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a b s t r a c t 

The significant amount of training data required for training Convolutional Neural Networks has become 

a bottleneck for applications like semantic segmentation. Few-shot semantic segmentation algorithms ad- 

dress this problem, with an aim to achieve good performance in the low-data regime, with few annotated 

training images. Recent approaches based on class-prototypes computed from available training data have 

achieved immense success for this task. In this work, we propose a novel meta-learning framework, Se- 

mantic Meta-Learning (SML), which incorporates class level semantic descriptions in the generated pro- 

totypes for this problem. In addition, we propose to use the well-established technique, ridge regression, 

to not only bring in the class-level semantic information, but also to effectively utilise the information 

available from multiple images present in the training data for prototype computation. This has a simple 

closed-form solution, and thus can be implemented easily and efficiently. Extensive experiments on the 

benchmark PASCAL-5i dataset under different experimental settings demonstrate the effectiveness of the 

proposed framework. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Image segmentation is one of the fundamental problems in 

he field of computer vision. Traditional supervised segmentation 

ethods [1–3] give impressive results when large amounts of an- 

otated data are available. However, this requirement of labeled 

raining data for segmentation task is quite difficult, since annotat- 

ng each and every pixel for huge amount of image data is highly 

xpensive and cumbersome. On the other hand, humans can iden- 

ify any novel concept very easily even with very few examples 

f the same. Few-shot semantic segmentation [4–6] addresses this 

roblem, by working in the very low data regime, utilizing few an- 

otated images from each class. 

Meta-learning or learning-to-learn approaches have achieved 

ery good performance for the problem of few shot learning [7,8] , 

nd also for the segmentation application [5,9–11] . Training meta- 

earning algorithms constitute two stages of learning: (1) base- 

earner, which learns to predict an individual task at the episode 

evel and (2) meta-learner, which learns to generalize by learn- 

ng across a large number of training tasks/episodes. Significant 

mount of research has been done along these lines, but recently, 

he approaches based on computing class representatives or class 

rototypes have been very successful [4,12] . 
� Handle by Associate Editor Jie Zou. 
∗ Corresponding author. 
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In this work, we propose a novel meta-learning framework, 

ermed as Semantic Meta-Learning or SML , to address the few- 

hot semantic segmentation task by utilizing class-specific seman- 

ic information. The proposed SML approach is based on com- 

uting the prototypes corresponding to each class in the training 

ata. But, in contrast to other prototype-based meta-learning ap- 

roaches in literature [4,9] , SML does not compute the class pro- 

otypes as the average representation of all the visual feature em- 

eddings. Instead, they are learnt by incorporating the semantic 

nowledge of the particular class (obtained automatically from the 

lass names) into the visual information obtained from the images 

y the base-learner. In addition, we propose to utilise the visual 

eature embeddings obtained from multiple training images of the 

ame class individually while computing the class prototypes, in- 

tead of averaging them. Both these steps effectively bring the vi- 

ual embeddings of the same class images closer to one another, 

nd also maintain semantically meaningful intra-class distances 

etween the class prototypes, even when few training images per 

lass are available. Inspired by the seminal work in Bertinetto et al. 

13] , these objectives are achieved through learning a linear func- 

ion between the visual feature embeddings and the semantic in- 

ormation or attributes using standard ridge regression method. 

hus, in the proposed SML framework, this linear function has a 

losed-form solution to compute the prototypes, which makes the 

omputation very efficient. Extensive experiments on the bench- 

ark PASCAL-5i dataset with different experimental settings show 

hat the proposed SML framework is effective for few-shot seman- 

ic segmentation task. SML also performs favorably with respect to 

https://doi.org/10.1016/j.patrec.2021.03.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.03.036&domain=pdf
mailto:somabiswas@iisc.ac.in
https://doi.org/10.1016/j.patrec.2021.03.036
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he state-of-the-art, even for weaker annotations. Thus, the contri- 

utions of this work are as follows: 

(1) We propose a novel end-to-end meta-learing framework, 

SML, which can effectively integrate the attribute informa- 

tion and the visual feature embeddings in the meta-learner 

to generalize to new classes during testing. 

(2) SML also utilises multiple images in the training data more 

effectively for computing better class-prototypes. 

(3) Extensive evaluation on the PASCAL-5i dataset shows that 

the proposed SML framework performs better or compara- 

ble to the state-of-the-art. 

. Related work 

Few-shot learning is a very active area of research in the field 

f computer vision, and several approaches have been proposed. 

n this section, we give pointers to the relevant meta-learning 

ased approaches in literature which addresses few-shot classifi- 

ation and semantic segmentation. 

.1. Few-shot learning 

Meta-learning based few-shot learning approaches can be 

roadly divided into (a) metric learning based approaches like [7,8] , 

b) optimization based approaches like [13–15] , etc. The goal of 

hese approaches is to leverage the support set images to learn to 

lassify the images in the query set. Matching network [7] learns 

sing soft weighted nearest neighbour scores obtained from the 

upport images. In prototypical network [8] , support class means 

re evaluated as the class-prototypes and the classification is per- 

ormed on the query examples using Euclidean distance measure. 

elation network [16] learns to find relations between small num- 

er of images at each episode, which contains both support and 

uery images. Recently, in differentiable solver [13] , the network 

s learned using ridge regression. Though the proposed method is 

nspired from [13] , we propose to additionally fuse the semantic 

nformation of the classes for the goal of few-shot semantic seg- 

entation. 

.2. Few-shot segmentation 

Some of the older approaches in the literature for few-shot seg- 

entation follow the strategy in Vinyals et al. [7] to learn the net- 

ork parameters from the support images and perform pixel wise 

lassification task on the query images. Co-FCN ( [10] ) learns to seg- 

ent the query images by fusing feature information of support 

mages. A metric learning based prototype learning is used in Dong 

nd Xing [9] for few-shot segmentation. Weight imprinting mecha- 

ism of new classes using adaptive masked proxies is used in Siam 

nd Oreshkin [6] . CANet [5] uses iterative optimization solution 

nd MetaSegNet [12] uses a differentiable optimization solver for 

he segmentation task. Recently, prototypical network [8] for few- 

hot classification is adapted in Wang et al. [4] , Dong and Xing 

9] to perform the segmentation task. PANet [4] uses masked aver- 

ge pooling to obtain the prototypes, and also proposes a reverse 

lignment regularizer to learn the prototypes using a swapped- 

etting of support and query images. PPNet [17] and PMM [18] use 

ultiple class prototypes with unlabelled data for the segmenta- 

ion task. 

Our method is inspired from [4] to obtain better class proto- 

ypes by incorporating the semantic class-descriptions (using the 

lass names), into the base-learners to learn the segmentation task. 

n essence, the base-learner exploits both visual information and 

emantic/attribute knowledge to obtain better prototypes and also 

o efficiently cluster the features of images of the same class. 
94 
. Problem definition 

Here, we discuss the proposed SML framework for the task 

f few-shot semantic segmentation. First, we describe the nota- 

ions and problem statement. Let the training data be denoted as 

 base = { I , M } , where, M represents the ground truth mask corre-

ponding to the input image I . Let C base be the set of base classes

or which the annotated data is available. During testing, the goal 

s to segment images from a set of novel classes C nov el , given only

ew images from each class. Let the number of images available 

er class during testing be denoted by K, and K is usually less than 

r equal to 5. The testing classes do not overlap with the training 

nes, i.e. C base ∩ C nov el = φ. 

To address this task, a meta-learning based approach is 

dopted, where we attempt to imitate the testing scenario as 

losely as possible during training. The entire training process is 

plit into sub-tasks or episodes, referred to as episode-based train- 

ng [7,8] . Each task or episode E = (S, Q ) consists of a support set

and a query set Q . To emulate the testing scenario, each episode 

s constructed to be a C-way, K-shot segmentation task, i.e., given 

 support set of K images and their ground truth masks from each 

f C classes, the goal is to segment the images in the query set 

ontaining objects from one of these C classes. Thus, S contains 

andomly selected C classes from the set C base with K images from 

ach class, i.e., S = 

⋃ C 
c=1 { I s i,c , M 

s 
i,c 

} K 
i =1 

. Similarly, the query set Q =
 I 
q 
j 
, M 

q 
j 
} N q 

j=1 
contains N q number of query images from the classes

resent in its support set. The set of images in the support and 

uery sets in every episode are strictly non-overlapping. The net- 

ork is trained by sampling several episodes in a meta-learning 

ashion. 

In this work, segmentation is performed by computing seman- 

ically meaningful prototypes for each class. Given the class names 

resent in the support (or query) set, any existing pre-trained 

anguage model, such as FastText [19] or Word2Vec [20] can be 

tilised to obtain the semantic or attribute vectors automatically 

orresponding to those object classes. Let a c ∈ R 

d a denote the at- 

ribute vector corresponding to the c th class. All image pixels in 

he support and query set which belong to the c th class will have 

he same semantic representation. Note that, this information can 

e easily obtained given just the class names in D base , and does 

ot require any additional information. Attributes are widely used 

n applications like ZSL [21,22] , but it has been relatively less ex- 

lored for few-shot learning. 

.1. Main idea of SML framework 

An illustration of the SML framework for few-shot segmentation 

s shown in Fig. 1 . The proposed framework is learnt in a meta-

earning fashion consisting of several episodes, and Fig. 1 illustrates 

he base learner for 1-way, 2-shot segmentation scenario. It has 

wo main modules: (1) feature-extractor module and (2) attribute- 

njector module. For each episode, given the support images, their 

isual features are extracted using the feature extractor network. 

heir masks are used to obtain the foreground and background re- 

ions, which are in turn used to compute the average foreground 

 φcow 

) and background ( φbg ) feature embeddings for each support 

mage by average mask pooling. The class names in the support set 

s used by the attribute injector module to incorporate the seman- 

ic information into the base learner. Specifically, this is achieved 

y using a linear function ( h W 

) to effectively combine the infor- 

ation from the attribute vectors and the visual features, towards 

he goal to obtain better class prototypes ( h W 

(. ) ). These final pro-

otypes of the class ( h W 

(a cow 

) ) and the background ( h W 

(a bg ) ) are

sed to perform segmentation on the images in the query set. 

he loss computed between the query prediction and its ground 
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Fig. 1. Illustration of the proposed Semantic Meta-Learning (SML) framework for few-shot semantic segmentation. This illustration is for a single episode for 1-way 2-shot 

segmentation task. The base-learner learns the class-prototypes by integrating the visual information from the images (using average-masked features φ) and attribute 

information a , which is accomplished using a linear function h W . These class-prototypes are used to obtain the final prediction for the query set. 
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ruth mask is used to update the base-learner, which constitute 

he feature extractor and the linear function h W 

. The meta-learner 

s learnt over several training episodes to generalize to segment 

ovel classes with few examples per class. 

The main difference between the proposed SML framework 

nd other prototype-based few-shot segmentation approaches 

ike [4,9] , etc. is the use of attribute information. We feel that se- 

antic information is extremely beneficial, specially in the low- 

ata regime. Instead of relying solely on the visual information 

rom the images, SML effectively combines it with the seman- 

ic information for obtaining improved class prototypes. In addi- 

ion, the features from multiple support images are not averaged, 

ather they individually contribute to the prototype computation. 

his helps to bring the features from the same class closer to one 

nother, thus effectively utilising all the additional support images. 

he closed form solution of the linear function makes the learning 

ery efficient. Extensive experiments and analysis in Section 5 jus- 

ifies the effectiveness of this framework. Now, we will discuss the 

oss functions and the meta-learning based training. 

. Proposed SML framework 

Here, we will describe the different components of the SML 

ramework. The proposed meta-learning framework learns over a 

ollection of episodes, and thus gets trained with data of all classes 

 C base ) in the training set. But, the base learner learns over a sin-

le episode with data from randomly selected C-classes. The base 

earner consists of a feature extractor and an attribute injector 

odule as described below. 

.1. Feature-extractor module 

Given an input image I from support or query, the feature ex- 

raction module f θ extracts its 3-d feature representation f θ (I ) ∈ 

 

h ×w ×d . Here, f θ (I ) is the upsampled feature map and has the

ame height ( h ) and width ( w ) as the original image and and d

enotes the number of channels of the final convolutional layer. 

he set of learnable parameters in the feature extractor module is 

enoted as θ . This 3-d visual feature representation of an image 
95 
an be considered as the d-dimensional embedding of each of the 

mage pixels, which either belong to the class of interest or the 

ackground. 

As per the standard meta-learning set-up [23] , in each episode, 

he base learner first processes the data in the support set S, and 

hen computes the losses on the query set Q . Given the support set 

 = 

C ⋃ 

c=1 

{ I s 
i,c 

, M 

s 
i,c 

} K 
i =1 

, for every image, its 3-d feature representation

f θ ( I s 
i,c 

) is computed using the feature extractor module. This ob- 

iously contains the feature representation of both the object (or, 

he foreground) and the background in the image. The foreground 

nd background features can be separated using the mask M 

s 
i,c 

rovided with the input image. As in several other works [4,6] , 

e also use average mask-pooling operation to obtain the fore- 

round (or, background) embedding as follows: 

s 
i,c = 

1 

|X | 
∑ 

X 
f θ (I s i,c ) � 1 (M 

s 
i,c 

== c) , for foreground 

s 
i,bg = 

1 

|Y| 
∑ 

Y 
f θ (I s i,c ) � 1 (M 

s 
i,c 

� = c) , for background (1) 

ere, � represents the point-wise multiplication along the dimen- 

ion of d. X and Y denote the respective sets of spatial locations in 

he image I s 
i,c 

for which the corresponding indicator functions are 

ctivated. Thus, φs 
i,c 

and φs 
i,bg 

∈ R 

d can be considered as the mask- 

ooling of foreground and background features separately in the 

isual embedding space evaluated as the mean over their spatial 

pread in the image. We normalize the features, φs 
i,c 

= 

φs 
i,c 

|| φs 
i,c 

|| 2 and 

i,bg = 

φs 
i,bg 

|| φs 
i,bg 

|| 2 in our experiments. 

.2. Attribute-injector module 

In some of the recent successful approaches like [4] , the image 

mbeddings are solely utilised to obtain the class-representatives 

r prototypes. We propose to augment this information with the 

emantic knowledge for better generalization to unseen classes 
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1 Code is available at: https://github.com/ayyappa1993/SML . 
ith few examples during testing. Here, the semantic informa- 

ion is given by the attribute vectors, a c ∈ R 

d a , which are the

lass-name embeddings for the c th class. These attributes can 

e automatically extracted from a pre-trained FastText [19] or 

ord2Vec [20] language model. Here, d a denotes the attribute di- 

ension. Given these semantic attributes of the classes in the 

raining data, the attribute injector module incorporates this in- 

ormation to compute better class prototypes for the segmentation 

ask. Here, we use a linear function for the attribute injector as: 

 W 

(a c ) = W a c (2) 

here, W ∈ R 

d×d a is the weight matrix containing all the train- 

ble parameters. Similarly, we also obtain the latent space rep- 

esentation of the background of the images as h W 

(a bg ) = Wa bg ;

here a bg is the FastText or Word2Vec embedding of the word 

ackground , and thus is the same for all images. 

In order to effectively incorporate the semantic information 

ith the embeddings obtained from the images using Eq. (1) in the 

atent space, we use the standard ridge regression [13,24] . Thus, 

he loss function for learning W can be expressed as 

 W 

= || � − WA || 2 2 + λ|| W || 2 2 (3) 

here, � = 

[{ φs 
i,c 

| φi,bg } K i =1 

]
C 
c=1 

∈ R 

d×2 |S| and A = 

{ a s 
i,c 

| a s 
i,bg 

} K 
i =1 

]
C 
c=1 

∈ R 

d a ×2 |S| . λ is a learnable hyper-parameter 

hich is set experimentally to balance the L2-regularizer on the 

arameters W . The optimum set of parameters of the attribute 

njector module W is obtained by minimizing this loss function 

hich has a closed-form solution given by 

 = �A 

T (AA 

T + λI d a ) 
−1 (4) 

here, I d a is an identity matrix of dimension d a . 

Learning the base-learner parameters: The goal is to leverage 

he query set images and its corresponding ground truth masks 

o learn the parameters of the feature extractor module and the 

inear function parameters W , such that during testing, semantic 

egmentation can be performed using only few images per class. 

n each episode, given the support images with the corresponding 

asks from C-classes, � and A can be computed, from which the 

inear function parameters W are learnt as discussed before. Note 

hat, for each class c, the images corresponding to this class will 

ave different feature representations ( φs 
i,c 

) because of the intra- 

lass variability, but they will all have the same semantic repre- 

entation corresponding to the class name a c for both support and 

uery. This unique semantic representation of the c th class is ap- 

ropriately combined with the image information to get a better 

lass prototype given by h W 

(a c ) = Wa c . 

Now, given an image from the query set I 
q 
j 
, we first compute 

ts visual representation by passing it through the feature extractor 

odule f θ (I 
q 
j 
) and the feature corresponding to each pixel is nor- 

alized. Next, the normalized feature representation f θ (I 
q 
j 
) is con- 

olved with the normalized class-prototypes for all the C-classes 

elected in that episode as follows: 

 

q 
j;c = f θ (I q 

j 
) ∗ h W 

(a c ) , for c = { 1 , . . . , C} ∪ { bg} (5) 

ere, ∗ stands for convolution operation and h W 

(a c ) = Wa c is the 

lass-prototype of the c th class. We have used the same nota- 

ions for the normalized representations for simplicity. Thus, S 
q 
j;c ∈ 

 

h ×w denotes the 2-d mask of the query image with the class- 

imilarities, which is finally used for classification. Here, in addi- 

ion to the foreground classes, similarity with the background class 

rototype bg is also computed. To segment the query image, we 

erform pixel-wise classification of the query feature S 
q 
j;c . For this, 

e compute the logit-score for the pixel at location (m, n ) as the 

robability of the evaluated similarity feature S 
q 
j;c to belong to class 
96 
as 

p(S q 
j;c (m, n )) = 

exp(αS q 
j;c (m, n ) + β) 

∑ 

c∈ { 1 , ... ,C}∪{ bg} 
exp( αS q 

j;c ( m, n ) + β) 
(6) 

here α, β are the scaling and bias parameters, respectively. We 

earn the feature extractor module of the base learner by minimiz- 

ng the cross-entropy loss function 

 CE = 

∑ 

(m,n ) ∈ I q 
j 

− log p(S q 
j;c (m, n )) (7) 

nspired by Wang et al. [4] , we also interchange the samples in 

upport S and query Q set to enhance the segmentation perfor- 

ance. Thus, we learn another set of parameters W̄ on the newly- 

onstructed S and Q using (4) . Following similar steps as shown 

bove, we compute the reverse alignment loss L R as in Wang et al. 

4] which is given by, 

 R = 

∑ 

(m,n ) ∈ I s 
− log p(S s c (m, n ) ) (8) 

ote that subscripts are removed for the similarity predictions and 

or the images to avoid clutter. Thus, the final objective used to 

earn the feature extractor is given by 

in 

θ

∑ 

(S, Q ) 

(
L CE + L R 

)
(9) 

his completes the learning of the base-learner for a single 

pisode. To summarize, in each episode, first, the attribute injector 

odule parameters W are learnt to generate class prototypes using 

he previously learnt base-learner, which are used to further fine- 

une the feature extractor parameters θ by computing the pixel 

ise cross-entropy loss. Using several such training episodes, the 

eta-learner learns to generalize and segment images containing 

ovel objects during testing. The algorithm used for training SML 

s given in Algorithm 1 . 1 

Algorithm 1: Algorithm for training SML . 

Input : D base = { I , M } , where, I : set of input images and 

M : set of corresponding ground truth masks; 

a : attributes; 

β: learning rate; 

E: total number of episodes for which the 

meta-learner is trained, where each episode is given 

by {S e , Q e } E e =1 
∈ D base 

1 . Output : θ ∗: Learnt parameters of the feature extractor. 

2 Initialize: 

Pre-trained (from Imagenet) weights of the feature extractor 

f θ . 

3 for e = 1 , 2 , . . . ., E do 

4 Compute prototype matrix � as in (3). 

5 Load attribute matrix A . 

6 % Learning base-learner 

7 Learn W = �A 

T (AA 

T + λI d a ) 
−1 as in (4). 

8 Compute new class prototypes: h W 

(a c ) = W a c . 

9 Predict segmentation mask on the Q . 

10 Compute segmentation loss L CE as in (7). 

11 Interchange S and Q ; and compute reverse alignment loss 

L R as (8). 

12 Compute gradient: g θ = ∇ θ (L CE + L R ) . 

13 Update: θ ← θ − β Adam (θ, g θ ) . 

14 end 

https://github.com/ayyappa1993/SML
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Fig. 2. 1-way 1-shot segmentation results using proposed SML - (a) Support set 

image; (b) GT: query image with ground-truth mask; (c) and (d) are segmentation 

results using VGG-16 and ResNet-50 as the feature extractors. 
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Prediction: Once the meta-learner is trained using all the data 

ver a number of training episodes, it can be used to perform seg- 

entation on novel images in an episode, E = (S, Q ) which con- 

ains images from C nov el . As in training, first, W is computed using 

he visual image features of the support set and the attributes of 

he classes present in the testing set. Using this, the class proto- 

ypes are obtained. Finally, the prediction on the features extracted 

rom the query image I 
q 
j 
∈ Q is performed as, 

ˆ 
 

q 
j 
(m, n ) = arg max 

c∈{ 1 ,..,C}∪{ bg} 
αS q 

j,c 
(m, n ) + β. (10) 

. Experiments 

In this section, we describe the experiments performed to eval- 

ate the effectiveness of the proposed SML framework. 

.1. Dataset and evaluation metric 

We use PASCAL-5i [25] and COCO-20i [29] datasets to evaluate 

he model performance. 

PASCAL-5i is derived from PASCAL VOC 2012 [30] and SBD [31] . 

his dataset contains 20 classes. All the 20-classes are divided 

nto 4 splits, with 5-categories per split. As is the standard prac- 

ice [25] , the proposed SML model is trained on 3 splits and eval-

ated on the 4th split. COCO-20i is derived from MS-COCO dataset 

29] which contains 80 classes divided into 4 splits following [28] . 

We use two semantic encodings in our work: (1) 

ord2vec [20] is trained on Google News dataset [32] , which 

ontains 3-million words; (2) FastText [19] is trained on Common- 

rawl dataset [33] . We use these pre-trained models for extracting 

he class-name embeddings in our work. 

Two widely-used metrices, Mean-IoU [25,26] and Binay- 

oU [9,10,28] are used to report the segmentation performance 

f the proposed SML framework. Mean-IoU calculates mean of 

ntersection-over-Union for all the foreground classes. Binary-IoU 

alculates the Intersection-over-Union by treating all the fore- 

round classes as one class and background class as one class. 

.2. Implementation details 

We implement the proposed approach using PyTorch and 

se TITAN-X 2040, 12 GB GPU for the experiments. We use 

GG-16 [34] , and ResNet-50 [35] models, pre-trained on Ima- 

eNet [36] as the feature extractors to evaluate the effectiveness of 

ML for different backbones. For VGG-16 and ResNet-50, the im- 

ge features are extracted from the output of 5th and 4th convolu- 

ion block, respectively. In our implementation, we modify ResNet- 

0 as follows: first two residual blocks use convolution with stride 

, last two blocks are designed with dialated convolutions with 2, 

, to increase the receptive field. The number of episodes used to 

rain the proposed SML is 30 k . For each episode, the time taken 

y the proposed method with VGG-16 as backbone is 0.21 sec- 

nds. The images are resized to 417 × 417 , as followed in PANet. 

andomMirror augmentation is used in addition to the ReSize 
ransformation. SGD-solver with weight decay of 5 × 10 −4 and mo- 

entum of 0.9 is used for the optimization. We apply initial learn- 

ng rate of 1 × 10 −3 and 1 . 75 × 10 −3 for VGG-16 and ResNet-50 re-

pectively. The learning rate is reduced by a factor of 0.1 after ev- 

ry 10 k iterations. 

The learnable parameter λ in Eq. (4) is initialized to 100. We 

mpirically set α = 10 and β = 1 in (6) . We have used pre-trained

ord2Vec to extract the semantic embedding from class-names in 

ur results and also used FastText for additional analysis. To mit- 

gate the sensitivity of the model to random initialization, we re- 

eat the experiments 5 times and report the Mean-IoU. 
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.3. Comparison with state-of-the-art methods 

Here, we compare SML with several recent state-of-the-art 

ethods - CANet [5] , PANet [4] , PPNet [17] , AMP [6] , SG-One [26] ,

tc. for different protocols. 

1-way 1-shot and 1-way 5-shot results on PASCAL-5i dataset 

e present the results for 1-way 1-shot and 1-way 5-shot se- 

antic segmentation in Table 1 for both VGG-16 and ResNet-50 

ackbones as the feature extractor. The Mean-IoU reported in the 

able for all the other approaches are taken from [4,17] . We ob- 

erve that for VGG-16, the proposed SML outperforms all the other 

pproaches for both the protocols. The performance improvement 

ompared to the other approaches is significantly more for 5-shot 

rotocol. This implies that SML is able to effectively use all the 

mages in the support set to improve the segmentation perfor- 

ance. For ResNet-50, SML performs at par with the recent PP- 

et [17] . Though CANet [5] performs better, it is evaluated with 

ulti-scale input unlike the others, as also noted in Liu et al. [17] .

e also compare the SML performance with the state-of-the-art 

ethods using Binary-IoU as the evaluation criteria in Table 2 . The 

esults for all the other methods are taken from [4,6] . We ob- 

erve that SML outperforms all other approaches for both the back- 

ones. Specifically, for ResNet-50, it gives an improvement of 0 . 9% 

nd 2 . 6% for 1-shot and 5-shot respectively. The segmentation re- 

ults for few images using SML are given in Figs. 2 and 3 for 1-

ay 1-shot and 1-way 5-shot protocols respectively. We observe 

hat SML provides good segmentation results even with significant 

ackground clutter. In general, ResNet-50 gives better results than 

GG-16 backbone, which is also validated by the quantitative re- 

ults. 

1-way 1-shot results on COCO-20i dataset From Table 4 , we 

bserve that the proposed SML framework gives significantly bet- 

er performance as compared to PANet with the same backbone 
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Table 1 

Mean-IoU of the proposed SML and comparison with other state-of-the-art methods for both 1-way 1-shot and 1-way 5-shot pro- 

tocols on PASCAL-5i data. 

Method Backbone 

1-shot 5-shot 

split-0 split-1 split-2 split-3 Mean split-0 split-1 split-2 split-3 Mean 

OSLM [25] VGG16 33.6 55.3 40.9 33.5 40.8 35.9 58.1 42.7 39.1 43.9 

co-FCN [10] VGG16 36.7 50.6 44.9 32.4 41.1 37.5 50.0 44.1 33.9 33.9 

SG-One [26] VGG16 40.2 58.4 48.4 38.4 46.3 41.9 58.6 48.6 39.4 47.1 

AMP [6] VGG16 – – – – 43.4 – – – – 46.9 

PANet [4] VGG16 42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7 

SML (Ours) VGG16 43.0 59.0 51.3 41.4 48.7 52.3 64.9 61.0 50.4 57.1 

PANet [4] RN50 44.0 57.5 50.8 44.0 49.1 55.3 67.2 61.2 53.2 59.2 

PPNet [17] RN50 47.8 58.7 53.8 45.6 51.5 58.3 67.8 64.8 56.7 61.9 

CANet [5] RN50 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1 

SML (Ours) RN50 47.4 59.7 53.8 44.4 51.3 56.0 67.8 62.1 54.0 60.0 

Fig. 3. 1-way 5-shot segmentation results using proposed SML on Pascal-5i dataset. First 5 columns show the support set images with ground-truth masks. Other columns 

show the query image with ground-truth mask and segmentation results using VGG-16 and ResNet-50 as the feature extractors respectively. Best viewed in color and 

zoomed. 

Table 2 

Binary-IoU of proposed SML and comparison with 

other state-of-the-art for 1-way 1-shot and 1-way 5- 

shot protocols on PASCAL-5i data. 

Method Backbone 1-shot 5-shot 

FG-BG [27] VGG16 55.0 –

Fine-Tuning [27] VGG16 55.1 55.6 

OSLSM [25] VGG16 61.3 61.5 

co-FCN [10] VGG16 60.1 60.2 

PL [9] VGG16 61.2 62.3 

A-MCG [28] VGG16 61.2 62.2 

SG-One [26] VGG16 63.9 65.9 

AMP [6] VGG16 62.2 63.8 

PANet [4] VGG16 66.5 70.7 

SML (Ours) VGG16 66.8 71.0 

CANet [5] RN50 66.2 69.6 

SML (Ours) RN50 67.1 72.2 

Table 3 

Mean-IoU performance of proposed SML for 2-way 1-shot task on 

Pascal-5i dataset. 

Method split-0 split-1 split-2 split-3 Mean 

PANet (VGG-16) – – – – 45.1 

SML (VGG-16) 40.5 54.8 47.2 39.5 45.5 

SML (ResNet-50) 43.2 55.6 49.5 44.4 48.1 

Table 4 

Mean-IoU resutls on COCO-20 i dataset for 1-way 1 shot experiment using 

word2vec as attributes. 

Backbone split-0 split-1 split-2 split-3 mean 

PANet VGG-16 28.7 21.2 19.1 14.8 20.9 

SML VGG16 29.3 24.4 20.1 16.4 22.6 

SML ResNet-50 31.9 23.7 20.3 17.1 23.3 

Table 5 

Binary-IoU resutls on COCO-20 i dataset for 

1-way 1 shot experiment using word2vec 

as attributes. 

Method backbone Binary-IoU 

PANet [4] VGG-16 59.2 

SML VGG-16 59.3 

SML ResNet-50 59.5 

(
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p

t

5

o

V

5

t

w

i

e

f
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m
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VGG-16) in terms of mean-IoU. As expected, the performance of 

ML improves further when ResNet-50 backbone is used. The pro- 

osed approach also performs favorably compared to PANet in 

erms of Binary-IoU, as shown in Table 5 . 

.4. 2-way 1-shot results 

From the performance of SML for 2-way 1-shot in Table 3 , we 

bserve that SML performs favorably compared to PANet [4] for 

GG-16 backbone. 

As expected, the results are significantly better with ResNet-50. 

.5. Additional analysis 

Here we further analyze the proposed SML framework for bet- 

er understanding. 

Evaluation with weaker annotations: We experiment with 

eaker image annotations which are cheaper and easy to obtain, 

nstead of the pixel-by-pixel dense annotations, which is extremely 

xpensive and time-consuming. We observe from Table 6 that even 

or weaker annotations, the proposed SML performs better than 

ANet [4] . 

Evaluation with different semantic embedding: All experi- 

ents are reported with Word2Vec embedding. We also performed 
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Table 6 

Mean-IoU of proposed SML with different image-annotations. D: 

Dense, BB: Bounding box, S: Scribble. 

Method 

1-shot 5-shot 

D BB S D BB S 

PANet (VGG-16) 48.1 45.1 44.8 55.7 52.8 54.6 

SML (VGG-16) 48.7 45.5 45.0 57.1 53.7 55.8 

SML (ResNet-50) 51.3 47.9 49.2 60.0 55.1 57.6 
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xperiment with FastText [19] . For Word2Vec and FastText, we ob- 

ain Mean-IoU of { 51 . 3 , 60 . 0 } and { 50 . 9 , 59 . 5 } for 1-shot and 5-

hot respectively. We observe that Word2Vec performs slightly bet- 

er compared to FastText. 

. Conclusion 

We have proposed a novel Semantic Meta-Learning (SML) 

ramework which utilises the semantic information of object 

lasses for few-shot semantic segmentation. Towards that goal, we 

ntroduced a novel attribute-injector module in a traditional meta- 

earning setting. Extensive experiments with different protocols 

howed that the proposed framework performs similar or better 

s compared to the state-of-the-art. 
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