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Abstract

The primary example of instance-based learning is the k-nearest neigh-
bor rule (kNN), praised for its simplicity and the capacity to adapt to new
unseen data and toss away old data. The main disadvantages often men-
tioned are the classification complexity, which is O(n), and the estimation
of the parameter k, the number of nearest neighbors to be used. The use
of indexes at classification time lifts the former disadvantage, while there
is no conclusive method for the latter.

This paper presents a parameter-free instance-based learning algo-
rithm using the Half-Space Proximal (HSP) graph. The HSP neighbors
simultaneously possess proximity and variety concerning the center node.
To classify a given query, we compute its HSP neighbors and apply a sim-
ple majority rule over them. In our experiments, the resulting classifier
bettered KNN for any k in a battery of datasets. This improvement
sticks even when applying weighted majority rules to both kNN and HSP
classifiers.

Surprisingly, when using a probabilistic index to approximate the HSP
graph and consequently speeding-up the classification task, our method
could improve its accuracy in stark contrast with the kNN classifier, which
worsens with a probabilistic index.

1 Introduction

One of the most popular classifiers is k-Nearest Neighbors (kNN), which was
rated as one of the top 10 algorithms in data mining [1, 2]. Trivially imple-
mented, kNN is popular because of its simplicity. There is no training stage,
and as soon as the data is acquired, the algorithm is ready to make predictions.
Moreover, it works without prior knowledge of the data distribution.

A vanilla implementation of the kNN classifier consists of computing the
distance between the query and every training sample to obtain a neighborhood
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of the closest k samples to the query and assigning the majority’s label in
that neighborhood. The kNN classifier’s performance depends crucially on the
neighborhood’s size determined by the value of k [3, 4] and the distance function
used to measure the similarity between two specimens [5, 6].

Choosing the optimal parameter k for kNN is a challenging task. A large k
produce a neighborhood robust to noise, but it may include too many neighbors
from other classes [7], while a small value of k often leads to an overfitted decision
boundary resulting in high noise sensitivity. Ideally, k should be adapted to the
every dataset in particular.

On the other hand, regarding complexity or speed, a brute force algorithm for
finding the k-nearest neighbors has linear complexity, O(n) with n the database
size. This complexity does not scale for large problems. Unlike databases made
up of simple attribute data, recent data tends to be large and complex. For
example, in multimedia data, the standard approach is to search not at the
level of actual multimedia objects but instead using the so-called deep-features
extracted from these objects [8]. This technique produces high-dimensional
vectors that are difficult to index, with provable hardness complexity[9]. The
difficulty of finding the k closest neighbors in large, high-dimensional databases
has prompted approximation algorithms for the search for similarity (ANN). An
ever-growing amount of research in ANN search aims at high accuracy and low
computational complexity algorithms. These methods are typically used as an
offline stage in kNN to accelerate the classification tasks.

For high dimensional spaces, graph-based ANN takes the lead in algorithm
usage. One of the most efficient graphs for the nearest neighbor search is the
Small World graph (SW-graph), proposed in [10] as NSW graph. Each insertion
finds its approximate neighbors by a greedy search in the partial graph built so
far. HNSW [11] is an extension of NSW. It incrementally builds a multi-layer
structure consisting of a hierarchical set of proximity graphs (layers) for nested
subsets of the stored elements. HNSW is one of the most efficient, general-
purpose algorithms [12] for this problem. HNSW is the index we selected to
speed-up near-neighbor searches in this work.

1.1 Motivation

Probabilistic indexes, such as HNSW, have lifted one of the main disadvantages
of the kNN classifier: classification speed. On the other hand, deep-features
simplifies the design of the distance to compare instances in the classifier. One
standing problem in kNN classification is the selection of the parameter k. Re-
searchers have proposed many methods to discover a good value for k (discussed
with more detail later, in the next section) in a quest to lift this last limitation for
a proper black-box classification algorithm. This paper proposes a more general
approach; designing an algorithm that naturally chooses a query neighborhood
without parameters. This neighborhood should contain objects near the query
while at the same time providing geometric diversity within the database. In
other words, we want to eliminate redundancy in the neighborhood.
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1.2 Contribution

We base our proposal on the Half-Space Proximal (HSP) graph introduced in
[13]. This graph extracts a low-degree spanner of the complete graph. Each
node is associated with its nearest neighbor, clearing from the complete graph
all redundant nodes in the nearest neighbor’s direction by using a half-space
hyperplane. We repeat with the remaining nodes until clearing all of them. We
will discuss this in more detail in section 3. We fixed our attention just in the
neighborhood of the query instead of the entire graph.

In this paper, we show that a majority classifier using the HSP neighborhood
of the query systematically outperforms the kNN classifier for any k. Comput-
ing the HSP neighborhood of the query is as fast as computing the k-nearest
neighbors, and it admits speeding-up using an index. Moreover, when using an
index, the classification precision increases, unlike the kNN classifier. We tested
our claims with a realistic experimental setup with a well-known benchmark.

2 Related Work

Research in kNN performance is abundant, with classical and recent approaches[3],
with many variations of the classifier [2, 14]. The efforts focus mostly on solving
one or more of the issues present in kNN.

In the vanilla kNN algorithm, the distance function used is Euclidian, with
the same weight to all features, yielding inaccurate results when irrelevant at-
tributes are present, as in high-dimensional data [15]. The approaches for solving
this problem include assigning different weights to each feature [16] or eliminat-
ing the least relevant features. Some other methods include assigning different
weights to each neighbor, with the idea that closer neighbors should contribute
more for assigning the class label to the query [17]. Other approaches include
the design of distance functions like Mahalanobis [18, 19], adaptive Euclidian
[20], or the Value Difference Metric (VDM) [21, 22].

In choosing the optimal k, the vanilla approach uses a fixed value of k for
every test sample. A popular choice is to use k =

√
n, proposed in [23]. Another

method, proposed in [24], is tenfold cross-validation to find the optimal value
for k. However, in [25] they show that a fixed value leads to a low prediction
rate since it does not consider the distribution of the data. Alternatively, recent
efforts focus on setting a different k value for each test sample, giving better
results [26]. More efforts in this direction include evolutionary computation
techniques [16], probabilistic methods [27], and linear modeling [25], among
others.

In general, the idea behind these methods is to search for the optimal k
values and then perform a traditional kNN classification. The methods that
use this approach require additional processing time during the classification,
which increases the algorithm’s overall complexity. According to [28] these
techniques have a time complexity of at least O(n2) during the classification
time, which is not suitable for large data repositories. Zhang et al. [28] proposed
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the kTree and k*Tree methods, which introduce an offline training stage that, in
addition to finding a proper size of the neighborhood, also focuses on reducing
the online classification time. This approach also has quadratic complexity to
find the neighborhood’s optimal size, finding optimal k values in an offline stage.
With this modification, instead of having an online complexity of O(n2) during
classification, the task can be achieved with a complexity of O(log(d)+n), where
d is the dimensions of the features.

For each of the proposed methods and improvements of kNN, there is an
additional time-consuming stage, online or offline, to estimate a proper k value
of each test sample. These procedures take away the simplicity of kNN, which
is one of the characteristics that makes it so popular. Moreover, the accuracy
of these methods is limited to the traditional kNN with optimal parameters.

3 HSP graph

The HSP graph is a local proximity graph [29] that was originally proposed and
designed for applications in ad-hoc networks. Computationally, these networks
are represented by Unit Disk Graphs (UDG), where the nodes represent the
network components, called hosts. An edge connects two nodes if the Euclidian
distance between the hosts is less than a given unit, where the unit represents
the common transmission range of the hosts in the network. An edge indicates
the hosts can communicate with each other with a single transmission, called a
hop.

Figure 1: Example of the transmission range of a host. In a UDG, all nodes
within the range would be connected to the central node.

The HSP test determines which neighbors are retained within each node’s
range for constructing a suitable geometric subgraph of the UDG. The resulting
graph referred to as the HSP graph, is a sparse directed or undirected subgraph
of the UDG (see Figure 2).

Extracting a UDG subgraph reduces the complexity of the network, which
is useful in many applications. Some examples include energy-efficient routing
and power optimization. These applications often need the resulting graph to
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Figure 2: Example of an HSP graph.

have some properties like having a small degree, being planar, or having the
minimum spanning tree as its subgraph.

The HSP graph is a computationally simple algorithm that has many prop-
erties desirable for network applications. An important characteristic is that
it uses only local computations for its construction. This property is essential
because in ad-hoc networks the topology of the whole network is usually not
available. Besides, in dynamically changing networks, eventual changes should
be detected and fixed without disturbing the entire network.

3.1 Construction

For the construction of the HSP graph, we assume the graph G = (V,E) is a
UDG with coordinates (vx,vy) for each node v in the Euclidian plane, and a
unique integer label for each vertex. The algorithm to choose the neighbors for
each node to construct the HSP graph is described in Algorithm 1 and illustrated
in Figure 3.

(a) (b)

(c) (d)

Figure 3: Zooming around the vecinity of a selected node

From [13], Figure 3 illustrates the forbidden half-space represented by a
shaded area. Computationally, an edge (u, z) is forbidden by an edge (u, v)
when the Euclidian distance from z to v is smaller than the Euclidian distance
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Algorithm 1: HSP

Input: a vertex u of a geometric graph and a list L1 of edges incident
with u.

Output: a list of directed edges L2 which are retained for the HSP
graph.

Set the forbidden area F (u) to be ∅;
while L1 is not empty do

Remove from L1 the shortest edge, say (u, v), (any tie is broken by
smaller end-vertex label) and insert in L2 the directed edge (u, v)
with u being the initial vertex;

Add to F (u) the open half-plane determined by the line
perpendicular to the edge (u, v) in the middle of the edge and
containing the vertex v;

Scan the list L1 and remove from it any edge whose end-vertex is in
F (u);

end

from z to u. Additionally, there is no explicit use of the coordinates, and each
node chooses its neighbors without parameters.

3.2 Properties

The HSP graph has many desirable properties for ad-hoc networks, it is a t-
spanner, with t ≥ (2π + 1). The obtained spanner is invariant under similarity
transformations and contains the minimum weight spanning tree.

The out-degree of the HSP graph depends on the data’s intrinsic dimension,
and it coincides with the kissing number in that dimension. For example, it is 2,
6, 12, and 24 for dimensions 1, 2, 3, and 4, respectively. In higher dimensions,
only upper and lower bounds are known, with few exceptions. The relevant
feature for the HSP in classification tasks is that it provides diversity and simi-
larity in each node’s neighborhood. The neighborhood of a node comprises the
neighbors after eliminating the redundancy between them. Notably, the above
can be achieved without tuning parameters. This last property is what makes
it unique for classification applications.

The HSP graph is fully distributed and computationally simple to construct.
The algorithm is executed by each node using only information of their neigh-
borhood. Although initially formulated for two-dimensional data, where the
vectors represent the physical coordinates that correspond to geographic loca-
tions, the HSP graph’s algorithm has no explicit use of the coordinates, which
means that it can be generalized to work in any metric space. Therefore, a
generalized HSP algorithm can be used for other applications[30, 31], as our
proposal for classification tasks is the case.
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4 HSP for classification

Our proposal is the HSP classifier, that is, using the neighborhood discovered by
the HSP test as the instances to be compared with a query. Our initial proposal
assumes each query can choose its neighbors from the entire database (i.e., all
the training samples) instead of only within a range determined by a given unit,
as it is the UDG case; this corresponds to a UDG with infinite radius.

The selected neighbors have the property of being similar while diverse,
which gives a representative vicinity for each query. Furthermore, besides being
a computationally simple algorithm, this proposal’s main advantage is that there
is no parameter k needed for selecting the neighbors; the selection happens
naturally.

Our proposal solves the problem of choosing the proper k neighbors to do the
classification task. Once we obtained the neighborhood, we apply the majority
rule over the selected neighbors’ labels, as in the vanilla kNN classifier.

The proposal could be trivially implemented in any metric space and any
dimension. We present the pseudocode in Algorithm 2.

Algorithm 2: HSP classifier

Input: training samples X and test samples Y
Output: class labels of Y
for each u ∈ Y do

N ← ∅;
C ← X;
while C is not empty do

v ← c ∈ C | d(u, c) ≤ d(u, c′),∀c′ ∈ C;
N.insert(v);
for each c ∈ C do

if d(c, u) > d(c, v) then
C.remove(c);

end

end

end
label(u)← most repeated label in N ;

end

5 Experiments

We performed experiments to assess the performance of the HSP classifier,
contrasting it with the kNN. We selected realistic high-dimensional data ob-
tained by performing deep-feature extraction on popular datasets used for im-
age classification tasks. We used the VGG16 model weights pre-trained with
ImageNet[32]. Researchers often call the above process deep-features or knowl-
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edge transfer. In this case, we feed the VGG16 model with the corresponding
image and output the last layer just before classification. The above is a widely
used technique for image classification tasks [7, 33].

We selected five datasets with different characteristics; those datasets are
among the most popular for benchmarking classification algorithms. In table 1
we describe each of the selected datasets for the experiments.

Table 1: Description of the datasets

Name # sam-
ples

# fea-
tures

# classes

MNIST [34] 70000 512 10
Fasion MNIST [35] 70000 512 10
CIFAR10 [36] 60000 512 10
CIFAR100 [36] 60000 512 100
Mini-ImageNet
[37]

60000 2048 100

The datasets have an increasing difficulty of classification, respectively MNIST,
Fashion MNIST, CIFAR 10, Mini-ImageNet, and CIFAR 100. Each dataset has
a dimension that depends on the deep-feature extraction and the original size
of the images. Both CIFAR10 and CIFAR100 have an original size of (32x32).
MNIST and Fashion MNIST have an original size of (28x28) but were con-
verted to (32x32) since the model accepts this minimum size. Thus, the size of
the feature vectors for these four datasets is the same.

In the case of mini-Imagenet, the image size is (84x84). This dataset is
interesting since it is a subset of ImageNet. The complexity of Mini-ImageNet
is relatively high but requires fewer resources than the full ImageNet dataset.

In each of the datasets, we selected a random sample of 1000 images for
testing. Since our focus is on designing a parameter-less instance-based classifier,
we only used the Euclidean distance to measure the similarity between samples.
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Mini-ImageNet with majority rule

Figure 4: Mini-ImageNet - VGG16
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CIFAR10 with majority rule

Figure 5: CIFAR10 - VGG16
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CIFAR100 with majority rule

Figure 6: CIFAR100 - VGG16

We plotted all experiments together to save space. We explain each one of
the results appearing in the images, in the order presented in Figure 9. Firstly
kNN is the vanilla kNN classifier. Probabilistic kNN is the kNN classifier using
a probabilistic index. Below we discuss a couple of HSP variants to speed up
the computation of the HSP neighborhood of a query.

Asymptotic and Probabilistic Asymptotic HSP The described HSP
classifier has linear time complexity, not scaling in large-sized high-dimensional
data. One alternative is to compute the HSP inside a ball of a certain radius.
A natural radius is the k-nearest neighbors. We call this the Asymptotic HSP.
If we use a probabilistic index to compute the k-nearest neighbors of the query,
we call the resulting neighborhood Probabilistic Asymptotic HSP

9



 84

 86

 88

 90

 92

 94

 0  50  100  150  200  250  300

A
c
c
u
ra
c
y
 (
%
)

k

MNIST with majority rule

Figure 7: MNIST - VGG16
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Figure 8: Fashion MNIST - VGG16
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Figure 9: Plot legends

6 Experiments

We tried all values of k, from 1 to 300, for the vanilla kNN classifier, the asymp-
totic HSP, and the probabilistic versions. For the HSP classifier, there is only
one value since it is parameter-free. The plots show the accuracy of the classi-
fication in the vertical axis. Please notice that any method to select a proper k
for kNN will correspond to one value between 1 and 300, dispensing the need
to compare to SOTA kNN classifiers.
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Algorithm 3: Asymptotic probabilistic HSP classifier

Input: training samples X and test samples Y
Output: class labels of Y
for each u ∈ Y do

N ← ∅;
C ← kNN(X,u, k);
while C is not empty do

v ← c ∈ C | d(u, c) ≤ d(u, c′),∀c′ ∈ C;
N.insert(v);
for each c ∈ C do

if d(c, u) > d(c, v) then
C.remove(c);

end

end

end
label(u)← most repeated label in N ;

end

Please notice that the probabilistic asymptotic HSP has the same complexity
as the probabilistic kNN classifier when using an index like the HNSW [11]. The
pseudocode is in Algorithm 3.
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Mini-ImageNet with distance weighting (Dudani, 1976)

Figure 10: Mini-ImageNet - VGG16

In the first experiment, we used only the majority rule for the five classifiers.
In this case (figures 4 to ??), the HSP outperforms both versions of kNN in
CIFAR 10, Fashion MNIST, and CIFAR 100, being slightly worst than Mini-
ImageNet and MNIST. However, the asymptotic versions of HSP outperform
kNN in the last two examples. Notice that the asymptotic versions of the HSP
have a smoother behavior than kNN, which seems chaotic as a function of k.

It is possible to improve kNN using algorithms giving closer neighbors more
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Figure 11: CIFAR10 - VGG16
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Figure 12: CIFAR100 - VGG16
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Figure 13: MNIST - VGG16
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Figure 14: Fashion MNIST - VGG16

Table 2: Maximum accuracy percentage for each technique using: 1. Majority
rule, 2. Dudani’s weighting rule [38], 3. Inverse distance weighting.

CIFAR
10

CIFAR
100

MNIST Fashion
MNIST

Mini
ImageNet

1

kNN 62.2 39 92.6 86.8 59.5
P-kNN 61 38.9 92.4 86.8 58.1
HSP 64 39.7 92.4 87 58.8
A-HSP 64.4 39.7 93.2 87.2 61.3
PA-HSP 66.4 39.7 93.2 87 61.1

2

kNN 63.8 40 92.8 87.2 60.6
P-kNN 64 39.7 92.8 87 60.6
HSP 65.2 40.9 92 86.8 62.2
A-HSP 64.8 40.9 92.8 87.4 63.2
PA-HSP 67 40.9 92.6 87.2 63.3

3

kNN 62.6 38.8 92.6 86.8 59.5
P-kNN 61.8 38.9 92.4 86.8 58.1
HSP 63.6 40.3 92.6 86.8 59.7
A-HSP 64.8 40.5 93.2 87.4 61.3
PA-HSP 66.8 40.5 92.8 86.8 61

influence than further ones. Dudani’s work [38] is one approach where the
weighting function varies with the distance between the query and the considered
neighbor in such a manner that the value decreases with increasing the query-
to-neighbor distance. He orders the k neighbors so that dk corresponds to the
distance of the furthest neighbor to the query and d1 to the nearest one.

wj =

{
dk−dj

dk−d1
dk 6= di

1 dk = di

Another fairly general technique is to use inverse distance weighting voting,
where the neighbors get to vote on the class of the query with votes weighted
by the inverse of their distance to the query.
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wj =
1

dj

In the second experiment, we tried the two versions of distance weighting
described above. Due to space restrictions, we only show the plots for Dudani’s
weighting algorithm. We can observe in figures 10 to 14 that, similarly to
the previous experiment, the HSP outperforms kNN for all datasets, except
for MNIST and Fashion MNIST in this case. However, either the asymptotic
versions of the HSP or the HSP itself outperform kNN in all cases.

The two experiments, plus the inverse distance weighting, are summarized
in table 2. In the case of MNIST, with Dudani’s rule, kNN matches the per-
formance of our classifier. Our classifier has the additional advantage of being
parameter-free or with a smooth behavior in the asymptotic version.

7 Conclusions and future work

We presented three new instance-based classifiers, the HSP, Asymptotic HSP,
and Probabilistic Asymptotic HSP. We compared our proposal with state of
the art kNN classifiers, with optimal parameters (something unachievable in
a production environment because there is no ground truth to know the best
k). Our approach is parameter-free from the point of view of accuracy and a
parameter related to the complexity. In all cases, the kNN classifiers at most
topped our performance.

With our approach, it is possible to focus on finding a suitable distance
function to compare instances when designing a classifier or a data mining task.
A parameter-free instance-based classifier could be of help in many applications.
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