.780 0.959 0.977 0.905 0.993 0.637
TNE-BigClam 0.792 0.767 0.958 0.977 0.904 0.993 0.631

6.6. Link Prediction

Experimental setup. In the link prediction task, we have
limited access to the edges of the network, and our goal
is to predict the missing (unseen) edges between nodes.
We divide the edge set of a given network into two parts
to form training and test sets, by randomly removing 50%
of the edges (the network remains connected during the
process). The removed edges are later used as positive
samples in the test set. The same number of node pairs
which does not exist in the initial network is chosen to ob-
tain negative samples for each training and test sets. The
node embedding vectors are converted into edge features
by using the Hadamard product. We perform experiments
using the logistic regression classifier with L2 regulariza-
tion.

Results. Table 5 shows the area under curve (AUC)
scores for link prediction. The different instances of TNE
are able to outperform the baselines except Gnutella, and
the TNE-Ghmm model shows the best performance across
multiple datasets.

6.7. Further Empirical Analysis of TNE

Here, we further analyze the behaviour of the various
TNE instances on artificially generated networks, focus-
ing on controlled classification experiments. We gener-
ate random graphs by following a similar approach as
in [2]. In particular, we use the stochastic block model
to construct graphs that consist of three clusters A, B
and C, each one of size 1, 000 nodes. Figure 6 pro-
vides a schematic representation of the process. An intra-
community link is added with probability p, while an edge
between communities A and B is added with probability
q. We use an additional parameter c in order to introduce

A B

C

p

cq cq

p

p

q

Figure 6: Illustration of link sampling in the stochastic block model.

Table 6: Micro-F1 classification accuracy on the stochastic block model,
with 40% training set ratio.

G1 G2 G3

Walk length, L 10 50 100 10 50 100 10 50 100

DeepWalk 0.708 0.721 0.720 0.859 0.856 0.861 0.914 0.931 0.936
TNE-Glda 0.708 0.750 0.759 0.860 0.875 0.876 0.913 0.938 0.944

TNE-Ghmm 0.707 0.752 0.762 0.861 0.877 0.875 0.916 0.938 0.944
TNE-Louvain 0.717 0.769 0.771 0.864 0.882 0.877 0.964 0.964 0.969

TNE-BigClam 0.710 0.749 0.757 0.856 0.873 0.872 0.912 0.933 0.940

asymmetry for inter-community links for the community
pairs A − C and B − C. We have constructed three net-
works (G1,G2,G3) for parameters p = [0.06, 0.065, 0.07],
q = [0.04, 0.035, 0.003] and c = [1.25, 1.429, 1.667], re-
spectively. In our classification experiments, node labels
correspond to community assignments.

Table 6 provides the Micro-F1 scores for different walk
lengths on G1, G2 and G3, with 40% of the datasets used
as training set. We perform uniform random walks fol-
lowing DeepWalk’s strategy, and the instances of TNE
are fed with the same node sequences. As we can ob-
serve, the performance of the models increases depend-
ing on the walk length, since by increasing the number
of center-context node pairs improves the ability of the
models to capture the structural properties of the graph.
Comparing the extreme cases of G1 and G3, the latter
shows more distinguishable community structure. There-
fore, TNE has better performance on G3 since the com-
munity detection algorithms are able to correctly assign
topic-community labels. Among them, TNE-Louvain is
the best performing instance. It detects good modular-
ity communities from the graph structure itself, and thus,
contrary to TNE-Glda and TNE-Ghmm, it does not rely on
the the generated random walk sequences. Furthermore,
it is more successful to find the clusters of the stochas-
tic block model graphs compared to TNE-BigClam, since
BigClam focuses on overlapping communities that do not
appear on these artificially generated graphs.
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7. Conclusions and Future Work

In this paper, we have proposed TNE, a topic-aware
family of models for NRL. TNE takes advantage of the
latent community structure of graphs, leading to the con-
cept of topical node embeddings. We have examined four
instances of the proposed model, that either use random
walks to learn topic representations or rely on well-known
community detection algorithms. TNE is capable of pro-
ducing enriched representations, compared to traditional
random walk-based approaches or matrix factorization-
based models, leading to improved performance results
in the tasks of node classification and link prediction.

As future work, we are interested to extend TNE
towards utilizing the hierarchical community structure
of real-world graphs, learning hierarchical node embed-
dings. Furthermore, we plan to examine the robustness
of the learning representations with respect to changes on
the structure of the graph.

Acknowledgments. We thank the anonymous reviewers
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[8] Çelikkanat, A., Malliaros, F.D., 2019. Kernel node
embeddings, in: GlobalSIP, pp. 1–5.
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