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Target-Cognisant Siamese Network for Robust
Visual Object Tracking
Yingjie Jiang, Xiaoning Song, Tianyang Xu, Zhen-
hua Feng, Xiaojun Wu, Josef Kittler

Siamese trackers have become the mainstream framework for vi-
sual object tracking in recent years. However, the extraction of
the template and search space features is disjoint for a Siamese
tracker, resulting in a limited interaction between its classifica-
tion and regression branches. This degrades the model capac-
ity accurately to estimate the target, especially when it exhibits
severe appearance variations. To address this problem, this pa-
per presents a target-cognisant Siamese network for robust vi-
sual tracking. First, we introduce a new target-cognisant attention
block that computes spatial cross-attention between the template
and search branches to convey the relevant appearance informa-
tion before correlation. Second, we advocate two mechanisms to
promote the precision of obtained bounding boxes under complex
tracking scenarios. Last, we propose a max filtering module to
utilise the guidance of the regression branch to filter out potential
interfering predictions in the classification map. The experimen-
tal results obtained on challenging benchmarks demonstrate the
competitive performance of the proposed method.
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• A new Target-Cognisant Siamese-based anchor-free tracker.

• The proposed method computes cross-spatial attention for refining the measurement of spatial similarity.

• Two tracking mechanisms are used to promote the precision of bounding box prediction.

• A max filtering module is proposed to filter out similar distractors.

• Our method achieves competitive performance on several tracking datasets.
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ABSTRACT

Siamese trackers have become the mainstream framework for visual object tracking in recent years.
However, the extraction of the template and search space features is disjoint for a Siamese tracker,
resulting in a limited interaction between its classification and regression branches. This degrades
the model capacity accurately to estimate the target, especially when it exhibits severe appearance
variations. To address this problem, this paper presents a target-cognisant Siamese network for
robust visual tracking. First, we introduce a new target-cognisant attention block that computes
spatial cross-attention between the template and search branches to convey the relevant appearance
information before correlation. Second, we advocate two mechanisms to promote the precision of
obtained bounding boxes under complex tracking scenarios. Last, we propose a max filtering module
to utilise the guidance of the regression branch to filter out potential interfering predictions in the
classification map. The experimental results obtained on challenging benchmarks demonstrate the
competitive performance of the proposed method.
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1. Introduction

Visual object tracking is a fundamental task in computer vi-
sion. It has many practical applications, e.g., human-computer
interaction [1], autonomous driving [2], video surveillance [3],
etc. Visual object tracking aims to localise an arbitrary target
in each frame of a video, given its state in the first frame. De-
spite the remarkable progress to date, it is still very challeng-
ing to achieve high-performance tracking in the presence of un-
predictable changes of the target appearance and its surround-
ings, due to phenomena such as illumination changes, occlu-
sion, scale variation, etc.

In recent years, different from online-learning Discrimina-
tive Correlation Filters (DCF) [4, 5, 6], Siamese-based track-
ers have attracted a wide attention due to their efficient pair-
wise matching formulation and the ability to extract robust fea-
tures. The pioneering studies, SINT [7] and SiamFC [8], for-
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mulate the task as a matching problem, and use a Siamese net-
work to extract the target and instance representations for mea-
suring their similarity. Inspired by that, many Siamese track-
ers [9, 10, 11, 12, 13, 14] have been proposed, producing in-
creasingly promising results. These methods can be divided
into two main categories: anchor-based and anchor-free meth-
ods. Anchor-based methods usually perform better in terms of
accuracy, while anchor-free trackers are more flexible, avoiding
additional hyper-parameters associated with candidate boxes.

Siamese-based trackers are trained offline to produce ro-
bust feature embedding, and use fixed target models for infer-
ence. Hence the template cannot be updated online, leading to
poor performance in the presence of target appearance defor-
mation or scale changes. Moreover, the features of the tem-
plate and search window content are computed independently,
before cross-correlation, resulting in limited interaction. How-
ever, a close information interaction between the template and
the candidates is very important for the accurate localisation of
the target. Most existing studies [15, 16] focus on enhancing
the template representation of the first frame, while only a few
of them simultaneously improve the feature representation of
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Fig. 1. A comparison of our SiamTC with Ocean-online [14] and Siam-
CAR [18] on 3 challenging videos. SiamTC predicts better bounding boxes
than the others under the scenarios of object deformation, background
clutter and scale change.

the template and the candidates [17]. However, the ability of
anchor-free Siamese trackers accurately to estimate the target
state cannot be guaranteed in complex tracking scenes.

To mitigate the above issues, we propose a new Target-
Cognisant Siamese-based anchor-free tracker, namely SiamTC,
to enable information propagation for robust and accurate track-
ing. In contrast to the existing cross-channel attention methods
used in anchor-based trackers [17], we design a new target-
cognisant attention block for an anchor-free tracker to gauge
the spatial similarity between the template and search branches,
achieving cross-spatial attention. The block implicitly updates
the template to enhance the target representation, so as to com-
pensate for dynamic appearance changes, and ultimately im-
prove accuracy. It should be noted that the target-cognisant at-
tention block is different with the attention-based feature fusion
network used in the Transformer tracking method [19]. Trans-
former tracking mainly focuses on replacing the correlation op-
eration in an attention-based manner, with additional position
encoding to facilitate correspondence. Two simple but effective
tracking mechanisms are further introduced to obtain more pre-
cise bounding boxes, without much computational overhead.
Last, we present a max filtering module to discriminate be-
tween similar classification predictions based on a regression
process. A comparison of our SiamTC with two state-of-the-art
approaches presented in Fig.1, demonstrates the superiority of
our method for high-precision bounding box prediction.

The main contributions of the proposed SiamTC method in-
clude:
• A novel Target-Cognisant Attention Block (TCAB) for re-

fining the measurement of spatial similarity. We compute the
cross-spatial attention between the template of a target and
search windows in a video. TCAB is the key architectural ele-
ment of the novel SiamTC method for robust object tracking.
• We adaptively aggregate multi-level correlation features

and refine bounding boxes for accurate target state estimation,
at the cost of only a small number of additional parameters.
Further, a max filtering module to filter out similar distractors
is presented.
• Experiments conducted on four challenging datasets, i.e.

OTB100 [20], VOT2019 [21], GOT-10k [22] and LaSOT [23],
demonstrate the merits and superiority of the proposed method.

2. Related Work

In recent years, Siamese-based trackers have become the
mainstream methodology in visual object tracking, thanks
to their end-to-end offline training capability and the high
efficiency in online testing, achieving superior performance
against the online-learning DCFs [25, 26]. SINT [7] is the
first Siamese-based tracker in this category. It inspired the
SiamFC [8] method, which uses a fully-convolutional Siamese
network with cross-correlation for response calculation thus
greatly improves the efficiency as compared to SINT. Many
recent trackers are based on the SiamFC architecture, such
as DSiam [15] and SA-siam [27]. However, all the above
approaches use a multi-scale pyramid to address target scale
changes, resulting in insufficient accuracy of the bounding box
estimation.

To mitigate this problem, SiamRPN [10] proposed to use Re-
gion Proposal Network (RPN) [28] and achieved a much bet-
ter performance in bounding box estimation accuracy. Based
on SiamRPN, DaSiamRPN [29] focuses on improving the dis-
criminative ability of the tracker through a distractor-aware fea-
ture learning scheme. Similarly, SPM [30] proposed a series-
parallel matching framework to enhance the robustness and
the capacity to discriminate the target from the background.
SiamDW [12] and SiamRPN++ [11] suggested using deeper
networks, such as ResNet [31], for performance boosting.
On the other hand, SiamMask [32] uses fully-convolutional
Siamese networks to produce class-agnostic binary segmenta-
tion masks for fine-grained object tracking. To facilitate the in-
teraction of the tracking information conveyed by feature maps,
SiamAttn [17] jointly advocated deformable self-attention and
cross channel attention mechanisms to enhance the discrimina-
tive content of the target representation.

However, these anchor-based trackers are sensitive to the
hyper-parameters of anchors. To eliminate the predefined set of
anchors, many anchor-free trackers, e.g., SiamBAN [13], Siam-
CAR [18] and Ocean [14], have been proposed. These methods
directly classify each candidate target centre point and predict
the distances of the four borders to the ground-truth. Despite
their simplicity and the promising results achieved by offline
anchor-free Siamese trackers, their accuracy and robustness are
constrained by the limited supervision imposed in the online
tracking stage. To address this issue, we propose a novel Target-
Cognisant Attention Block (TCAB) to enhance the target infor-
mation propagation. The robustness to appearance variations
is also improved in our design by computing the cross spatial
similarity. Recently, the Transformer tracking method [19] pro-
poses a novel attention-based feature fusion module to replace
the correlation operation in Siamese trackers, demonstrating the
potential of attention mechanisms in visual object tracking.

More recently, FCOS [33] based anchor-free detectors have
attracted considerable attention in general object detection.
For example, GFL [34] and VFNet [35] use the generalised
focal loss and varifocal loss to alleviate the inconsistencies
between localisation quality and classification score. More-
over, GFLv2 [36] exploits the guidance from the statistics of
bounding box distributions to facilitate reliable localisation es-
timation. Besides, E2ENet [37] introduces the concept of
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Fig. 2. Overview of the proposed tracking framework, consisting of the Siamese subnetwork, feature aggregation and classification regression subnet-
work with a novel bounding box refinement module and max filtering module (MFM). TCAB and AWA denote the proposed Target-Cognisant Attention
Block and Adaptive Weight Aggregation, respectively. Matrix represents the three parallel irregular dilation convolution layers utilised in the baseline
method [14] and ? denotes the depth-wise cross-correlation operation. The Matrix module outputs two branches of feature maps at three different scales,
and then performs the TCAB and depth-wise cross-correlation operations to obtain three different correlation maps. These correlation maps are used by
AWA for feature aggregation. For simplification, we only draw the process of the feature maps of a single scale in the feature aggregation stage. DCN
stands for the deformable convolution layer [24].

prediction-aware one-to-one label assignment to enable end-to-
end detection. Although the improved anchor-free approaches
is popular in the detection field, they have not been sufficiently
investigated in the tracking community. To bridge this gap,
we propose an anchor-free Siamese tracker employing two new
tracking mechanisms with a max filtering module to improve
its accuracy and robustness.

3. The Proposed Method

We take the Ocean-offline [14] (without object-aware mod-
ule) as our baseline method to establish an efficient anchor-free
tracking framework. Based on this, we propose a novel SiamTC
tracker, as shown in Fig. 2, which has three main components:
1) a Target-Cognisant Attention Block (TCAB), enhancing the
feature robustness against appearance variations; 2) two accu-
rate tracking mechanisms providing Adaptive Weight Aggrega-
tion (AWA) and a bounding box refinement; 3) a Max Filtering
Module (MFM) that callbacks the ability of regression to im-
prove the discrimination of the tracker in the adjacent regions.

3.1. The Target-Cognisant Attention Block

Siamese trackers rely on the correspondence of the target ap-
pearance conveyed by the template and search window, with
reduced ability to discriminate the target from distractors, es-
pecially when faced with extreme background clutter. We at-
tribute the above deficiency to the lack of communication be-
tween the template and search branches, resulting in inference
uncertainty affecting the online tracking process. We argue that
the extraction of mutual information for accurate and robust tar-
get identification is of paramount importance and this viewpoint
motivates the innovations presented in this paper.

Different from previous channel attention or spatial self-
attention [17], we propose a Target-Cognisant Attention Block
(TCAB) using spatial cross-attention to enhance the consis-
tency of appearance of the template and target candidate be-
fore correlation, as shown in Fig. 3(a). By design, the search
branch learns class-agnostic target information, while the tem-
plate branch provides discriminative feature representations,

jointly improving the model capacity to discriminate between
similar interferences. It takes a pair of convolutional features
computed by the feature encoding network as inputs, and out-
puts a feature pair spatially enhanced by cross-attention.

Given the template feature map Z ∈ RC×h×w and the search
window feature map X ∈ RC×H×W , we first apply two 1 × 1
convolution layers to Z and X to generate Φ ∈ RC′×h×w and
Θ ∈ RC′×H×W , where C′ = C

2 . These two feature maps are fed
into two parallel branches to generate pixel-wise spatial cross-
attention maps. Let’s take the search subbranch as an example.
Φ and Θ are reshaped to Φ̄ ∈ RC′×n and Θ̄ ∈ RC′×N , where
n = h × w, N = H ×W. The cross-attention map CAX of X is
obtained by using the Global Max Pooling (GMP):

CAX = reshape(GMP(Θ̄T
× Φ̄)) ∈ RH×W . (1)

Finally, the corresponding search window feature X is multi-
plied by the cross-attention map CAX to estimate a spatial sim-
ilarity between the two frames, and the result added to get a
spatially enhanced search feature EAX:

EAX = CAX
× X + X ∈ RC×H×W . (2)

Similarly, an enhanced template feature EAZ is obtained in a
similar way:

CAZ = reshape(GMP(Φ̄T
× Θ̄)) ∈ Rh×w. (3)

EAZ = CAZ
× Z + Z ∈ RC×h×w. (4)

3.2. Accurate Tracking Mechanisms

As the geometric properties, such as scale and aspect ratio of
the target, usually change in a video, an accurate prediction of
the target state is crucial to achieving high-performance track-
ing. In contrast to the existing trackers, we use two simple but
effective mechanisms to obtain more precise bounding boxes.
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Fig. 3. The structure and visualisation of the Target-Cognisant Attention Block (TCAB), as detailed in Sec. 3.1. On the right hand side, the first row
indicates the features produced by the baseline method, and the second row shows the attention feature furnished by TCAB.

Fig. 4. Visualisation results of our proposed adaptive weight aggregation
maps in three different video sequences on VOT2019. From top to bottom
are ants, wheels and zebrafish.

3.2.1. Adaptive Weight Aggregation
In existing tracking methods [11, 13, 14], layer-wise aggre-

gation is used to fuse multi-level deep network features. This
is achieved by learning the layer-level weights corresponding
to each correlation map, and optimising them together with the
network. During the test stage, the learned layer-level weights
are fixed. Take Ocean [14] as an example, denote the correla-
tion map corresponding to the output of the i-th dilated convolu-
tion layer as Si. The layer-wise aggregation can be formulated
as:

Sall =

3∑
i=1

αi ∗ Si (5)

where α1, α2 and α3 are 0.3071, 0.3368 and 0.3561 respectively
for regression branch. In SiamRPN++ [11], the fusion weights
corresponding to the features from last three residual blocks are
0.1764, 0.1656 and 0.6579, respectively. They both show that
features from large dilation convolution layers contribute more
to bounding box regression.

Although this plain fusion method boosts the performance,
the fusion of the extracted deep features is not necessarily ef-
fective from the fine-grain perspective. Moreover, the learned
layer-level weights are not adaptive, resulting in performance
degradation for some frames. To resolve this issue, we propose
an Adaptive Weight Aggregation (AWA) mechanism that as-
signs independent weights to each pixel of the correlation map,
instead of sharing the same weight, to realise a fine-grained

multi-layer feature fusion.
We apply different 1×1 convolutions and a Sigmoid function

to each correlation map to generate the corresponding weight
map. Once the pixel-level weight map is obtained, we use the
weighted sum to fuse all the correlation maps. Compared with
the existing methods, the corresponding weight map can be
adaptively generated according to the correlation map in each
frame. The above process can be formulated as:

Sall =

3∑
i=1

Ωi ∗ Si =

3∑
i=1

σ(ϕi(Si)) ∗ Si (6)

where Ωi, ϕi and σ are the i-th weight map, 1 × 1 convolu-
tion layer, and the Sigmoid function. In addition, for the re-
gression branch, we also visualise the weight maps Ωi obtained
by our proposed method for better comparison. As shown in
Fig. 4, finer-grained weight maps can be obtained to adapt to the
changes of tracking objects and scenarios. The same conclu-
sion can be drawn that large dilation features contribute more,
but their relative weight can be adjusted more flexibly.

3.2.2. Bounding Box Refinement
Siamese trackers usually use a single regression head with

standard convolutional layers to obtain bounding boxes. How-
ever, to cope with complex tracking scenarios, the size of the
region, subject to convolution fixed a priori during offline train-
ing, cannot always guarantee accurate bounding box regression.
Therefore, we introduce a bounding box refinement module for
performance boosting.

Different from previous methods [17, 30], our method does
not rely on RoIPooling [28], but directly predicts the offset and
distance scaling factors to obtain the refined bounding box, as
shown in Fig. 2, which saves the cost and improves the accu-
racy of features. Specifically, for each position in the regres-
sion map, we first predict an initial bounding box B′(l′, t′, r′, b′).
With the regression map and predicted initial bounding box, we
can compute the offset and obtain the aligned features using de-
formable convolution layer [24]. Then we predict four distance
scaling factors ∆B(∆l,∆t,∆r,∆b) using the aligned features. By
applying them to the initially predicted distance vectors, we can
generate a refined bounding box as:

(l, t, r, b) = (∆l × l′,∆t × t′,∆r × r′,∆b × b′). (7)
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Fig. 5. Visualisation results of the classification maps without (w/o) and
with(w/) our proposed MFM.

We use the regression loss and bounding box refinement loss
as the supervision signals for the initial and refined bounding
boxes, respectively, to avoid the interference of low-quality ini-
tial boxes. By assigning a larger weight to the latter one, the
network training pays more attention to the final refined results,
as detailed in Sec. 3.4. With the refinement module, the pro-
posed method perceives and reacts to the target variation, thus
predicting the bounding boxes more accurately.

3.3. The Max Filtering Module
In general, object tracking task requires a high-confidence

classification ability to distinguish the target from distracting
objects, while existing anchor-free trackers are not fully em-
powered to discriminate between similar predictions. Since the
regression branch has the ability to guide object localisation
quality estimation in general object detection, as demonstrated
in [36], we exploit this potential ability to improve classifica-
tion performance in tracking. In detail, a Max Filtering Module
(MFM) is introduced to enable directional interaction and guid-
ance of the classification branch by the regression branch.

MFM is applied to the final regression feature map, as shown
in Fig. 2. We first apply 3 × 3 convolution and 2D max-pooling
layers with the kernel size 3. The specific features are then
added with the input final regression map and fed into the group
normalisation and activation function. In this way, the maxi-
mum activation of the adjacent region is selected to filter out
the interference of similar objects. A single channel 3x3 con-
volution is further applied to obtain the activation map. Finally,
the activation map is multiplied with the original classification
map to instil guidance from regression to classification.

F
′

cls = σ(ϕ
′

2(δ(MaxPool(ϕ
′

1(Fr)) + Fr))) × σ(Fcls) (8)

where Fr is the obtained feature map before bounding box pre-
diction in the regression branch, Fcls and F

′

cls are the origi-
nal classification map and final classification map obtained by
MFM, respectively. ϕ

′

1, ϕ
′

2 and MaxPool denote the two differ-
ent 3 × 3 convolution layers and the max pooling layer. δ and
σ denote the GN+ReLU and Sigmoid functions. As shown in
Fig. 5, with our MFM, the response of distractors in the classi-
fication map is suppressed, and the confidence of the target is

Table 1. Ablation study on GOT-10k. The reported speed is evaluated on
the same server with two RTX 2080ti GPUs.

TCAB ATM MFM SR0.50 SR0.75 AO FPS FLOPs

GOT-10k

0.694 0.465 0.590 72 23.6G
X 0.715 0.493 0.615 70 23.8G
X X 0.726 0.497 0.621 68 24.2G
X X X 0.743 0.515 0.635 66 24.5G

higher. Please note that MFM only consists of simple differ-
ential operators with low computational overhead, affecting the
tracking speed of our method in a minimal way, as described in
Sec. 4.1.

3.4. Loss Functions
We use a multi-task loss for the end-to-end training of our

network:
L = Lcls + λ1Lreg + λ2Lre f ine, (9)

where Lcls, Lreg and Lre f ine are the classification, regression
and bounding box refinement loss functions. We set the balanc-
ing parameters λ1 and λ2 to 1.2 and 1.5 in this paper.

We use the Binary Cross-Entropy (BCE) loss [38], Lcls =

−
∑

i=1 p∗log(p) + (1 − p∗)log(1 − p), for classification, where
i is the index of a training sample, p and p∗ are the predicted
classification score maps and ground truth labels.

The IoU loss [39], Lreg = −
∑

i=1 ln(IoU(Breg, B∗)), is used
for regression, where Breg and B∗ are the predicted initial
bounding boxes and ground truth.

Last, the bounding box refinement loss with a higher weight
is introduced to enhance the network training further, Lre f ine =

−
∑

i=1 ln(IoU(Bre f ine, B∗)), where Bre f ine represents the refined
bounding boxes.

4. Experimental Results

We use the pretrained ResNet50 [31] as our backbone. We
then train our network on COCO [40], ImageNet DET [41],
ImageNet VID [41], YouTube-BoundingBoxes [42] and GOT-
10K [22] using the stochastic gradient descent optimiser [43],
with the batch size of 64. The momentum and weight de-
cay are set to 0.9 and 10−4. For a fair comparison, we follow
SiamRPN++ [11] and set the size of template and search win-
dow to 127 × 127 and 255 × 255. We train our network for 20
epochs with 6 × 105 training pairs per epoch. The learning rate
warms up from 10−3 to 5 × 10−3 for the first 5 epochs, and then
exponentially decays to 5 × 10−4. The backbone is frozen for
the first 10 epochs and fine-tuned with a learning rate 10 times
smaller than the other parts of the proposed tracker.

We use the same offline tracking protocol as in Ocean [14]
for testing. For every tracking sequence, we crop the target
object in the first frame as the template and calculate its feature
only once. In the subsequent frames, we crop the search patch
based on the target location in the previous frame. For a more
accurate and smoother prediction between adjacent frames, the
size and cosine window penalty is applied to promote a smooth
transformation of the target size and position. The proposed
method is implemented using PyTorch on a server with 2 RTX
2080Ti GPUs and an Intel Core i9-9900X CPU.
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Table 2. A comparison with the state-of-the-art methods on VOT2019 real-
time benchmark. The best three results are highlighted in red, green and
blue, the same below.

SA SIAM SPM SiamRPN++ SiamMask MAML DiMP SiamBAN Ocean-offline Ours
[21] [30] [11] [32] [44] [45] [13] [14] SiamTC

EAO ↑ 0.252 0.275 0.285 0.287 0.313 0.321 0.327 0.327 0.345
Accuracy ↑ 0.563 0.577 0.599 0.594 0.570 0.582 0.602 0.590 0.594

Robustness ↓ 0.507 0.507 0.482 0.461 0.366 0.371 0.396 0.376 0.371

Table 3. A comparison with the state-of-the-art methods on GOT-10k.

SiamFC SPM SiamRPN++ ATOM SiamCAR Ocean-offline DiMP-50 Ocean-online Ours
[8] [30] [11] [46] [18] [14] [45] [14] SiamTC

AO ↑ 0.348 0.513 0.517 0.556 0.579 0.592 0.611 0.611 0.635
SR0.50 ↑ 0.353 0.593 0.615 0.634 0.677 0.695 0.717 0.721 0.743
SR0.75 ↑ 0.098 0.359 0.329 0.402 0.437 0.473 0.492 0.473 0.515

Table 4. The ablation experiment of Accurate Tracking Mechanisms on
VOT2019. AWA and BBR indicate the proposed Adaptive Weight Aggre-
gation and Bounding Box Refinement.

AWA BBR Accuracy Robustness EAO

VOT2019
0.590 0.356 0.320

X 0.605 0.401 0.328
X X 0.601 0.356 0.334

4.1. Ablation Study

We first perform a detailed ablation study on GOT-10k
to analyse the influence of each component of the proposed
method. As mentioned in Sec. 3, our baseline method is the
no object-aware version of Ocean-offline [14]. In Table 1, the
AO score and speed of the baseline method are 0.590 and 72
FPS. The proposed Target-Cognisant Attention Block (TCAB)
improves the AO score by 2.5%, demonstrating the impor-
tance of close communication between the template and search
branches. By using the proposed Accurate Tracking Mecha-
nisms (ATM), we can further improve the AO score to 0.621,
which shows that ATM can predict more precise bounding
boxes. The Max Filtering Module (MFM) also brings a con-
siderable improvement due to its potential to filter out similar
distractors, reaching the final performance boosting of 4.5%.
This proves that the proposed innovations are complementary.
In addition, the tracking speed is minimally affected, achieving
a trade-off between accuracy and efficiency.

We also evaluated the proposed method in terms of FLOPs.
As reported in Table 1, the FLOPs of the baseline method
is 23.6G. Each component of the proposed method increases
only 0.2-0.4G FLOPs. Therefore, our SiamTC has comparable
computational complexity as compared with Ocean-offline [14]
(24.5G vs 24.0G) while SiamTC achieves better results on four
datasets, as presented in Sec. 4.2. Compared with SiamRPN++
[11](48.9G FLOPs), SiamTC greatly decreases the computa-
tional cost and improves the tracking performance.

To further demonstrate the superiority of TCAB, we visualise
the target-cognisant attention in Fig. 3(b). We can see that the
output feature of TCAB focuses more accurately on the tracked
objects and filters out other distractors as well as background
information, improving the tracker accuracy and robustness to
appearance variations. In order to analyse the impact of each
component of the proposed ATM, we further conducted a more
detailed ablation experiment on VOT2019. As shown in Ta-
ble 4, each brings 2.5% and 1.8% relative gain in EAO.

(a) OTB100 (b) GOT-10k

Fig. 6. Success plots on (a) OTB100 and (b) GOT-10k.

Fig. 7. Success and precision plots on LaSOT.

4.2. Comparison with the State-of-the-art Approaches
We compare our method with the state-of-the-art trackers,

including SiamRPN++ [11], ATOM [46], DiMP [45], MAML
[44], SiamBAN [13], SiamCAR [18], PGNet [47] and Ocean
[14], etc., on four benchmarks: OTB100 [20], VOT2019 [21],
GOT-10k [22] and LaSOT [23].

OTB100 has 100 videos with two evaluation metrics: pre-
cision score and success rate. A comparison with the
state-of-the-art trackers is reported in Fig. 6(a) by using the
one-pass evaluation (OPE). Our SiamTC achieves 0.695 in
the success score, which is comparable to the anchor-based
method (SiamRPN++ [11]) and outperforms the best anchor-
free tracker (Ocean-offline [14]). It demonstrates that our
method is effective and improves the tracking performance,
thus bridging the gap between anchor-free and anchor-based
trackers. Furthermore, SiamTC outperforms the online update
methods (DiMP [45] and Ocean-online [14]), proving that our
tracker has a good ability to distinguish the target from distract-
ing objects.

VOT2019 is a very challenging benchmark that has 60
videos with rotated bounding boxes annotations. The perfor-
mance measurement used here is the Expected Average Over-
lap (EAO). We evaluate our tracker on the VOT2019 real-time
benchmark in Table 2. Compared with the anchor-base method
SiamRPN++ [11], our tracker achieves a similar accuracy, with
23.0% lower failure rate and 21.1% higher EAO. In terms of
the overall performance, our method surpasses the best two ex-
isting offline anchor-free trackers, SiamBAN [13] and Ocean-
offline [14], achieving a relative gain of 5.5% in EAO. The im-
provement mainly comes from our carefully design of the pro-
posed modules and accurate tracking mechanisms, which re-
duce the number of tracking failures.
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LaSOT is a large-scale benchmark with 1,400 videos, with
an average video length of 2,500+ frames. Success and pre-
cision in OPE are used as metrics. The results of ATOM
[46], DiMP [45], PGNet [47] and Ocean [14] are provided
by the original authors, while the rest results are provided by
the official website of LaSOT. In Fig.7, our tracker achieves a
success score of 0.544, outperforming SiamRPN++ [11] and
ATOM [46] by a large margin. Compared with PGNet [47], our
tracker improves the absolute scores of success and precision by
1.0% and 1.9%. Furthermore, it can be seen from the success
plots that our tracker performs best when the overlap threshold
exceeds 0.7, demonstrating that it can predict more accurate
bounding boxes benefiting from accurate tracking mechanisms.
The achievements of our SiamTC on such a large dataset illus-
trate its superiority in generalisation capability.

GOT-10k is a recently released database that offers unprece-
dentedly wide coverage of common moving objects in the wild.
It has 10,000+ videos with more than 1.5 million high-precision
bounding box annotations. Based on the protocol, the results of
trackers must be evaluated on the official online server to avoid
overfitting. The provided evaluation indicators include average
overlap (AO), and success rate (SR) at overlap thresholds 0.5
and 0.75. As shown in Table 3, our tracker achieves an AO
score of 0.635, outperforming all the state-of-the-art trackers
by a large margin. In more detail, compared with the previ-
ous best method, it has improved the three indicators by 3.9%,
3.1%, and 4.7% respectively, setting a new SOTA record on this
large dataset even without online training. Fig. 6(b) and Fig.1
provide the quantitative and qualitative comparison results, re-
spectively, both of which demonstrate the superiority of the pro-
posed tracker in predicting more accurate bounding boxes.

5. Conclusion

In this paper, we presented a novel Target-Cognisant anchor-
free Siamese tracking framework, namely SiamTC, to achieve
robust visual object tracking in unconstrained scenarios. We
introduced the target-cognisant attention block and accurate
tracking mechanisms to enhance the robustness and accuracy
of the proposed tracker. Additionally, a max filtering mod-
ule was developed to further improve the target discrimination
capability. The comprehensive experimental results obtained
on several benchmarking datasets validate the proposed track-
ing methodology, and demonstrate that the proposed network
architecture is instrumental to the state-of-the-art performance
achieved by our tracker.
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