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Abstract— In recent years, fast spreading worms
have become one of the major threats to the security
of the Internet. In order to defend against future
worms, it is important to understand how worms
propagate and how different scanning strategies affect
their propagation. In this paper, we model and analyze
worm propagation under various scanning strategies,
such as idealized scan, uniform scan, divide-and-
conquer scan, local preference scan, sequential scan,
target scan, etc. We also analyze and discuss how
attackers could optimize their scanning strategies, and
provide some guidelines for building up a monitoring
infrastructure to defend against future worms.

I. INTRODUCTION

Since the Morris worm in 1988 [6], the secu-
rity threat posed by worms has steadily increased,
especially in the last several years. In 2001, the
Code Red and Nimda worms infected hundreds of
thousands of computers [7][21], causing millions of
dollars loss to our society [24]. The Slammer worm
appeared on January 25th, 2003, and quickly spread
throughout the Internet. Because of its super fast
scan rate, Slammer infected more than 90% of vul-
nerable computers in the Internet within 10 minutes
[8] and generated severe denial of service attacks on
many networks across Asia, Europe, and America
[25]. Just seven months later, the Blaster worm
appeared and spread out quickly in the Internet on
August 11th. In the following days, Blaster and its
many variants repeatedly attacked the Internet.

Attackers have tried many scanning strategies in
recent worms. Code Red and Slammer uniformly

scan the entire IPv4 space [8][22]. Blaster sequen-
tially scans the Internet. Code Red II also use a
local preference scan in its propagation: Code Red
II has a higher probability of scanning an IP address
within the same Class B or Class A network than a
random address [7]. In its sequential scan, Blaster
chooses to sequentially scan from a local IP address
with probability 0.4 [26].

We believe that in the future, attackers will con-
tinue to implement a variety of scanning strategies
to increase their worms’ spreading speed and de-
feat our defenses. In this paper, we mathematically
model and analyze various scanning strategies that
attackers have already used or may use in the
future. Mathematical analysis provides a deep un-
derstanding of how different factors affect a worm’s
propagation. The scanning strategies we analyze
include idealized scan, uniform scan, divide-and-
conquer scan, local preference scan, sequential scan,
target scan, etc. We also combine numerical analysis
and simulation experiments in our modelling and
analysis.

A better understanding of how various scanning
strategies affect a worm’s propagation can lead
to better defense against future worms. From our
analysis, we derive the following conclusions:

• A local preference scan increases a worm’s
propagation speed when vulnerable hosts are
not uniformly distributed. The optimal local
preference probability increases when the local
scan is on larger subnetworks.

• When vulnerable hosts are uniformly dis-



tributed, the divide-and-conquer scan, the se-
quential scan, and the uniform scan are equiv-
alent in terms of the total number of infected
hosts at any time.

• For a sequential scan worm, using local prefer-
ence in selecting the starting point slows down
the worm’s propagation speed.

• For a selective attack worm [17], when the
density of vulnerable hosts in the target domain
(the ratio of the number of vulnerable hosts
over the number of IP addresses in the domain)
is higher than in other domains, the worm
propagates faster in the target domain if it scans
within the target domain than uniformly scans
all domains (and vice versa).

We also provide some guidelines in designing our
defense system:

• It is crucial to prevent attackers from identify-
ing the IP addresses of a large number of vul-
nerable hosts, or obtaining address information
to dramatically reduce their worm’s scanning
space.

• A worm monitoring system should cover many
well distributed IP blocks in order to accurately
monitor the propagation of a non-uniform scan
worm, especially a sequential scan worm such
as Blaster.

The rest of this paper is organized as follows.
Section II surveys related work. In Section III, we
introduce two classical simple epidemic models and
analyze the underling principles in deriving them. In
Section IV, we model and analyze worm propaga-
tion under different scanning strategies. Based on
our analyses, in Section V we present an important
principle in building up a worm monitoring system.
In the end, Section VI concludes this paper.

II. RELATED WORK

People have studied modelling and analysis of
the propagation of viruses for a long time. Kephart,
White and Chess of IBM performed a series of
studies from 1991 to 1993 on viral infection based
on epidemiology models [3][4][5]. Wang et al. pre-
sented simulation studies of a simple virus propaga-
tion on clustered and tree-like hierarchical networks
[11]. Based on the eigenvalues of network graphs,
Wang et al. presented the epidemic threshold for
virus propagation on arbitrary network topologies

[12]. Wang et al. modelled virus propagation by
considering virus infection delay and user vigilance
[13].

The Code Red incident on July 2001 [22] stimu-
lated a number of models and analyses of Internet
worm propagation. Staniford et al. used the “classi-
cal simple epidemic model” [2] to model the spread
of Code Red right after the Code Red incident
[9]. Their model matched well the increasing part
of the observation data. Zou et al. presented a
“two-factor” worm model that considered both the
effect of human countermeasures and the effect of
the congestion caused by worm scan traffic [15].
Chen et al. presented a discrete-time version worm
model that considered the patching and cleaning
effect during a worm’s propagation [1]. In their
worm early detection paper, Zou et al. presented the
relationship between a worm’s scan rate, infection
rate, scanning space, and the vulnerable population
size [16]. Weaver et al. [14] presented a taxonomy
of computer worms based on several factors: target
discovery, carrier, activation, payloads, and attack-
ers.

As researchers understand more how a worm
propagates, they identify various ways to make a
worm propagate faster as well. Staniford et al.
presented the “hit-list worm” and “flash worm” [9].
These two worms build a partial or a complete
list of IP addresses of vulnerable hosts into worm
code, and thus they can dramatically shorten their
propagation time. Zou et al. presented a “routing
worm” that takes advantage of BGP routing prefixes
to reduce a worm’s scanning space to less than
30% of IPv4 space [17]. In this way, a routing
worm propagates more than three times faster than
a traditional worm.

In recent years, researchers are paying great at-
tention on how to monitor the Internet for malicious
activities. Moore presented the concept of “network
telescope” in monitoring Internet abnormal activities
and the propagation of a worm [10]. Zou et al.
used a similar monitoring system to do worm early
detection [16].

III. EPIDEMIC MODEL INTRODUCTION

Computer worms are similar to biological viruses
in their self-replicating and propagation behaviors.
Thus the mathematical techniques developed for
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the study of biological infectious diseases can be
adapted to the study of computer worm propaga-
tion. We briefly introduce two classical determin-
istic epidemic models: simple epidemic model in
homogeneous system and in interacting groups [2],
respectively. Our models and analyses in this paper
are based primarily on these two models and their
underlying principles.

A. Simple epidemic model in a homogeneous system

The simple epidemic model assumes that each
host occupies one of two states: susceptible or in-
fectious. The model also assumes that once a host is
infected by a virus, it remains in the infectious state
forever. Denote by I(t) the number of infectious
hosts at time t; N the number of hosts in the system;
thus N − I(t) is the number of susceptible hosts
at time t. In a homogeneous system, each host is
assumed to have equal probability to contact any
other host. In the Internet context, an infected host
has equal probability of contacting any other host
in the Internet when the worm uniformly scans
the Internet. Thus a uniform scan worm can be
modelled the same way as an epidemic disease
in a homogeneous system. Through analyzing the
propagation of a uniform scan worm, we illustrate
in the following how to derive the simple epidemic
model by using infinitesimal analysis.

First, the spreading of an Internet worm or an
epidemic disease is in fact a stochastic process. But
when considering a large-scale system consisting
of a large population N , which is the case for an
Internet worm, we can use a mean value analysis
based on the law of large number.

Suppose a uniform scan worm has a scan rate η,
which is the number of scans an infected host sends
out per unit time. The worm uniformly scans the IP
space that has Ω IP addresses. Let us denote δ as
the length of a small time interval. During a time
interval of length δ, an infected host sends out an
average of ηδ scans. For a specific IP address in
the scanning space Ω, every scan has a probability
1/Ω to hit it. Then, on average an infected host has
probability

ṕ = 1 − (1 − 1/Ω)ηδ ≈ ηδ/Ω (1)

to hit a specific IP address in the scanning space Ω
during a time interval δ (the approximation in (1) is
accurate when 1/Ω � 1).

At time t, there are [N −I(t)] vulnerable hosts in
the system. From time t to t+δ, the probability that
two scans sent out by an infected host hit the same
vulnerable host is negligible when δ is sufficiently
small. Therefore, from time t to t + δ, an infected
host infects on average [N−I(t)]ṕ vulnerable hosts.
When δ is sufficiently small, the probability of two
infected hosts infecting the same vulnerable host
during the time interval δ is also negligible. There-
fore, the number of newly infected hosts during the
time interval δ is equal to I(t) · [N − I(t)]ṕ. Thus
at time t + δ, the number of infected hosts should
be:

I(t + δ) = I(t) + I(t) · [N − I(t)]ηδ/Ω (2)

As δ → 0, we derive the simple epidemic model:

dI(t)
dt

= βI(t)[N − I(t)] (3)

where β is
β =

η

Ω
(4)

β is called the pairwise rate of infection in epidemi-
ology studies [2]. At t = 0, I(0) hosts are infectious
and the other [N − I(0)] hosts are all susceptible.

The epidemic model (3) has analytical solution
[2]:

I(t) =
I(0)N

I(0) + [N − I(0)]e−βNt
(5)

Suppose a worm takes time T to infect I(T ) hosts
in the system (I(T ) ≤ N ). From (5), the time T is

T = − 1
βN

· ln(
I(0)[N − I(T )]
I(T )[N − I(0)]

) (6)

Zou et al. provide the formula [16]:

N = 232α/η (7)

where α = βN . They use 232 because they consider
a worm that scans the entire IPv4 space. If we
replace 232 by Ω and put the α = βN in, their
formula (7) becomes Equation (4).

B. Simple epidemic model in interacting groups

This model is an extension of (3) to a non-
homogeneous system. In this model, the system
consists of K groups; each group has popula-
tion N1, N2, · · · , NK , respectively [2]. Interactions
across groups are different from interactions within
a group. In place of the pairwise rate of infection
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TABLE I

NOTATIONS IN THIS PAPER

Notation Definition
N Total number of hosts under consideration
I(t) Total number of infectious hosts at time t
η Average worm scan rate
Ω The size of a worm’s scanning space
β Pairwise rate of infection in worm propagation model, β = η/Ω
β′, β′′ Pairwise rate of infection in local (remote) scan for a local preference scan worm
δ The small time interval in infinitesimal analysis
ṕ Probability of a worm scanning a specific address during a small time interval δ
ε Time delay in worm propagation
T The time when a worm infects I(T ) hosts in the system
p Probability of a local preference scan worm to scan locally
K Number of “/n” prefixes in the worm scanning space Ω, Ω = K2(32−n)

Nk Number of vulnerable hosts in the k-th “/n” prefix, k = 1, 2, · · · , K
m Number of “/n” prefixes that contain vulnerable hosts (m ≤ K)
Ik(t) Number of infectious hosts in the k-th “/n” prefix at time t, k = 1, 2, · · · , K
Ωe, Ωo Size of worm scanning space in the target (other) domain(s), Ω = Ωe + Ωo

Ne, No Number of vulnerable hosts in the target (other) domain(s), N = Ne + No

c1, c2 c1 = Ωe/Ω, c2 = Ne/N
Ie(t), Io(t) Number of infectious hosts in the target (other) domain(s) at time t, I(t) = Io(t) + Ie(t)
C(t) Cumulative number of infected hosts observed by the monitoring system at time t
Z(t) Number of worm scans observed by the monitoring system in a unit time

β, susceptible hosts in the j-th group are subject to
infection from infectious hosts in the i-th group at
the rate βij per interacting pair; for i = j, the rate is
βjj , i, j = 1, 2, · · · , K. Fig. 1 illustrates the model
[2].

Fig. 1. Pairwise rates of infection in interacting communities
i, j = 1, 2, · · · , K

Denote by Ik(t) the number of infectious hosts
in each of the groups k = 1, 2, · · · , K, respectively.
Then the original model (3) for a homogeneous
system can be generalized to be the set of equations

dIk(t)
dt

= βkkIk(t)[Nk−Ik(t)]+
∑
i�=k

βikIi(t)[Nk−Ik(t)]

(8)
for k = 1, 2, · · · , K.

IV. MODELING AND ANALYSIS OF WORM

SCANNING STRATEGIES

A. Idealized worm

We first model and analyze two idealized worms,
which have the complete IP addresses of all vul-
nerable hosts in the Internet. We call them “ideal-
ized worms” because they are very difficult to be
implemented by attackers on the global scale of
the Internet. Before releasing an idealized worm,
attackers must take great effort to build the address
list of all vulnerable hosts. Some computers with
special applications, such as web servers or peer-
to-peer file sharing computers, advertise their IP
addresses. To attack vulnerabilities on these comput-
ers, it’s possible that attackers could build a list of
all vulnerable hosts. However, to attack vulnerable
hosts that do not advertise their IP addresses, such
as SQL servers, attackers must actively conduct
comprehensive scanning to find the addresses of all
vulnerable hosts.

In addition to the difficulty of collecting IP ad-
dresses, attackers also have to deal with the large
payload problem for their idealized worms. For ex-
ample, the Code Red worm had about N = 360, 000
vulnerable hosts in the Internet when it spread out
[7] — the complete IP address list of all these
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vulnerable hosts requires an idealized worm to carry
a 1.37MB payload.

1) Perfect worm: We believe the “perfect worm”
to be the fastest propagation worm. A perfect worm
knows the addresses of all vulnerable hosts in the
Internet; all infected hosts fully cooperate with each
other such that they will not try to scan and infect
an already infected host.

For a perfect worm, no scans are wasted — one
scan causes one infection. First, we consider a per-
fect worm without infection delay, i.e., as soon as an
infected host sends out a scan to a vulnerable host,
the vulnerable host will be immediately infected and
can infect others right away.

In this case, during a small time interval δ, each
infected hosts in I(t) sends out ηδ scans and infects
ηδ vulnerable hosts. Since no vulnerable host will be
infected twice, at time t+ δ, the number of infected
hosts will be

I(t + δ) = I(t) + I(t) · ηδ (9)

Take δ → 0, we derive the worm propagation
model for perfect worm

dI(t)
dt

=
{

ηI(t), I(t) < N
0, I(t) = N

(10)

Suppose a perfect worm begins with I(0) infected
hosts. Model (10) has solution:

I(t) = min[I(0)eηt, N ] (11)

To illustrate how fast a perfect worm propagates,
we assume that it has the same parameters as the
Code Red worm presented in [16], i.e., it has the
average scan rate η = 358 per minute, vulnerable
population N = 360, 000, and initially infected
hosts I(0) = 10. Then from (11), we know that
the perfect worm will infect all vulnerable hosts by
the time

T =
lnN − ln I(0)

η
= 1.758 seconds

Thus a perfect worm can infect all vulnerable
hosts within a couple of seconds. However, in the
scenario above, we have not considered various time
delays in the worm’s propagation: one is the delay
for a worm to transfer the worm code to a vulnerable
host; another is the delay between when a worm
arrived a vulnerable host and the host becomes

infectious to others. Since the worm spreads very
quickly, these delays cannot be neglected.

Now we analyze a perfect worm with consider-
ation of time delay. Suppose a perfect worm has a
delay ε, which is the length of time between the
time when a worm scan is sent out and the time
when the vulnerable host infected by it begins to
infect others. In this case, at time t+ δ, the number
of infectious hosts will be

I(t + δ) = I(t) + I(t − ε) · ηδ (12)

Take δ → 0 and we have the worm propagation
model

dI(t)
dt

=
{

ηI(t − ε), I(t) < N
0, I(t) = N

(13)

where I(t − ε) = 0, ∀t < ε.
We cannot derive an analytical solution for (13),

thus we use Matlab Simulink [18] to derive its
numerical solution. If we assume the time delay is
ε = 2 seconds and the worm still has the Code
Red worm parameters in previous example, then
the worm propagation is shown in Fig. 2, compared
with the worm propagation when no time delay is
considered.
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Fig. 2. The propagation of a perfect worm with and without
time delay (N = 360, 000, η = 358/min, I(0) = 10; delay is
ε = 2 seconds)

2) Flash worm: Staniford et al. introduce the
“flash worm” [9], which knows the IP addresses of
all vulnerable hosts in the Internet and uniformly
scans the vulnerable population. The propagation
of a flash worm satisfies the epidemic spreading
assumptions in a homogeneous system and can
be modelled by the simple epidemic model (3).
According to (3) and (4), the worm propagation
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Fig. 3. The propagation of a flash worm with and without
time delay (N = 360, 000, η = 358/min, I(0) = 10; delay is
ε = 2 seconds)

model for a flash worm is:

dI(t)
dt

=
η

N
I(t)[N − I(t)] (14)

A flash worm has a scanning space of size Ω =
N , which is much smaller than the entire IPv4
space scanned by the Code Red worm. Therefore, a
flash worm propagates much faster than an ordinary
worm that scans the entire IPv4 space.

In the model (14), we have not considered the
time delay in the worm’s propagation. Without
considering delay, from (6) and (14), we know that
a flash worm can infect 99% of vulnerable hosts
by the time T = 2.53 seconds (with the same
parameters as the Code Red worm, N = 360, 000,
η = 358/min, I(0) = 10 [16]). For such a fast
spreading worm, time delay is significant and should
be considered in the worm’s propagation model.

Suppose the delay time is ε. The worm propaga-
tion model for a flash worm when considering time
delay becomes

dI(t)
dt

=
η

N
I(t − ε)[N − I(t)] (15)

where I(t − ε) = 0, ∀t < ε.
When we assume that the delay is ε = 2 seconds,

Fig. 3 shows the numerical solution of model (15).
The worm infects 99% of the vulnerable population
by the time T = 14.3 seconds. For comparison,
we also show in this figure the worm’s propagation
when no time delay is considered (described by
(14)).

Fig. 2 and 3 show that a flash worm propagates
only slightly slower than a perfect worm. These
two worms take much longer time to infect the first

10% of vulnerable population than the time to infect
the next 80% of vulnerable population. During the
time period in infecting the first 10% of vulnerable
population, less than 10% of scans waste on already
infected hosts in the propagation of a flash worm.
Therefore, compared with a flash worm, a perfect
worm only slightly increases its propagation speed
through cooperation.

B. Uniform scan worm

In this section, we model and analyze several
uniform scan worms: the Code Red worm, the “hit-
list” worm, the “routing” worm, and the “divide-
and-conquer” scan worm.

1) Code Red worm: a worm that scans the entire
IPv4 space: When a worm has no knowledge of
where vulnerable hosts reside in the Internet, the
simplest strategy is to randomly scan the entire IP
address space to find targets, which is what the Code
Red worm and the Slammer worm did [8][9]. For
such a worm, the scanning space is the entire IPv4
address space, i.e., Ω = 232. Thus from (3) and (4),
the worm’s propagation follows

dI(t)
dt

=
η

232
I(t)[N − I(t)] (16)

Comparing (16) with previous (14), the scanning
space of a flash worm is much smaller than a
uniform scan worm that scans the entire IPv4 space.
Thus a flash worm propagates much faster. For this
reason, here we do not need to consider time delay
in worm propagation since the small delay time
is negligible comparing with the worm’s spreading
speed.

2) Hit-list worm: Staniford et al. [9] introduce
the “hit-list” worm, which has an IP address list
of some vulnerable hosts in the Internet. A hit-list
worm first scans and infects all vulnerable hosts on
the hit-list, then randomly scans the entire Internet
to infect others. During the hit-list scanning phase,
a hit-list worm propagates in the same way as a
“flash” worm on the list of vulnerable hosts — it
can be modelled by (14) after replacing the scanning
space N to the size of its hit-list. Therefore, a hit-list
worm can infect all vulnerable hosts on its hit-list
within several seconds. When a hit-list worm begins
to scan the entire Internet after the hit-list scanning
phase, it propagates like the Code Red worm and
can be modelled by (16). The only difference is that
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now the hit-list worm has a large number of initially
infected hosts I(0), which is equal to the size of the
worm’s hit-list.

3) Routing worm: Zou et al. [17] introduce the
“routing worm”, which uses BGP routing prefixes
to reduce the worm’s scanning space Ω. Based on
BGP routing table, they find that currently only
about 28.6% of IPv4 addresses are routable [17].
Thus if a worm uses BGP prefixes information, the
worm reduces its scanning space by more than three
times. Transforming an ordinary uniform scan worm
to a routing worm only changes a worm’s scanning
space, not its scanning strategy. Therefore, a routing
worm can still be modelled by the simple epidemic
model (3). In this way, Equation (4) shows that a
routing worm could increase its pairwise rate of
infection β by 1/0.286 = 3.5 times.

Suppose when attackers change the original Code
Red worm (N = 360, 000, η = 358/min, I(0) =
10) into a routing worm and also a hit-list worm,
the worm’s scan rate does not change, i.e., η =
358/min. The routing worm has I(0) = 10 as the
original Code Red worm; while the hit-list worm
has I(0) = 10, 000 when it has a 10, 000 hit-list.
Fig. 4 shows the propagation of the hit-list worm,
the routing worm, and the original Code Red worm.
We observe that a hit-list worm can infect a large
number of vulnerable hosts in a short time because
of its hit-list, but it has a slower spreading speed
than a routing worm.
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Fig. 4. Worm propagation comparison between the Code Red
worm, a routing worm, and a hit-list worm with a 10, 000 hit-
list (note that previous “idealized” worms propagate in the time
scale of seconds, while the three worms here propagate in the
time scale of hundreds of minutes)

4) Divide-and-conquer scan worm: A uniform
scan worm can use a “divide and conquer” approach

to allow different infected hosts to scan and infect
vulnerable hosts on different parts of IP space.
We call such a worm a “divide-and-conquer scan
worm”. In the propagation of such a worm, no two
infected hosts will waste their infection power on a
same target.

Assume that when a divide-and-conquer scan
worm infects a target, it passes half of its scanning
space to the target (the space passed to the target
includes the target host), and then continues to scan
the remaining half of its original scanning space.
We make the following assumptions: vulnerable
hosts are uniformly distributed in the entire scanning
space Ω; no infected host will be removed; each
infected host uniformly scans IP addresses in its
scanning space; during scanning, an infected host
independently chooses an IP address to scan, which
means that it may scan the same IP address in its
scanning space more than once; initially there is
only one infected host in the system.

When a host is infected and begins to scan and
infect others, it is the only infected host in its
scanning space. At time t, there are I(t) infected
hosts in the system; then on average each infected
host will be responsible for a scanning space of size
Ω/I(t) − 1 (the host will not scan itself), which
contains N/I(t)−1 vulnerable hosts. During a small
time interval δ, an infected host sends out on average
ηδ scans. According to (1), the probability that an
infected host scans a specific IP address during δ is

ṕ =
ηδ

Ω/I(t) − 1
(17)

Using the same analysis procedure as in deriving
(2), we derive the number of infected hosts at time
t + δ:

I(t + δ) = I(t) + I(t) · [ N

I(t)
− 1] · ṕ (18)

Take δ → 0, we derive the propagation model of
the divide-and-conquer scan worm:

dI(t)
dt

=
η

Ω − I(t)
· I(t)[N − I(t)] (19)

For Internet worms, the number of vulnerable
hosts N is much smaller than Ω. Therefore, Ω −
I(t) � Ω and (19) becomes

dI(t)
dt

=
η

Ω
·I(t)[N−I(t)] = βI(t)[N−I(t)] (20)
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which is exactly the simple epidemic model (3).
Summarizing the above arguments and we have

Proposition 1: When vulnerable hosts are uni-
formly distributed, a “divide-and-conquer” scan
worm propagates in the same way as a uniform scan
worm and can be modelled by the simple epidemic
model (3).

C. Local preference scan worm

Uniform scan is the simplest scanning strategy for
a worm to use. However, it is not optimal. This is
because the vulnerable hosts in the Internet are not
uniformly distributed (at least we know that Internet
IP space is not uniformly allocated [19][20]). A
worm could increase its spreading speed when it
scans more intensively in the IP space where vul-
nerable hosts are more densely distributed.

Attackers have implemented “local preference
scan” in their worms, such as Code Red II [7]:
such a worm has a higher probability to scan an
IP address within the same Class B or the same
Class A subnetwork than a random IP address.
Besides the reason mentioned above, another reason
for attackers to use local preference scan is because
of the presence of firewalls: worm scans may have
difficulty reaching a network behind a firewall; how-
ever, if one computer inside the firewall is infected,
a local preference scan enables it to quickly infect
all vulnerable hosts in that local network.

“Local preference scan” is the scanning strategy
where an infected host scans IP addresses close to its
address with a higher probability than addresses far-
ther away. In the following, we model and analyze a
local preference scan worm that has probability p to
uniformly scan IP addresses in its own “/n” prefix
subnetwork and probability (1−p) to uniformly scan
other IP addresses. A “/n” prefix subnetwork is a
network containing all IP addresses that have the
same first n bits; thus in the current IPv4 Internet, a
“/n” prefix subnetwork contains 232−n IP addresses.

The analysis in this section can be easily extended
to other kinds of local preference scan strategies,
such as local preference scanning with several levels
of locality (e.g., Code Red II has two-level locality
in its local preference scan [7]).

Assume that the worm scanning space Ω consists
of K “/n” prefix subnetworks (Ω = K232−n);
each subnetwork has Nk vulnerable hosts, k =

1, 2, · · · , K. Denote by Ik(t) the number of infected
hosts in the k-th subnetwork at the time t, β′ as the
pairwise rate of infection in local scan, and β′′ as
the pairwise rate of infection in remote scan. Then
according to (4), we have

β′ =
pη

232−n
, β′′ =

(1 − p)η
(K − 1)232−n

(21)

The propagation of a local preference scan worm
can be modelled by the epidemic model in interact-
ing groups (8):

dIk(t)
dt

= [β′Ik(t)+
∑
j �=k

β′′Ij(t)]·[Nk−Ik(t)] (22)

with initial conditions Ik(0) for k = 1, . . . , K.
1) Local preference scan with identical subnet-

works: In its general form, the local preference
worm model (22) has no analytical solution. We first
analyze the simple case where vulnerable hosts are
uniformly distributed and there are the same number
of infected hosts in each subnetwork initially, i.e.,
Ik(0) = I0(0) and Nk = N/K, k = 1, 2, · · · , K.
In this case, from (22) we know that the worm
propagation in each subnetwork is identical, i.e.,
Ik(t) = I1(t), k = 2, · · · , K:

dIk(t)
dt

= [β′ + (K − 1)β′′] · Ik(t)[Nk − Ik(t)](23)

= η
232−n Ik(t)[Nk − Ik(t)]

Equation (23) shows that the worm’s propaga-
tion is not affected by the probability p in local
preference scan. From each subnetwork’s point of
view, the worm’s propagation on a subnetwork is
equivalent to the case where infected hosts only scan
their own subnetworks.

From the point of view of the Internet, I(t) =∑
Ik(t), N =

∑
Nk, k = 1, 2, · · · , K; the entire

scanning space is Ω = K232−n. Thus the worm
propagation in the Internet is:

dI(t)
dt

= K
dI1(t)

dt
=

η

Ω
I(t)[N − I(t)] (24)

Comparing (24) with (3) and (4), we see that if
the vulnerable hosts are uniformly distributed in the
entire scanning space Ω, then a local preference scan
worm propagates in the same manner as a uniform
scan worm in terms of the total number of infected
hosts I(t). Summarize the analysis above and we
have

8



Proposition 2: When vulnerable hosts are uni-
formly distributed in a worm’s scanning space,
local preference scan does not help a worm in its
propagation speed.

2) Local preference scan with non-uniformly dis-
tributed population: Currently, computers are not
uniformly distributed within the IPv4 address space.
Among all 256 Class A networks in the IPv4 Inter-
net, only 131 Class A IP addresses are allocated by
the Internet Assigned Numbers Authority (IANA)
[17][20]. This means that there are no computers in
the other 125 Class A subnetworks.

Without loss of generality, suppose in the K
“/n” prefix subnetworks, only the first m networks
(m < K) have uniformly distributed vulnerable
hosts, i.e., N1 = · · · = Nm = N/m, Nm+1 =
· · · = NK = 0. However, attackers do not know
which “/n” prefix networks are empty (otherwise,
attackers can use the “routing” worm idea [17] to
remove those empty subnetworks from the worm’s
scanning space). Suppose Ik(0) = I1(0) > 0, k =
2, 3, · · · , m. From (22), the worm propagation on
each subnetwork follows

dIk(t)
dt

= [β′ +(m−1)β′′] · Ik(t)[Nk − Ik(t)] (25)

for k = 1, · · · , m.
From the point of view of the Internet, the worm

propagation follows

dI(t)
dt

= m
dI1(t)

dt
=

β′ + (m − 1)β′′

m
I(t)[N−I(t)]

(26)
If a local preference scan worm wants to propa-

gate as fast as possible, the worm should select the
preference probability p to maximize the pairwise
rate of infection [β′+(m−1)β′′]/m in (26). Hence,
the optimal preference probability should be p =
1. Such a conclusion seems unexpected; but it is
reasonable for the assumptions we have used —
all those m “/n” subnetworks are assumed to be
identical. If p = 1, which means a worm only scans
its own subnetwork, then no worm scans will be
wasted in those (K−m) empty subnetworks. In this
way, the worm achieves its fastest spreading speed.

In reality, no subnetwork is exactly the same
as the others. A worm cannot just scan locally;
remote scan is necessary for the worm to spread
out to every part of the entire Internet. Thus if we
assume that at the beginning, I(0) = I1(0) > 0 and

Ik(0) = 0, k = 2, 3, · · · , m, then a local preference
scan worm requires p < 1 in order to spread out
into other subnetworks — if p = 1, the subnetworks
that do not have infected hosts initially will never be
infected. For this scenario, the worm’s propagation
in the subnetworks k = 2, · · · , m are identical, i.e.,
Ik(t) ≡ I2(t), k = 3, · · · , m. Hence, the worm
propagation on each subnetwork is described by:

dI1(t)
dt

= [β′I1(t) + (m − 1)β′′I2(t)][N
m − I1(t)] (27)

dIk(t)
dt

= [β′′I1(t) + (β′ + mβ′′ − 2β′′)Ik(t)][N
m − Ik(t)]

for k = 2, 3, · · · , m. From the point of view of the
Internet, I(t) = I1(t) + (m − 1)I2(t).

The worm propagation model (27) does not have
analytical solution. Thus we use Matlab Simulink to
solve it for different preference probabilities p. We
use the same Code Red worm parameters in this
study, i.e., N = 360, 000, η = 358/min, I(0) =
I1(0) = 10. The Code Red II worm used local
preference on both Class A networks and on Class
B networks [23]. In order to see how the size of
the subnetworks in local preference scan affects a
worm’s propagation, we study two scenarios: in the
first scenario each “/n” prefix subnetwork is an Class
A network (“/8” prefix); in the second scenario, each
“/n” prefix subnetwork is an Class B network (“/16”
prefix).

For the first scenario where each subnetwork
is a Class A network, K = 28 = 256. IANA
has allocated 131 Class A addresses [17][20], thus
m = 131. Based on these parameters, Fig. 5(a)
shows I(t) for different preference probabilities p.
For comparison, we also show the original Code
Red propagation on this figure where the worm
uniformly scans the entire IPv4 space. If attackers
know that m Class A networks have vulnerable
hosts and know their Class A prefixes, attackers can
use routing worm idea to uniformly scan those m
Class A IP space only. The propagation of such a
routing worm is also shown in Fig. 5(a).

For the second scenario where each subnetwork
is a Class B network, K = 216 = 65536. Since
131 Class A networks have been allocated and each
Class A network contains 28 Class B networks, thus
m = 131 · 28 = 33536. Based on these parameters,
Fig. 5(b) shows I(t) for different preference proba-
bilities p.
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a. Local preference scan on Class A network level
(K = 256, m = 131)
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b. Local preference scan on Class B network level
(K = 65536, m = 33536)

Fig. 5. Comparison of a routing worm, a local preference worm, and the original Code Red worm

From Fig. 5(a)(b), we observe that when vul-
nerable hosts are not uniformly distributed, local
preference scan increases a worm’s propagation
speed. If the local preference scan is on Class A
network level, Fig. 5(a) shows that the optimal local
preference probability should be chosen close to
one. On the other hand, if the local preference scan
is on Class B network level, Fig. 5(b) shows that the
optimal local preference probability should be p =
0.8: the worm propagates faster when p increases
until it reaches p = 0.8; after that, increasing p
makes the worm propagate slower again.

From Fig. 5, we conclude that the optimal prob-
ability p of local preference scan is determined by
the locality in the local preference scan. We explain
it in the following intuitive way: when only one
subnetwork has infected hosts initially, the purpose
of remote scan is to spread out worm seeds to every
one of the other (m − 1) subnetworks. If a worm
uses Class A network in its local preference scan,
it needs to spread out worm seeds to at most 256
subnetworks. On the other hand, if the worm uses
Class B network in its local scan, it needs to spread
out worm seeds to everyone in those m = 33536
subnetworks in the previous example. Therefore, a
Class B local scan worm needs to take much more
effort to spread out worm seeds than a Class A local
scan worm.

Summarizing the above analysis and we have

Proposition 3: When vulnerable hosts are not
uniformly distributed in a worm’s scanning space,
comparing with uniform scan, local preference scan
increases a worm’s propagation speed. The optimal
local preference scan probability p increases when

the local scan is on larger subnetworks.
The author of Code Red II used the following

local scan probabilities [23]: the worm scans the
local class A network with p = 0.5 and the local
Class B network with p = 0.375. From the analysis
above, it can be seen that the local scan probabilities
in Code Red II are much lower than the optimal
ones.

Fig. 5 shows that if attackers know the distri-
bution of vulnerable hosts, the routing worm will
be the fastest spreading worm by simply removing
those empty IP space. The original routing worm
presented in [17] uses uniform scan within the IP
space defined by BGP prefixes. From the analysis
above, we see that in a routing worm, attackers
could also implement local preference scan to fur-
ther increase worm propagation speed.

It should be noted that in our analysis, we have
not considered the impact of possible network con-
gestion. If a worm extensively uses local prefer-
ence scan, the intense worm traffic might cause
congestion to local networks and slow down the
worm’s spreading speed. In this case, the optimal
local preference scan probability in such a worm
may not be the optimal value in our analysis.

D. Sequential scan worm

Until now we have assumed that worms choose IP
addresses randomly. Another scanning strategy is to
choose IP addresses sequentially. “Sequential scan”
means that a worm scans IP addresses sequentially:
after checking IP address x, the worm continues to
check IP address (x + 1), or (x − 1) if the search
direction is reversed. For a sequential scan worm,
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once a vulnerable host is infected, it first selects a
starting IP address to begin with its sequential scan.
The Blaster worm is a typical sequential scan worm
[26]. Without loss of generality, we assume that a
sequential scan worm scans IP addresses additively.

In our previous analysis, we found that local
preference scan increases the spread of a random
scan worm. In a sequential scan worm, “local
preference” has a different meaning: in selecting
the starting point for its sequential scan, a worm
chooses an IP address close to its own address with
higher probability than an IP address far away. For
example, for its starting point, the Blaster worm
chooses the first address of its Class C subnetwork
with a probability 0.4, and chooses a random IP
address with a probability 0.6 [26].

Now we analyze how such local preference af-
fects a sequential scan worm’s propagation. When
an infected host (parent) finds and infects a vulnera-
ble host (child) that has IP address x, the parent will
keep going on to scan IP addresses x+1, x+2, · · · .
If the child infected host uses local preference to
select the starting point, it is more likely to overlap
its parent’s scanning trail, i.e., repeatedly scans
IP addresses x + 1, x + 2, · · · that have already
been scanned by its parent. Therefore, the local
preference strategy will waste most of the infection
power of those infected hosts that have chosen local
IP addresses to start scanning. Summarizing the
analysis above and we have

Proposition 4: For a sequential scan worm, using
local preference in selecting the worm’s starting
point slows down the worm’s propagation speed.

For this reason, in the following we mainly
model and analyze a sequential scan worm with a
uniformly chosen starting point, which is called a
“uniform sequential scan worm”.

First, we analyze the propagation of a sequential
scan worm when vulnerable hosts are uniformly
distributed. We use the same analysis principles in
deriving the simple epidemic model in Section III.
Suppose a sequential scan worm has scan rate η,
vulnerable population N , and scanning space of
size Ω. At time t, I(t) hosts are infected. During
the next small time interval δ, one infected host
sequentially scans ηδ IP addresses. At time t, the
density of vulnerable hosts on the entire scanning
space is [N−I(t)]/Ω. Then on average, one infected
host can infect ηδ[N − I(t)]/Ω vulnerable hosts

during the time interval δ. When δ is sufficiently
small, the probability of two infected hosts infecting
the same vulnerable target during the time interval
δ is negligible. Therefore, the number of newly
infected hosts during the time interval δ is equal
to I(t) · ηδ[N − I(t)]/Ω. From (4), we have

I(t + δ) = I(t) + I(t) · β[N − I(t)] (28)

Taking δ → 0, we can derive the sequential scan
worm propagation model — it is identical to the
uniform scan worm model (3). Summarizing the
analysis above and we have

Proposition 5: If vulnerable hosts are uniformly
distributed in a worm’s scanning space, a uniform
sequential scan worm has the same propagation
speed as a uniform scan worm and can be modelled
by the epidemic model (3).

If vulnerable hosts are not uniformly distributed,
or a sequential scan worm does not start from a
randomly selected IP address, then the accuracy of
our analysis and the accuracy of the epidemic model
(3) rely on the law of large number: some worm
copies infect vulnerable hosts more slowly while
others infect vulnerable hosts more quickly — such
an uneven behavior will average out each other. If
the random effect is too severe, such as when all
vulnerable hosts are sequentially within one block
of IP space, then the epidemic model is a poor model
for a sequential scan worm.

In order to verify our analysis, we simulate a
“uniform scan worm” (such as the Code Red worm);
a “preference sequential scan worm”, which chooses
the starting point from a local IP address with
probability 0.4 (such as the Blaster worm); and
a “uniform sequential scan worm” that uniformly
chooses starting point for its sequential scan. For
comparison, we use the same Code Red worm
parameters, N = 360, 000, I(0) = 10, η = 358/min,
for all these three worms.

When we assume that vulnerable hosts are uni-
formly distributed in the entire IPv4 space, Fig. 6
shows the simulation results. For each of those three
worms, we run the worm propagation simulation
100 times. Fig. 6(a) shows the mean value I(t)
in each worm’s propagation; Fig. 6(b) shows the
variabilities of worm propagation for the uniform
scan worm and the uniform sequential scan worm.
The “95%” propagation curve means that a worm
propagates no faster than this curve in 95 out of
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Fig. 6. Comparison of a uniform sequential scan worm, a sequential scan worm with 40% local preference, and a uniform scan
worm (vulnerable hosts uniformly distributed in the entire IPv4 space; 100 simulation runs)
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Fig. 7. Comparison of a uniform sequential scan worm, a sequential scan worm with 40% local preference, and a uniform scan
worm (vulnerable hosts uniformly distributed in the address space of BGP prefixes; 100 simulation runs)

those 100 simulation runs. Therefore, in 90 out
of 100 simulation runs, a worm propagates within
those two “5%” and “95%” propagation curves.

Fig. 6 agrees with Proposition 5: a sequential scan
worm propagates at the same speed as a uniform
scan worm when vulnerable hosts are uniformly
distributed. In addition, Fig. 6(a) agrees with Propo-
sition 4: For a sequential scan worm, using local
preference in selecting the starting point slows down
the worm’s propagation speed.

In reality, the vulnerable hosts in the Internet are
not uniformly distributed. BGP routing tables show
that currently about 28.6% of IPv4 addresses are
routable [17] — all vulnerable hosts must distribute
within the IP space defined by BGP routing prefixes.
Since we do not know the true distribution of vul-
nerable hosts in the Internet, a reasonable approach
is to assume that all vulnerable hosts are uniformly
distributed in the IP space defined by BGP routing

prefixes. For such a simulation scenario, we simulate
each of those three worms 100 times again and
show the simulation results in Fig. 7, which has the
same format as Fig. 6. Fig. 7(a) shows that when
vulnerable hosts are not uniformly distributed within
the Internet address space, on average a uniform
sequential scan worm propagates slightly slower
than a uniform scan worm; and a preference sequen-
tial scan worm clearly propagates slower than the
other two. Fig. 7(b) shows that the propagation of
a sequential scan worm varies considerably because
of the non-uniform distribution of vulnerable hosts.

E. Selective attack worm

Routing worms can conduct selective attack [17]
based on geographic information of IP addresses.
In a selective attack, attackers only care about how
fast their worms propagate in the target domain,
not how many vulnerable hosts have been infected
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in the global Internet. In this section, we model
and analyze how a selective attack worm propagates
under different scanning strategies.

Suppose the target domain has Ne vulnerable
hosts and a scanning space of size Ωe; the other
domains have No vulnerable hosts and a scanning
space of size Ωo . N = Ne + No, Ω = Ωe + Ωo.
The worm has scan rate η.

1) Target-only: “Target-only” means that a worm
only scans and infects hosts in the target domain.
In this case, if the worm uniformly scans the target
domain, the worm’s propagation follows epidemic
model (3) with the pairwise rate of infection η/Ωe

according to (4):

dIe(t)
dt

=
η

Ωe
Ie(t)[Ne − Ie(t)] (29)

On the other hand, a worm can uniformly scans
the entire scanning space. We call such a worm as a
“global scan” worm. The question is: which worm
propagates faster on the target domain, the target-
only worm or the global scan worm?

Assume that c1 = Ωe/Ω and c2 = Ne/N . If c1 <
c2, vulnerable hosts are more densely distributed in
the target domain than in other domains. For the
global scan worm, Ie(t) = c2I(t) because of its
uniform scan strategy. For this global scan worm,
the number of infected hosts in the target domain
follows

dIe(t)
dt

=
η

c2Ω
Ie(t)[Ne − Ie(t)] (30)

Comparing (29) with (30), we observe that, if
c2 > c1, i.e., the density of vulnerable hosts in the
target domain is greater than the density in other
domains, the target-only worm propagates faster
than the global scan worm in the target domain (and
vice versa). Thus we have

Proposition 6: For a selective attack worm, if the
density of vulnerable hosts in the target domain is
higher than in other domains, the worm propagates
faster in the target domain if it scans within the
target domain than uniformly scans all domains.

2) Target-global: “Target-global” means that an
infected host in the target domain only scans within
the target domain, and an infected host in other
domains uniformly scans the entire scanning space.

The worm’s propagation model is:

dIe(t)
dt

= [ η
Ωe

Ie(t) + η
ΩIo(t)][Ne − Ie(t)] (31)

dIo(t)
dt

= η
ΩIo(t)[No − Io(t)]

Comparing (29) with (31), we observe that a
target-global worm always propagates faster than
a target-only worm in the target domain (Ie(t)),
no matter how densely the vulnerable hosts are
distributed in the target domain. It’s easy to ex-
plain: compared to a target-only worm, a target-
global worm has some extra infected hosts in other
domains that could help in infecting more vulnerable
hosts in the target domain.

V. WORM MONITORING SYSTEM DESIGN

To defend against worm attacks, we first need to
set up a worm monitoring infrastructure to monitor
and detect the presence of a worm in the Internet.
CAIDA has already set up a relatively large-scale
network monitoring system by using the “network
telescope” concept [10], which is based on several
large chunks of IP space. In this section, we show
that although such a monitoring system is good at
monitoring a uniform scan worm such as Code Red
and Slammer, it performs poorly when monitoring
a non-uniform scan worm, especially a sequential
scan worm such as Blaster.

A worm monitoring system primarily observes
two data sets: the number of scans observed in each
monitoring time interval, denoted as Z(t); and the
cumulative number of infected hosts observed until
time t, denoted as C(t). Zou et al. [16] show that for
uniform scan worms, the worm propagation pattern
on the global Internet can be accurately inferred by
using either one of these two data sets. However,
when a worm does not uniformly scan IP addresses
in the Internet, the observed worm traffic does not
represent the worm propagation. For example, if a
worm uses local preference scan, then a monitor
will receive a large number of scans when some
hosts close to the monitor are infected. On the
other hand, when the same number of infected hosts
are far away from the monitor, the monitor can
only observe a smaller number of scans. Therefore,
monitoring different IP address space will provide
different observation patterns of the same worm’s
propagation.
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Fig. 8. Blaster propagation and its monitoring (vulnerable hosts are uniformly distributed in the entire IPv4 space; this is the
results for one simulation run)
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Fig. 9. Blaster propagation and its monitoring (vulnerable hosts are uniformly distributed in the BGP prefix space, which is less
than 30% of the entire IPv4 space; this is the results for one simulation run)

Such a monitoring problem becomes even worse
when monitoring a sequential scan worm. If the
monitoring system only has a few big chunks of IP
space (such as several Class A or Class B networks),
then, during the worm propagation time period, we
can only observe a very small fraction of infected
hosts on the global Internet. For example, if the
Slammer worm uses sequential scan and its scan
rate is η = 4000 scans per second [8], then an
infected host requires 232/η = 12.43 days to scan
the entire IPv4 space. Therefore, if the sequential
scan worm starts from an IP address far from the
monitored IP space, the monitoring system will
not observe it for some time. On the other hand,
if the worm uniformly scans the Internet and the
monitoring system covers two Class B networks (217

IP addresses), then on average we could observe an
infected host 2(32−17)/η = 8.2 seconds after it is
infected.

In previous simulations of a preference sequential

scan worm shown in Fig. 6, we also simulated
the monitoring system. As mentioned above, the
monitoring system should monitor many distributed
chunks of IP addresses. Here we consider two mon-
itoring systems: one monitors 16 blocks of Class B
IP space; another monitors 1024 equal-size blocks
of IP space. Both monitoring systems monitor the
same 220 IP addresses and all monitored address
blocks are evenly distributed in the entire IPv4
space. Fig. 8(a) shows the number of infected hosts
I(t) in the Internet as a function of time t for
one simulation run. It also shows the cumulative
number of observed infected hosts, C(t), by both
monitoring systems. Because C(t) is very small, in
order to show C(t) and I(t) on the same figure, we
multiply C(t) by 1000 for the 16-block monitoring
system and by 35 for the 1024-block monitoring
system. This figure shows that if we use a 16-block
monitoring system, we observe less than 0.1% of
infected hosts in the Internet during the worm’s
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propagation time period.
Fig. 8(b) shows the monitored data Z(t), the

number of worm scans observed within each minute.
Compared to the 16-block monitoring system, The
1024-block monitoring system gives noisier ob-
servation Z(t). This is because as time goes on,
infected hosts will enter or leave the monitored IP
blocks of a monitoring system — it happens more
frequently in the 1024-block monitoring system than
in the 16-block monitoring system.

Although it is noisier than the 16-block moni-
toring system, the observation data from the 1024-
block monitoring system represents a sequential
scan worm’s propagation more accurately. From
the monitored data sets, we want to know the
worm propagation pattern on the global Internet,
i.e., the curve of I(t) shown in Fig. 8(a). Such
growth pattern of I(t) is a low frequency signal
compared with the high frequency noise presented
in the observed data Z(t). Therefore, we can use
a low-pass filter1 to filter out high frequency noises
from Z(t) without changing the worm’s propagation
pattern. Fig. 8(c) shows the observation data Z(t)
after being passed through a first-order low-pass
filter. To check if the observation Z(t) can represent
the worm’s propagation on the entire Internet, we
draw the curve of I(t) on this figure too by changing
its scale to have the similar value as Z(t). Fig.
8(c) shows that the observation data Z(t) of the
1024-block monitoring system has delay to I(t) but
represents well the worm’s propagation pattern on
the entire Internet.

A more realistic simulation of Blaster worm is
the “preference sequential scan worm” shown in
Fig. 7, where the vulnerable hosts are assumed to
be uniformly distributed in the IP space defined by
BGP prefixes. Fig. 9 shows the results of the Blaster
worm in one simulation. Fig. 9(a)(b) have the same
format and meanings as Fig.8(a)(c), respectively.
Because now the vulnerable hosts are not uniformly
distributed in the Internet, the observation data is
noisier than the data in previous simulation shown
in Fig. 8.

Worm propagation in other simulation runs give
similar results to what shown in Fig. 8 and 9. On

1Denote by Ẑ(t) as the Z(t) after filtering. The low-pass
filter is Ẑ(t) = aZ(t) + (1− a)Ẑ(t− 1). We use a = 0.02 in
Fig. 8(c) and 9(b).

occasion the 16-block monitoring system provides
as good observation as the 1024-block monitoring
system. However, the 1024-block monitoring system
provides stable observations in all simulation runs,
while the 16-block monitoring system provides very
poor observations in many instances.

Summarizing the analysis above and we have
Proposition 7: In order to monitor the propaga-

tion of a non-uniform scan worm in the Internet, es-
pecially the propagation of a sequential scan worm,
a worm monitoring system must monitor many well
distributed IP blocks.

VI. CONCLUSION

In this paper, we model and analyze worm
propagation when a worm uses different scanning
strategies, including idealized scan, hit-list scan,
uniform scan, divide-and-conquer scan, local pref-
erence scan, target scan, and sequential scan, etc.
A better understanding of how various scanning
strategies affect a worm’s propagation can lead to
better defense against future worms.

We show that the local preference scan increases
a worm’s propagation speed when vulnerable hosts
are not uniformly distributed; and the optimal local
preference scan probability is determined by the size
of the network in local scanning. When vulnerable
hosts are uniformly distributed, we prove that the
divide-and-conquer scan, the sequential scan, and
the uniform scan are equivalent in terms of the
total number of infected hosts at any time. For
a sequential scan worm, using local preference in
selecting the starting point slows down the worm’s
propagation speed. When conducting “selective at-
tack” [17], a worm propagates faster on the target
domain if it propagates both on the target domain
and on other domains. The fastest spreading worm
is the one that has the complete IP addresses of
all vulnerable hosts in the Internet: it can finish
its infection task in a matter of seconds regardless
whether infected hosts cooperate with each other
(perfect worm) or not (flash worm). Fortunately, it
is very hard for attackers to construct a complete
hit-list of all vulnerable hosts on the global-scale
Internet.

A non-uniform scan worm, especially a sequential
scan worm, will cause some troubles to a worm
monitoring system as shown in Fig. 8 and Fig.
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9. From our analysis and simulation studies, we
point out that a worm monitoring system must cover
many well distributed IP blocks in order to monitor
accurately different kinds of worms. In addition, to
infer worm propagation pattern in the Internet from
the monitored data, it is suitable to first use a low-
pass filter on the monitored data to remove high
frequency noises.
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