N

N

Calculating the flow level performance of balanced
fairness in tree networks

Thomas Bonald, Jorma Virtamo

» To cite this version:

Thomas Bonald, Jorma Virtamo. Calculating the flow level performance of balanced fairness in tree
networks. Performance Evaluation, 2004, 10.1016/j.peva.2004.03.001 . hal-01272523

HAL Id: hal-01272523
https://hal.science/hal-01272523
Submitted on 11 Feb 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01272523
https://hal.archives-ouvertes.fr

Calculating the flow level performance
of balanced fairness in tree networks

T. Bonald! and J. Virtamo?

France Telecom R&D
38-40, rue du Général Leclerc
92794 Issy-les-Moulineaux Cedex 9, France

2Networking Laboratory
Helsinki University of Technology
P.O. Box 3000, FIN-02015 HUT, Finland

January 6, 2004

Abstract

We consider a tree network whose resources are shared by a dynamically varying
number of elastic flows. We present an efficient method for calculating performance
metrics such as flow throughputs when the resource allocation is balanced fair. The
method is based on a recursive algorithm for computing the normalization constant
of the stationary distribution. Several examples are worked out. A proof is given for
the Pareto efficiency of balanced fairness in tree networks.

Keywords: balanced fairness, recursion for normalization constant, flow throughput,
tree network

1 Introduction

Most traffic in today’s Internet is generated by the transfer of documents such as files or
web pages. This traffic is elastic in that the duration of each transfer depends on network
congestion. Each document is split into a sequence of packets, referred to as a flow, whose
sending rate is adapted in response to congestion indications such as packet losses, typically
under the control of TCP. The quality of the transfer then depends on the time required
to successively transfer all the packets of the flow. In this sense, network performance for

elastic traffic is mainly manifested at flow level and can be gauged by measures such as the
average per flow throughput.

Performance studies for elastic traffic have traditionally focussed on the packet level behav-
iour of various congestion control algorithms, including TCP. While the design of an efficient
congestion control is a critical issue, it may be argued that the average per flow throughput
on a given network route depends more significantly on the number of flows sharing the
corresponding links, which varies as new flows are generated and others cease. To analyze
flow level behaviour in such a dynamic setting, idealized models are needed. An appro-
priate abstraction in this context entails entirely disregarding packet level phenomena and
considering the flow content as a fluid which is transmitted as a continuous stream through
the network. It is assumed in this fluid model that rate changes occur instantaneously and
simultaneously on all links on every flow arrival or departure. We assume flows occur in
sessions consisting of a succession of flows and separating “think times” and that sessions
occur as a Poisson process.

As there are many flows with different routes being transmitted simultaneously, the evolution
of the number of flows depends on how network resources are allocated. Most work has
focussed on so-called utility based allocations, where bandwidth is shared so as to maximise
some utility function of the instantaneous flow rates [8]. Examples of such allocations are
classical max-min fairness [1] and Kelly’s proportional fairness [7]. Crucially, the optimality
of utility based allocations is defined for a static composition of flows. If the true random
nature of traffic were taken into account, it would be necessary to define utility in terms of
the performance of individual finite duration flows. In this case, it is not obvious that max-
min or proportional fairness are optimal in any real sense. In random traffic, performance
and therefore utility depend in general on the precise statistics of offered traffic and are
virtually impossible to evaluate analytically.

An alternative notion of fairness, called “balanced fairness”, has been introduced by Bonald
and Proutiere [2]. When flows share bandwidth with balanced fairness, performance is
insensitive to detailed traffic characteristics such as the distribution of flow sizes and think-
time durations. The name derives from the set of detailed balance relations satisfied by the
instantaneous rates allocated to individual flows, which constitute necessary and sufficient
conditions for insensitivity in the underlying stochastic networks [11, 3]. The insensitivity
is such that the stationary distribution of the number of flows in progress, and consequently
the average per flow throughput, depend only on the expected traffic offered on each route.
Balanced fairness thus generalizes to a network context the insensitivity of bandwidth shar-
ing of an isolated bottleneck link introduced in [4].

Insensitivity is the key to simple and robust performance results. Network dimensioning
rules can be developed based on traffic intensity forecasts only, independently of the complex
traffic structure which is continually evolving as new applications gain popularity. Balanced
fairness can thus be viewed as a bandwidth sharing objective to be realized by appropri-
ate packet level mechanisms. Alternatively, it may be considered as a good candidate to
approximate the behaviour of elastic traffic in the “best effort” Internet. Simulations show
indeed that the performance of balanced fairness is generally close to that of other “fair”

allocations like max-min fairness and proportional fairness [2].

While the performance of balanced fairness is insensitive to detailed traffic characteristics, it
is still a complex function of the capacity of all links and the traffic intensity on all routes. An
efficient recursive algorithm to compute performance metrics for a certain class of topologies
was presented in [6]. The algorithm has been implemented in Mathematica and readily
provides numerical and symbolic evaluations. We review and extend this algorithm in this
paper. We focus on the practically interesting case of tree networks that may represent the
successive downlink multiplexing stages of an access network where bandwidth is a scarce
resource. The additional per-flow rate constraints due to the user’s access line for instance
are also taken into account. As illustrated below, these results can be used to analyse the
accuracy of crude, simple approximations that are likely to be used in practice.

The rest of this paper is organized as follows. Section 2 gives a brief review of the notion
of balanced fairness and its basic properties. The next section is devoted to the notion
of Pareto efficiency which is a crucial property on which the method relies. The recursive
algorithm is presented in Section 4. In Section 5 several examples of the recursion are
provided and numerical evaluations illustrate the accuracy of simple approximations. The
results are summarized in Section 6.

2 Preliminaries

The following is a short summary of the notion of balanced fairness and the network model
to which it pertains; for a full account readers are referred to [2, 5.

The network consists of a set of links £ = {1,..., L} where link [has a capacity C;. A
random number of flows compete for the bandwidth of these links. There are N classes of
flows, F = {1,..., N}, where each class i is characterized by a route R; consisting of a set
of links. When link [is on route R; we use the natural notation [€ R;. Conversely, defining
F; C F to be the set of flow classes going through link [we can write equivalently ¢ € F.
The mean volume of information offered by flows in class ¢ per unit time, i.e., the load of
class i, is denoted p;. The network state is defined by the vector = = (z1,...,zy), where z;
is the number of class-i flows in progress.

Resource allocation. The total capacity ¢;(x) allocated to class-i flows is assumed to be
shared equally between these flows and to depend on the network state x only. The capacity
allocation must satisfy the capacity constraints,

Y gi(x) <G, VieL (1)

i€F;
The allocation is said to be balanced if

Gi(x —e;) _ 9i(x —ei)
di(z) oj(x)

\V/i,j, z; > 0, T, > 0,

where e; is a N-vector with 1 in component ¢ and 0 elsewhere. The balance property implies
that there is a balance function ®(z) such that

pi(x) = A , Vi, x; > 0.

Basically any positive function ®(x) defines a balanced allocation. Note that not all balanced
allocations are feasible. However, as shown in [2] there is a unique balanced allocation such
that for any network state z all the capacity constraints (1) are satisfied and at least one
of them is satisfied as an equality, i.e., at least one network link is saturated. For this
allocation, the balance function is obtained recursively from

1
() =max{ = > Pz —¢),, (2)
! Cl ieF

®(0) =1 and ®(x) = 0 for all = such that x; < 0 for some ¢. This allocation is referred to
as balanced fairness. Any link / that realizes the maximum in (2) is saturated in state z.

This model can be extended to account for per-flow rate limits due to access lines for
instance. Let a; be the rate limit of a class-i flow. We have the additional constraints:

¢i(r) < 2304, Vi, x; > 0.

The balance function is then obtained recursively from

cp(@:max{m?x{éz Z@(x_ei)}’i%?fo{%}}' ’

1€F;

Unless otherwise specified, we assume that there is no per-flow rate limit.

Stationary distribution. Assuming Poisson flow arrivals and exponential flow size dis-
tributions, it may readily be verified from the balance property that an invariant measure
is given by

m(xy, ..., xy) = P(xy,...,xn)pit - PRV (4)

This result, however, has a much wider validity. As shown in [2], the bandwidth sharing
network can be identified with a so-called Whittle network of processor sharing servers
(cf. [11]). The insensitivity properties of Whittle networks allow us to conclude that the
invariant measure (4) is valid for much more general traffic characteristics. Flow sizes and
think time durations can have quite general distributions and need not be independent.
The number of flows per session can be generally distributed. The only requirement is that
sessions arrive as a Poisson process [2, 5].

An important role is played by the normalization constant,

G = Z Z qD(l'l,...,l'N)p“fl...p’}UVN’

x1=0 rn=0

which may be identified as the generating function of the balance function ®(x) and thus
contains the same information. In particular, ®(z) itself and the performance measures
can be derived from G(p1,...,pn). A key performance measure for class-i flows is the flow
throughput ~;, equal to the ratio of the mean flow size to the mean sojourn time. Applying
Little’s result we obtain:

=== 6)
= Elz;] 0G — 0OlogG’
Ipi Ipi

In the rest of the paper we concentrate on an efficient method for calculating the normal-
ization constant in tree networks.

3 Pareto efficiency in tree networks

We say that a network described in Section 2 is a tree network if there exists a graph without
loop where each node represents a link and a set of paths in this graph where each path
represents a route, all paths having a common extremity. We refer to the corresponding link
as the root of the tree. A particular tree network and the corresponding graph are given in
Figure 1. We first characterize Pareto efficient allocations in tree networks then prove that
balanced fairness is Pareto efficient for this network topology.

Figure 1: A tree network and the corresponding link graph.

Characterization of Pareto efficient allocations. An allocation is said Pareto efficient
if for any class ¢ and any state x such that z; > 0, there is a saturated link on route R;. In
the following, we say that a class i is active in state x if x; > 0 and denote by Z(x) the set
of active classes in state x. For any Z C F, we define the saturation set ¢(Z) C L as the
empty set if Z = () and as follows otherwise:

First allocate to class-i flows, ¢ € Z, the capacity of their leaf link. Proceeding from the
leaves towards the root, always apply the capacity constraint of the links to the aggregate
flows, if any. The uppermost links that are constraining, and only those, belong to o(Z).

The saturation set satisfies the following two properties:

(i) It defines a partition of Z in the sense that for each class i € Z there is one and only
one link | € 0(7) such that i € F,.

(ii) No link ancestor of any link [€ o(Z) can be saturated.

These two properties actually characterize the saturation set o(Z).

Proposition 1 An allocation is Pareto efficient if and only if for any state = # 0 all links
in the set o(Z(x)) are saturated.

Proof. The condition is sufficient in view of property (i) above. Now consider a Pareto
efficient allocation. For any given state x, there is a saturated link on the route R; of
each active class i € Z(x). Let [; be the uppermost saturated link on route R;. The set
{l;, i € Z(x)} satisfies properties (i) and (ii) above and thus coincides with o(Z(x)).

Pareto efficiency of balanced fairness. In [6], it was conjectured that balanced fairness
is Pareto efficient in tree networks. This result is now established by Theorem 1 below.

Theorem 1 Balanced fairness is Pareto efficient in tree networks.
The proof of the theorem is given in the appendix. We have the following direct corollary.
Corollary 1 Balanced fairness is Pareto efficient in tree networks with per-flow rate limits.

Proof. For any given state x, a tree with class-i per-flow rate limit a; is equivalent to a tree
where each class 7 is divided into x; subclasses, each connected to the tree by a link with
capacity a;.

4 Recursive algorithm in tree networks

In [6] we described a recursive algorithm for calculating the normalization constant for
systems where for any state corresponding to a given set of active flow classes, Z, a given
set of links, S, is saturated. In view of the above results, trees satisfy this condition and the
recursion is applicable. In fact, for trees the recursion can be simplified due to the fact that
the same set of links can be saturated for many different sets of active flow classes. In the
following we give the algorithm which entails successively evaluating the partial sums on
those state subspaces where links § are saturated. The algorithm will be given separately
for the cases without and with classwise rate limits.

Absence of flow rate limits. For any tree 7, with the set of links £ and flows F, we
denote by ¥ = {S§ C L : 37 C Fst. § = 0(Z)} the set of all feasible saturation sets,
including the empty set. The algorithm consists of successively evaluating the partial sums
on those state subspaces ()s where links S are saturated:

Gs = Zﬂ(x), Sel.

z€Qs

In view of Proposition 1 and Theorem 1,
Qs ={z:0(Z(x)) =S}.
The normalization constant is then simply given by:

G=Y Gs (6)

Sex

We define 7; as the subtree with root link [carrying the subset of flows F;. The set of all
feasible saturation sets of subtree 7; is given by:

Y2 ={SCL:ITC Fst. S=0(2)}.

Since Qg = {0} and 7(0) = ®(0) = 1 we have Gy[7] = 1. For any S # (), the partial state
sum can be reduced into a product of separate partial sums, each corresponding to a subtree
with saturated root,

GS == HGl

IS
For the G; we deduce a recursion in the same way as in [6],

Z Gg Z pZBZ(l,S)

_Sex\{i} 1€F\Fs

Cl—ZPi ’

i€F;

G Vi € L[T),

where Fs = UesF; denotes the set of all classes going through the saturation set & and
B;(1,8) is equal to 1 if o(Fs U {i}) = {l} and 0 otherwise.

Presence of flow rate limits. For any tree 7 the set of all feasible saturation sets is
the same as without rate limits and, as before, the normalization constant is decomposed
into partial sums by (6). The main difference stems from the fact that now the set {0y may
contain other states in addition to the state 0. We also have to be careful to state to which
tree each state space or state sum relates to; we do this by indicating the tree in question in
brackets. Sometimes we need to emphasize the link capacities of a tree 7 by writing 7 (C),
where C'is the capacity vector C = >, Cje; with ¢; denoting a vector with one in the [th
component and zero elsewhere.

The state space y[7 (C')] is equivalent to the state space of the corresponding loss system
with inelastic bandwidth requirements a;:

Q[T (O)] ={z:Vl, Y xia; < C}.

1€F;

We denote by Gy[T (C)] the state sum over y[7 (C)]:

GITE)= ¥ ww= ¥ (%))

z€Qy[7(0)] zeQ[7T(C)] i€F

where the invariant measure in €y[7 (C')] has been made explicit, again using the convention
m(0) = 1. The normalization constant (7) can be easily evaluated through the so-called
convolution-truncation algorithm [10].

The reduction of the partial sum becomes, for any S # (),

Gs[T) = GolT \\ 71 [] Gil),

leS leS
where 7\\7; denotes the subtraction of subtree 7; from tree 7 and reduction by Cj of the
link capacities on the route from [to the root of the remaining tree. 7 \\,.5 7; denotes the
result of repeated application of the subtraction operation over all subtrees 7; with [€ S
and reduction of the remaining tree by removal of all redundant links, i.e. links that do not
belong to any saturation set.

The recursion for the Gy[7;] now reads

Y. Gs[T] Y. pBilT\\ T}

_Sex\{i} i€F\Fs JES

Cl—ZPi ’

i€F;

GT) vie L,

where, generically for any tree 7 (C') with capacity vector C' and root link denoted by 0,
B;[T(C)] stands for the blocking probability of class-i flows due to the root link 0 in the
corresponding loss system, given by

Go[T (C = a; Yieryir €1)]
B|T(C)=1- - -

1ER,[T], 10

Go[T(C) \\ T(C)] Go[Ti(C)]
Go[T(C)]

Bi[T,(C)].

5 Application to specific tree networks

We now provide several examples of the recursion as well as numerical evaluations that
illustrate the accuracy of simple approximations.

Tree with three branches. We first consider the simple case of a tree which has a
common link, the root, with capacity Cy and three branches with capacities C7, Cy and Cj
attached to it, see Figure 2. We assume that C; < Cj for all ¢ and C; + Cy + C3 > Cy;
otherwise some of the links would be redundant. Without loss of generality we can further
assume that C; > Cy > Cs.

To identify the feasible saturation sets, it is necessary to distinguish between different cases
according to the ordering of Cy with respect to the pairwise sums of branch capacities.
Below we display the recursion equations for one of the four cases, viz. C7 + C5 > Cy >
C5 + (5, the analysis in the other cases being similar. The feasible saturation sets are then

0,{1},{2},{3},{2,3} and {0}. We deduce:
G=Gyp+ G+ Gy + G+ GGy + Gy

8

Figure 2: A tree with three branches.

Go=1 Gi= =P =123 @,= 20t Clptm) (Gt G

Ci — pi Co—p1—p2—ps3
We get:
& 1 1— % _ 025-03
Clp) = (b 4 R 1) |
1 — p1+cp%+p3 1— g_ll (1 _ 5_22)(1 _ éf_z)

Note that the two-branch tree can be obtained as a special case by letting p3 = 0.

Tree with n branches of same capacity. When the number of branches increases and
the link capacities are general, the expressions become more complex. However, if we assume
all the branches to have equal capacity, C; = C for all i, we can handle any number, n, of
branches. Denote by m the largest integer such that m x C' < Cy. A direct application of
the recursive algorithm leads to

Ditin,im Pi 1x P
“= Z Z HC Pzp+-z Co— 2 pi HC—Pz‘p.

k=011,...,1 p=1 L p=1

In case of homogeneous load, i.e., p; = p for all 7, we get

=£) () () ()

Figure 3 depicts the throughput, measured in C, obtained with (5) for a system with
n = 20 branches and Cj equalling m = 1,...,n times C'. The horizontal axis represents the
scaled total load of the root np/Cy. Note that the cases m = 1 and m = n are identical,
both representing effectively a single link system. In the former case, the branch links are
redundant. In the latter case, the root link is redundant and the system is equivalent to n
independent single link systems.

Tree with four multiplexing levels. As an example of a larger network consider the
4-level tree of Figure 4 consisting of 10 links with the shown capacities and 9 flow classes
numbered by their access links. In particular, we study the throughput of class 10 going

m=4

=3
o

m=1

o
~

throughput/C
throughput/C

=
N
o
N

0.2 0.4 0.6 0.8 1 0.2

0.4 0.6 0.8 1
total load of the root total load of the root

Figure 3: Throughput in a tree with a root and 20 identical branches. Capacity of the root
ism=1,...,4 (left) or m =5,...,20 (right) times that of a branch.

through links 10, 7, 3, and 1 as a function of its own load p19. The other classes are assumed
to have fixed loads as follows: p; = p2 = py = pg = pr = 2 and p5s = pg = pg = 1. With
these loads, all four links on route 10 have the average residual capacity of 3 units.

As before, one can calculate the normalization constant,

6 (5 — ,010) (951 — 411 P10 -+ 46 p102)
(3= p1)’

from which one obtains the exact throughput ~;9 by derivation (5).

G(pw) =

)

w

N
G

-
v

S

o
w

throughput of class-10 flows

\\

0.5 2.5 3

1 1.5 2
load of class-10 flows

Figure 4: An example of a 4-level tree and comparison of class-10 throughput lower and up-
per bounds with the exact result. From bottom up: store-and-forward (proven lb), parking
lot (conjectured 1b), exact, deterministic (proven ub).

The throughput is compared with various approximations in Figure 4. The so-called store
and forward network! was shown in [5] to constitute a lower bound for the throughput
for any balanced fair network. Another approximation is obtained by neglecting all the
capacity constraints outside the considered route. This results in a so-called parking lot
network for which there is an explicit expression for the flow throughput [6] and which
is likely to constitute another (tighter) lower bound. The upper bound comprises of the
so-called deterministic approximation derived on constraining all the cross traffic classes by

'Flows are routed step by step with equal bandwidth sharing on each link.

10

links whose capacity equals their offered load [5]. In this stability limit, the cross traffic
classes become deterministic and their load can be subtracted from the link capacities on
the main route. Throughput is then determined by the bottleneck link; in this example,
all four links are bottlenecks with the residual capacity of 3 units. Clearly, the bounds are
tighter for any route where residual capacities are less homogeneous than in the present
example.

Tree with per-flow rate limits. The example comprises a 2-branch tree with each
branch carrying flows of two classes with different access rate limitations, shown by the
diagram on the left of Figure 5. The link capacities of the branches are C; = 7 and Cy = 10,
and the common link has the capacity Cy = 15. The access rates of the flows in branch 1
are a;; = 1 and a; 2 = 3, while for branch 2 the access rates are as; = 2 and as2 = 4. In
the graph of Figure 5 the throughput of each class is given as a function of its own load,
with all the other loads being equal to 1. For low loads, the throughput equals the access
rate, whereas the throughput goes to zero when the total load of a branch approaches its
capacity.

IS

w

N

throughput

iy

2 4 6 8 10
load

Figure 5: Throughputs of flows in a 2-branch tree with two access rate classes loading each
branch.

In Figure 6, we compare the exact throughput of flows in a class with the same conjectured
upper and lower bounds as in Figure 4. The system is the same as in the previous example,
and the considered class is that with access rate limit a; o = 3 in branch 1. The throughput
of flows in this class, as well as the corresponding throughput bounds, are plotted as a
function of its own load, when the loads of the other classes equal 1 (the exact throughput
curve is identical to the second uppermost curve in Figure 5).

6 Summary

Balanced fairness is a new notion of bandwidth allocation with the very gratifying property
that flow level performance metrics are insensitive to detailed traffic characteristics. This
is particularly important for data network engineering since performance can be predicted

11

3
_\\
2.5
i)
o1
& 2
o
3 —
01.5 —
5 —
0.5
1 2 3 4 5 6
load

Figure 6: Comparison of conjectured upper and lower bounds with the exact throughput.
From bottom up: store-and-forward, parking lot, exact, deterministic.

from an estimate of overall traffic volume alone and is independent of changes in the mix of
user applications.

The balanced fair allocation for any network is uniquely determined by the basic recursion
(2). For larger networks, however, straightforward application of the recursion is hampered
by the usual state space explosion problem. Our main contribution is the derivation of a
recursive algorithm for directly calculating the normalization constant and flow throughputs
in the practically interesting case of tree networks, with and without flow rate limits. The
comparison of exact results with a number of bounds is the prelude to a more thorough
future evaluation of approximations useful for practical engineering purposes.

Acknowledgments

Part of this work was done during J. Virtamo’s visit to France Telecom R&D. He wishes to
thank J. Roberts and France Telecom R&D for their kind hospitality. The work was also
financially supported by the Academy of Finland.

Appendix. Proof of Theorem 1

In view of Proposition 1, it is sufficient to prove that in any state x # 0, all links in the
set 0(Z(x)) are saturated under balanced fairness. We prove the theorem by induction on
|z| = ¥, 2;. The assertion is certainly true for |#| = 1. Now let = be such that |z| > 2
and assume the assertion is true for any state 2’ # 0 such that |2/| < |z|. We denote by
7T = I(x) the set of active classes in state x.

By properties (i) and (ii) of Section 3, it is easy to see that if there are several links
| € 0(Z), the assertion is decomposed into separate claims for each subtree 7; and is true
by the induction assumption. Thus, we can assume that o(Z) = {0}, where link 0 denotes

12

the root of the tree, and our task is to show that the root is indeed saturated.

The set of flow classes Z can be divided into two disjoint sets Z' and Z”, non-critical and
critical, respectively, with

I'={i€eZ:x;>1loro(Z\{i})={0}}, Z'={i€Z:2;=1and o(T\{i}) # {0}}.

We have for any link [,

Ciozi:@(x—ei) = C%)(Z@(x—ei)—i— Z @(x—q))

Z'G}—l j%]'—l
1
> CC(C;Z(I)(x—ei)—i— Z @(m—ei—ej)) (8)
O™ ier i€F, ¢ F
1
= ac (Cl o da—e)+ >, Plr—e—e)+C Y Pla—e)+ D @(m—ei—ej)>.
O™ iernF i€T'NFi, jE¢F; i€T"NF i€T"NFy, jEF;

The first two terms are developed as follows:

C Z@(x—ei)—i— Z Oz —e—e;) > Z P(r—e —ej) + Z Oz —e; —ej)

ie€T'NF i€TINF, j¢F i€T'NF, jEF ETNF, ¢ F
= Z O(x—e;—e;) = Cy Z O(x —e),
1€T'NF,j€L 1€Z'NF

where the last equality is due to the fact that link 0 is saturated in state z —e; if i € 7.
For the last term of (8) we have,

Z ‘I’(.%' —€; — ej) = Z (Z Cl/)@(x — ei) Z (CO — Cl) Z ‘I’(.%' — ei).

iE€TNF, FEF i€T'NF; Veo(T\F) €T/ NF

The first step can be reasoned as follows: For any i € Z”, the saturation set o(Z \ {i}) is
different from {0} by definition. None of the links on the route R; can belong to o(Z \ {i});
otherwise, we would have o(Z \ {i}) = o(Z) so that o(Z \ {i}) = {0}. If in addition
i € Fy, we deduce that neither link [nor any ancestor of [can belong to o(Z \ {i}) so that
o(Z\{i}) = o(F NI\{i}) Uo(Z\F;). The first step is obtained by applying the partition
property (i) of the saturation set o(Z\F;):

o Pr—ei—e) = D>, D Plr—e—e) = D Crd(z—e¢).

i¢Fi Vea(T\F) JEFy Vea(T\F)
The second step, the inequality, follows from the fact that ¢(Z) = {0} which implies:

Co< > G+ Y. Cr=C+ > .

l/EU(}—l) l/EU(I\fl) l/EU(I\fl)

13

Substituting these inequalities in (8) we finally obtain,

1 1

—) Pz —e€) > — O(r —e).
Co zz: () Ci i;l ()
Thus, link 0 realizes the maximum of

1
P(z) =max | = > D(z —¢)
! Cl i€F;

and is saturated in state x completing the proof.

References
[1] D. Bertsekas and R. Gallager, Data Networks (2nd ed.), Prentice Hall, Englewood
Cliffs, 1992.

[2] T. Bonald, A. Proutiere, Insensitive bandwidth sharing in data networks, Queueing
Systems 44 (2003) 69-100.

[3] T. Bonald, A. Proutiere, Insensitivity in processor-sharing networks, Performance Eval-
uation 49 (2002) 193-209.

[4] T. Bonald, A. Proutiere, G. Régnié, J. Roberts, Insensitivity results for statistical
bandwidth sharing, in: Proceedings of ITC 17, Elsevier, 2001, 125-136.

[5] T. Bonald, A. Proutiere, On performance bounds for balanced fairness, Performance
Evaluation 55 (2004) 25-50.

[6] T.Bonald, A. Proutiere, J. Roberts and J. Virtamo, Computational aspects of balanced
fairness, in: Proceedings of the 18th International Teletraffic Congress ITC-18, Berlin,
Germany, 31 August - 5 September, 2003, 801-810.

[7] F.P. Kelly, A. Maulloo and D. Tan, Rate control in communication networks: shadow
prices, proportional fairness and stability, Journal of the Operational Research Society
49 (1998) 237-252.

[8] J. Mo and J. Walrand, Fair end-to-end window-based congestion control, IEEE/ACM
Transactions on Networking 8 (2000) 556-567.

[9] J. Roberts, U. Mocci, and J. Virtamo (eds.), Broadband Network Teletraffic, Springer-
Verlag, Berlin, 1996.

[10] K.W. Ross, Multiservice Loss Models for Broadband Telecommunication Networks,
Springer-Verlag, Berlin, 1995.

[11] R. Serfozo, Introduction to Stochastic Networks, Springer-Verlag, Berlin, 1999.

14

