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ABSTRACT

In this paper, we present a general framework to estimate the network entropy that is represented by
means of an undirected graph and subsequently employ this framework for graph classification tasks.
The proposed framework is based on local information functionals which are defined using induced
connected subgraphs of different sizes. These induced subgraphs are termed graphlets. Specifically,
we extract the set of all graphlets of a specific sizes and compute the graph entropy using our proposed
framework. To classify the network into different categories, we construct a feature vector whose
components are obtained by computing entropies of different graphlet sizes. We apply the proposed
framework to two different tasks, namely view-based object recognition and biomedical datasets with
binary outcomes classification. Finally, we report and compare the classification accuracies of the
proposed method and compare against some of the state-of-the-art methods.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The field of graph theory and complex networks has recently
emerged as an important area of science helping researchers of
different disciplines to understand the characteristics of com-
plex systems. One of the reasons of the increasing interest in
complex network science is due to the fact that many complex
systems can be represented in the form of graphs where vertices
represent elements and edges represent interactions between el-
ements. The increasing availability of large amount of data gen-
erated at rapid speeds across a numerous domains has shifted
research efforts toward the generation of very large graphs that
form a representation of such complex systems. Such graphs
are typically termed complex networks. Despite obtaining such
networks from diverse applications, several structural proper-
ties (such as power law degree distribution) are being shared

∗∗Corresponding author:
e-mail: f.aziz@bham.ac.uk (Furqan Aziz)

accross them. The study of complex network allows scientists
to investigate different properties of complex systems. Complex
network has many applications in diverse disciplines, includ-
ing; text analysis (1), computer vision (2), chemoinformatics
(3), biological network analysis (4), and social network analy-
sis (5; 6). Once a system has been represented as a complex net-
work, a number of existing graph-based methods can be used to
understand the complex structure of the underlying system and
cater decisions or improvements.

The complexity of a network is defined as the summary of
the underlying graph structure (7). It can be measured in differ-
ent ways and helps scientists to quantify properties of networks
for example by comparing networks for the identification of
structural similarities (8). The simplest measure for compar-
ing graphs is via using the number of nodes, the number of
edges and the degree distributions. For example, Barabási et
al. (9) have shown that many networks follow a power-law de-
gree distribution, and hence the degree distribution of a network
can be used to distinguish between different networks. Degree
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distribution is easy to compute but it has been proved that it is
not a reliable indicator for network classification. For example,
Estrada (10) has shown that the degree distribution of a network
fails in uniquely quantifying the differences between real-world
networks and has defined the heterogeneity index of a network
to gain further insight in 52 different real-world networks. Es-
colano et al. (11) have proposed another complexity measure,
called the thermodynamic depth complexity of a network, that
is based on the heat flow process defined on a network. The
resultant measure was successfully tested to analyse the struc-
ture of a protein-protein interaction (PPI) networks in terms of
depth.

Among various complexity measures, entropy based meth-
ods have achieved promising accuracy in characterising the
structure of a network. For example, Estrada et al. (12) have
defined the Shannon entropy of a network that is computed
from the eigenvalues of the adjacency matrix of a network
and have analyzed the structure and dynamics of complex net-
works. In (13), the Shannon entropy of a graph is defined
based on walks on the graph and the oriented line graph. The
connection between quantum statistical mechanics and com-
plex networks have motivated Passerini et al. (14) to define the
von Neumann entropy. von Neumann entropy is computed as
S = −

∑n
i=1 λi log λi, where λi is the ith eigenvalue of the nor-

malised Laplacian of the graph. Passerini et al. have concluded
that the von Neumann entropy of a network increases with the
regularity properties of the network. Lin et al. (15) have shown
the applications of von Neumann entropy to compare graphs
that are obtained from images and biomedical datasets. They
have also provided an efficient approximation to von Neumann
entropy that uses degree distribution of a graph. Later, Ye et
al. (16) have extended the use of the von Neumann entropy to
directed graphs.

In (17), Dehmer has proposed a novel approach for estimat-
ing the structural information content (graph entropy) of a net-
work that is represented by an undirected and connected graph.
The method is based on local vertex information functionals
that are derived from topological properties of the graph. These
vertex functionals are then used to assign a probability value
to each vertex of the graph. The resulting probability distri-
bution is then used to obtain the Shannon entropy of the net-
work. In (18), information functional is used to develop a gen-
eral framework to compute graph entropy. The author has de-
fined three types of information functionals fv, fp and fc. fv
which can be obtained by the definition of local information
graph LG(vi, j). fp is based on path centrality, while fc is
based on vertex centrality measures. Cao et al. (19) have de-
fined graph entropies based on independent sets and matching
of graphs. Recently Aziz et al. (20) have presented an infor-
mation functional that is defined using closed random walks
and cycle functionals. They have applied their method to time-
series networks and have shown that the obtained measures is
more accurate in comparing graphs when compared to alternate
information functionals defined in (18). More literature about
network entropy measures can be found in (21).

In this paper, the objective is to construct a novel feature vec-
tor for a graph that can be used for comparing graphs for struc-

tural similarities. The components of the feature vectors are ob-
tained by representing a graph into a transformed space using
its connected induced subgraphs of fixed size, called graphlets.
We next define a novel information functional that is based
on the degree statistics of the graphlet and can be used to ob-
tain a probability distribution over different types of fixed-size
graphlets. The resulting probability distribution is then used to
estimate the graph entropy in the transformed space. Our main
contribution lies with the definition of a general framework that
can be used to estimate network entropy, offering several ad-
vantages over other approaches. Firstly, our definition of in-
formation functional is not only restricted to the vertices of a
graph but can be extended to higher order graphlets. This allows
us to capture the structure of a graph in a transformed space,
where a graph is represented using higher-order graphlets. Sec-
ondly, unlike some other approaches, such as (17; 18), that only
consider subgraphs obtained by considering a node and all its
reachable nodes at a fixed distance, our approach takes into ac-
count all possible types of small size graphlets. This helps in
providing a richer representation of the structure of a graph. Fi-
nally, while most graphlet-based methods for analysing graph
(22) utilises only small-order graphlets, our approach also in-
corporates higher order graphlets. This is possible due to‘’ the
novel definition of the information functional that does not re-
quire us to compare graphlets for isomorphism. We have per-
formed numerous experiments on real-world datasets and have
empirically demonstrated that the proposed framework is more
effective in characterising the structure of a network when com-
pared to some other state-of-the-art methods.

The rest of the paper is organised as follows. In section 2, ba-
sic definitions and explanation of the proposed framework are
given. Dehmer’s framework for computing graph entropy and
the definition of information functionals are also provided. Sec-
tion 3 explains experimental evaluations, where the proposed
framework is applied to spatial graphs and have reported clas-
sification accuracies. These spatial graphs are extracted from
2D images and chemical compounds. Finally in Section 4, the
paper is concluded.

2. Method

The goal of this section is to explain the general framework
proposed in the paper for computing the graph entropy and use
it to construct a feature vector. The basic definitions of the
graph entropy based on the local information functional that is
computed from fixed size graphlets of a graph is given and will
be useful through the paper.

Definition 1. A graph G = (V, E) is a finite non-empty set of
vertices V and a finite set of edges E. Edges are ordered pair of
vertices, i.e. E ⊆ V × V. A directed graph is a graph in which
the edges have no direction. An undirected graph is connected
when there is a path between every pair of vertices. The degree
of a vertex, v ∈ V, in a graph G(V, E) is the number of edges
incident with v. 2

Definition 2. A subgraph S = (VS , ES ) of a graph G is a graph
whose vertex set and edge set is a subset of the vertex set and
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edge set of G, i.e., VS ⊆ V and ES ⊆ E. If the subgraph S has
the property that whenever two vertices of S are joined by an
edge in G they are also joined by an edge in S , then S is called
an induced subgraph of G. 2

Definition 3 (Shannon (23)). The Shannon entropy of a vari-
able X is defined as:

I(X) = −
∑

x

P(x)log(P(x)) (1)

where P(x) is the probability that X is in the state x. 2

2.1. Graph Entropy and Information Functionals
Based on Shannon’s definition of entropy, Dehmer et al. (17)

have proposed a general framework for defining the graph en-
tropy. Their framework is based on local information functional
that captures the local neighbourhood structure of vertices of a
graph. They have defined the concept of j-sphere as.

Definition 4 (Dehmer (17)). Let G be a graph. The set

S j(vi,G) := {v ∈ V |d(vi, v) = j, j ≥ 1}, (2)

is called the j-sphere of vi regarding G. 2

Based on the definition of j-sphere, the local information
functional is defined as follows:

Definition 5 (Dehmer (17)). Let G be an undirected simple
graph. For a vertex vi ∈ V, its local information functional
is defined as

f (vi) = αc1 |S 1(vi,G)|+c2 |S 2(vi,G)|+···+cρ |S ρ1(vi,G)|, ck > 0, 1 ≤ k ≤ ρ, α > 0.
(3)

The ck are arbitrary, real positive coefficients. 2

The definition of local information functional allows us to
associate a probability distribution to the vertices of a graph.

Definition 6 (Dehmer (17)). Let G be a simple unlabelled
graph. For a vertex vi ∈ V, its probability is defined as

p(vi) =
f (vi)∑|V |

j=1 f (v j)
, (4)

where f represents an information functional. Since p(v1) +

p(v2) + p(v3) + · · · + p(vn) = 1, p represents a valid probability
distribution. 2

Once a valid probability of vertex set is obtained, Dehmer et
al. (17) have used Shannon entropy to characterise the structure
of a graph.

Definition 7 (Dehmer (17)). Given a graph G = (V, E), its en-
tropy is defined as

I f (G) := −
|V |∑
i=1

f (vi)∑|V |
j=1 f (v j)

log

 f (vi)∑|V |
j=1 f (v j)

 , (5)

where f (vi) is an arbitrary local vertex information functional.
2

Inspired by Dehmer’s work, we have developed a novel
framework to compute the graph entropy. Instead of defining
information functional for a single vertex, here we introduce
the idea of defining local information functional for a subset of
vertices of a graph. We commence by defining the probability
of a fixed size subset of vertices Vk ⊆ V .

Definition 8. Let G be a simple unlabelled graph. Let Vk be a
subset of V with size k, i.e., Vk ⊆ V and

∣∣∣Vk
∣∣∣ = k. For a fixed

value of k, we define:

p(Vk) =
f (Vk)∑

Uk⊆V f (Uk)
, (6)

where f represents a graphlet information functional defined
for a subset of vertices of V (See Definition 10). Here Uk also
represents a subset of V with size k and the sum is taken over
all possible subsets of size k. 2

Fixing the value of k allows us to define the graph entropy
for different types of graphlets. It is important to mention here
that Equation 5 also allows us to define the graph entropy based
on subgraphs by using local vertex functional. However, it only
considers those subgraphs that are obtained by taking a vertex
v and considering all vertices that are at a fixed distance from
v. So, for example, if a vertex v has four neighbours, the local
vertex functional will only consider subgraphs with five nodes
and will ignore all the other subgraphs of smaller size. Our
definition, on the other hand, allows us to define graph entropy
based on all possible types of subgraphs. Once the value of k is
fixed and an information functional is defined, we obtained the
following definition of the entropy of a graph:

Definition 9. Let G = (V, E) be a graph and f be an informa-
tion functional. We define the entropy of the graph G by

Ik
f (G) = −

∑
Vk⊆V

f (Vk)∑
Uk⊆V f (Uk)

log
(

f (Vk)∑
Uk⊆V f (Uk)

)
, (7)

where Vk is a subset of vertices V of G with size k. 2

Note that when k = 1, Equation 7 reduces to Equation 5. In
other words, our definition of entropy can be considered as a
generalised definition. It is also important to note that when we
define k=2, and use the connectivity constraint, we obtain the
edge entropy of the graph. Here f (vi, v j) can be considered as
local edge information functional. Therefore, in order to define
the entropy of a graph for a specific value of k, we need to define
the information functional that accepts k vertices of a graph as
an input argument.

In this paper our objective is to define graph entropy for dif-
ferent values of k, and use the resulting values as components
of a feature vector that can be used to characterise graph in
a low-dimensional feature space. Here we define information
functional using induced subgraphs of a graph, which are also
called graphlets. Using graphlets for characterising graph is
a well studied problem in the field of network analysis (24).
Graphlet-based methods are generally based on counting the
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frequencies of isomorphic graphlets and then using the resul-
tant frequencies to embed the graph in a low-dimensional fea-
ture space. Figure 1 shows all possible graphlets of size 3, 4
and 5.

Fig. 1: Set of all possible graphlet of size 3, 4 and 5 (25).

The frequency of small order graphlets can generally be effi-
ciently computed, however, computing the frequency of higher-
order graphlets is a hard problem. Therefore, most of these
methods use the frequencies of first few graphlets. There are
2 graphlets of size 3, 6 of size 4 and 21 of size 5. Note that
graphlet of size 1 is simply a node while a graphlet of size 2 is
an edge. We now define information functional for a graphlet.

Definition 10. Let gk
i represent the ith graphlet of size k. For

this graphlet, we define the information functional as:

f (gk
i ) = e

−

(
1

di
1+1

+ 1
di
2+1

+ 1
di
3+1
··· 1

di
k+1

)
, (8)

where di
1, d

i
2, ..., d

i
k is the degree sequence of the graphlet gk

i . 2

The general idea behind computing the information func-
tional, f (Vk), for a given graphlet gk

i , is that we consider the
set all possible subset of a graph G, with size k, and discard
those that are not fully connected. In other words, we find the
set of all possible connected subgraphs G, which is the set of all
possible graphlets of size k. For each graphlet, we compute its
information functional using its degree statistics, according to
Definition 10. Finally, using Equation 7, the graph entropy for
a fixed value of k is computed. Unfortunately, finding the set
of graphlets for all possible values of k is computationally in-
feasible. For this reason, we only consider those values of k for
which we can efficiently find the set of all graphlets. In experi-
mental evaluation, we set the value of k = 1, 2, 3, 4, 5, |V |−1, |V |.
Using Equation 7 and Equation 8, we compute the value of
Ik

f (G) for a fixed value of k.

Ik
f (G) = −

∑
Vk

G⊆VG

f (Vk
G)∑

Uk
G⊆VG

f (Uk
G)

log

 f (Vk
G)∑

Uk
G⊆VG

f (Uk
G)

 ,
= −

∑
gk

i ∈g
k

f (gk
i )∑

gk
j∈g

k f (gk
j)

log

 f (gk
i )∑

gk
j∈g

k f (gk
j)

 ,
(9)

where gk represents the set of all connected graphlets of size
k that are present in G. Note that the above equation can be

further simplified, if the frequency of each graphlet is known.
Let

∣∣∣gk
i

∣∣∣ be the frequency of the graphlet gk
i in G. Then the above

equation can be expressed as:

Ik
f (G) = −

T∑
i=1

∣∣∣gk
i

∣∣∣ f (gk
i )∑T

j=1

∣∣∣∣gk
j

∣∣∣∣ f (gk
j)

log

 f (gk
i )∑T

j=1

∣∣∣∣gk
j

∣∣∣∣ f (gk
j)

 , (10)

where T is the frequency of different types of graphlets of size
k. We now compute the value of Ik

f (G), for k = 1, 2, 3. For
k = 1, there is only one graphlet of size 1, i.e., a single node of
a graph. For this graphlet f (g1

1) = e−1. Therefore

I1
f (G) = −

∑
vi∈VG

f (vi)∑
v j∈VG f (v j)

log
(

f (vi)∑
v j∈VG f (v j)

)
,

= −
∑

vi∈VG

e−1∑
v j∈VG e−1 log

e−1∑
v j∈VG e−1 ,

= log |VG |.

(11)

Similarly, for k = 2, there is also only one graphlet of size 2,
which is a single edge of a graph in this case. For this graphlet
f (g2

1) = e−1. Therefore,

I2
f (G) = −

∑
ei∈EG

f (ei)∑
e j∈EG f (e j)

log
(

f (ei)∑
e j∈EG f (e j)

)
,

= −
∑

ei∈EG

e−1∑
e j∈EG e−1 log

e−1∑
e j∈EG e−1 ,

= log |EG |.

(12)

For k = 3, there are two types of connected graphlets, i.e.,
a line and a triangle as shown in Figure 1. Let g3

1 and g3
2 be

the line and triangle graphlets respectively. Since the degree
distributions of g3

1 is 〈1, 1, 2〉 and that of g3
2 is 〈2, 2, 2〉, therefore

f (g3
1) = e−

4
3 and f (g3

2) = e−1. Thus the entropy I3
f (G) can be

computed as follows:

I3
f (G) = −

∣∣∣g3
1

∣∣∣ e− 4
3∣∣∣g3

1

∣∣∣ e− 4
3 +

∣∣∣g3
2

∣∣∣ e−1
log

 e−
4
3∣∣∣g3

1

∣∣∣ e− 4
3 +

∣∣∣g3
2

∣∣∣ e−1

 ,
−

∣∣∣g3
2

∣∣∣ e−1∣∣∣g3
1

∣∣∣ e− 4
3 +

∣∣∣g3
2

∣∣∣ e−1
log

 e−1∣∣∣g3
1

∣∣∣ e− 4
3 +

∣∣∣g3
2

∣∣∣ e−1

 ,
= −

∣∣∣g3
1

∣∣∣∣∣∣g3
1

∣∣∣ +
∣∣∣g3

2

∣∣∣ e 1
3

log

 1∣∣∣g3
1

∣∣∣ +
∣∣∣g3

2

∣∣∣ e 1
3


−

∣∣∣g3
2

∣∣∣ e 1
3∣∣∣g3

1

∣∣∣ +
∣∣∣g3

2

∣∣∣ e 1
3

log

 e
1
3∣∣∣g3

1

∣∣∣ +
∣∣∣g3

2

∣∣∣ e 1
3

 ,
=

(∣∣∣g3
1

∣∣∣ +
∣∣∣g3

2

∣∣∣ e 1
3

)−1[
(
∣∣∣g3

1

∣∣∣ +
∣∣∣g3

2

∣∣∣ e 1
3 ) log

(∣∣∣g3
1

∣∣∣ +
∣∣∣g3

2

∣∣∣ e 1
3

)
−

1
3

∣∣∣g3
2

∣∣∣ e] .

(13)
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2.2. Feature Vector Construction
In order to embed the graph into a low-dimensional feature

space, a feature vector is constructed whose components rep-
resent the the graph entropies. The main objective is to obtain
a powerful and invariant graph representation that can also be
computed efficiently. Such representation can be used to clas-
sify graphs with higher accuracy. A feature vector of length
n is proposed as ~vG = [I1

f (G), I2
f (G), I3

f (G), ..., In
f (G)]. In other

words, the kth component of the feature vector ~vG is obtained by
computing the entropy Ik

f (G). However, since the computation
of all Ik

f (G) for all values of k is generally not practical, only a
subset of values that could be efficiently computed for a given
graph are selected. Finally, a normalisation step is performed,
where the feature vector is normalised by dividing the compo-
nents of the feature vector by the sum of all the components of
the feature vector. This step is usually performed in literature
in order to make the feature vector invariant of the size of the
graph (26).

In experimental evaluation a feature vector

~vG = [I1
f (G), I2

f (G), I3
f (G), I4

f (G), I5
f (G), I |V |−2

f (G), I |V |−1
f (G)]

is constructed 1. The reason for considering the first five com-
ponents is the low computational cost. As mentioned earlier,
the graphlets of sizes up to 5 can be computed very efficiently.
These small graphlets will capture the local structure of a graph.
Note that the alternate graphlet based method also consider
small order graphlets due to computation cost.

To compute I |V |−1
f (G), a single vertex of G is removed. If the

resulting graph is connected, then the value of the information
functional using its degree distribution is computed. This pro-
cess is repeated for all the vertices of the graph. Finally these
values are substituted in Equation 9 to obtain graph entropy.

To demonstrate this process, consider the graph shown in
Figure 2. Let g j

U represents a graphlet of G with size j, that
includes all the nodes of G except nodes in the set U, where
U ⊆ V . To compute the value of f (g5

v1
), the node v1 is re-

moved from the graph. The resultant connected graph with 4
vertices and 5 edges has degree sequence 2, 2, 3, 3, 4. Therefore
f (g5

v1
) = e−

41
30 . It is worth mentioning here that the entropy for

graphlets of size |V |−1 can be computed very efficiently. This is
because the total number of graphlets of size |V |−1 are bounded
by O(|V |). Computing information functional for each graphlet
requires O(|V |2) time, as this operation requires computing the
degree of each vertex of the graphlet. Therefore the worst case
running time for computing entropy in this case is bounded by
O(|V |3). The value of I |V |−2

f (G) can be computed in a similar

way. In this case a maximum of
(
|V |
2

)
=
|V |(|V |−1)

2 = O(|V |2) con-
nected graphlets of size |V | − 2 are computed. Therefore the
running time of computing entropy in this case is bounded by
O(|V |4). Note that, graphs of size greater than five are consid-
ered. For a graph of size five, set of all of its graphlets can be
efficiently computed.

The reason for including the last two components is to ob-
tain a richer representation of the graph that is less prone to the

1Code to compute ~vG is available at https://github.com/azizfurqan/GE

(a)

f (g5
v1

) = e−
41
30 , f (g5

v6
) = e−

41
30 , f (g5

v2
) = e−

19
12 , f (g5

v5
) = e−

19
12

f (g5
v3

) = e−
7
4 , f (g5

v4
) = e−

7
4

Fig. 2: Information functional for a simple graph G with 6 vertices and 9 edges.
Here g j

U represents a connected subgraph of G of size j, that includes all the
nodes of G except nodes in U, where U ⊆ V .

problem of failing to distinguish pair of non-isomorphic graphs
that have same frequency of lower-order graphlets. This is il-
lustrated with the help of a simple example. Consider the pair
of graphs, G1 and G2, shown in Figure 3.

(a) G1 (b) G2

Fig. 3: Pair of non-isomorphic graphs

Clearly, the graphs G1 and G2 are non-isomorphic, since
the unique vertex of degree 5 in G1 is adjacent to a vertex
of degree 2 which is not the case for G2. Both the graphs
G1 and G2 share the same number of vertices, edges, unique
graphlets of size 3, and unique graphlets of size 4. How-
ever, the frequency of unique graphlets of size greater than
4 is different. Therefore, graphlet kernel, when used with
graphlets of size up to 4 will fail to distinguish the two
non-isomorphic graphs shown in Figure 3. On the other hand,
the proposed method will produce the feature vectors ~vG1 =

[3.0000, 3.7004, 4.3745, 4.8794, 4.5480, 4.4924, 2.9834] and
~vG2 = [3.0000, 3.7004, 4.3745, 4.8794, 4.5278, 4.4931, 2.9835]
for graph G1 and G2 respectively. Note that the higher-order
components of~vG1 and~vG2 are different which means that inclu-
sion of higher-order graphlets can increase the discriminative
power of graph representation.

It is worth noting that most of the graphlet based methods
are based on counting the frequency of isomorphic graphlets.
This requires the testing of which pair of graphlets are iso-
morphic. This problem is one of few standard problems in
computational complexity theory that belongs to NP, but not
known to belong to either P or NP-Complete. While testing
of isomorphism property for small graphlets is computation-
ally feasible, but becomes computationally expensive for large
graphlets. For this reason, graphlet based methods generally
utilise graphlets of small sizes. One of the advantages of the
proposed feature vector is that its components can be computed
using Equation 9, which does not require to compute the fre-
quencies of each graphlet. So, although the set of all graphlets
of size k are to be searched, there is no need to find the fre-
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quencies of each graphlet which requires to test graphlets for
isomorphism (a problem known to be NP-complete). This al-
lows the computation of entropy for high order graphlets. In the
experiment section a feature vector is constructed that utilises
both low-order and high-order graphlets to obtain a richer graph
representation.

3. Experiments

In this section the proposed method is applied to spatial
graphs that are extracted from two different types of datasets.
The first type of graphs are extracted from images while the sec-
ond type of graphs are extracted from biomedical datasets. To
evaluate the performance of the proposed method, the follow-
ing state-of-the-art methods are used for comparison, i.e., Ihara
Coefficients (27), Random Walk Kernel (28), Graphlet Kernel
(GK) (22), Shortest Path Kernel (SPK) (29), ShapeDNA (30)
and Von Neumann Entropy (14).

To compare the classification accuracies of the proposed and
the alternate methods, r-fold cross-validation is used. In r-fold
cross validation the original data is partitioned into r subsam-
ples of equal size. In these r subsamples a single subsample is
retained as the validation set for testing the model, while the re-
maining r− 1 subsamples are used as the training set. This pro-
cess of cross-validation is then repeated r times. For our exper-
iments, r = 10 repeats, widely applied in similar experiments,
were applied. The classification accuracies are estimated us-
ing a Support Vector Machine (SVM) with a standard Gaussian
kernel. SVM is a discriminative classifier that, given labeled
training data, outputs an optimal hyperplane which is used to
categorise new examples.

3.1. View based object recognition

In this section experiments are performed on simple unla-
belled graphs that are extracted from images available within
the Columbia Object Image Library (COIL) (31). COIL con-
sists of 20 different object each with 72 different views. These
views are taken under controlled environment and lightning
conditions. To extract an unlabelled graph from each view, the
feature points of the image are located using the Harris corner
detector (32). These feature points are then treated as vertices
of the graph and a Delaunay Triangulation (33) is obtained to
get the edges. A Delaunay triangulation (DT) for a set P of
points in a Euclidean space is a triangulation, DT(P), such that
no point in P is inside the circumcircle of any triangle in DT(P).
DT are md2 graphs (md2 graphs are those graphs whose nodes
have degree at least two). In the experiments only five different
objects are used with all their views. These objects are shown
in Figure 4.

Fig. 4: Objects from COIL used in the experiments.

For each graph a normalised feature vector is computed as,
~vG = [I1

f (G), I2
f (G), I3

f (G), I4
f (G), I5

f (G), I |V |−2
f (G), I |V |−1

f (G)]. To
visualise the multi-dimensional data to 3D, the dimensional-
ity reduction technique, principal component analysis (PCA)
is applied on the resulting feature vectors. PCA is mathemat-
ically defined (34) as an orthogonal linear transformation that
transforms the data to a new coordinate system such that the
greatest variance by any projection of the data comes to lie on
the first coordinate (called the first principal component), the
second greatest variance on the second coordinate, and so on.
Figure 5a shows the embedding results in a three-dimensional
feature space.
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(c) Graphlet Kernel

Fig. 5: PCA embedding for Delaunay Triangulations for the proposed and al-
ternate methods

To compare the performance of the proposed method, a simi-
lar procedure to Ihara coefficients, which are considered a pow-
erful tool in characterising md2 graphs (35), is applied. A fea-
ture vector similar to one proposed by Ren et al. (27) is used.
The visualisation results for Ihara coefficients are shown in Fig-
ure 5b. Finally for comparison purposes, the visualisation re-
sults of a graphlet kernel are also shown in Figure 5c. These
visualisation results suggest that, the proposed method not only
provides a better separation between objects of different classes,
but it also provides low interclass variation as compared to al-
ternate techniques. To evaluate the performance of the proposed
method, its accuracy is estimated using support vector machine
with a standard Gaussian kernel and have validated the result
of Support Vector Machine (SVM using 10-fold cross valida-
tion. A detailed comparison of the resultant average accuracies
is provided in Table 1

Table 1: Classification accuracies for Delaunay Triangulations

Methods Accuracy
Proposed 97.78 ± 0.02
Ihara Coefficients 94.17 ± 1.03
Graphlet kernel 86.94 ± 0.04

These results demonstrate the effectiveness of the proposed
method in distinguishing between graphs. Note that the accu-
racy of the proposed method is considerably higher than that
of a Graphlet kernel which suggests that by considering higher
order graphlets the classification accuracy can be significantly
improved. The classification accuracy of the proposed method
is also higher than that of Ihara coefficients which is generally
considered a very powerful tool in classifying Delaunay trian-
gulations (27; 35).
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Table 2: Classification accuracies of different methods on bioinformatics datasets

Datasets Proposed Lower order Graphlet Random Walk Shortest Path ShapeDNA VNE
MUTAG 88.33 ± 2.18 85.15 ± 2.03 85.06 ± 2.76 85.64 ± 1.93 86.05 ± 2.14 86.50 ± 2.22 85.01 ± 2.69
AIDS 99.15 ± 0.20 97.00 ± 0.35 96.45 ± 0.46 90.55 ± 2.01 99.50 ± 0.01 92.65 ± 0.55 85.64 ± 2.22
NCI1 70.02 ± 0.69 65.84 ± 0.7242 68.74 ± 0.63 63.92 ± 0.65 69.68 ± 0.55 68.35 ± 0.60 60.26 ± 0.36
NCI109 70.90 ± 0.95 68.57 ± 0.8254 69.74 ± 0.53 62.22 ± 0.73 68.74 ± 0.58 67.92 ± 0.58 59.58 ± 0.69
PTC-MR 63.08 ± 2.00 58.75 ± 1.85 59.77 ± 1.68 58.38 ± 2.38 58.53 ± 2.75 57.59 ± 1.95 58.20 ± 2.36
PTC-MM 65.51 ± 2.13 63.43 ± 1.42 65.48 ± 1.62 62.86 ± 3.04 63.76 ± 2.51 65.48 ± 1.67 62.82 ± 1.90
PTC-FR 68.97 ± 1.77 65.83 ± 1.22 68.57 ± 1.04 66.95 ± 1.96 66.39 ± 1.73 67.25 ± 1.11 62.98 ± 2.22
PTC-FM 63.34 ± 1.30 57.29 ± 1.57 59.17 ± 2.60 59.89 ± 1.63 60.73 ± 1.39 60.72 ± 1.96 58.75 ± 2.12
COX2 78.59 ± 0.83 79.03 ± 1.27 78.16 ± 1.03 77.10 ± 0.69 78.58 ± 0.71 78.17 ± 0.66 78.16 ± 0.03

3.2. Biomedical Datasets:

In our last set of experiment, we apply the proposed method
on biomedical datasets. For this purpose we have chosen pub-
licly available datasets, including MUTAG (36), AIDS (37),
NCI1 and NCI109 (38), PTC (39) and COX2 (40). We note
here that the graphs in these datasets are undirected labelled
graphs, whose vertices are labelled with the atom names and
whose edges are labelled with the bond type between the atoms.
Since, our method is developed for unlabelled graphs, we have
converted all the graphs into unlabelled graphs by ignoring the
graph nodes and edge labels. The same unlabelled datasets
were used when the performance of the other state-of-the-art
methods was assessed.

In order to evaluate the performance of the proposed method,
we apply it on graphs obtained from publicly available datasets.
This results in embedding the graph in a 7-dimensional feature
space. To estimate the classification accuracies, we have used
support vector machine with standard Gaussian kernel. As with
the COIL dataset, the results of support vector machines were
validated using a 10-fold cross validation. To compare the per-
formance of the proposed method, we have applied a similar
procedure to estimate the average accuracies of other state-of-
the-art methods discussed earlier. Note that we have not consid-
ered the Ihara coefficients in comparison, as Ihara coefficients
may fail in characterising graphs that may have vertices with
degree one (35). Table 2 compares the resulting accuracies of
the proposed and alternate methods. The gray cells in the table
indicate the best performance, while the light gray cells corre-
spond to the second best performance. In order to demonstrate
the importance of higher order graphlets, we have also com-
puted the accuracies of the proposed feature vector that was
constructed using graphlets of size up to five. These accuracies
are reported in the second column of the table.

The classification accuracies reported in Table 2 suggest
that the proposed method can be used to classify graphs with
higher accuracies when compared to other state of the art meth-
ods. Our proposed method has outperformed all other assessed
methods across all the datasets bar the AIDS and COX2 ones,
where the proposed method resulted in the second best perfor-
mance. It is important to note that, in all cases, the proposed
method always results in superior performance when compared
to a graphlet kernel. In most cases, the difference between clas-
sification accuracies is significant. Finally, the second column
of the table shows that the classification accuracies are signif-

icantly reduced if the higher order components of the feature
vectors are ignored. This suggest that the inclusion of higher-
order graphlets in our framework has significantly increased the
performance of the classifier.

4. Conclusion

The paper presented a novel technique for estimating the en-
tropy of a complex network and has explored its applications in
understanding the structure of complex networks. The frame-
work is based on the assumption that the complex network is
represented by an undirected and unlabelled graph. The pro-
posed framework is based on the information functional, which
can be defined for any size graphlets. The advantages of esti-
mating entropies at different levels is that it enables the graph
to be embedded in a lower dimension feature space, where tra-
ditional machine learning algorithms can be used to compare
graphs for similarities (or dissimilarities). To demonstrate the
applications of the proposed framework, the approach is applied
to networks extracted from images and biomedical datasets.
The experimental results show that the proposed method can
classify graphs with higher accuracy compared to some cur-
rent state-of-the-art techniques. Potential future research on this
work could include the exploration of whether the definition of
other information functionals can be used to classify networks
with higher accuracy. It would also be interesting to extend
the framework to labelled and/or weighted graphs as well as
other general data structures, such as directed graphs and hy-
pergraphs.
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[3] B. Gaüzère, L. Brun, D. Villemin, Two new graphs kernels in chemoin-
formatics, Pattern Recognition Letters 33 (15) (2012) 2038 – 2047.

[4] F. Aziz, A. Acharjee, J. A. Williams, D. Russ, L. Bravo-Merodio, G. V.
Gkoutos, Biomarker prioritisation and power estimation using ensemble
gene regulatory network inference, International Journal of Molecular
Sciences 21 (21) (2020) 7886.
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