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Abstract

Abstract: We consider a M/M/1 queue in which the average reward for servicing a
job is an exponentially decaying function of the job’s sojourn time. The maximum
reward and mean service times of a job are iid and chosen from arbitrary distribu-
tions. The scheduler is assumed to know the maximum reward, service rate, and
age of each job. We prove that the scheduling policy that maximizes average reward
serves the customer with the highest product of potential reward and service rate.
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1 Introduction

We are concerned here with optimal scheduling in queues with customers who
have limits on their queueing or sojourn times. Such time limits have been
previously used to model transmission of real-time packets over a packet-

switched network (c.f. [1-3]), overload control in call processing systems (c.f.
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[4,5]), and call handoff in cellular networks (c.f. [6]). We consider in this paper
a queue with Poisson arrivals and exponential service times, in which the
average reward for servicing a job is an exponentially decaying function of the
job’s sojourn time. The maximum rewards (defined as the reward that would
be earned if a job’s sojourn time is zero) of the jobs are iid and chosen from an
arbitrary distribution. Similarly, the mean service times, or equivalently the
service rates, of jobs are iid and chosen from an arbitrary distribution. The
scheduler is assumed to know the maximum reward, service rate, and age of

each job.

Much prior work has considered queues with impatient users with identical
maximum rewards and service rates. Early papers modeled such queues under
a first in first out (FIFO) scheduling policy, and derived various performance
measures (c.f. [7]). Later papers have focused on characterizing the optimal
scheduling policy. The literature on such systems splits into two categories,
depending on whether the deadlines of individual customers are known by the

server.

If the deadlines of individual customers are known by the server, it has been
shown that shortest time to extinction with idling (STEI) is often optimal. In
[2], Panwar et. al. consider a M/G/1 queue in which customers have deadlines
on queueing time and will drop out of the queue if service is not started before
the deadline (called “expired jobs dropped”). They prove that STEI mini-

mizes the average number of dropped jobs among the class of non-preemptive



scheduling policies. In [3], Bhattacharya and Emphremides consider a G/M/1
queue in which customers have deadlines on queueing time or on sojourn time
with expired jobs dropped, and prove that STEI minimizes dropped jobs (in
the sense of stochastic ordering) among the class of non-preemptive policies.
In [8], Bhattacharya and Emphremides consider two queues sharing a single
server, with geometric arrivals and service, in which customers have deadlines
on sojourn times but will not drop out of the queue when the deadline passes.
The server accumulates a penalty for tardy customers, which is linear in the
tardiness. They prove that the scheduling policy that minimizes average and
discounted penalty is preemptive STEI, with an optimal switch-over policy

among the two queues.

If the deadlines of individual customers are not known by the server, then
the scheduling policy must base its decision on the distribution of deadlines
and the age of the customer, rather than the customer’s actual deadline. The
literature on such queues typically assumes that expired jobs are not dropped,
i.e. the server must serve all jobs. In [9], Doshi and Lipper consider a M/G/1
queue in which customers have deadlines on queueing time and expired jobs are
not dropped. A reward is earned for each served job, but the reward depends
on the customer’s queueing time. They prove that if the reward function is
convex decreasing, then last in first out (LIFO) maximizes average reward
among work-conserving non-preemptive scheduling policies. Similarly, they
also show that if the reward function is concave, then the optimal policy is

first in first out (FIFO). In [10], Kallmes et. al. consider a G/G/1 queue in



which customers have deadlines on sojourn times and expired jobs are not
dropped. They prove that if the distribution function of deadlines is concave,
then LIFO maximizes the probability that the sojourn time is less than the
deadline among work-conserving, non-preemptive scheduling policies. They
also show that in a M/G/1 queue under similar conditions, last in first out
preemptive resume (LIFO-PR) is optimal among work-conserving scheduling

policies.

Several other optimization metrics have been considered in the literature.
In [4,11], customer rejection mechanisms are considered in conjunction with
scheduling in order to maximize the number of customers served before their
deadlines in finite queues. In [12-14], optimal scheduling policies in queues

with constraints on average or maximum delays are analyzed.

In this paper, we consider a queue with differentiated impatient users in which
deadlines are not known and expired jobs are not dropped. In addition to
knowing the age of each customer, in the differentiated customer model the
scheduler is also presumed to know the maximum reward and service rate
of each customer. The literature on queues with impatient users in which
deadlines are not known, outlined above, provides a starting point for our
work. In addition, there is extensive literature on scheduling in multiclass
queues without impatient users. A common form for optimal policies in such
systems is to service the job (or queue) that maximizes some index, often the

product of a reward and service rate (the cy rule) (c.f. [15-19]).



Specifically, we consider a queue with Poisson arrivals and exponential service
times, in which the average reward for servicing a job is an exponentially
decaying function of the job’s sojourn time. The maximum reward and mean
service times of a job are iid and chosen from arbitrary distributions. The
scheduler is assumed to know the maximum reward, service rate, and age of
each job. We prove that the scheduling policy that maximizes average reward
serves the customer with the highest product of potential reward and service
rate, where the potential reward is defined as the reward function evaluated at
the customer’s current age. For a queue in which all customers have identical
maximum rewards and service rates, such a greedy policy reduces to LIFO-
PR. If we interpret the reward as the probability that a job is served before its

deadline, then this result is consistent with previous results in the literature.

The rest of this paper is structured as follows. In Section 2, we introduce the
model. In Section 3, we derive the optimal scheduling policy. In Section 4, we
illustrate the behavior of the optimal policy versus simpler policies. Finally,
in Section 5, we briefly compare various scheduling policies under overload

conditions.

2 Model

We consider a single server queue with Poisson arrivals. The service time of
job ¢ is assumed to have an exponential distribution with rate p;, where p;

are i.i.d. random variables with an arbitrary distribution. The service times



of jobs are assumed to be independent. Once a job has entered the system,
it does not leave until it completes service. We assume that swap times are

negligible.

Let x; denote the arrival time of job 7 at the queue and D;, denote the
departure time of job ¢ under policy p. Then job ¢ has a sojourn time under
a policy p equal to D;, — z;. When job 7 departs from the queue, we assume
that the server earns an expected reward equal to g;(D;,) = Cje~Pir=2i)

where C; are i.i.d. random variables with an arbitrary distribution.

The queue can be analyzed by considering a single cycle consisting of a busy
period and an idle period. By the Renewal Reward Theorem [20], the average

reward per unit time earned by the server under policy p is

N
E Lzl gi(Di,p)]
EZ

V, = (2.1)

where N is the number of jobs served in the first busy period and Z is the

length of the first cycle. An optimal server policy satisfies V' = max, V.

Denote by S all scheduling policies that choose which job to serve (if any)
based solely on the set of ages, maximum rewards, and service rates of jobs
in the queue, namely {t — x;, C;, i1;}. The set S therefore includes preemptive

policies, processor-sharing policies, and non work-conserving policies.



3 Optimal scheduling policy

Our derivation of an optimal scheduling policy proceeds by showing that an
optimal policy can be found in a subset of S containing only work-conserving,
non processor-sharing, Markov policies that switch jobs in service only when
jobs arrive or depart the system. A characterization of an optimal policy is

then identified within this smaller class.

Our first lemma excludes from the set of optimal policies those in which the

server may remain idle when jobs are in the queue.

Lemma 3.1 Any optimal scheduling policy in S is work-conserving.

Outline of proof: The proof is by contradiction. Suppose there exists a pol-
icy p that is not work-conserving and that achieves a higher average reward
than any work-conserving policy. We construct a modified policy p’ by swap-
ping an interval when (under p) the server is idle and the queue is not empty
with a later interval when the server is busy. The key idea is the identification
of the time intervals. The two time intervals are chosen as consecutive infinites-
imal periods from the same busy period, intersecting when the server switches
from idle to busy. It can be shown that under the modified policy there is
a nonzero probability that a job completes at an earlier time, and therefore
achieves a higher reward. This portion of the proof is similar to Lemma 3.2
and is omitted here. (The full proof can be found in [21].) It follows that p

can not achieve the maximum average reward. O



Our next lemma further restricts the set in which optimal policies may be

found.

Lemma 3.2 Any optimal scheduling policy in S switches between jobs in ser-

vice only upon an arrival to or departure from the queue.

Proof: The proof is by contradiction. Suppose there exists an optimal policy
p which switches between jobs in service at some time other than a departure
time or arrival time over some interval of a sample path in the first busy
period. At some time interval [a; — dl, a;) during this busy period, the server
works on job k. At time aq, the server switches to job £+ 1, and processes that
job for at least the interval [ai,a; + dl). We define a; to be a time at which
no arrivals to or departures from the system occur. At some future time as,
the server switches back to serving job k. We make no assumptions as to the
jobs served in the interval [a; + dl, as). Under this policy, job k cannot depart
the system earlier than time ay + dl, and likewise job k£ + 1 cannot depart the
system earlier than time a; 4+ dl. The server can only earn a reward once a job
departs the system; thus, under policy p, the server can collect a reward for

jobs k and k + 1 no earlier than at times as + dl and a; + dl, respectively.

We establish a contradiction by demonstrating that there exists at least one
modified policy with different potential completion times for requests k£ and
k + 1 that earns the server a higher expected reward than that earned under
policy p. This modified policy, p/, is identical to policy p in the intervals [0, a; —

dl) and [a; +dl, 00), and swaps the order of jobs k and k+1 in [a; —dl, a; +dl).



Note that the earliest departure time for job k& under policy p' is the same as
it is under policy p. The earliest departure time for job k + 1 under p' is aq,
while under under p it is a; + dl. The difference in expected reward earned
under the two policies is thus simply the expected reward earned by policy
p' if job k 4+ 1 departs the system at time a;, which occurs with probability
tr+1dl, minus the expected reward earned by policy p if job k + 1 departs the

system at time a; + dl[, also with probability g dl:

E [Z gi(Di,p’)] —-E [Z gi(Di,p)] = E[9k+1(a1) + gk(ﬂh + dl)]
— Elgr(a1) + gry1(ar + dl)]
= fg1dlgri1(a1)] — prprdl[gri(ar + dl)]

= fig1dl Ck+16_c(“1_’"’°+1)(1 —emcd
which is a positive quantity.

We have shown that with some nonzero probability, V,, > V},, and therefore p

cannot be an optimal policy. O

Our next lemma states that an optimal policy can always be found among the
class of policies that work on at most one job at a time, which we denote as

non processor-sharing policies.

Lemma 3.3 An optimal policy in S can be found in the class of non processor-

sharing policies.



Proof:

Suppose there exists a generalized processor-sharing policy PSS that generates
a higher reward than the best non processor-sharing policy NPS. Then under
policy PS, over some interval [a, b], the server splits its resources between at
least two jobs. We consider here the case in which PS splits its service rate
between two jobs, with a constant proportion to each job, until the first job
departs, and then devotes all of its service capacity to the second job until it

departs. The general case follows in a similar fashion.

Suppose the server devotes a proportion ¢ of its service rate u to job 1 and
the remainder to job 2. Denote by 7; the time job ¢ has spent in the queue
prior to time a, and denote by T; pg the remaining time job 7 will spent in the
system after time a until the job’s departure. The expected total reward that

will be gained from jobs 1 and 2 under policy PS is thus:
ERPS = E[OIG*C(T1+T1,PS) + 02670(7'2+T2,P5)]

Let J1 denote the event that job 1 completes service before job 2, under
policy PS, and J2 denote the event that job 2 completes service before job 1.

Conditioning on J1 gives:
ERps = P(J1)E[Rps|J1] + P(J2)E[Rps|.J2] (3.1)

Using classic results from the multiplexing of Poisson processes, P(J1) = %
and P(J2) = 1—P(J1), where o = qu1 + (1 —¢q) po. Furthermore, (7' pg|J1) ~

Exp(u), and (Ty ps|J1) =T\ ps + Z, where Z ~ Exp(us).
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Now consider the best non processor-sharing policy NPS. This policy must
either serve job 1 to completion and then serve job 2 (denoted NPS1), or
vice-versa (denoted NPS2). Under NPS1, the remaining sojourn times are

Tl,NPSl n~ ESUP(M) and TZ,NPSI = TI,NPSI + Z, where Z ~ Exp(;@).

If py = po = p, then it follows that 7\ yps1 ~ (T1ps|J1) and Th yps1 ~
(Ty,ps|J1). Therefore the expected total reward that will be gained from jobs
1 and 2 under policy NPS1, denoted ERyps; is equal to E[Rpg|J1]. Similarly,
ERnpss = E[Rps|J2]. Note that both ERyps; and ERypge are indepen-
dent of ¢. Equation (3.1) can thus be written as ERps = ¢ERxps1 + (1 —
q¢)ERNps2. Since the expected revenue under policy PS is a linear weighted
sum of the expected revenues under policies NPS1 and NPS2, it follows that

max(ERnps1, ERnps2) > ERps.

If however ji; # 12, then the distribution of T} ypg; is different than that of
(T1,ps|J1). We can explicitly evaluate the expected reward from serving jobs

1 and 2 under each policy:

ERNps1 = 91(a)c + gala c jfl/h c ﬁ2ﬂ2

ERyps1 = gi1(a) p _l:lul c —I:ZM +9:(0) c jf2u2
ERpg = P(J1) lgl(a)c+u +92(a)£$2uz]
+ P(J2) [gl(a)cﬁuc_/:lul +92(a)cﬁ2u2]

It can be shown after simplification of the above expression that FRpg >

ERynps1 iff gi(a)pn < go(a)pg, and that ERps > ERypgy iff gi(a)u; >

11



gg(a)/@. It follows that mal‘(ERNpgl,ERNPSQ) 2 ERps. a

The scheduler is assumed to know the set of ages, maximum rewards, and
service rates of jobs in the queue, namely {t — x;, C;, i;}. Since interarrival
times and service times are memoryless, it suffices to keep track solely of the

set of potential rewards (under policy p) and service rates, {g;(t), ;}-

Lemma 3.4 An optimal policy in S can be found in the class of Markov

policies.

Outline of proof: Since interarrival and service times are independent and
exponentially distributed, knowledge of past arrival times, past service times,
or the current service time so far does not help to predict future arrivals or
future service times. In addition, rewards are solely a function of sojourn times,
and therefore given knowledge of the current potential reward for job i, g;(¢),
it is not useful to know past history of job arrivals to estimate future rewards.
Finally, knowledge of past rewards or service times (or even the distribution

of C; or of p;) is not useful, since preemption is allowed. O

We can now state the form of the optimal policy:

Definition 3.5 Denote the job with the highest product of current potential
reward and service rate as i*(t), namely i*(t) = argmax; g;(t)u;. The greedy

scheduling policy p* serves at time t job i*(t).

12



Theorem 3.6 The greedy policy p* mazximizes the average reward among all

scheduling policies in the class S.

Proof: By lemmas 3.1-3.4, it suffices to consider scheduling policies in a
smaller class S’, defined as policies in S that are work-conserving, non processor-
sharing, Markov and only switch between jobs at jobs’ arrivals or departures.
Assume that there exists a policy p € S’ that achieves a higher average reward
than does p*. Then, infinitely often, p consecutively serves two jobs for which
product of potential reward and service rate of the first job is less than that
of the second. Consider one such time, ¢y, and one such pair of jobs, ¢ and j.
Denote the remaining sojourn times, after time %,, for jobs 7 and j as T;, and

T;,. The revenue from these two jobs under policy p is:
Ry = gi(to)e™ "' + g;(to)e™ "

Now consider an alternate scheduling policy p’ that interchanges the order of

jobs i and j. The revenue from these two jobs under policy p' is similarly:
Ry = g;(to)e “Liv' + gi(to)e Lo’

Since T; , + T}, ~ T; + Tj,r, the average reward during the remainder of the
busy cycle and the length of the busy cycle are identical under p and p'. The
difference in average revenue in this busy cycle can thus be explicitly expressed

as:

ER. — ER :gj(to)ﬂj 1— 122 _gi(to),ui I—L
P b c—+ [, c+ u; c+ u; C+ W

13



= T let ) illors = gilto)us) (3.2)

Each term is positive, so ER, > ER,. Since such interchanges can occur

infinitely often, Vjy >V}, and hence p can not be optimal. O

We note that in the case in which C; = C' Vi and p; = p Vi, the optimal policy

reduces to LIFO-PR.

4 Simulation results

To illustrate the differences in average reward under various circumstances, we
present a set of simulation results. Using the BONeS simulation software, we
implemented the scheduler under four policies: the greedy policy, LIFO-PR,
FIFO, and PS. For each policy, we measure the average reward per unit time
and the variance of the sojourn time. Jobs arrive at the queue as a Poisson
process with rate A = 50. We vary the service rate u so that the load \/p varies
from zero to near one. (Loads greater than one are considered in Section 5.)
The simulation times were chosen to include many busy cycles in each case,

so that the confidence intervals for each plotted quantity are relatively small.

We first consider a system in which C; = 1 Vi and p; = p Vi. The greedy
policy therefore reduces to LIFO-PR. In Figure 1a we plot the average reward
divided by A versus the load. At low loads, the sojourn time is only slightly
greater than the service time, and there is not much difference among the

service policies in terms of the average reward. As the load increases, the

14



a. Normalized average reward vs. load
N N N N N .

——

0.4 == LIFO-PR
—— PS
-4~ FIFO
T T i i i i i i i i
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Load
b. Sojourn time variance vs. load

—e— LIFO-PR
0.08H =— PS
-4~ FIFO

Variance (s)

0la A A N "N N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load

Fig. 1. Equal maximum reward model: (a) normalized average reward as a function
of load; (b) sojourn time variance as a function of load.

differences in average reward become more pronounced, and for loads close to
one the average reward for FIFO and PS drop much more quickly than the

average reward for LIFO-PR.

The increase in the difference in average reward between various policies can
be explained in part by the high variances of the LIFO-PR sojourn times as
compared to the sojourn time variances under FIFO and PS. The measured
sojourn time variances for each policy are plotted in Figure 1b. It is known
that among scheduling policies in S, FIFO attains the smallest sojourn time
variance and LIFO-PR attains the largest [22]. Since the reward function is
decreasing convex, an increase in sojourn time variance results in an increase
in average reward. In particular, at high loads, the average reward under
LIFO-PR will be dominated by jobs with small service times which earn high
rewards, while the average reward under FIFO will drop quickly due to long

average sojourn times.
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a. Normalized average reward vs. load
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Fig. 2. Differentiated maximum reward model: (a) normalized average reward as a
function of load; (b) sojourn time variance as a function of load.

We now consider a system in which the maximum reward C; are i.i.d. and
drawn from a uniform distribution on [0,1), and p; = p Vi. In Figure 2a we
again plot the average reward divided by A versus the load. (The maximum
average reward is now EC; = 0.5.) Since FIFO, PS, and LIFO-PR serve jobs
independent of C;, the average rewards earned by these scheduling policies are
identical to those in Figure 1a, scaled by 0.5. The greedy policy, however, earns
a slightly larger average revenue than LIFO-PR. The corresponding sojourn
time variances for each policy are plotted in Figure 2b. The greedy policy
results in small increases in sojourn time variance above that achieved by
LIFO-PR when the offered load is very high (above 0.95, not shown on the
plot). In addition, the differences in average revenue will increase with the

variance of C}.

Finally, we consider a system in which the maximum rewards are set to C; =
1 Vi, and the service rates are independently drawn from a set { K, K/7, K/50}

with probabilities {0.2,0.7,0.1}, with K chosen so that the load A\/u varies
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a. Normalized average reward vs. load
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Fig. 3. Differentiated service rate model: (a) normalized average reward as a function
of load; (b) sojourn time variance as a function of load.

from zero to near one. The service time is thus drawn from a hyperexponential
distribution, and the queue is M/H/1. In Figure 3a we plot the average reward
divided by A versus the load, and in Figure 3b we plot the corresponding

sojourn time variances.

The difference in average reward between PS and FIFO is greater in the dif-
ferentiated service time simulation than it was in the differentiated reward
simulation, due to a significant decrease in FIFO’s average reward. The differ-
ence in average reward between the greedy policy and LIFO-PR is also smaller.
Even though the greedy policy uses additional information (service rate) in
choosing which request to service, the fact that the majority of the rates are
chosen from the same distribution means that this policy will behave similarly

to the LIFO-PR policy, which solely considers reward and not service rate.

17



5 Optimal policy under overload conditions

The simulation results presented in Section 4 demonstrate that at low system
loads, FIFO, LIFO-PR, and PS generate almost the same average reward
as the optimal policy. The differences in average reward among the policies
increase as the system load increases towards one. In this section, we consider
the performance of these policies under overload conditions, when the load

exceeds one.

At loads above one, the queue becomes unstable and the average queue length
and the average sojourn time will grow without bound. As a result, the average
reward earned under FIFO will be zero, since the oldest customer’s sojourn
times will tend to infinity. Similarly, the average reward earned under PS
will be zero. In contrast, the average rewards under LIFO-PR and the greedy

policy will remain positive, since they serve recently arriving customers.

We can analyze this degradation of FIFO and PS by considering the average
revenue per unit time over a finite period of time, starting with an empty
queue. We consider the queue with homogeneous users, i.e. C; = 1 Vi and
ii = p Vi. In the simulation results presented here, ;4 = 100. In Figure 4, we
plot the normalized average reward per unit time earned by FIFO, PS, and
LIFO-PR (the optimal policy) at loads of 1.0, 1.01, and 1.1, for time windows

ranging from ten seconds to thirty minutes.

18
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Fig. 4. Average reward earned by LIFO-PR and other service orders under overload
conditions.

Normalized Average Reward Earned by LIFO-PR at Overload
1
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Fig. 5. Average reward at various stages of overload, LIFO-PR only.
The average reward under FIFO and PS must fall to zero as the length of the

time window increases. Indeed, they also drop off more quickly as the load
increases. In contrast, the average reward under LIFO-PR will converge to a

positive value as the time window increases.

In Figure 5, we plot the normalized average reward per unit time under LIFO-
PR for loads ranging from one to two and for time windows ranging from thirty
seconds to thirty minutes. We observe that the normalized average reward per

unit time increases as the load increases.
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Indeed, we can analyze the limiting average revenue per unit time earned under
LIFO-PR as the load tends to infinity. At arbitrarily high loads, LIFO-PR will
almost always be serving the newest job. It will complete service for this job
with probability ﬁ Conditioned on service completion, the sojourn time
has an exponentially distributed distribution with rate A + pu, so the expected

reward per service completion will be ECici—j\r_ﬁ. The expected reward per

arrival will thus be £ EC; A = EC
"

o
P ot and the average reward per

unit time will thus be EC; Cﬁ‘ﬁﬂ. As the load tends to infinity, the average

reward per unit time tends to ECjpu.

6 Conclusions

This paper discusses optimal scheduling policies for single-server queues with
Poisson arrivals and exponential service times, where the average reward for
servicing a job is an exponentially decaying function of the job’s sojourn time.
The scheduling policy that maximizes average reward serves the customer
with the highest product of potential reward and service rate, where potential
reward is defined as the reward function evaluated at the customer’s current
age. When maximum rewards are equal and service times are drawn from
a single exponential distribution, this policy defaults to LIFO-PR. We have
demonstrated via simulation the difference in average reward generated by the
scheduler per unit time under the optimal scheduling policy and other policies
such as FIFO and processor-sharing. As the offered load approaches one, the

differences in average reward become more pronounced, and the optimal policy
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significantly outperforms both FIFO and processor-sharing policies. Finally,

we have shown via simulation that the optimal policy continues to generate a

high average reward even when the system is overloaded for a significant time

period.
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