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ABSTRACT

Face anti-spoofing (FAS) plays a critical role in the face recognition community for securing the face
presentation attacks. Many works have been proposed to regard FAS as a domain generalization prob-
lem for robust deployment in real-world scenarios. However, existing methods focus on extracting
intrinsic spoofing cues to improve the generalization ability, yet neglect to train a robust classifier. In
this paper, we propose a framework to improve the generalization ability of face anti-spoofing in two
folds: ) a generalized feature space is obtained via aggregation of all live faces while dispersing each
domain’s spoof faces; and ) a domain agnostic classifier is trained through low-rank decomposition.
Specifically, a Common Specific Decomposition for Specific (CSD-S) layer is deployed in the last
layer of the network to select common features while discarding domain-specific ones among multi-
ple source domains. The above-mentioned two components are integrated into an end-to-end frame-
work, ensuring the generalization ability to unseen scenarios. The extensive experiments demonstrate
that the proposed method achieves state-of-the-art results on four public datasets, including CASI-
A-MFSD, MSU-MFSD, Replay-Attack, and OULU-NPU. Keywords: Face anti-spoofing; Domain
Generalization; Low-rank Decomposition

1. Introduction

Owing to their convenience and security, face recognition
systems have been widely deployed as an efficient and advanced
bio-identification technology. Face recognition systems have
been applied in payments, entrance guard systems, and mu-
nicipal public security systems. However, private information
(e.g., face images) is easily stolen or leaked in this age of high-
developed networks, thus leading to all kinds of presentation
attacks (PA) against facial recognition systems. These attacks
(e.g., print, video, and 3D mask attack) can easily deceive face
recognition systems, thus creating significant and unknown se-
curity and property damages. Therefore, face anti-spoofing
(FAS) (Yu et al., 2021) (Liu et al., 2021) plays a critical role
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in the current face recognition fields in both academia and in-
dustry.

In recent years, various FAS methods have been proposed
and divided into two stages according to the development pro-
cess: traditional handcrafted feature based and deep learning
based. Previous researchers carried out FAS approaches mainly
by adopting handcrafted features, such as LBP (Määttä et al.,
2011) (de Freitas Pereira et al., 2012) (de Freitas Pereira et al.,
2013), HoG (Komulainen et al., 2013) (Yang et al., 2013), and
SURF (Boulkenafet et al., 2016a). However, these traditional
methods suffer from poor generalization due to the obtained
texture information varying with capture devices. Later in the
deep learning era, deep learning techniques have been used to
extract features and leverage various temporal cues, such as
convolutional neural network (CNN) and recurrent neural net-
work (RNN), which have richer semantic information and more
robust feature representation than traditional methods (Atoum
et al., 2017) (Liu et al., 2018) (Wang et al., 2020b) (Liu et al.,
2016).

Although current methods have shown validity and promis-
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ing performance under intra-dataset experiments, they cannot
achieve reliable performance on unseen datasets, where models
are trained in source domain and tested in target domain on dif-
ferent datasets. The reason behind is that previous methods did
not take into account the diversity of feature distribution in dif-
ferent datasets. As a result, captured spoofing cues are dataset-
biased (Torralba and Efros, 2011) and cannot generalize well
to unseen domains (caused by different materials of attacks or
recording environments).

Considerable effort has been made by adapting domain adap-
tion (DA) techniques to align the feature distribution between
source and target domain. In (Li et al., 2018), Li et al. proposed
an unsupervised DA framework, where the classifier for tar-
get domain is trained on the basis of a different source domain.
However, such kinds of methods require a large amount of un-
labeled target data for training to satisfy the final test, which is
expensive and challenging. To make the research on FAS more
valuable for practical applications, this paper considers FAS as
a domain generalization (DG) problem.

Classical DG methods (Shao et al., 2019) (Jia et al., 2020)
(Piratla et al., 2020) (Muandet et al., 2013) (Li et al., 2017) aim
to learn a feature representation on multiple source domains.
By doing so, the method can be generalized to a target domain
in which the data are not used in training. In (Shao et al., 2019),
Shao et al. sought to learn a generalized feature space that
is discriminative and shared by multiple source domains via a
multi-adversarial framework. Jia at el. proposed a novel single-
side adversarial learning method in (Jia et al., 2020), where the
feature distribution of fake samples is induced to be dispersed,
but a reverse operation is performed on real samples. Although
these approaches have demonstrated remarkable improvement
on the generalization ability for FAS, they only focus on ob-
taining a universal feature space across domains with a simple
binary classifier as output layer, thus neglecting to obtain a ro-
bust classifier across domains.

In order to improve the generalization ability, we propose a
novel framework for FAS. To obtain a generalized feature space
on existing source domains for unseen domains, we follow and
extend the preliminary method (Jia et al., 2020), which com-
presses all real samples and disperses fake ones (for source
data) and has shown outstanding testing performance. Com-
pared to (Jia et al., 2020), our proposed method not only focus
on domain-invariant features representation but also seeking a
domain-agnostic classifier.

Our work is inspired by (Piratla et al., 2020) (Li et al., 2017)
and based on the assumption that there are common features
and domain-specific features in source data, whose correlation
with its corresponding label is consistent/inconsistent across
domains. Thus, we propose a Common Specific Decomposition
for Specific (CSD-S) layer. Our proposed method is different
from the early decomposition method (Li et al., 2017), which
deals with domain-specific features by adding a matrix of con-
straint variables but leads to excessive use of domain-specific
features in the condition of binary classification tasks. Our
method is also different from the method (Piratla et al., 2020),
in which they compute losses on the common and domain-
specific features and force them to be orthogonal. The or-

thogonal operation further improves the model’s generalization
ability to unseen domains when applied in multi-classification
tasks, e.g., Hand-written and speech recognition. However, it
entirely ignores the critical cues hidden in the domain-specific
features needed to be utilized further in intricate face-related
tasks. Hence, to better apply low-rank decomposition for the
FAS task and effectively explore hidden important clues in the
domain-specific components, we add an extra constraint to the
domain-specific features into the orthogonal process.

The main contributions of our work are summarized below:

• We propose a novel framework to extract domain-invariant
features via adversarial learning, and combine low-rank
decomposition methods for face anti-spoofing.

• A CSD-S layer is designed to highlight the discrimina-
tive and common features across domain while ignoring
domain-specific features. Hence, a domain-agnostic clas-
sifier is obtained.

• Comprehensive experimental results show that, the pro-
posed method further improves the model’s generalization
ability, and achieves state-of-the-art performance on four
public FAS databases with DG based evaluation protocol.

2. Related Work

In this section, we review papers in two categories: hand-
crafted features based and deep learning based methods.

2.1. Face anti-spoofing

Handcrafted Features based FAS. Traditional works focus
on revealing textural differences between live samples and PA,
specifically utilizing the micro-texture information of images
to counter face spoofing. In most prior works, handcrafted fea-
tures were extracted first by texture descriptors, such as LBP
(Määttä et al., 2011) (de Freitas Pereira et al., 2012) (de Fre-
itas Pereira et al., 2013), HOG (Komulainen et al., 2013) (Yang
et al., 2013), DoG (Tan et al., 2010) (Peixoto et al., 2011), SIFT
(Patel et al., 2016), and SURF (Boulkenafet et al., 2016a). Clas-
sifiers (e.g., SVM, LDA) are then adopted to obtain one binary
classification result eventually as output to determine whether
the input is alive or not. To reduce the influence of various illu-
mination, Boulkenafet et al. proposed a solution that explores
different color spaces such as HSV and YCbCr, which discard
chrominance information (Boulkenafet et al., 2015) (Boulke-
nafet et al., 2016b). However, these texture-based methods are
not robust enough. They are helpless in handling PA such as
3D masks and replay attacks. As the resolution and quality of
existing datasets varies, such methods become less reliable.
Deep Learning based FAS. Compared with traditional hand-
crafted features, deep learning-based methods (Atoum et al.,
2017) (Liu et al., 2018) (Wang et al., 2020b) (Yu et al., 2020)
(Yu et al., 2020a) (Guo et al., 2019) (Yang et al., 2019) (Qin
et al., 2020) (Yu et al., 2020c) use Deep Neural Networks
(DNN) to extract multistage information and discriminative
cues between live and spoof samples. Several works have been
developed in recent years. For example, Atoum et al. proposed
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depth information as the discrepancy between live and spoof
samples, and designed a multi-task network with fusion local
and holistic features (Atoum et al., 2017). Moreover, Liu et al.,
deployed a CNN–RNN architecture supervised by auxiliary in-
formation (i.e., depth map and rPPG signal) separately, which
achieved outstanding performance in PAD (Liu et al., 2018).
Recently, Wang et al. used multiple frames to detect PA from
two aspects, where discriminative cues came from spatial gradi-
ent magnitude and dynamic faces (Wang et al., 2020b). In (Yu
et al., 2020) (Yu et al., 2020b), Yu et al. proposed central dif-
ference convolutional networks that captures detailed instinct
patterns via aggregating both intensity and gradient informa-
tion. Furthermore, they dug deeper by seeing FAS as a ma-
terial recognition problem for getting intrinsic material-based
patterns (Yu et al., 2020a). In addition to leverage auxiliary
information, a specific trend improves the accuracy and gen-
eralization ability of a model by synthesizing train data (Guo
et al., 2019; Yang et al., 2019). In (Guo et al., 2019), Guo et al.
trained CNN from numerous synthetic spoof samples, whereas
Yang et al. collected data to simulate real-life scenarios (Yang
et al., 2019). Another train of thought relies on meta-learning
to solve the overfitting and poor generalization problem of the
FAS methods. Qin et al. proposed training a meta-learner to de-
tect unseen spoofing types by learning from predefined real and
spoofing faces and a few examples of new attacks (Qin et al.,
2020). Yu et al. proposed NAS-FAS, which utilized meta neu-
ral architecture search to discover the well-suitable networks
with strong domain generalization capacity (Yu et al., 2020).
Orthogonal to NAS-FAS focusing on architecture design, our
work pays more attentions on efficient learning strategies to en-
hance domain generalization capacity.

Although traditional and deep learning methods have gained
remarkable results, their performance may severely drop under
unseen scenarios.

2.2. Domain Generalization

Domain Generalization is an area that mining the consis-
tent relationship between data and their corresponding label
on multiple source domains without accessing any target data.
Through its unique training strategy, it has promising perfor-
mance in improving the generalization ability of FAS models.

In (Muandet et al., 2013), Muandet et al. proposed an algo-
rithm named Domain-invariant Component Analysis (DICA) to
learn an invariant transformation by minimizing dissimilarity
across domains. However, conventional DG such as DICA may
suffer from overfitting to seen source domains. To obtain better
generalization performance, adversarial learning-based meth-
ods (Li et al., 2018) have been designed and have achieved re-
markable performance. In (Li et al., 2018), Li et al. aligned dis-
tributions among source domains and then matched the aligned
distributions via adversarial feature learning. Unlike the adver-
sarial learning methods that focus on learning generalized fea-
ture space, decomposition-based domain generalization meth-
ods (Piratla et al., 2020) (Li et al., 2017) seek a domain-agnostic
classifier by dividing network parameters into common param-
eters and domain-specific parameters in training. By retaining
the common parts of a network and removing domain-specific
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Domain N Feature 

Extractor
Feature 

Generator

Discriminator

Fig. 1. Overview of our proposed method. The facial images are pro-
cessed first using a feature extractor. Subsequently, adversarial learning
and asymmetric triplet loss are conducted to the extracted features. The
CSD-S layer is deployed in the last layer of the proposed network to send
the common component of features into the classifier. A generalized fea-
ture space and a domain-agnostic classifier are obtained eventually.

parts, not only a lightweight face anti-spoofing model is ob-
tained, but also a robust classifier. Adversarial learning and
decomposition-based methods deal with DG from the feature
space and the classifier, respectively, and both have shown ef-
fectiveness. Following these ideas, our work attempts to com-
bine these two methods to obtain a generalized feature space as
well as a robust classifier by using low-rank decomposition.

3. Proposed Method

3.1. Overview

Figure 1 shows that our overall framework for learning gen-
eralized feature space and a robust classifier. After extracting
deep features via the feature generator, we compress all live
samples and disperse spoof ones of each domain through ad-
versarial learning and Triplet loss. Given that the real images of
all domains are collected by simulating real people, obtaining
a compact feature space for them is easy. In comparison, the
spoof images of each domain vary in many aspects. Thus, to
obtain a discriminative class boundary, the opposite operation
is conducted on each domain’s attack images. By using low-
rank decomposition theory, we add a CSD-S block in the last
layer of the network. The proposed CSD-S block enhances the
generalization ability of the model while pruning it by decom-
posing features into common parts and domain-specific parts.
Domain-invariant feature space and a robust classifier are ob-
tained eventually.

3.2. Singel-side Adversarial Learning and Asymmetric Triplet
Mining

In the DG problem of face anti-spoofing, adversarial learning
and feature clustering are used to align the feature distribution
of given inputs among source domains. However, live and spoof
faces are treated equally, which has been proven not the best so-
lution (Jia et al., 2020). Real images are collected by simulating
real people. Hence, the distribution discrepancies of real im-
ages among multiple source domains may be smaller than the
distribution discrepancy of spoof ones. Such differences may
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be because the spoof faces of each source domain are differ-
ent in many ways, for example, background, light condition,
angle of capture, and attack type. Their feature distribution dis-
crepancies are more significant than that of real ones. There-
fore, obtaining a generalized feature space for a real image and
an attack image is difficult. For this reason, gathering all live
faces and separating attack images across domains is feasible.
Consequently, in this paper, single-side adversarial learning and
asymmetric triplet mining are conducted to create a discrimina-
tive classification boundary that aims to obtain a generalized
feature space.
Single-side Adversarial Learning. Assume that K source
domains are denoted as D = {D1,D2,D3, . . . ,DK−1,DK}. Each
domain contains N-labeled instances {xi, yi}

N
i=1, in which xi is

the input image, and yi = 0/1 is the corresponding label of an
input image, that is, the attack image and the real image are la-
beled with 0 and 1, respectively. To apply single-side adversar-
ial learning, we divide every source domain into two categories:
real images Xr and attack images Xa. Then we send them into
feature extractor to obtain the corresponding feature as follows:

fr = E (Xr) , fa = E (Xa) , (1)

where E is the shared feature extractor for Xr and Xa. fr and
fa are the corresponding features extracted by E. D stands for
the domain discriminator, against the feature extractor (i.e., ex-
tracted feature Xr). D’s objective is to identify the source do-
main of the given features. In contrast, feature extractor E is
made to spoof the domain discriminator. Thus, a single-side
adversarial learning procedure is designed only for real images
to obtain a compact feature space. The objective function can
be formulated as:

min
E

max
D
LAl (E,D) =

− Ex,y∼Xr ,YD

∑K
n=11[n=y] log D [E (x)].

(2)

YD represents the set of domain labels. The function minimizes
the loss of feature extractor to optimize its parameters and ap-
plies the reverse operation to the loss of feature discriminator,
providing a generalized feature space for real images. A gra-
dient reverse layer (GRL) (Ganin and Lempitsky, 2015) is de-
ployed behind the feature extractor in order to optimize the fea-
ture extractor and the domain discriminator simultaneously.
Asymmetric Triplet Mining. To obtain a generalized feature
space, we implement the concept of gathering all real images
and separating attack ones from different domains by applying
asymmetric triplet loss. After the asymmetric mining proce-
dure, the features of all real images become compact, and the
features of attack ones become increasingly dispersed. The op-
timized function is as follows:

min
E
LAt (E) =

∑
xa

i ,x
p
i ,x

n
i
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i
)
− E

(
xp

i

)∥∥∥∥2

2

−
∥∥∥E

(
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i
)
− E

(
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i
)∥∥∥2

2 + α
]
.

(3)

For the i-th domain, we randomly select an image that is ex-
tracted by the feature extractor and marked as anchor xa

i . xp
i

represents a positive example with the same label as xa
i , whereas

a negative example xn
i has an opposite label. αis a pre-defined

hyperparameter.

3.3. Common Specific Decomposition for Specific Layer
To improve the generalization ability for FAS tasks, extract-

ing common features with a consistent relationship across mul-
tiple source domains is important and necessary. The features
extracted from the feature extractor can be seen as a combi-
nation of parameters that are divided into common component
fc and domain-specific component fs, which are represented in
Eq. (4)

x = y ( fc + βi fs) +N (0,ΣK) ∈ Rm,∀K ∈ [D], (4)

where βi is a coefficient of fs, which varies from domain to
domain, and fc ⊥ ρ fs.ρ is a constraint variable of fs. N(0,ΣK)
represents a standard normal random variable with mean zero
and covariance matrix ΣK . m is the dimension of feature space.

Therefore, for each domain K, a good domain specific clas-
sifier wK exists, as follows:

w̃K = fc + γK fs, (5)

γK ∈ Rmis a combination of the domain specific components
coefficient βi for i = 1, 2, . . . ,N. Each domain’s specific clas-
sifier can be composed by fc and fs. Accordingly, we extract
common component fc and discard the domain-specific ones
for all of these source domains to obtain a common classifier
wc. After conducting low-rank decomposition for the sets of
all common classifiers and domain-specific ones, we obtain the
following formula:

W = wc1
> + WsΓ

>, (6)

where W := [w̃1w̃2w̃3 . . . w̃K], 1 ∈ Rm is the all ones vector,
Ws :=

[
fs1 fs2 . . . fsK

]
, and Γ> =

[
γ1γ2γ3 . . . γK

]
is the corre-

sponding coefficient matrix of domain specific components Ws.
Therefore, the objective function can be summarized as fol-

lows:

arg min
f

1
K

K∑
j=1

1
N

N∑
i=1

L
(
ŷ( j)

i , y( j)
i

)
, (7)

where N is the number of instances in Kth domain, ŷi =

E (xi | fi). ŷi is the predicted label of xi. fi is the parameter of
xi in this function. f is the combination of common parameters
fc and the domain-specific one fs. Regarding f as the feature is
convenient, and K is the number of source domains.

3.4. Loss Functions
Adversarial learning between domain discriminator and real

samples of source domains gathers real samples, similar to
asymmetric triplet loss on real and fake ones. Subsequently, the
low-rank decomposition-based CSD-S layer extracts the com-
mon component among source domains and then sends it into
the classifier optimized by the standard cross-entropy loss who
is denoted as LCls. Meanwhile, the common component fc and
domain-specific one fs are forced to be weak orthogonal to fur-
ther extract the common features among source domains. The
low-rank decomposition process is optimized by LCS D−S . The
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Table 1. Evaluations of different components of the proposed model in domain generalization FAS tasks on four testing sets.

Baseline SSA CSD-S O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

X 12.74 93.88 13.79 93.11 15.86 92.45 19.98 87.97
X X 7.86 96.29 13.11 93.52 12.42 94.58 16.22 91.19
X X 8.33 95.52 14.00 92.45 14.79 92.68 18.79 88.68
X X X 5.00 97.58 10 96.85 12.07 94.68 13.45 94.43

HTER %

Fig. 2. The performance of the model, with different proportions of the
common and domain-specific features, under O&C&I to M testing tasks.
Where ρ is a constraint parameter of the domain-specific component.

integration of all these points leads to the overall loss (objec-
tive) of our proposed work:

LAll = LCls + λ1LAl + λ2LAt + λ3LCS D−S , (8)

where λ1, λ2 and λ3 are the constant constraint parameters of
LAl, LAt and LCS D−S , respectively.

4. Experiments

4.1. Dataset and Metrics

Four databases—CASIA-MFSD (Zhang et al., 2012), MSU-
MFSD (Wen et al., 2015), Idiap Replay-Attack (Chingovska
et al., 2012), and OULU-NPU (Boulkenafet et al., 2017)—were
used to evaluate the proposed method. For convenience, they
are denoted as C, M, I, and O, respectively. CASIA contains
50 subjects, with three face PA types and a total video number
of 700 in three different resolutions and luminous environment.
MSU contains 55 subjects with 2 PA types, which are printed,
replayed, and captured under two camera devices. Replay-
Attack includes 50 subjects in natural light and near-infrared
illumination conditions. OULU has 55 subjects with a total
video number of 4,950 and 2 PA types. Moreover, OULU has
relatively comprehensive scenarios. These four databases con-
tain print attacks and video attacks, but each attack is unique in
terms of materials, illumination, background, image capturing
and display devices, and resolution. Hence, significant domain
shifts are found among these databases.

Following the previous work (Shao et al., 2019), we choose
one as the target domain in the four databases, and the remain-
ing three are used for training. Besides, we adopt the half total
error rate (HTER) (Bengio and Mariéthoz, 2004) (half of the
summation of false acceptance rate and false rejection rate) and
the area under curve (AUC) as evaluation metrics.

4.2. Implementation Details

First, we extract facial images with a size of 256 × 256 from
existing databases (for each video, we select one frame ran-
domly) by using MTCNN (Zhang et al., 2016) as the input of
our network. Similar to (Jia et al., 2020), we only consider
RGB channels. Furthermore, we conduct our framework on
Pytorch with Restnet18 (He et al., 2016) as a feature generator.
We impose the CSD-S layer behind the last convolution layer
of Restnet18. The proposed CSD-S layer acts on the features
extracted by the feature generator, which decomposes them into
common features and domain-specific features. Orthogonality
is imposed on the common part and the domain-specific part,
in which the domain-specific one is restricted by hyperparame-
ter ρ. Eventually, the optimized common features are sent into
the classifier. Thus, an efficient and relatively lightweight net-
work is obtained with 11.44M parameters and 3.64G FLOPs.
Besides, L2 normalization is adopted on feature and weight to
improve the generalization ability during training.

4.3. Ablation Study

In this subsection, we conduct a detailed ablation study to
evaluate the performance using different combinations of each
component, i.e., the single-side adversarial learning(denoted as
SSA) and CSD-S layer. The experimental results on four public
FAS datasets are shown in Table 1.
Impact of SSA and CSD-S. For demonstrating the effective-
ness of the proposed components, our baseline is comprised of
a Resnet-18 backbone and a simple binary classifier with asym-
metric triplet mining applied. As shown in Table 1, the results
are consistently improved when adding SSA into the model on
four testing tasks. Thus a generalized feature space is obtained.
Additionally deploying the CSD-S with the baseline, the results
are again improved. In contrast, the model that combines base-
line and SSA provides slighter better results than the one using
baseline and the CSD-S. Finally, the results are improved fur-
ther when applying all the components. This observation veri-
fies that significant effects are made by deploying the CSD-S to
obtain a domain-agnostic classifier under the premise of apply-
ing SSA to get a generalized feature space.
Impact of Hyperparameter ρ. In order to evaluate how the
hyperparameter ρ influences CSD-S layer, we evaluate the re-
sults of the common component and domain-specific one with
different proportions obtained in the decomposition process.
Specifically, we adjust the constraint of the domain-specific one
(i.e., ρ) to get optimal decomposition results in the orthogo-
nal process. As shown in Figure 2, the performance obtained
by different proportions of the common features and domain-
specific one in the proposed model is varied, and the model
gains the maximum impact when ρ = 0.8.
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Fig. 3. ROC curves of our method in four testing tasks.

Table 2. Comparison results of our method and the state-of-the-art DG methods on face anti-spoofing.

Method O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

MS-LBP 29.76 78.5 54.28 44.98 55.3 51.64 50.29 49.31
IDA 66.67 27.86 55.17 39.05 28.35 78.25 54.2 44.59
Color Texture 28.09 78.47 30.58 76.89 40.4 62.78 63.59 32.71
LBP-TOP 36.9 70.8 42.6 61.05 49.45 49.54 53.15 44.09
Auxiliary (Depth) 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61
Auxiliary - - 28.4 - 27.6 - - -
MADDG 17.69 88.06 24.5 84.51 22.19 84.99 27.89 80.02
Cross-domain PAD 17.02 90.1 19.68 87.43 20.87 86.72 25.02 81.47
Meta FAS 13.89 93.98 20.27 88.16 17.3 90.48 16.45 91.16
SSDG-R 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54
NAS-FAS 16.85 90.42 15.21 92.64 11.63 96.98 13.16 94.18
Ours 5.00 97.58 10.00 96.85 12.07 94.68 13.45 94.43

4.4. Comparison with the State-of-the-arts Methods

We evaluate our results by conducting a comparison with
a number of state-of-the-art methods: multi-scale LBP (MS-
LBP) (Määttä et al., 2011); image distortion analysis (Wen
et al., 2015); color texture (Boulkenafet et al., 2016b); LBP-
TOP (de Freitas Pereira et al., 2014); auxiliary (Liu et al.,
2018); MADDG (Shao et al., 2019); Cross-domain PAD (Wang
et al., 2020a); Meta FAS (Shao et al., 2020) and SSDG-R (Jia
et al., 2020). As shown in Table 2 and Figure 3, our method
outperforms all the state-of-art methods proposed for FAS un-
der three DG testing sub-protocols, because previous methods
donot take into account the distribution relationship among dif-
ferent domains (Määttä et al., 2011) (Liu et al., 2018) (Boulke-
nafet et al., 2016b) (Wen et al., 2015) (de Freitas Pereira et al.,
2014). Therefore, their performance drops severely in cross-
database experiments. Adversarial learning was used to learn
shared and discriminative cues among multiple source domains
in (Shao et al., 2019) (Jia et al., 2020). Despite remarkable
achievements in improving the generalization ability for face
anti-spoofing like SSDG-R method which compacted all real
samples and dispersed attack ones of each domain, the state-
of-art methods only focus on obtaining a generalized feature
space among source domains. By contrast, our method tries to
extract domain-invariant features and trains a domain-agnostic
classifier. Compared with the state-of-the-art searched general-
ized architecture in NAS-FAS (Yu et al., 2020), the proposed
method based on simple ResNet18 backbone achieves better
performance on ‘O&C&I to M’, ‘O&M&I to C’, and ‘I&C&M
to O’, indicating the excellent generalization ability with do-
main adversarial learning and CSD-S. The theory of learning
generalized feature space and a domain agnostic classifier is

more effective than solely focusing on one.

4.5. Visualization

As shown in Fig.4, the Grad-CAM (Selvaraju et al., 2017)
visualization is conducted on different network architectures to
provide the class activation map (CAM) under I&M&O to C.
As can be seen that the network with SSA and our proposed
network focus on the region of internal face, instead of concen-
trating on the domain-specific information (i.e. the edge area
outside the face, such as backgrounds, illuminations, etc.) like
the baseline according to Fig.4. It shows that the network with
SSA and the proposed network have a better chance of learning
robust discriminant clues. Compared with SSA, our proposed
method with the CSD-S focuses more on facial areas with rich
discriminant clues across domains such as eyes, nose, cheeks,
etc., which is more likely to generalize well to unseen domains.

Moreover, as shown in Fig.5, the t-SNE (Van der Maaten and
Hinton, 2008) visualizations are plotted to analyze the feature
space learned by our proposed method and the Resnet-18. Both
experiments were completed under O&C&I to M testing tasks
with 200 samples of each category from four databases. It is
worth noting that the real features and attack features are sep-
arated in Fig.5(a) by a rough and straightforward classification
boundary with an unsatisfied performance. In contrast, as can
be seen in Fig.5(b), the feature distribution of attack images is
dispersed domain to domain, and the distribution of real one is
more compact. Therefore, not only a better class boundary can
be achieved but also far better generalization ability is gained
by our proposed method when testing in Fig.5(c) compared to
the performance in Fig.5(a).
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Live

Live

Fake

Fake

Baseline Baseline + SSA
Baseline + SSA 

+ CSD-S

Fig. 4. The Grad-CAM visualization of different methods under I&C&O to
M, where the first and second rows show the fake and live samples, respec-
tively. The methods from left to right are the pre-trained Resnet18 (i.e.,
baseline), the network with SSA, and our proposed method with CSD-S.

(a) Resnet 18 visualizing 3 

source and 1 target domains 

Real Attack

Source Domain 1

Source Domain 2

Source Domain 3

Target Domain

(b) Proposed Model Visualizing 

only 3 source domains

(c) Proposed Model Visualizing 3 

source and 1 target domains

Fig. 5. A t-SNE plot of the extracted features coming from Resnet (a) and
our full model (b, c) under the O&C&I to M testing tasks (best viewed in
colors).

To further evaluate the performance of the model on each
type of true and false samples, we listed some of the incorrect
FAS results under four experiments. As shown in Fig.6, the
first two columns are the real faces which are incorrectly classi-
fied as fake ones, while the latter two columns are the opposite.
It can be observed from the samples that the majority of mis-
classification is caused by obvious appearance variances, such
as partial occlusion, underexposure or oversaturation, and im-
age distortion, etc., which makes the extracted features differ-
ences between these real and fake faces smaller. Therefore, it is
very challenging in practical applications of the FAS model to
solely rely on learning a generalized feature space for all data,
but other efforts can be made for instance the proposed CSD-S
which tries to gain a domain-agnostic classifier.

5. Conclusion

In this paper, we proposed a novel framework to extract
domain-invariant features via adversarial learning and com-
bined low-rank decomposition in face anti-spoofing. To im-
prove the generalization ability of our model, we tried to seek

R- F

F- R

Fig. 6. Examples of the incorrect FAS results by the proposed method un-
der four experiments. The sign “R-F” denotes that a real face is incorrectly
classified as a fake one, while the “F-R” is the opposite.

a generalized feature space by aggregating all live faces and
separating spoof ones from different domains. Besides, we pro-
posed a CSD-S layer that decomposes the network’s parame-
ters into two parts, thus obtaining a domain-agnostic classifier.
Comprehensive experimental results show the effectiveness of
combining generalized feature space and robust classifier.
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Määttä, J., Hadid, A., Pietikäinen, M., 2011. Face spoofing detection from
single images using micro-texture analysis, in: IJCB, IEEE. pp. 1–7.

Muandet, K., Balduzzi, D., Schölkopf, B., 2013. Domain generalization via
invariant feature representation, in: ICML, pp. 10–18.

Patel, K., Han, H., Jain, A.K., 2016. Secure face unlock: Spoof detection on
smartphones. TIFS 11, 2268–2283.

Peixoto, B., Michelassi, C., Rocha, A., 2011. Face liveness detection under bad
illumination conditions, in: ICIP, IEEE. pp. 3557–3560.

Piratla, V., Netrapalli, P., Sarawagi, S., 2020. Efficient domain generalization
via common-specific low-rank decomposition, in: International Conference
on Machine Learning, PMLR. pp. 7728–7738.

Qin, Y., Zhao, C., Zhu, X., Wang, Z., Yu, Z., Fu, T., Zhou, F., Shi, J., Lei, Z.,
2020. Learning meta model for zero-and few-shot face anti-spoofing, in:
AAAI.

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.,
2017. Grad-cam: Visual explanations from deep networks via gradient-
based localization, in: Proceedings of the IEEE international conference on
computer vision, pp. 618–626.

Shao, R., Lan, X., Li, J., Yuen, P.C., 2019. Multi-adversarial discrimina-
tive deep domain generalization for face presentation attack detection, in:
CVPR, pp. 10023–10031.

Shao, R., Lan, X., Yuen, P.C., 2020. Regularized fine-grained meta face anti-
spoofing., in: AAAI, pp. 11974–11981.

Tan, X., Li, Y., Liu, J., Jiang, L., 2010. Face liveness detection from a single im-
age with sparse low rank bilinear discriminative model, in: ECCV, Springer.
pp. 504–517.

Torralba, A., Efros, A.A., 2011. Unbiased look at dataset bias, in: CVPR, IEEE.
pp. 1521–1528.

Wang, G., Han, H., Shan, S., Chen, X., 2020a. Cross-domain face presentation
attack detection via multi-domain disentangled representation learning, in:
CVPR, pp. 6678–6687.

Wang, Z., Yu, Z., Zhao, C., Zhu, X., Qin, Y., Zhou, Q., Zhou, F., Lei, Z., 2020b.
Deep spatial gradient and temporal depth learning for face anti-spoofing, in:
CVPR, pp. 5042–5051.

Wen, D., Han, H., Jain, A.K., 2015. Face spoof detection with image distortion
analysis. TIFS 10, 746–761.

Yang, J., Lei, Z., Liao, S., Li, S.Z., 2013. Face liveness detection with compo-
nent dependent descriptor, in: ICB, IEEE. pp. 1–6.

Yang, X., Luo, W., Bao, L., Gao, Y., Gong, D., Zheng, S., Li, Z., Liu, W., 2019.
Face anti-spoofing: Model matters, so does data, in: CVPR, pp. 3507–3516.

Yu, Z., Li, X., Niu, X., Shi, J., Zhao, G., 2020a. Face anti-spoofing with human
material perception, in: ECCV.

Yu, Z., Li, X., Shi, J., Xia, Z., Zhao, G., 2021. Revisiting pixel-wise supervi-
sion for face anti-spoofing. IEEE Transactions on Biometrics, Behavior, and
Identity Science (TBIOM) .

Yu, Z., Qin, Y., Li, X., Wang, Z., Zhao, C., Lei, Z., Zhao, G., 2020b. Multi-

modal face anti-spoofing based on central difference networks, in: CVPRW,
pp. 650–651.

Yu, Z., Qin, Y., Xu, X., Zhao, C., Wang, Z., Lei, Z., Zhao, G., 2020c. Auto-fas:
Searching lightweight networks for face anti-spoofing, in: ICASSP, IEEE.
pp. 996–1000.

Yu, Z., Wan, J., Qin, Y., Li, X., Li, S.Z., Zhao, G., 2020. Nas-fas: Static-
dynamic central difference network search for face anti-spoofing. IEEE
TPAMI , 1–1doi:10.1109/TPAMI.2020.3036338.

Yu, Z., Zhao, C., Wang, Z., Qin, Y., Su, Z., Li, X., Zhou, F., Zhao, G., 2020.
Searching central difference convolutional networks for face anti-spoofing,
in: CVPR, pp. 5295–5305.

Zhang, K., Zhang, Z., Li, Z., Qiao, Y., 2016. Joint face detection and align-
ment using multitask cascaded convolutional networks. IEEE SPL 23, 1499–
1503.

Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z., 2012. A face antispoofing
database with diverse attacks, in: ICB, IEEE. pp. 26–31.


