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Abstract

In this paper, we present a novel hybrid push–pull algorithm which combines broadcasting of push data items,
with dissemination upon request of pull items in asymmetric communication environments. These environments are
made up only of one database server and many clients. Requests made by the clients are queued up for the pull items.
The (pull) item with the number of pending requests is the one selected to be pulled. We present a performance
analysis of our scheme, and determine the individual response time for each item disseminated and the overall time
for the pull queue to be flushed. Next, we extend our algorithm by incorporating quality of service (QoS) factors,
and then, study its performance analytically.
© 2004 Published by Elsevier B.V.
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1. Introduction

In this world of information on demand at your fingertips whether it be traffic updates, stock quotes,
horoscopes, sports results, or weather information where the clients far outnumber the servers, the tra-
ditional client–server approach by itself is no longer efficient. Popular data must be broadcasted while
those infrequently needed can be pulled. Developing efficient schemes to do this is a challenge which
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has to be met. It is especially important in wireless networks, where we have to deal with issues such as
limited bandwidth, power consumption, and reliable connections.

An asymmetric communication environment is made up of one server and many clients. There are two
ways for a client to receive data. The data could either be given without the client asking for it or it could
be explicitly requested by the client. When the data is sent to all the clients at the same time regardless of
whether any of the clients had requested that data item or not, this is known as broadcasting. When the
data is given to a particular client only if it is requested then that data item is referred to as being pulled.
Our communication environment can either bepush-basedor pull-based. A push-based environment is
one in which the server sends out items to the client without them requesting it. A pull-based environment
is one in which all items sent are those explicitly requested by the client. A hybrid system combines these
two approaches.

There have been many algorithms in the literature which combine the two approaches. The goal is to
minimize both the individual access and response times and overall access and response times or strike
some kind of a balance between the two. Access time is how long a client has to wait for a data item to
arrive after it starts listening to the broadcast schedule. Response time is how long a client has to wait for
a data item to arrive after it explicitly requests it. A broadcast schedule is a specified sequence or order for
data delivery of the most popular items, such as push data. A hybrid scheme is the best way to approach
the problem. A pure broadcast system will broadcast not only frequently requested items, but also those
ones that are rarely needed. This will unnecessarily increase the average access time of a data item. A
pure pull system on the other hand is also not efficient as well.

The rest of this paper is organized as follows. Section2 reviews previous and related work. Section
3 discusses our hybrid push–pull algorithm, followed by its description by a mean of pseudo-code. In
Section4, we present the performance analysis of our algorithm. Section5 presents an enhanced hybrid
push–pull algorithm. Section6 will give its pseudo-code. Section6 will analyze the performance of the
enhanced hybrid push–pull algorithm. Finally, Section7 will discuss our conclusions.

2. Related work

There are many schemes[1–9,11–14,16]which have been developed to partition the data items into
either the push-based set or the pull-based set. However, none exist so far which have studied at all these
four factors in combination: multiple data set sizes, quality of service (QoS), spurious cases leading to
inaccurate portrayals of the system dynamics, and doing implementation without previous knowledge of
data access probabilities. Although there have been papers which have examined some of these factors,
though independently, to our knowledge, none so far has studied all of these four factors together. For
example, the R×W algorithm[4] examines at a broadcast system, but looks only at data items of uni-
form sizes. It has also only been applied to a pure broadcasting system. The stretch-optimal scheduling
algorithm[16] does look at non-uniform data item sizes, however it is only intended for a pure broadcast
system. While some authors[1–3,5,8,11,12,14]have assumed a priori knowledge of the data item access
probabilities, others[6,7,9] have developed algorithms based on static analysis and the fact that there is
only downward communication from the server to the clients.

Quality of service is another important component that have been investigated in[13], though, their
scheme has only been applied to the pull-based case, and has considered only two levels of priority. To the
best of our knowledge, spurious cases and anomalies have not been investigated fully at in the literature.



A. Boukerche et al. / Performance Evaluation 60 (2005) 201–221 203

Suppose, we have one client requesting a particular data item 2000 times in the last 30 min and we have
no other client requesting that particular data item, previous algorithms would place that particular data
item in the broadcast cycle due to that one client making the probability of access for that data item high.
The outlier creates unfairness. Our proposed algorithm detects the outliers and creates a fair situation
when compared to previous schemes.

Our enhanced algorithm (see Section5) will broadcast the most data items (i.e., pull data) during a
cycle. After broadcasting a single item, the pull queue will be examined and the item which maximizes
the product of the overall stretch and time of first request for that item will be selected for dissemination.

The concept of broadcast disks has been discussed extensively in[1,2,5–7,9]. The high bandwidth
channel which the server uses to push data can be thought of as disks for the clients. Disks of different
sizes and speeds are used for pushing items to clients. A type of memory hierarchy is created. Higher speed
disks are used for data items that are more frequently accessed. Caching techniques in conjunction with
different broadcast scheduling algorithms have been studied in connection with broadcast disks. Packet
fair queueing is another technique[11,12] used in broadcast scheduling. A log-time algorithm[11] for
scheduling has been developed. Broadcast scheduling techniques were first studied for teletext systems
before being studied for wireless systems. All of the different techniques and algorithms mentioned in
this paragraph have assumed previous knowledge of the data item probabilities.

2.1. Stretch-optimal scheduling algorithm

The stretch-optimal scheduling algorithm[16] based on the LTSF algorithm developed in[3] is used
for broadcasting data items of variable size. The enhanced hybrid push–pull algorithm will however with
some modifications use it in the pull set. The modification we make is that we will take into consideration
the time that the earliest request for a particular data item was made and not just the number of requests
that have been made for that item. Another modification we will make is that we will look the effective
number of requests (to be explained later) and not the actual number of requests.

Stretch is a metric which can be used to create fairness in systems which have items of non-uniform data
sizes. The stretch is defined to be the response time for an item divided by the time it takes to transmit
that item. The transmission time of an item is its size divided by the system bandwidth. In the LTSF
algorithm, we pick the data item for which the sum of all the stretches for unfulfilled requests for that
item is the greatest. The stretch optimal algorithm is based on LTSF and is used instead of it because LTSF
does not give us the overall stretch value which is optimal. The stretch optimal algorithm also requires
less overhead and is simpler to implement. The stretch optimal algorithm picks the data item for which
the value of the ratio of the number of unfulfilled requests for it and its size is the greatest. Suppose, we
have three data items whose sizes areL1 = 2, L2 = 5, andL3 = 7, and the number of requests made
for them are in respective order,R1 = 5, R2 = 4, andR3 = 6. We will then pick data item 1 since its
R/L2 value, 1.25 is the most. This will be picked instead of another item, in order to minimize the overall
stretch.

3. Hybrid push–pull algorithm

In this section, we will describe the hybrid push–pull algorithm. The main objective of this algorithm
is to pick a cut-off pointK which divides the push data items from the pull data items in such a way as to
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minimize the sum of the average access time and average response time. After describing the algorithm
we will show its pseudo-code. The pseudo-code consists of three main parts: a function to determine
the cut-off point, a procedure for the actual scheduling of the data items, and finally a procedure for
requesting of data items which runs at the client end.

3.1. Description of hybrid push–pull algorithm

Our system is made up of one database server holdingD data items andc clients.Fig. 1shows what
our system looks like.K of theD items will be broadcasted and the remaining (D−K) items will form
part of the pull set. The foundation of our hybrid algorithm comes from[10,12,15]. We will generalize
this algorithm even further to consider the four factors mentioned earlier. Before we do that, let us briefly
explain what has been done so far in[10,12,15].

Access probabilities are assigned based on the popularity of the items. Each item is assumed to be of
uniform data size. The access timeTacc is the amount of time a client has to spend in waiting for an item
to be broadcasted after listening. The response timeTres is the amount of time a client spends waiting
after it has requested an item from the server. The idea for the push-based scheduling is to minimize the
access time and the idea of the pull-based scheduling is to minimize the response time.

In the hybrid system, we propose to minimize the combined time. LetT acc,i be the average access
time for data itemi andT res,i be the average response time for data itemi. Then, the average expected
hybrid wait time is defined to be the sum of the average expected access time and average expected
response time. In other words,Texp−hyb = Texp−acc+ Texp−res = ∑K

i=1Pi × T acc,i +
∑D

i=K+1Pi × T res,i.
ThePi values refer to the access probabilities of the data items. TheK most popular items are chosen to
be broadcasted and the remaining (D−K) items have to be explicitly requested by the client. The idea
is to choose the value ofK which will enable us to do things in an efficient manner.

Fig. 1. Asymmetric client–server architecture.
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Fig. 2. Frame structure of a broadcast cycle (all pull set items requested).

Hence,Texp−hyb = ∑K
i=1 SiPi +

∑D
i=K+1Pi × (D−K), whereSi = ∑K

j=1

√
P̂j/

√
P̂i. Si is defined to

be the optimal instance space andP̂i is defined to be the normalized probability whereP̂i = Pi/
∑K

j=1Pj.
In the hybrid algorithm, we try settingK to all values from 1 toD. WhenTexp−hyb(K) ≥ Texp−hyb(K + 1)

we stop and we have obtained theK value which will minimize the access/request time for the hybrid
algorithm. TheTexp−hyb values are initialized toD for K = 0 and 1.

The pull scheduling is done in such a way that on average we get no more than one request for an item
numbered from (K + 1) toD during an unit time interval. If we do have more than one item in the pull
queue, then we choose the item which has been requested the most. The pull queue is implemented by a
max heap (Fig. 2).

Given below is the general outline of the pseudo-code of the hybrid push–pull algorithm.

Integer Function Cut-Off Point (D, P1, P2, . . . , PD):K
/* The algorithm to determine the cut-off point K between the push and pull items, */
/* is given below and taken directly from[15]. */
D = Number of Database Items
K = Optimal Cut-Off Point
K := 1; Texp−hyb(0) := Texp−hyb(1) := D;
whileK ≤ D andTexp−hyb(K − 1) ≥ Texp−hyb(K) do

begin

SetSi =
∑K

j=1

√
P̂j√

P̂i
, whereP̂i = Pi∑K

j=1 Pj
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Texp−hyb(K) = ∑K
i=1 SiPi +

∑D
i=K+1Pi ∗ (D−K);K := K + 1;

end
return (K − 1)

Procedure Hybrid Scheduling
/* The algorithm at the server which gives us the hybrid scheduling is given below. */
while true do

begin
compute an item from the push scheduling and broadcast it;
if the pull-queue is not empty then extract the most requested item from the pull-queue
clear the number of pending requests for that item and pull it

end

Procedure Client Request(i):
/* Finally the algorithm which runs at the client’s side is shown below. */

begin
send sever request for itemi
wait until listen fori on the channel

end

4. Performance analysis of hybrid push–pull algorithm

Earlier performance analysis of the push–pull scheduling algorithm[15]has only examined the expected
overall response time. Though, the study did not investigate the expected response times for individual
data items in the pull set. This analysis could be useful in systems where meeting deadlines is crucial
and/or for better establishing QoS criteria. The expected response time for an individual data item is
the time we expect to wait on average for that item to be disseminated. In this section, we will derive
a theorem which gives us the expected response time for itemb to be disseminated. Before we proceed
further, let us introduce the following two lemmas.

Lemma 1. The probability of i requests for data item s during an unit time interval,Qi,s, where c is the
number of clients in our system, andPs is the probability of requesting item s during an unit time interval
is computed as follows: Qi,s = (

c

i

)
(Ps)i(1 − Ps)c−i.

Proof. The above is simply an application of Bernoulli trials wherePs is the probability that a client will
make a request for data itemsduring an unit time interval and (1− Ps) is the probability that the client
will not make a request for data itemsduring that time interval. �

Lemma 2. The probability of pull item b being the ath item to be flushed out of the pull queue during a
broadcast cycle,Fa,b, is determined as follows,where c is the number of clients in our system, is calculated
as given below:

Fa,b =
(c−a+1)∑
m=1

Qm,b

∑
n∈Ti,a,b,m

R(n, b)
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whereQm,b is the probability of m requests for data item b and can be calculated as shown inLemma
1, Pb is the probability of pull item b being requested, R(i, b) = Qi1,K+1Qi2,K+2 · · ·QiD−K,D/Qib−K,b ,
i = (i1, i2, . . . , iD−K) Ti,a,b,m = {(i1, i2, . . . , iD−K) − (ib−K)| maxa[(i1, i2, . . . , iD−K) − ib−K] < m,

Index(maxa[(i1, i2, . . . , iD−K) − ib−K]) ∈ Ya,b,m ∪ Za,b,m,maxv[(i1, i2, . . . , iD−K) − ib−K] > m,1≤v ≤
(a− 1),0 ≤ ij ≤ c,1 ≤ j ≤ (D−K)}, where Ya,b,m = {u|iu = maxa[(i1, i2, . . . , iD−K) − ib−K], u <
(b−K), iu < m}, Za,b,m = {u|iu = maxa[(i1, i2, . . . , iD−K) − ib−K], u > (b−K), iu≤m}, Index(in) =
n and where our“–” operator for tuples removes one component from our tuple, maxa I is the ath
largest element in I, D is the number of items in our database server, and K is the number of items in the
push set.

Proof. For those items in the pull set, we can determine probability distributions for which order the
items are released in. We will determine a general formula forFa,b. Let us develop our analysis by first
looking atF1,k+1. Before we proceed further, let us define some notations which will make the equations
simpler to write.

Let I = {(i1, i2, . . . , iD−K−1)|0 ≤ ij ≤ c,1 ≤ j ≤ (D−K − 1)}. The setI represents all the possible
combinations of the number of requests that can be made for each item in the pull set. Ifi ∈ I, we define
maxa i to be theath largest component ofi. Do note that the way we refer to theath largest value maybe
slightly different than the way some people use the term. For example, if we have a tuple (3, 3, 2), the
first largest value will be 3 and the second largest value will also be 3 (instead of 2).

So we can say that the probability of item (K + 1) being the first one to be flushed out of the pull queue
is as follows:

F1,K+1 =
Q1,K+1

∑
i∈I,(max1 i)≤1

Qi1,K+2Qi2,K+3 · · ·QiD−K−1,D


+
Q2,K+1

∑
i∈I,(max1 i)≤2

Qi1,K+2Qi2,K+3 · · ·QiD−K−1,D


+
Q3,K+1

∑
i∈I,(max1 i)≤3

Qi1,K+2Qi2,K+3 · · ·QiD−K−1,D


+ · · · +

Qc,K+1

∑
i∈I,(max1 i)≤c

Qi1,K+2Qi2,K+3 · · ·QiD−K−1,D


The term on the left of the summation symbols represents the probability of havingx requests for

item (K + 1), wherex varies from 1 toc, the number of clients. The term on the right of the summation
symbols represents the product of the probabilities of having the requests for the other items to be less
than or equal tox; this is necessary in order for us to have item (K + 1) be the first one to be flushed
out.

The following series of computations can determine the probability for item (K + 1) to be the second
item to be flushed out of the pull queue.
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F2,K+1 =
Q1,K+1

∑
i∈I,(max2 i)≤1,(max1 i)>1

Qi1,K+2Qi2,K+3 · · ·QiD−K−1,D


+
Q2,K+1

∑
i∈I,(max2 i)≤2,(max1 i)>2

Qi1,K+2Qi2,K+3 · · ·QiD−K−1,D


+
Q3,K+1

∑
i∈I,(max2 i)≤3,(max1 i)>3

Qi1,K+2Qi2,K+3 · · ·QiD−K−1,D


+ · · · +

Qc−1,K+1

∑
i∈I,(max2 i)≤(c−1),(max1 i)>(c−1)

Qi1,K+2Qi2,K+3 · · ·QiD−K−1,D


The reasoning involved in determining the above equation is the same as before. In addition to having

the same conditions as before we also make sure that there has to be one and only one item for which the
number of requests must exceedx. Another difference is thatx varies from 1 to (c − 1), where again,c
is the number of clients in our system.x cannot be equal toc because that would mean the item referred
to by the term which is left of the summation symbol would be flushed out first.

If we introduce a few more terms as given below

R(i, b) = Qi1,K+1Qi2,K+2 · · ·QiD−K,D
Qib−K,b

Ti,a,b,m = {(i1, i2, . . . , iD−K) − (ib−K)|maxa[(i1, i2, . . . , iD−K) − ib−K] < m,

Index(maxa[(i1, i2, . . . , iD−K) − ib−K]) ∈ Ya,b,m ∪ Za,b,m,
maxv[(i1, i2, . . . , iD−K) − ib−K] > m,1 ≤ v ≤ (a− 1),0 ≤ ij ≤ c,1 ≤ j ≤ (D−K)}

whereYa,b,m, Za,b,m, and extrmIndex are defined as shown below

Ya,b,m = {u|iu = maxa[(i1, i2, . . . , iD−K) − ib−K], u < (b−K), iu < m}

Za,b,m = {u|iu = maxa[(i1, i2, . . . , iD−K) − ib−K], u > (b−K), iu ≤ m}

Index(in) = n

and where our “−” operator for tuples removes one component from our tuple and alsoi =
(i1, i2, . . . , iD−K), we can then using similar reasoning as above, define the probability of itemb be-
ing theath one to be flushed out as follows:

Fa,b =
(c−a+1)∑
m=1

Qm,b

∑
n∈Ti,a,b,m

R(n, b)



A. Boukerche et al. / Performance Evaluation 60 (2005) 201–221 209

We will now determine a formula for the expected response time for itemb to be disseminated.�

Theorem 1. The expected response time for item b to be disseminated whereFa,b is the probability of
pull item b being the ath item to be flushed out of the pull queue, Pb is the probability of item b being
requested during an unit time interval, D is the number of data items in our system, and K is the number
of items in the push set, is given as follows:

D−K∑
g=0

[
(1 − Pb)

gPb

((
2D−K − g+ 1

2

)
+

D−K∑
a=0

aFa,b

)]

+
D∑

h=D−K+1

[
(1 − Pb)

D−K+h+1Pb

(
(K − h) +

D−K∑
a=0

aFa,b

)]

Proof. The length of the broadcast cycle is at most [2(D−K) +K], whereK is the number of items
in the push set andD is the total number of data items. The first term is the number of time units taken
for (D−K) items to be broadcasted and (D−K) items to be pulled. The second term is the number of
time units it will take for us to broadcast the remainingK items. So the length of the broadcast cycle is
at most (2D−K).

If a request for itemb to be disseminated comes just prior to the start of a new broadcast cycle, then
the expected time for the item to be disseminated is given below:

∑D−K
a=0 aFa,b.

If the broadcast cycle has just commenced andPb is the probability of itemb being requested by the
client, then we can say that the expected response time for itemb to be disseminated is as follows:

Pb

((
2D−K − 1

2

)
+

D−K∑
a=0

aFa,b

)

If the request for itemb comes in while the first item is being pulled, then the expected response time
for itemb to be disseminated is as follows:

(1 − Pb)Pb

((
2D−K − 3

2

)
+

D−K∑
a=0

aFa,b

)

If the request for itemb comes in while thegth item is being pulled then the expected response time
for itemb to be disseminated is as follows:

(1 − Pb)
2g+1Pb

((
2D−K − (2g+ 1)

2

)
+

D−K∑
a=0

aFa,b

)

If the request for itembcomes in when itemh is broadcasted, whereh > D−K, the expected response
time for itemb to be disseminated is as follows:
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(1 − Pb)
2(D−K)+1(1 − Pb)

h−D+KPb

(
(2D−K) − (2(D−K) + h) +

D−K∑
a=0

aFa,b

)

We can simplify this to: (1− Pb)D−K+h+1Pb((K − h) +∑D−K
a=0 aFa,b).

Therefore, usingLemma 2, the expected response time for itemb to be disseminated is given as follows,

Fa,b =
D−K∑
g=0

[
(1 − Pb)

gPb

((
2D−K − g+ 1

2

)
+

D−K∑
a=0

aFa,b

)]

+
D∑

h=D−K+1

[
(1 − Pb)

D−K+h+1Pb

(
(K − h) +

D−K∑
a=0

aFa,b

)]
�

In Fig. 3, we see the response time for a pull itemb as a function of the number of items in the push
set (K) and the probability of an itemb being requested (Pb). As the probability of a pull item being
requested increases, the response time for the item increases slightly. This is because the more probable
a request for a data item is, the more likely it will be requested towards the beginning of a broadcast
cycle, thereby increasing the wait for the next broadcast cycle to start. The start of the next broadcast
cycle is when requests made in the previous broadcast cycle are honored. The response time for an item
b decreases as we increase the value of the cut-off pointK because there are less items in the pull set
queue.

We can also study the expected overall time for the pull queue to be flushed out. The analysis done
previously[15] gives us only an upper bound. We can refine it further. Computing more accurately
the expected overall time for the pull queue to be flushed out can help us to better how to meet QoS
requirements.

Theorem 2. The expected overall time for the pull queue to be flushed out at the start of the broadcast
cycle is computed as follows:

D−K∑
i=1

2i
∑

a1∈H,a2∈H−a1,...,ai∈H−a1− ··· −ai−1

Pa1Pa2 · · ·Pai
∏

m∈H−a1− ··· −ai
(1 − Pm)

whereH = {K + 1,K + 2, . . . , D}, andPb is the probability of pull item b being requested during an
unit time interval.

Proof. To compute the expected overall time for the pull queue more accurately, we need to be able to
compute the probability of havingg items in the pull queue.

The probability of having 0 items in the queue can be computed as follows: (1− PK+1)
(1 − PK+2) · · · (1 − PD).

Thus, the probability of having only one item in the queue can be computed as follows:∑
h∈H Ph

∏
m∈H−h(1 − Pm).

The probability of two items in the queue can then be computed as
∑

h∈H,i∈H−h PhPi
∏
m∈H−h−i

(1 − Pm).
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Fig. 3. Response time for pull itemb as a function of the number of items in the push set (K) and the probability of itemb being
requested during an unit time interval (Pb).

So the probability of havingg items in the queue is determined as follows∑
a1∈H,a2∈H−a1,ag∈H−a1− ··· −ag−1

Pa1Pa2 · · ·Pag
∏

m∈H−a1− ··· −ag
(1 − Pm)

Thus, the expected overall time for the pull queue to be flushed out at the start of the broadcast cycle
is computed as follows:

D−K∑
i=1

2i
∑

a1∈H,a2∈H−a1,...,ai∈H−a1− ··· −ai−1

Pa1Pa2 · · ·Pai
∏

m∈H−a1− ··· −ai
(1 − Pm) �

5. Enhanced hybrid push–pull algorithm

In this section, we propose an enhanced hybrid push–pull algorithm which can be used in systems with
non-uniform data sizes and in which clients can have multiple priority levels. Furthermore, the enhanced
hybrid push–pull algorithm does not require any a priori knowledge of data access probabilities. The
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enhanced hybrid push–pull algorithm is also able to handle spurious cases as well. For example, if only
one normal or low priority client always requests a particular data item, then that item will be placed in
the pull set instead of the push set as would likely be done instead with other algorithms. The explanation
of the algorithm’s pseudo-code (given in Section5) is explained below. The reader will find it helpful to
investigate while reading the description of the algorithm below.

In procedure client request, whenever a client wants an item, it sends a message to the server identifying
itself and which item number it wants. The server identifies whether the item requested is part of the
broadcast cycle or something which needs to be pulled. This is determined by looking at the item number
assigned to the item. If we haveD items in our database server, they are numbered from 1 toD. We assign
the variableK to be the number given to the highest numbered item which is broadcasted. In other words
items 1 toK are broadcasted and items (K + 1) toD are pulled. TheK value is recomputed at the end
of each broadcast cycle. Clients are also numbered from 1 toc, wherec is the number of clients in our
system. The numbering of clients is purely arbitrary.

If client j requests an item numbered greater thanK, then the request made by clientj is added to the
pull request queue. We keep a running total of the number of requests made for an item by a client. We
also keep track of when the earliest request for an item has been made during a broadcast cycle. In our
system, requests made during a broadcast cycle which has already commenced, do not get honored until
the next one starts. We alternate between broadcasting an item and pulling an item if there is something
that is waiting to be pulled. Another thing that we keep track of is which is the most important or highest
priority client that has made a request for itemi during a broadcast cycle.

When the system has reached steady state, we check to see whether the total number of requests for
item i by client j is an outlier or too much greater than the average number of requests made by all the
clients for that itemi. If the number of requests made for itemi by clientj is too much greater than above
the average we disregard it in our calculations for the effective number of requests (shown in the enhanced
push–pull algorithm with the subscript “eff”). If things do change later on, and it turns out that what was
considered to be too much greater than the average is no longer so, then we include it in our calculations.
TheBi,j boolean values indicate to us whether or not to include it in our calculations.

What constitutes as being “too much greater than the average” depends on the priority value assigned
to the client. The higher the priority a client is, the more the number of requests it can make for a
particular item before it is considered too far above the average. We define a strictly monotonically
increasing function,α, which is a function of the client’s priority value. Thisα value tells us how
many multiples of the standard deviation for the average number of requests made for itemi we can
stray before being considered as going too far above the average. The rationale for this is that for
example, if a data item is requested 300 times by a certain client and the other clients seldom request
that same item and also if that certain client is important enough, we will include the 300 requests as
part of the probability calculations and possibly include the corresponding item in the push set as well.
However, if it turns out that certain client is not important enough, then we will not consider the 300
requests made as part of our probability calculations and very likely instead include that item in the
pull set.

At the end of every broadcast cycle, the number of requests made for an item by a client is reinitialized
to its current value minus the value it hadT time units ago. The pre-defined time interval,T, that we
choose should not be too small nor too large. If it is too large, then we are not able to properly capture the
current state of what is going on. On the other hand, ifT is too small, then we will not be able to weed
out spurious cases properly.
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The scheduler broadcasts each item in descending order of effective access probabilities. We say
effective access probabilities instead of just access probabilities because a request made by a client is not
always counted as one request. It could be counted as two or one-half requests for example, depending
upon if the client is a higher than normal priority client or if it is a lower than normal priority client.
The client priorities assigned,w, are positive values. A normal priority client is assigned aw value of 1.
Important or high priority clients are assignedw values greater than 1. Low priority clients are assigned
values greater than 0 but less than 1. InFig. 4, we see that six clients with different priority levels,
indicated by theirw values, requesting either data item 1, 2, or 3. From the figure, we can calculate
Reff1 = 0.5 + 1 + 1 = 2.5,Reff2 = 1 + 2 = 3, andReff3 = 0.5.

After we broadcast an item, we check to see if there are any items in the pull queue. We pull the item
which has the largest modified optimal stretch value. The optimal stretch value is the number of effective
requests made for an item divided by the square of its length. The modified optimal stretch value is the
product of the optimal stretch value and the product of the time that the earliest request was made for
that item. In the past, the stretch optimal algorithm has been applied only to the push set, but now we are
applying it to the pull set and we are also looking at the earliest request made for that item (not just the
number of effective requests which have been made). If there is a tie, then we propose to break the tie by
pulling the item requested by the highest priority client. If there is still a tie, then we break the tie by pulling
the item which was requested the earliest. If again we still have a tie, then we pull the item which has been
numbered with the smaller value. There is no possibility of further ties as each item is distinctly numbered.

After a broadcast cycle has completed, we recalculate the item access probabilities, the normalized
item access probabilities, and also the optimal instance space between the broadcasted data items. We
then determine the cut-off point between the items to be broadcasted and the items which have to be
pulled. The constraint imposed is that we have to make sure that the expected aggregate length of all the
pull items which need to be disseminated during our broadcast cycle is less than or equal to the average
length of a broadcasted item.

In Table 1, we show the notation used throughout the enhanced hybrid push–pull algorithm. Given
below is the general outline of the pseudo-code of the enhanced hybrid push–pull algorithm.

Procedure Initialize-Values[
K = D

2
ReffTOTAL = 0
for i = 1 toD [

Time[i] = “Negative-Infinity”
HighestPriority[i] = “Negative-Infinity”
Pi = 1

D

Reffi = 0
for j = 1 toc
Ri,j = 0

]
]

Procedure Client-Request[
Request (i, j);

]
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Procedure Request(i, j) [
if ( i > K)

then add-pull-queue (j)
Ri,j = Ri,j + 1
if (Time[i] == “Negative Infinity”)

thenTime[i] = CurrentTime
if (w[j] > HighestPriority[i])

thenHighestPriority[i] = j

if (not (steady-state))
thenBi,j = 1
else if (Out-of-Range (i, j, Ri,j))

thenBi,j = 0
else [Bi,j = 1

Reffi = ∑c
j=1Ri,jwjBi,j

Refftotal = ∑D
i=1Reffi

]
]

Procedure Scheduler[
for item = 1 tonum.items.in.broadcast.cycle

Broadcast (next broadcast item)
if (not (empty(pull-queue)))

then [
pull (item with largest

Reffi Time[i]

Li
2 )

if TIE
then [

pull (item with largestHighestPriority[i] value)
if TIE

then [
pull (item with smallestTime[i])
if TIE

then pull (item with smallest index)
]

]
]

for i = 1 toD [
Pi = Reffi

Refftotal

P̂i = LiPi∑K
j=1LjPj

Si =
∑K

j=1

√
P̂j√

P̂i

]
findK which minimizes

∑K
i=1 SiLiPi +

∑D
i=K+1LiPi subject to

∑D
i=K+1LiPi ≤ 1

K

∑K
i=1Li

Renumberi values in descending order ofPi
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Fig. 4. Multiple priority level clients requesting data items.

if TIE
then [

assign (i values in descending order ofHighestPriority)
if TIE

then [
assign (i values in ascending order ofTime)
if TIE

then [ randomly decide
]

]
]

/* Reset at end of every broadcast cycle */
for i = 1 toD [
Ri,j = Ri,j(CurrentTime) − Ri,j(CurrentTime− T )
Time[i] = “Negative Infinity”
HighestPriority[i] = “Negative Infinity”

]
]

Procedure Out-of-Range(number, i, j) [
if (number+ wj) ≥ (Ri + α(wj)σRi)

then return TRUE
else return FALSE

]

6. Performance analysis of the enhanced hybrid push–pull algorithm

Let us now analyze the performance of the enhanced hybrid push–pull algorithm. Recall that the
enhanced algorithm we also consider differing priority values for clients and non-uniform data sizes.
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Table 1
Nomenclature

Symbol Meaning

N Number of clients in system
D Number of data items in server database
K Cut-off point between push and pull data
T A pre-defined time interval or quantum we select
Pi Probability of client requesting itemi in one time unit
Ri,j Number of requests for itemi by client j
R̄i The average number of requests made for itemi by a client in time period (CurrentTime, T)
Reffi The effective number of requests for data itemi
Refftotal The effective number of total requests for the data items
Wj Priority or weight given to clientj
Li The length of data itemi
i Refers to data item
j Refers to client number
c Refers to total number of clients in the system
α A function of client priority
Bi,j A boolean variable which tells us whether or not to includeRi,j in the calculations forReffi
Time[i] Contains the time that earliest request was made for itemi
HighestPriority[i] Contains the number of the highest priority client which requested itemi

This certainly makes the mathematical analysis far more complex. However, we will make things much
simpler by using the mathematical analysis done in Section4 as a foundation from which to build upon.
Finding out the response times for individual data items may help us how to meet deadlines and also
achieve QoS requirements. Once again, the expected response time for an individual data item is the time
we expect to wait on average for that item to be disseminated.

Having a system where clients have different priority levels instead of having a system where each
client is of the same importance will make achieving quality of service requirements far easier. Clients
who want higher priority levels can subscribe to premium services. Those clients who need to meet some
deadlines can be assigned higher priority levels, so that each request for a pull item is counted as more than
just one request. By the same token, for those clients where time is not so crucial, can be assigned lower
priority levels. In most practical systems, the sizes of data items will vary considerably. Our mathematical
analysis takes this into consideration.

Let us define the effective number of clients, asceff = ∑c
i=1wi. For example, if there are three clients,

with priorities 1 (normal), 2 (high), and 0.5 (low), then the effective number of clients is 3.5. In what follow,
we will introduce a theorem which allows us to compute the expected response time for dissemination
of itemb. Before we do that, we will introduce two lemmas.

Lemma 3. The probability of i effective requests for item j, Ui,j, where item j belongs to the pull
set and c is the number of clients in our system is calculated as such: Ua,b = ∑c

i=1Wi,aQi,b, where
Qa,b is the probability of i requests for item b and is calculated as shown inLemma1, Wi,a is the
probability that the sum of i distinct elements taken from W is equal to a, whereW = {wj|wj ≥ 0,
1 ≤ j ≤ c}.
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Proof. We can start by saying that the probability of receiving one effective request for item number
(K + 1), wherec is the total number of clients in the system can be determined as follows:

U1,K+1 = W1,1Q1,K+1 +W2,1Q2,K+1 + · · · +Wc,1Qc,K+1

whereQa,b is calculated as shown inLemma 1and is the probability ofa number of requests made for
item b, W = {wj|wj ≥ 0,1 ≤ j ≤ c}, Wi,a is the probability that the sum ofi distinct elements taken
fromW is equal toa andwj is the priority level of clientj.

We can, therefore, easily generalize the probability ofa effective requests from itemb as follows:
Ua,b = ∑c

i=1Wi,aQi,b. �

Lemma 4. The probability that item bwill be the ath one to be flushed out,Ga,b, in a systemwith different
priority levels for clients is computed as follows:

Ga,b =
ceff∑

m=maxcA,m∈A
Um,b

∑
n∈Xi,a,b,m

Y (n, b)

where Um,b is the probability of m effective requests for item b, and is calculated as shown
in Lemma 3, Y (i, b) = Ui1,K+1Ui2,K+2 · · ·UiD−K,D/Uib−K,b, Xi,a,b,m = {(i1, i2, . . . , iD−K) −
(ib−K)| maxa[(mK+1,mK+2, . . . , mD) −mb] < mTime[b]/Lb2,maxv[(mK+1,mK+2, . . . , mD) −mb] >
mTime[b]/Lb2,1 ≤ v ≤ (a− 1),0 ≤ ij ≤ ceff ,1 ≤ j ≤ (D−K)} , maxv M is the vth largest ele-
ment in the set M, c is the number of clients, ceff = ∑c

i=1wi, Time[b] is defined to be the earliest
recorded time for which item b was requested, i = (i1, i2, . . . , iD−K), m = (mK+1,mK+2, . . . , mK+D),
mn = in+kTime[n]/Ln+k2, A = {∑c

j=1 ajwj|1 ≤ j ≤ c, aj ∈ Z}, Z is the set of non-negative integers,
Lb is the length of item b, D is the number of items in the database server, and K is the number of items
in the push set.

Proof. The reasoning is similar to the reasoning used to derive the proof forLemma 2. �

Now that we have presented general formula forGa,b, let us use it to develop the expected response
time for itemb, where itemb is an item in the pull set. The analysis is more complex than what we had
for Theorem 1, but follows a similar train of thought.

Theorem 3. The expected response time for item b to be disseminated is given as follows:

D−K∑
g=1

(
Pb(1 − Pb)

Lpg

(
2DLp −

g∑
i=1

Lp − gLa

2
+

D−K∑
i=0

(i(La + Lb)Gi,b)

))

+
D∑

h=D−K+1

(
Pb(1 − Pb)

Lp(h−D+K)

(
DLp −

h−1∑
i=1

Lp +
D−K∑
i=0

(i(La + Lb)Gi,b)

))
where D is the number of items in the database server, K the number of items in the push set,Pb the prob-
ability of pull item b being requested by a client during an unit time interval,Lp the average length of an
item in the pull set,La the average length of all the items,Lb the length of pull item b, andGa,b is the prob-
ability that pull item b will be the ath one to be flushed out in a system with non-uniform sized data items.
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Proof. Suppose, a request for pull itemb is given just after the start of a new broadcast cycle. We can
then say that the expected response time for itemb can be calculated as such

Pb(2DLp +
D−K∑
i=0

iGi,b(Lb + La))

whereLa is the average length of all the items in the database server,Lp the average length of an item in
the pull set,D the number of items in the database server,K the number of items in the push set,Lb the
length of pull itemb, andGa,b is the probability that itemb will be theath one to be flushed out of the
pull set.

Continuing down this road of analysis, we can say that the expected time taken for a request for item
b to be satisfied soon after the first item is pulled to be as follows:

Pb(1 − Pb)

(
2DLp − L1 − La

2
+

D−K∑
i=0

iGi,b(Lb + La)

)

Therefore, the expected time for a request for itemb to be fulfilled when the request is made after the
final possible item is pulled is given below as

D−K∑
g=1

(
Pb(1 − Pb)

Lpg

(
2DLp −

g∑
i=1

Lp − gLa

2
+

D−K∑
i=0

(i(La + Lb)Gi,b)

))

So the expected response time for itemb to be disseminated after thewth item in the push set has been
broadcasted, wherew > K, is given below as

D−K∑
g=1

(
Pb(1 − Pb)

Lpg

(
2DLp −

g∑
i=1

Lp − gLa

2
+

D−K∑
i=0

(i(La + Lb)Gi,b)

))

+
w∑

h=D−K+1

(
Pb(1 − Pb)

Lp(h−D+K)

(
DLp −

h−1∑
i=1

Lp +
D−K∑
i=0

(i(La + Lb)Gi,b)

))
Therefore, we can conclude that the expected response time for itemb to be disseminated is as follows:

D−K∑
g=1

(
Pb(1 − Pb)

Lpg

(
2DLp −

g∑
i=1

Lp − gLa

2
+

D−K∑
i=0

(i(La + Lb)Gi,b)

))

+
D∑

h=D−K+1

(
Pb(1 − Pb)

Lp(h−D+K)

(
DLp −

h−1∑
i=1

Lp +
D−K∑
i=0

(i(La + Lb)Gi,b)

))
�

whereGi,b is computed usingLemma 3.

Fig. 5shows the response time for item 5 after the previous broadcast cycle has ended as a function of
the average data item size,La, and the number of items in the push set,K, when the probability of item
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Fig. 5. Response time for item 5 after previous broadcast cycle ends as a function of average data item size (La) and number of
items in push set (K) wherePb = 0.5 (probability of item 5 being requested during an unit time interval),Lp = 5 (the average
length of an item in the pull set), andD = 500 (number of items in database server).

5 being requested during an unit time interval,Pb is 0.5, the total number of items in the database server
both push and pull,D, is 500, and the average length of a data item in the pull set isLp. We can see that
as the average data item size increases the response time also increases. This is because it generally takes
longer for the previous items to be sent out if the average data size of an item is larger. Similarly, we can
see that, as the number of items in the push set,K, increases, there are less items in the pull set to be
flushed out, so the response time will decrease.

Let us now determine the expected overall time for the pull queue to be flushed out for the general
case. The analysis is quite similar to what we did inTheorem 2.

Theorem 4. The expected overall time for the pull queue to be flushed when we have non-uniform
data sizes, whereLx is the length of item x andPx is the probability of item x being requested, and
H = {K + 1, . . . , D} is computed as follows:

D−K∑
i=1

i
∑

a1∈H,a2∈H−a1,...ai∈H−a1− ··· −ai−1

(La1 + · · · + Lai)Pa1Pa2 · · ·Pai
∏

m∈H−a1− ··· −ai
(1 − Pm)
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Proof. From Theorem 2we know that the expected overall time for the pull queue with all items of
uniform size, namely unity, to be flushed out is:

D−K∑
i=1

i
∑

a1∈H,a2∈H−a1,...,aK∈H−a1− ··· −aK−1

Pa1Pa2 · · ·PaK
∏

m∈H−a1− ··· −aK
(1 − Pm)

Based on the above results, we can determine that the expected overall time for the pull queue to be
flushed is given below when we have non-uniform data sizes. TheLx values after the second summation
symbol below, refer to the different possible aggregate lengths of the items requested to be disseminated.

D−K∑
i=1

i
∑

a1∈H,a2∈H−a1,...,ai∈H−a1− ··· −ai−1

(La1 + · · · + Lai)Pa1Pa2 · · ·Pai
∏

m∈H−a1− ··· −ai
(1 − Pm) �

7. Conclusions

A generalized and novel hybrid scheduling algorithm has been developed for an asymmetric commu-
nication environment which consists of one server and multiple clients. The enhanced hybrid push–pull
algorithm has taken into consideration multiple data sizes, QoS criteria such as priority levels, computing
data access probabilities on the fly, and handling aberrant or stray situations which can lead to distorted
probability calculations. Our scheme makes sure that these stray situations will be taken care of by the
pull set instead of the push set. To the best of our knowledge this is the first hybrid scheduling algorithm
to effectively handle all these these factors simultaneously. We then extended the performance analysis
on our algorithm by looking at the response time for individual data items in the pull set, as well as
fine tuning the analysis for the expected overall time for the pull queue to be flushed out. We have also
presented a performance evaluation of the enhanced hybrid push–pull algorithm. The performance anal-
ysis will help us to better understand how to meet QoS requirements and also be of use in systems with
deadlines.
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