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Artistic Neural Style Transfer using CycleGAN and FABEMD by adaptive information selection.

We have a painting images collection and a 
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CycleGAN

• Extract BIMFs using FABEMD
• Compute an index for each BIMF
• Select the optimal number of BIMFs
• Compute the total cycle loss of Cycle GAN using the 

selected BIMFs 

In conclusion, the proposed approach:
• Outputs a stylised landscape image with the style of 

the painting image collection
• Preserves the content
• Has less distortions and specific patterns which 
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• Outperforms the SoA
• Could be an inspiration for architecture exterior 
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• Is useful for game designers
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ABSTRACT

Neural Style Transfer (NST) comprises a class of computer vision methods that manipulate digital im-
ages to reformulate the visual content of one input image adopting visual features of an another image
set. Artistic NST is the particular case of NST where the visual features are extracted from paint-
ing images. The combination of Cycle-Consistent Adversarial Networks (CycleGANs) with Fast and
Adaptive Bidimensional Empirical Mode Decomposition (FABEMD) is proposed to adopt the specific
artist’s style on images effectively, where the cycle-consistency loss is modified to incorporate texture
information by estimating the corresponding Bidimensional Intrinsic Mode Functions (BIMFs). An
adaptive approach for identifying the optimal BIMF number that must be considered in order to ma-
nipulate the required amount of the involved texture, is proposed. For this purpose, the computation of
a metric is considered for each BIMF to characterise the texture of each image or major intensity alter-
ations at local scale. Experimental results reveal that adaptive comixture of texture features comprises
an efficient approach in such artistic applications. Qualitative and quantitative results demonstrate that
the proposed framework outperforms state-of-the-art (SoA) methods.
Keywords: Neural style transfer, FABEMD, cycle-consistency loss, CycleGAN.
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1. Introduction

Artistic Neural Style Transfer (NST) has gained a lot of at-
traction by the research community the last decade in applica-
tions such as in game industry where new graphics and gaming
interfaces can be designed using specific styles and artworks
(e.g. Stadia1); in mobile application development to create ar-
tificial artwork from mobile photos (e.g. Maestro [1]); and in
architecture to recommend new and automatic ways for design-
ing interior or exterior environments, buildings etc [2]. Artistic
style transfer is known as the process of generating an image
that modifies the content of an input image (content) using the
style of another or the collection of other related images (style).
At early times, artistic style transfer relied on statistical meth-
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1https://stadia.dev/blog/behind-the-scenes-with-stadias-style-transfer-ml/

ods to extract and recreate textures, patterns and local charac-
teristics of an image [3, 4, 5]. Nowadays, Artistic NST adopts
deep learning architectures to produce a stylised image by sep-
arating and recombining image content and style. Furthermore,
transferring artistic style (e.g. color features, patterns, brushes)
from a collection of images instead of a single image is a more
complex challenge since it involves the representation of im-
ages with proper features which could describe the style of an
art school (impressionism, cubism, etc.) or of a creator. How-
ever, in style transfer from a collection of images there might be
some special techniques that the artist used rarely, that are not
transferred adequately. A collection of images that represents
the artist’s style is more generic. Van Gogh, for example, has
created paintings which belong in several schools of art such
as Expressionism, Impressionism, Cubism, etc. These schools
of art vary a lot among each other, but each artist has its own
characteristics like preferred colors, or paintbrushes. The aim
of the proposed model is to find common characteristics from a
given collection that represents the artist’s style.

Research community has proposed multiple NST approaches



2

from painting images, where the main focus of researchers over
the last years was to improve the quality of the generated im-
ages [6]. Towards this objective, a number of painting collec-
tions were used to improve the adaptation of a painter’s style in
NST. The imposed limitations are related to the lack of ground
truth data for a direct comparison of the generated images with
the expected images, for the validation and training process.
Additionally, in the case of style transfer from a single style
image, only one input style image is required, which cannot
necessarily be representative of the art school or the creator.
Moreover, neural style transfer in painting images is a highly-
subjective task, as it is affected by the viewer’s perception for
style. The generated images are mainly evaluated in a qualita-
tive way, and only a few metrics can quantitatively evaluate the
performance. Furthermore, the generation of a new stylised im-
age usually deforms the patterns of the provided content image,
lacking in the ability to preserve local patterns and features.

Aiming at reducing the impact of the aforementioned limita-
tions, the presented novel framework estimates adaptively the
level of the spectral information that is multiplexed for a Cy-
cleGAN towards improving the quality of the stylised images
while preserving the essential patterns of the input content im-
age. Cycle-consistency loss comprises one of the key elements
in a CycleGAN architecture and requires the consistency be-
tween the original and the reconstructed image which is mea-
sured bidirectionally [7]. In addition, for a quantitative evalua-
tion, a performance measure based on the trace norm is intro-
duced, exploiting saliency maps in the context of style transfer.
The usage of saliency maps in style transfer aims to quantify
the content preservation.

Motivated by the CycleGAN framework in [8] and [9], the
use of textural information has been proposed in [10], where
only 3 experimentally defined sub-signals were incorporated.
Current work expands [10], inserting a novel mechanism that
defines the optimal BIMF number for involving the most essen-
tial spectral information to effectively multiplex texture infor-
mation from the context image with low-level features of the
style image(s). Experimental results and a qualitative compari-
son through a questionnaire, reveal that the presented approach
comprises an efficient and robust alternative in the artistic NST
as the estimated quantitative and qualitative results are consid-
ered comparable and beyond SoA methods. The core contribu-
tions can be summarized as follows:

• An adaptive selection mechanism is proposed to involve
different amounts of spectral information by exploiting
FABEMD.

• Two information metrics, entropy and edgeness, are con-
sidered following either a backward or a forward process
for different amounts and types of information.

• The quantitative experimental comparison using the mean
Trace norm scores is calculated over the entire dataset.
The two-sample significance test on the trace norm values
shows the superiority of the proposed method.

• The proposed method is also evaluated in a qualitative way
using a questionnaire to incorporate the opinion of experts.

The remainder of the paper is structured as follows. Section
2 provides an overview of SoA works while Section 3 presents
the proposed framework. Experimental results along with the
configurations and the exploited datasets are presented in Sec-
tion 4. Finally, Section 5 concludes the manuscript providing
most major insights of the method and valuable outcomes.

2. Related Work

The first attempts in style transfer relied on parametric
and non-parametric methods for texture synthesis and transfer
[4, 11]. The transition between statistical and NST approaches
occurred by the influential work of Gatys et al. [12], in which
the authors utilise Deep Neural Networks (DNN) to encode
both content and style of an image. The Gram matrices of
the style image are calculated to capture the linear dependen-
cies among several feature vectors, and subsequently, they are
connected as convolutional layers of a DNN. It has also been
demonstrated in [13] that the matching process using Gram ma-
trices is equivalent to minimising the Maximum Mean Discrep-
ancy with the second order polynomial kernel which captures
more fine grained textures.

In [14] the authors presented an instance normalisation tech-
nique to improve the effectiveness of the generator in artistic
NST. Comparing to batch normalisation, the latter can nor-
malise each individual content image. In addition, Adaptive
Instance Normalisation (AdaIN) [15] receives a content and a
style image and aligns the channel-wise mean and variance of
content to match the corresponding mean and variance of the
style image, following an encoder-decoder architecture. A gen-
eralisation of AdaIN and whitening and coloring transforma-
tion [16] uses Zero-phase Component Analysis to project fea-
tures into the same space, in order to extract the features of
the stylised image and use them as input to a decoder network.
Furthermore, an adversarial learning feed-forward network [17]
uses a generator and a discriminator is conditioned on the do-
main categories, to distinguish the generated images from the
same style class.

In [18], a style loss function is based on the combination of
local and global measures. Local style retains the style while
global loss function preserves the structural details. In a similar
approach, the Patch Permutation GAN (P2-GAN) [19] network
is trained for one stroke style while patch permutation randomly
divides the style image into multiple patches and a patch dis-
criminator processes both patch-wise and natural images. In
addition, cross distribution feature matching was adopted in
[20] to perform the desire style transfer from one single style
image. The authors adapt the high-order Central Moment Dis-
crepancy (CMD) to minimize the difference between the target
style and the feature distribution of the output image. How-
ever, computing high-order statistics explicitly introduces com-
putational overhead. Similarly, another NST method from one
single style image is introduced in [21]. The authors propose
reversible neural flows and an unbiased feature transfer module
that supports both forward and backward inferences and oper-
ates to formulate a projection-transfer-reversion pipeline.

Contrary to above approaches, transferring the style from
an image collection comprises a more challenging task as the
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framework is trained to discriminate common features of one
image collection. The work proposed in [22] relies on an adver-
sarial network that is consisted of three modules: an encoder,
a gated transformer, and a decoder. Gated-GAN is trained
for multiple styles to generate new stylised images through
weighted connections among the branches of the gated trans-
former. On the contrary, CycleGAN [8] not only generates
stylised images from an image collection, but it also learns
an inverse transformation that generates an identical-to-the-
original content image. Sanakoyeu et al. [23] adopted an
encoder-decoder network architecture and a fixed-point loss
that ensures stylisation has reached a fixed-point after one feed-
forward pass. The cycle-consistency loss has been replaced by
the perception loss of [24], introducing a new objective function
for diversity in image-to-image translation [25]. The exploita-
tion of a perception loss benefits the training process in measur-
ing image similarities more robustly than per-pixel losses [24].

The aforementioned techniques do not consider the spectral
information or patterns during the styling process which com-
prises a significant aspect in improving the artistic NST perfor-
mance. Recently, in [10], the cycle-consistency loss function of
CycleGAN has been modified by involving spectral and texture
information. A fixed number of BIMFs are extracted for each
content and style image, which sequentially are introduced in
the computation of the cycle consistency loss of CycleGAN.
Here, aiming at identifying adaptively the amount of the re-
quired contextual information, the proposed framework intro-
duces a novel cycle-consistency loss computation and an adap-
tive mechanism for defining the essential texture information
that should be considered in the NST process.

3. Methodology

The proposed approach modifies the cycle-consistency loss
of a CycleGAN to involve texture information and patterns in
the training and the validation process, relying on FABEMD.
Hence, the necessary background is presented for each com-
ponent of the proposed framework (Fig. 1). In brief, the latter
consists of two core elements, an original CycleGan architec-
ture with updated loss function calculation and the FABEMD-
based module that estimates the required texture information
that should be processed by the first component.

The network involves two generators F and G and two dis-
criminators DX and DY , as in [9]. The first generator G receives
as input a landscape image and creates a painting image visu-
ally relevant with the defined artistic style. The second gen-
erator F creates landscape photos given painting images. As
illustrated in Fig. 1, the representation size is reduced in the
encoder phase, remains constant in the transformer phase, and
expands in the decoder stage. There are two bilateral compar-
isons in which cycle-consistency loss is calculated and update
the generator models in each training iteration. The discrimi-
nator architecture learns the relationship between one output of
the model to the number of pixels in the input image, named as
PatchGAN model (Fig. 1).

Fig. 1. Proposed style transfer framework with CycleGAN and optimal
number of BIMFs.

3.1. The core CycleGAN
The following section presents the most essential fundamen-

tals for the basic CycleGAN framework. CycleGAN defines
two mapping functions G : X → Y and F : Y → X, between
two domains X and Y given training samples {xi}

N
i=1 ∈ X and

{y j}
N
j=1 ∈ Y . The model considers two adversarial discrimi-

nators DX and DY , where DX discriminates images {x} from
stylised representations {F(y)}, while DY aims to discriminate
{y} from {G(x)}, respectively.

Adversarial losses are applied to both mapping functions
[26]. For function G : X → Y and its discriminator DY , the
objective is to minimise the following loss:

LGAN(G,DY , X,Y) = Ey∼Pdata(y)[logDY (y)]+
+Ex∼Pdata(x)[log(1 − DY (G(x))] (1)

where, G generates images G(x) that are similar to images from
Y , while DY discriminates stylised samples from G(x) and real
samples y. Accordingly, the mapping function F : Y → X and
its discriminator DX , denoted by LGAN(F,DX ,Y, X), discrimi-
nates the reconstructed images from F(y) and the real samples.

Cycle consistency loss introduces a two-way loss computa-
tion between the generated image and the original image, mea-
suring the “consistency” with its inverse mapping from the gen-
erated to the original image. Forward and backward cycle con-
sistency are defined as follows: for each image x of domain X,
the image stylisation cycle should recover x to the original rep-
resentation, i.e. x → G(x) → F(G(x)) ≈ x. Similarly, for each
image y from domain Y , G and F should also satisfy backward
cycle consistency, as it is defined by: y→ F(y)→ G(F(y)) ≈ y.
The forward and backward cycle consistency define the cycle
consistency loss, as follows in Eq. (2):

Lcyc(G, F) = Ex∼Pdata(x)[∥F(G(x)) − x∥1]+
+Ey∼Pdata(y)[∥G(F(y)) − y∥1] (2)

The total loss of the style transfer model with cycle-
consistent adversarial networks is defined as the sum of the ad-
versarial losses LGAN(G,DY , X,Y) and LGAN(F,DX ,Y, X), and
the cycle-consistency loss:

L(G, F,DX ,DY ) = LGAN(G,DY , X,Y)+
+LGAN(F,DX ,Y, X) + λLcyc(G, F) (3)
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where, λ controls the relative importance of the two objectives.
The total loss L is minimised by solving:

G∗, F∗ = argminG,FmaxDX ,DYL(G, F,DX ,DY ) (4)

where G∗, F∗ are the optimal mapping functions.

3.2. Texture extraction using FABEMD
Empirical Mode Decomposition (EMD) analyses one-

dimensional signals based on their local characteristics (ex-
trema) and provides a spectral representation of nonlinear and
non-stationary data into a finite number of Intrinsic Mode Func-
tions (IMFs) [27]. Each IMF is determined by the total number
of extrema and the mean signal as it is extracted by the up-
per and the lower envelope, while the iteration process of IMF
definition (sifting process) is terminated when predefined stop-
ping criteria are fulfilled. Thus, the characterisation of an IMF
strictly relies on its local features and components rendering the
approach as an adaptive method of texture extraction.

The extension of EMD to bidimensional arrays is known as
bidimensional EMD (BEMD) and applies the same processing
rationale. One of the limitations of BEMD is the calculation
time, as it involves the use of 2D bicubic spline interpolation
for the calculation of the two envelopes. To overcome this limi-
tation, BEMD has been updated to a fast and adaptive algorithm
(FABEMD) [28] to reduce the computational complexity.

Texture features are commonly refer to luminosity values,
hence, the optimum BIMF amount is defined via luminance
adopting a neighboring method for the extrema identification
[29]. A pixel is considered as a local extrema, if its luminosity
displays a superior or inferior value compared to its adjacent
values within a square-shaped window of specific size.

The images are decomposed into l number of sub-
components (BIMFs) and a residual sub-component which pro-
cess is completely reversible and the initial image can be recov-
ered as: A = B1+B2+ ...+BK+R where A is the original image,
R is the residual and Bk, k = 1, 2, . . . ,K represent the extracted
BIMFs. As k increases, each BIMF includes specific spectral
components from higher to lower frequencies. High frequency
components that corresponds to texture features are involved in
the lower-indexed BIMFs while the residual corresponds to the
the data trend [30]. The texture information that each BIMF
depicts varies from one input image to another, therefore it is
necessary to define a process that does not get an arbitrary se-
lection of a fixed number of BIMFs [10].

3.3. Cycle consistent loss function with spectral features
The following sub-section presents and analyses an adaptive

approach to define the required number of BIMFs for the loss
function definition, as shown in Fig. 1, where the optimal selec-
tion Kxi from the spectral decomposition of content and style
images is used to define the latter. The estimated texture fea-
tures are considered in the loss function definition, for the op-
timisation of the Generators’ G and F and the Discriminators’
DX and DY performance. xB

i (k) is denoted as the k-th BIMF cor-
responding to the content image xi and by rB

i (k) the k-th BIMF
of the reconstructed image ri = F(G(xi)). Similarly, let yB

j (k) be
the k-th BIMF corresponding to the style image y j and by sB

j (k)

the k-th BIMF of the stylised image s j = G(F(y j)). In addition,
let I(xB

i (k)) be the metric which quantifies the amount of infor-
mation in each BIMF xB

i (k). It has been stated in [31] that the
function value of Shannon’s entropy indicates how much infor-
mation on the texture from the original image remains in each
sub-signal (e.g. BIMFs). Entropy is a popular concept in in-
formation theory [32], previously used to quantify the amount
of information of a transmitted message within a discrete set of
probabilities pi and in our context it is defined as:

H(AB(k)) = −
g∑

i=1

pilog(pi) (5)

where g corresponds to the number of luminosity levels and pi

is obtained from the frequency of each grayscale level in the
k-th BIMF of image A, whether it refers to content image xi or
style image y j.

Similarly, edgeness quantifies the arrangement of intensities
in a region, and serves as an image texture metric to deter-
mine patterns [33]. Texture complexity has an impact on the
amount of information in the corresponding region of each ex-
tracted BIMF. Given a block of M × N pixels, the gradient-
based edge detector is applied to calculate the gradient magni-
tude ∇(Bk(a, b)) which then defines the edgeness of BIMF Bk

per unit area (a, b):

E(Bk) = |{Bk(a, b) : ∇Bk(a, b) > t}|/(M × N) (6)

for some parameter t, E(Bk) is the edgeness of the k-th BIMF
of image A. Once a measure of information is defined, to main-
tain the number of components that preserve a certain frac-
tion of the content image, the minimum number d of BIMFs
k = 1, 2, . . . , d, . . . ,K is obtained as follows:

K∑
k=d

I(Bk))/
K∑

k=1

I(Bk)) > w (7)

where K is the total number of extracted BIMFs and w ∈

{50.0%, 68.2%, 95.4%, 99.7%} motivated from the Empirical
Rule. The value of 0.997 results to a special case where all
available BIMFs are used from the spectral decomposition, and,
in both cases, the model coincides with the original CycleGAN.
However, the goal of the proposed approach is to translate pat-
terns into styles considering frequency components, for a better
quality in the generated stylised images. This optimal selection
of information index and corresponding threshold is extensively
studied in Section 4, since the use of the original content and
style image results to the original CycleGAN model [8]. Eq.
(7) refers to the backward selection of BIMFs from K,K−1, . . .
until d. Similarly, forward selection is defined as follows:

d∑
k=1

I(Bk))/
K∑

k=1

I(Bk)) > w (8)

Due to the imbalanced information distribution of an image
among spectral components, the proposed approach is bidirec-
tional. After the definition of d, the selected set of BIMFs for
the image A is denoted as KA = {Bk, k ∈ S} where, S is ob-
tained either by Eq. (7) for the backward selection or Eq. (8)
for the forward selection.
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Fig. 2. Comparison of the proposed approach with the CycleGAN model[8], Sanakoyeu et al., [23] and Batziou et al., [10] on the “vangogh2photo” dataset.

The cycle consistency loss is determined as follows:

Lcyc(G, F) = Ex∼Pdata(x)
∑

k∈K [∥rB(k) − xB(k)∥1]
+Ey∼Pdata(y)

∑
k∈K [∥sB(k) − yB(k)∥1] (9)

where the backward and forward cycle consistency is computed
over k ∈ K meaning adaptively defined contrary to its definition
in [10] where the value was experimentally defined.

4. Experimental Results

The following section provides insights on the exploited
datasets, the configurations adopted for the conducted experi-
ments as well as the qualitative and quantitative validation of
the corresponding results in comparison with SoA methods.
For the conducted experiments, each image was divided into
5 BIMFs plus the residual, using a 3 × 3 window [28] for the
extrema definition. Each time a set of BIMFs is defined using
one of the two metrics, entropy and edgeness by following ei-
ther a backward or a forward process. For the experiments the
NVIDIA GeForce RTX 2060 SUPER was used.

4.1. Datasets
The appropriate image collection from the TensorFlow cat-

alogue2 was utilised to accomplish an effective performance

2https://www.tensorflow.org/datasets/catalog

comparison on the Van Gogh and Monet styles. Monet is an
artist who has left a mark in the landscaping art and Van Gogh’s
artworks are included in diversified movements such as Impres-
sionism and Expressionism, so the datasets selection covers a
wide range of different painting styles. The “monet2photo”
dataset is comprised by 1074 Monet’s painting images and 6853
landscape photos. Likewise, the “vangogh2photo” dataset con-
tains 401 painting images of Vincent Van Gogh and the same
landscape photos as the “monet2photo” dataset.

4.2. Training process

The training process was initiated by feeding the model with
the style images, content images and the selected BIMFs for
each input image. For both datasets, the weight for cycle con-
sistency loss λ was set equal to 10 and the number of epochs
is set to 200 as in [8]. Generators and discriminators are all
optimised with an Adam solver (default parameters), the same
learning rate (2e-4) and the default instance normalisation. The
BIMF index was estimated to identify the involved sub-signals
d based on Eq. (7) and Eq. (8). Then, the cycle consistency
loss of Eq. (9) is computed using the optimal BIMF number.

4.3. Results

The baseline methods of the presented comparison are the
CycleGAN [8], the approach of Sanakoyeu et al. [23] and the

https://www.tensorflow.org/datasets/catalog
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Fig. 3. Comparison of the proposed approach with the CycleGAN model[8], Sanakoyeu et al., [23] and Batziou et al., [10] on the “monet2photo” dataset.

Table 1. Mean Trace norm scores of the saliency map differences.
mean [8] [23] [10] [21] [20] CG H B50 CG H B68 CG H B95 CG H F50 CG H F68 CG H F95 CG E B50 CG E B68 CG E B95 CG E F50 CG E F68 CG E F95

Monet 65905 79754 76119 522719 231021 65972 65735 66275 66331 66108 66184 66062 65912 66094 65856 65763 66167
VanGogh 66334 91063 91642 368815 301465 66405 65669 66323 66095 66333 66681 66458 66120 66029 65700 66004 66157

Fig. 4. The progress of the stylisation process using the proposed method.

recently introduced approach of [10], due to their relevance to
artistic NST from a painting image collection. The proposed
approach denoted in Fig. 3 and 2 as ‘CycleGAN I S w’ where,
in the I field, H is noted for entropy or E for edgeness. In the
S field “B” and “F” correspond to the backward and forward
BIMF selection, respectively. We denote by w the upper infor-
mation bound (50.0%, 68.2%, 95.4%).

From the Figs. 2, 3 and Table 1, it is derived that the best-
performing proposed method is the one with backward (S = B)
Entropy selection (I = H) at w = 68.2%. Thus, the best
performance was obtained by the setup that corresponds to the
“CycleGAN H B68” or simply to “CG H B68”. From the first
rows of Fig. 2 and 3, it can be observed that this approach does
not generate noisy patterns in the sky regions, an effect that

appears in the resulted images of the other SoA methods. In
addition, the proposed method eliminates blurry artifacts which
indicatively appear in the image regions of other SoA meth-
ods. Moreover, the images in the last row depict either shadow
effects or noisy patterns at their left side. By contrast, in the
images generated by the proposed method, these artifacts are
minimised. Concerning a qualitative comparison, the the con-
ducted results of each version of the proposed method are simi-
lar meaning that the general method can adequately transfer the
artist’s style and retain the content details. A qualitative analy-
sis (Figs. 2 and 3) reveals that the proposed method transfers
the style with no deformations. By contrast, [8] generates aes-
thetically appealing images and well preserving content struc-
tures but distortions are observed in each image (Fig. 2). In-
volving spectral information via the extracted BIMFs, the focus
is concentrated on pure texture elements and patterns of high
intensity from the input source images. The inclusion of noisy
signals in the consistency loss computation is avoided by the
use of spectral information. The methods of [23, 10] gener-
ate images which have noisy patterns and deform the content.
Although we observe that color and texture information in the
proposed method is similarly transferred, as in the CycleGAN
[8], the content is well-preserved in our proposed method com-
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pared to [8]. Qualitatively, as we observe in Fig. 2 and Fig. 3,
the CycleGAN [8] and the other methods produce blurry arti-
facts in comparison with the different versions of the proposed
approach. We have provided a zoomed patch for all methods on
the same image so as to be able to directly compare the artifacts
from one method to another. Additional images for a qualitative
comparison are included in Appendix A of the supplementary
material.

In Fig. 4 the progress of the stylisation process is presented
using the proposed method for an indicative ”monet2photo” im-
age. During the first epochs the style is not sufficiently trans-
ferred. In the middle of the process, some low level style fea-
tures have already been transported. Close to the predefined
number of epochs, the stylised image is obtained to minimise
the noisy parts due to a proper texture transfer. The inference
time for the stylisation of a single image of size 768x768 pixels
is similar for all considered methods (0.7 sec), so the modifica-
tion in the consistency loss does not affect the inference process.
For the proposed method, the FABEMD algorithm was used in
order to produce more effective stylised images at the expense
of computational complexity. Based on [34] the computational
complexity of EMD is O(n log n) where n is the data length.
BEMD [29] is applied on two-dimensional signals n2 so the
complexity becomes O(n2 log n2) = O(n2 log n), where n is the
image width. FABEMD [35] has been proposed to decrease the
complexity levels compared to the basic BEMD. More specific,
FABEMD envelope estimation process using order-statistics fil-
ters is almost independent of the image and the texture patterns
in terms of complexity. Moreover, FABEMD substitutes the
data interpolation step of BEMD by a direct envelope estima-
tion method and limits them into one iteration. Spatial domain
sliding order-statistics filters are utilized to obtain the maxima
and minima envelopes. The application of a smoothing opera-
tor results in the final upper and lower envelopes respectively.
The order-statistics filters size is adaptively derived from the
available information of maxima and minima maps meaning it
is depended on the input image. Although the FABEMD al-
gorithm decrease the complexity compared to the BEMD, it is
hard to estimate the computational complexity of this process
phase accurately since each image has different local extrema.

Table 2. Results of the questionnaire
Criterion [8] [23] [10] CG H B68

More aesthetically appealing 6.7% 46.7% 13.3% 33.3%
Artist’s style 13.3% 40% 6.7% 40%

Content preservation 33.3% 0.0% 6.7% 60%
Less distortions 33.3% 0.0% 6.7% 60%

Game appropriateness 26.7% 33.3% 0.0% 40%
Exterior design 13.3% 6.7% 0.0% 80%

Within the scope of a qualitative evaluation, a questionnaire
was developed to directly validate the performance of the meth-
ods. It has been completed by 15 experts (architects and game
designers) over questions relative to aesthetic appealing and
content preservation. The ultimate goal of the 15 experts is to
utilize the proposed outputs as inputs of either 3D reconstruc-
tion in architecture or game environment creation as close to
the expected style, but without compromising the content. For
the qualitative evaluation we have used the CG H B68 version

of the proposed method since this gave the best quantitative re-
sults (Table 1). Higher average scores correspond to less arti-
facts, best content preservation and better representation of the
artist’s artistic style following the scale defined by the experts.
As it is presented in Table 2 the proposed approach displays the
highest score in 5 of 6 criteria while it result the second higher
for the 6th criterion.

The results are presented in Table 2 and it can be observed
that the experts confirmed that the proposed method generates
images which retain the artist’s style, preserve the content suf-
ficiently and are more suitable for both architects and game
designers. Based on the conducted experiments and the cor-
responding results, the proposed method outperforms the other
under evaluation methods. More results and questionnaire de-
tails are shown in Appendix C of the supplementary material.

Table 3. Two sample t-test on mean scores of trace norm
p-value Monet VanGogh

[8] .812 .322
[23] < .001 < .001
[10] < .001 < .001
[21] < .001 < .001
[20] < .001 < .001

In NST evaluation, one of the main characteristics to be val-
idated is content preservation. Saliency detection relies on im-
age features and statistics to localise the most interesting re-
gions of an image. Saliency maps function as suitable features
for evaluating the content preservation of style transfer outputs.
A small value of saliency map differences between the stylised
image and the input content one indicates that the most inter-
esting regions coincide. The method in [36] was adopted to
implement saliency map detection. The saliency maps of Fig. 2
and Fig. 3 are extracted towards a direct comparison between
the saliency map of the original landscape image (S Mor) and of
the corresponding stylised image (S Mst), the Trace norm of the
matrix difference is used:∑

i

σi = ∥(
√

(S Mor − S Mst)∗(S Mor − S Mst))∥∗ (10)

where, σi is the i-th singular value of the matrix S Mor − S Mst.
In addition to the qualitative comparison of Fig. 2 and Fig. 3,

a quantitative evaluation has also been performed and is pro-
vided in Table 1. The mean scores correspond to the stylised
images of the whole test set in Monet and Van Gogh datasets.
The minimum trace norm value for each image corresponds to
the output of the proposed framework, which implies that our
generated images are closer to the input landscape image than
the ones generated by other methods in terms of content preser-
vation. Furthermore, statistical significance t-tests were per-
formed to examine the hypothesis of the average decrease in
mean trace norm between the baselines and the best proposed
approach (Table 1). In Table 3 the p-values of the two sam-
ple t-test are provided, and as it can be observed, the decrease
in mean trace norm between the best proposed approach and
[23], [10], [21] and [20] is statistically significant. Although,
the decrease between the best proposed approach and [8] is
not statistically significant, our approach extracts more quali-
tative results. Additionally to the aforementioned comparison,
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the proposed approach is also compared with the two state-of-
the-art methods of An et al., (2021) [21] and Kalischek et al.,
(2021) [20] that address style transfer problem in a different
way. The results of the quantitative evaluation are presented in
Table 1 and Table 3 and the results of the qualitative evaluation
are presented in Appendix B of the supplementary material.

5. Conclusion

In this work a novel framework for artistic NST was pro-
posed utilising an image collection. The presented style trans-
fer framework goes beyond a color transfer, finding common
characteristics from a given collection that represents the artist’s
style. The style is transferred effectively while it preserves the
content sufficiently. Any modification in cycle-consistency loss
of CycleGAN architecture includes spectral information about
the input images (content and style) in an adaptive way, where
the number of spectral components (BIMFs) is selected in a
bidirectional way. The spectral components refer to the texture
information contained in a source image, as they are quanti-
fied by FABEMD. The cycle consistency loss is updated ac-
cordingly towards preserving the content characteristics of the
input image while transferring the style effectively. A compar-
ison with other artistic SoA style transfer methods have been
conducted to showcase the effectiveness and robustness of the
proposed method. Experiments have shown that the proposed
approach generates less distortions in the created stylised image
and is closer to the original landscape image.
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