
Performance Evaluation 63 (2006) 743–758

Sojourn time approximations in queueing networks with feedback�

B.M.M. Gijsena, R.D. van der Meib,c,∗, P. Engelbertsa,
J.L. van den Berga,d, K.M.C. van Wingerdena,b

a TNO Information and Communication Technology, Department of Planning, Performance and Quality of Service,
P.O. Box 5050, 2600 GB Delft, The Netherlands

b CWI, Department of Advanced Communication Networks, P.O. Box 94079, 1098 SJ Amsterdam, The Netherlands
c Vrije Universiteit, Faculty of Sciences, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

d University of Twente, Faculty of Sciences, P.O. Box 217, 7500 AE Enschede, The Netherlands

Received 29 January 2004; received in revised form 27 July 2004
Available online 23 September 2005

Abstract

This paper is motivated by the response-time analysis of distributed information systems, where transactions are handled by
a sequence of front-end server and back-end server actions. We study sojourn times in an open queueing network with a single
Processor Sharing (PS) node and an arbitrary number of M multi-server First-Come-First-Served (FCFS) nodes. Customers arrive
at the PS according to a Poisson process. After departing from the PS node a customer jumps to FCFS node k with probability pk,
and departs from the system with probability 1 − p, where p =∑M

k−1 pk (0 < p < 1). After receiving service at a FCFS node, a
customer jumps back to the PS node. For this model, we focus on the mean and the variability of the sojourn time of an arbitrary
customer in the system. The model is a product-form network, which immediately leads to a closed-form expression for the mean
sojourn times. The variance of the sojourn times, however, does not admit an exact expression; the complexity is caused by the
possibility of overtaking. To this end, we propose a new methodology for deriving closed-form approximations for the variance of
sojourn times in queueing networks with feedback. Numerical results from extensive experimentation with simulations demonstrates
that the approximations are highly accurate for a wide range of parameter values.
© 2005 Elsevier B.V. All rights reserved.
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1. Motivation and background

The recent emergence of Web technology has boosted to the development of applications running in a distributed
computing environment where data is collected from diverse and remote information systems, and processed before a
response is returned to the end user. A typical feature of such applications is that a single transaction initiated by the
end user may initiate a cascade of sub-transactions to be performed on the different information system, each of which
can handle a number of sub-transactions in parallel. Examples of such distributed applications are on-line ticketing,
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electronic banking, on-line shopping, location-based services and the like. A key factor for the success of this type of
distributed applications is the ability to predict and control the performance in terms of the end-to-end response times,
i.e. the response times experienced by the end user. For the user-perceived quality, both the mean and the variability of
the response times are of key metrics. Motivated by this, we model the end-to-end response time as the sojourn time of
a customer in an open queueing network, where the customers represent transactions, the nodes represent the different
application servers and information systems. In this context, we focus on the mean and the variance of the sojourn times
of customers in the network. We give exact expressions for the mean sojourn times. In the absence of exact results for
the variance of the sojourn times, we develop a new method for deriving simple and explicit and approximations for
the variance of the sojourn times.

Many distributed applications work as follows. The end user initiates a transaction request that is sent to a front-
end server that parses the request and kicks off a server-side script. The script iteratively sends information-retrieval
requests to different remote back-end systems and processes these pieces of information upon receipt before sending a
response to the end user. The front-end application server processing is usually highly CPU-intensive processing steps,
and therefore, is modeled as a Processor Sharing (PS) node; that is, when there are k parallel scripts running on the
front-end server, then each script received a fraction 1

k
of the available processing speed. In contrast, the information

systems typically handle the queries in the order of arrival, and are multi-threaded, so that multiple transactions in
parallel. Therefore, we model the information system in the back-end First-Come-First-Served (FCFS) nodes with
multiple servers.

Based on these assumptions, we study the following queueing network model with a single PS node (modeling
a front-end application server) and M ≥ 1 multi-server FCFS nodes (modeling multi-threaded information back-end
systems). External customers arrive at the PS node according to a Poisson process. After departing from the PS
node a customer proceeds to the kth FCFS node with probability pk, and with probability 1 − p, with p =∑M

k=1 pk

(0 < p < 1) the customer departs from the system. After each visit to any FCFS node customers are fed back to the
PS node. The service time are the PS node are generally distributed, and the service times at the FCFS nodes are
exponentially distributed. This model is known to possess a product-form solution for the joint number of customers
at the nodes. Hence, the mean sojourn time follows directly from Little’s law. The variance of the sojourn times are
much more complicated, and no exact expressions can be obtained in the general setting of the model. For this reason
in this paper we focus on the development and experimental validation of approximate closed-form expressions for
the variance of the sojourn times.

The analysis of the variance of the sojourn time in the present model is complicated due to the fact that overtaking
may occur, i.e., customers may bypass each other. Overtaking usually destroys any hope for an exact analysis of the
higher moments of the sojourn-time distributions (see [2] for a survey of the available results on sojourn times in
queueing networks). The main result in [2] is an expression for the Laplace–Stieltjes transform (LST) of the joint
probability distribution of the sojourn times at the nodes of a customer that traverses a predefined path of nodes in
a product-form queueing network. Several results are known for single-node queueing systems with instantaneous
feedback. For the M/G/1 queue with Bernoulli feedback, Doshi and Kaufmann [7] derive expressions for the LST of
the joint distribution of the sojourn times of a customer at its successive passes through the system. Disney and Koenig
[6] give an overview on Bernoulli feedback models. van den Berg and Boxma [1] consider an M/G/1 system, with
either FCFS or PS service, where a customer after receiving service for the ith time is looped back into the system with
probability qi and departs from the system with probability 1 − qi. For this model, van den Berg and Boxma [1] analyse
the joint distribution of the first i successive sojourn times of a customer (who is fed back at least i − 1 times), and
derive expressions for both the moments of these sojourn times and for the correlations between the successive sojourn
times of an arbitrary customer in the system. Fewer results are known for sojourn time distributions for networks with
delayed feedback, which occurs in the present model. Foley and Disney [8] study queueing systems with delayed
feedback, but their focus is merely on queue length processes, busy period and several customer flow processes.

The results presented in this paper generalize those presented in [11], where we considered a network with a single
FCFS node with a single server, and with exponentially distributed service times at both the PS and the FCFS node, and
derived approximate expressions for the variance of the sojourn times. In this context, the contribution of the present
paper is two-fold. First, the model considered in this paper is much more generic in several respects (general number
of FCFS nodes, multiple servers, and general service-time distributions at the PS node), and hence is much more
interesting from an application point of view. Second, the analysis of a queueing network with multiple FCFS nodes
introduces several interesting complications due to the impact of cross-correlations in the number of visits to each of
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the information systems. The queueing-theoretical contribution lies in the fact that this paper provides an effective
means to deal with these cross-correlations. These observations make the added value of the current paper compared
to [11] evident.

The remainder of this paper is organized as follows. In Section 2 the model is described. In Section 3 we present
exact expressions for the mean sojourn times. In Section 4 we develop an approximation for the variance of the sojourn
times. In Section 5 the accuracy of the approximations is tested by comparing the performance predictions based on
the approximations with simulation results. Finally, in Section 6 we address a number of challenging topics for further
research.

2. Model

Consider an open queueing model with a single customer class, a PS node and M ≥ 1 multi-server FCFS-nodes with
ck ≥ 1 servers at FCFS node k (k = 1, . . . , M). Customers arrive from outside at the PS node according to a Poisson
process with rate λ. After service completion at the PS node, the customer proceeds to the kth FCFS node with probability
pk, and with probability 1 − p, with p :=∑M

k=1 pk, the customer departs from the system. After receiving service at
a FCFS node a customer is always fed back to the PS node. The service time at the PS node is a generally distributed
random variable Bps with finite first two moments βps and β

(2)
ps , respectively, and the service times at the FCFS node k are

exponentially distributed with mean βfcfs,k, k = 1, . . . , M. The service times at all nodes are assumed to be mutually
independent and independent of the state of the system. For an arbitrary customer denote by N, the random variables
indicating the number of returns to the PS node, and by Nk the number of visits to kth FCFS node, before departing
from the system. Then clearly N is geometrically distributed with parameter p, i.e., Prob{N = n} = (1 − p)pn, for
n = 0, 1, . . .. Similarly, it is easily seen that Prob{Nk = i} = (1 − qk)qi

k, for i = 0, 1, . . . with qk := pk

1−p+pk
. Notice

that by definition N :=∑M
k=1 Nk, so that the random variables N and Nk (k = 1, . . . , M) are not mutually independent.

Moreover, note that the total number of visits to the PS node before departing from the system is N + 1. For notational
convenience, define the joint probability distribution of (N1, . . . , NM) as follows: for nk = 0, 1, . . . , and k = 1, . . . , M:

f (n1, . . . , nM) := Prob{N1 = n1, . . . , NM = nM}. (1)

The load at the PS node and the FCFS nodes is given by

ρps := λβps

1 − p
and ρfcfs,k := λβfcfs,kqk

ck(1 − qk)
= λβfcfs,kpk

ck(1 − p)
(k = 1, . . . , M). (2)

To ensure stability of the system it is assumed that ρps, ρfcfs,k < 1 (k = 1, . . . , M). For i = 1, 2, . . . , N + 1, let S
(ps)
i

denote the sojourn time of the ith visit to the PS node, and for j = 1, . . . , Nk, denote by S
(fcfs,k)
j the duration of the jth

visit to the kth FCFS node. The total sojourn time is then given by

S =
N+1∑
i=1

S
(ps)
i +

M∑
k=1

Nk∑
j=1

S
(fcfs,k)
j . (3)

3. Mean sojourn times

The queueing network model described in Section 2 is a product-form network. Defining Lps, Lfcfs,k to be the
stationary number of customers at the PS node and at the kth FCFS node, respectively, we have: for l ≥ 0, lk ≥ 0
(k = 1, . . . , M):

Prob{Lps = l; Lfcfs,1 = l1, . . . , Lfcfs,M = lM} = Prob{Lps = l}
M∏

k=1

Prob{Lfcfs,k = lk} (4)

= (1 − ρps)ρ
l
ps

M∏
k=1

(1 − ρfcfs,k)ρlk
fcfs,k. (5)
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The successive sojourn times of a customer are generally not independent. Nonetheless, the successive sojourn times
of a tagged customer at the same node are identically distributed.

Lemma 1.

(a) The successive sojourn times S
(ps)
i (i = 1, . . . , N + 1) are identically distributed.

(b) The successive sojourn times S
(fcfs,k)
j (j = 1, . . . , Nk), are identically distributed for each k = 1, . . . , M.

Proof. We observe that the model under consideration is a multi-class product-form network, where the customer
classes are defined as follows. Each customer enters the system (at the PS node) as a class-0 customer, and its class
number is incremented from i to i + 1 any time the customer jumps from one node to the next (i = 0, 1, . . .). (In this
way, for each customer its class indicates the number of node visits since the arrival of the customer in the system.)
Then according to the Arrival Theorem for multi-class product-form networks (cf. e.g., Walrand [12] (Theorem 4.4.1))
a jumping customer sees the system in steady state, regardless of its class number, which immediately implies the
validity of Lemma 1. �

Using Lemma 1, it follows directly from Eq. (5) and Little’s law that

E[Lps] = ρps

1 − ρps
(6)

and

E[S(ps)
i ] = ρps

λ
1−p

(1 − ρps)
= βps

1 − ρps
, i = 1, . . . , N + 1. (7)

Recall that the total arrival intensity at the PS node equals λ
1−p

. Moreover, it is readily verified that for the FCFS nodes
we have, for k = 1, . . . , M,

E[Lfcfs,k] = ρfcfs,kπk

1 − ρfcfs,k
+ ckρfcfs,k (8)

and

E[S(fcfs,k)
j ] = βfcfs,kπk

(1 − ρfcfs,k)ck

+ βfcfs,k, j = 1, . . . , Nk. (9)

Here, πk stands for the probability that an customer arriving at FCFS node k cannot be served immediately, and hence
has to wait. From standard theory for the M/M/c queue, we have, for k = 1, . . . , M,

πk = c
ck

k ρ
ck

fcfs,k

ck!

[
1 +

ck−1∑
n=1

(
1 − n

ck

)
cn
kρ

n
fcfs,k

n!

]−1

. (10)

Note that for the special case ck = 1 we have πk = ρfcfs,k. Now, combining (3), (7) and (9) and applying Wald’s
equation we obtain the following expression for the mean total sojourn time of an arbitrary customer:

E[S] = E

⎡
⎣N+1∑

i=1

S
(ps)
i +

M∑
k=1

Nk∑
j=1

S
(fcfs,k)
j

⎤
⎦ = (E[N] + 1)E[S(ps)

1 ] +
M∑

k=1

E[Nk]E[S(fcfs,k)
1 ] (11)

= 1

1 − p

βps

1 − ρps
+

M∑
k=1

pk

1 − p

[
βfcfs,kπk

(1 − ρfcfs,k)ck

+ βfcfs,k

]
. (12)

4. Variance of the sojourn times: approximations

Analysis of the variance of the total sojourn time, Var[S], is fundamentally more complex than the analysis of the
mean. The complexity is caused by the fact that overtaking may occur. Overtaking introduces correlation between
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sojourn times of job visits at the nodes in the queueing network. A formal definition of overtaking is presented by
Definition 2.2 in [2]. According to this definition the queueing network considered in this paper is not overtake-free.
In the absence of exact expressions for the variance of the sojourn times we develop new, closed-form approximations
for the variance of the sojourn times. To this end, in 4.2.1 Var[S] is expressed in a convenient form. In 4.2.2 we use
this expression to derive an approximation for Var[S] for the case of exponential service times at the PS node. Then,
in 4.2.3 we extend these expressions for the case of non-exponential service times at the PS node. The accuracy of the
results will be extensively studied in Section 5.

4.1. Preliminaries

First, we rewrite the sojourn time variance Var[S] in the following convenient form:

Var[S] = Var

⎡
⎣N+1∑

i=1

S
(ps)
i +

M∑
k=1

Nk∑
j=1

S
(fcfs,k)
j

⎤
⎦ (13)

= E

⎡
⎣Var

⎡
⎣N+1∑

i=1

S
(ps)
i +

M∑
k=1

Nk∑
j=1

S
(fcfs,k)
j |N1, . . . , NM

⎤
⎦
⎤
⎦

+ Var

⎡
⎣E

⎡
⎣N+1∑

i=1

S
(ps)
i +

M∑
k=1

Nk∑
j=1

S
(fcfs,k)
j |N1, . . . , NM

⎤
⎦
⎤
⎦ (14)

=
∞∑

n1=0

· · ·
∞∑

nM=0

Var

⎡
⎣n+1∑

i=1

S
(ps)
i +

M∑
k=1

nk∑
j=1

S
(fcfs,k)
j

⎤
⎦ f (n1, . . . , nM) + Var

⎡
⎣N+1∑

i=1

E[S(ps)
i ] +

M∑
k=1

Nk∑
j=1

E[S(fcfs,k)
j ]

⎤
⎦

(15)

=
∞∑

n=0

Var

[
n+1∑
i=1

S
(ps)
i

]
(1 − p)pn +

M∑
k=1

∞∑
Nk=0

Var

⎡
⎣ nk∑

j=1

S
(fcfs,k)
j

⎤
⎦ (1 − qk)qnk

k

+ 2
M∑

k=1

∞∑
n1=0

· · ·
∞∑

nM=0

Cov

⎡
⎣n+1∑

i=1

S
(ps)
i ,

nk∑
j=1

S
(fcfs,k)
j

⎤
⎦ f (n1, . . . , nM)

+
∑
k �=m

∞∑
n1=0

· · ·
∞∑

nM=0

Cov

⎡
⎣ nk∑

j=1

S
(fcfs,k)
j ,

nm∑
j=1

S
(fcfs,m)
j

⎤
⎦ f (n1, . . . , nM)

+ Var

⎡
⎣N+1∑

i=1

E[S(ps)
i ] +

M∑
k=1

Nk∑
j=1

E[S(fcfs,k)
j ]

⎤
⎦ (16)

=
∞∑

n=0

(n + 1) Var[S(ps)
1 ](1 − p)pn +

M∑
k=1

∞∑
nk=0

nk Var[S(fcfs,k)
1 ](1 − qk)qnk

k

+
∞∑

n=0

∑
i�=j

Cov[S(ps)
i , S

(ps)
j ](1 − p)pn +

M∑
k=1

∞∑
nk=0

∑
i�=j

Cov[S(fcfs,k)
i , S

(fcfs,k)
j ](1 − qk)qnk

k
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+ 2
M∑

k=1

∞∑
n1=0

· · ·
∞∑

nM=0

Cov

⎡
⎣n+1∑

i=1

S
(ps)
i ,

nk∑
j=1

S
(fcfs,k)
j

⎤
⎦ f (n1, . . . , nM)

+
∑
k �=m

∞∑
n1=0

· · ·
∞∑

nM=0

Cov

⎡
⎣ nk∑

j=1

S
(fcfs,k)
j ,

nm∑
j=1

S
(fcfs,m)
j

⎤
⎦ f (n1, . . . , nM)

+ Var

⎡
⎣N+1∑

i=1

E[S(ps)
i ] +

M∑
k=1

Nk∑
j=1

E[S(fcfs,k)
j ]

⎤
⎦ . (17)

Eq. (13) follows from definition (3), and (14)follows directly from the classical Var[U] = E[Var[U|V ]] + Var[E[U|V ]]
by taking U :=∑N+1

i=1 S
(ps)
i +∑M

k=1
∑Nk

j=1 S
(fcfs,k)
j and V := {N1 = n1, . . . , NM = nM}. Eq. (15) is then obtained by

conditioning with respect to the event V . Subsequently, (16) follows from Lemma 1 and classical rules for the variance
of random variables, and (17) is obtained from Lemma 1.

The quantities E[S(ps)
i ] and E[S(fcfs,k)

j ] in (17), which are independent of i and j, respectively, are given by Eqs. (7)
and (9). Since we are considering a product-form network, the distribution function of the number of customers in each
of the queues is known. Hence, the sojourn time distribution for each of the FCFS nodes is also known. Specifically,
sojourn times at FCFS queue k behaves as an M/M/ck-FCFS queue. Thus, for the sojourn time variance at the FCFS
nodes we have (cf. [5]):

Var[S(fcfs,k)
1 ] = β2

fcfs,k + πk(2 − πk)β2
fcfs,k

c2
k(1 − ρfcfs,k)2

. (18)

Further, given Lemma 1 and the fact that the number of visits to the PS node always equals the number of visits to the
FCFS nodes plus one (see also Section 2) we have after some standard variance calculus:

Var

⎡
⎣N+1∑

i=1

E[S(ps)
i ] +

M∑
k=1

Nk∑
j=1

E[S(fcfs,k)
j ]

⎤
⎦

= Var

[
M∑

k=1

Nk(E[S(ps)
1 ] + E[S(fcfs,k)

1 ])

]
=

M∑
k=1

Var [Nk] (E[S(ps)
1 ] + E[S(fcfs,k)

1 ])
2

+
∑
k �=m

Cov [Nk, Nm] (E[S(ps)
1 ] + E[S(fcfs,k)

1 ])(E[S(ps)
1 ] + E[S(fcfs,m)

1 ]). (19)

Since Nk is geometrically distributed with parameter qk, we know that Var[Nk] = qk

(1−qk)2 . Further, we can express

the sum of covariances between Nk and Nm in terms of Var[N] and
∑M

k=1 Var[Nk]: Var[N] =
∑M

k=1 Var[Nk] +∑
k �=m Cov [Nk, Nm]. Then, with some calculus we find that

∑
k �=m Cov [Nk, Nm] =

∑
k �=m

pkpm

(1−p)2 . Substituting these
expressions in Eq. (19), we obtain:

Var

⎡
⎣N+1∑

i=1

E[S(ps)
i ] +

M∑
k=1

Nk∑
j=1

E[S(fcfs,k)
j ]

⎤
⎦

=
M∑

k=1

qk

(1 − qk)2 (E[S(ps)
1 ] + E[S(fcfs,k)

1 ])
2

+
∑
k �=m

pkpm

(1 − p)2 (E[S(ps)
1 ] + E[S(fcfs,k)

1 ])(E[S(ps)
1 ] + E[S(fcfs,m)

1 ]). (20)
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Hence, it remains to develop approximations for Var[S(ps)
1 ], Cov[S(ps)

i , S
(ps)
j ], Cov[S(fcfs,k)

i , S
(fcfs,k)
j ], for any i �= j,

k = 1, . . . , M and Cov[S(fcfs,k)
i , S

(fcfs,m)
j ], Cov[S(ps)

i , S
(fcfs,k)
j ], for any i, j = 1, 2, . . ., k �= m.

4.2. The case of exponential service times at the PS node

To start, we use the following approximation assumption.

Approximation assumption 1 (AA1). The total arrival process at PS node is a Poisson process with rate λ
1−p

.

In general it is known that Approximation assumption 1 is not true for non-acyclic queueing networks, not even under
the assumption that the service times are exponentially distributed. The violation of the Poisson assumption is caused
by the feedback loop, implying dependent interarrival times at the nodes. Based on Approximation assumption 1, we
obtain the following approximate expression for the variance of the sojourn times at the PS node (cf. [10]):

Var[S(ps)
1 ] ≈ 2 + ρps

2 − ρps

(
βps

1 − ρps

)2

. (21)

van den Berg and Boxma [1] derive exact expressions for the covariance of the successive sojourn times for single-
server FCFS and for PS queues with direct feedback, where customers upon receiving service are immediately fed back
into the system (with some probability). We emphasize that the model discussed in Section 2 implements a delayed
feedback mechanism: upon departing from the PS node, a customer is first processed by a FCFS-node (if not leaving
the system immediately) before returning to the PS node. Similarly, after leaving any FCFS node, a customer is first
processed at least once by the PS node before returning to the FCFS node.

Approximation assumption 2 (AA2).

(a) The covariance of the successive sojourn times of a customer at the PS node in the network with delayed feedback
may be approximated by those in a single M/M/1 PS node with direct feedback.

(b) The covariance of the successive sojourn times of a customer FCFS node k in the network with delayed feedback
may be approximated by those in a single M/M/ck FCFS node with direct feedback (k = 1, . . . , M).

Now, based on Approximation assumption 2 we approximate the covariances between the successive sojourn times at
the same node (i.e., Cov[S(ps)

i , S
(ps)
j ] and Cov[S(fcfs,k)

i , S
(fcfs,k)
j ], for i �= j and any k). It is easily verified that by using

the exact results for single-server FCFS systems with direct feedback, derived from Eqs. (9.13) and (3.17) in [1], and
conditioning on the event that a customer arriving at FCFS node k has to wait, we obtain the following approximations:
for 1 ≤ i < n, 1 ≤ j ≤ n − i and 1 ≤ k ≤ M:

Cov[S(fcfs,k)
i , S

(fcfs,k)
i+j ] ≈ πk(ρfcfs,k(1 − qk) + qk)j−1πk

(
β2

fcfs,k + πk(2 − πk)
β2

k

c2
k(1 − ρfcfs,k)2

)
(22)

and similarly, for 1 ≤ i < n + 1, 1 ≤ j ≤ n + 1 − i,

Cov[S(ps)
i , S

(ps)
i+j ] ≈ ρpsβ

2
ps

(1 − ρps)2(2 − ρps − p + ρpsp)j+1 . (23)

Approximation assumption 3 (AA3). The sojourn times S
(ps)
i and S

(fcfs,k)
j are uncorrelated; for i = 1, . . . , N + 1,

j = 1, . . . , N and k = 1, . . . , M:

Cov[S(ps)
i , S

(fcfs,k)
j ] ≈ 0. (24)

In general, Approximation assumption 3 is known to be not true. However, the product-form solution for the present
model, see (5), implies that the number of customers at both nodes are independent in equilibrium. Also, the sojourn
time at the FCFS queues is closely related to the number of customers at that node: if a customer finds nfcfs,k customers at
the kth FCFS node upon arrival, then the sojourn time simply consists of nfcfs,k + 1 independent successive exponential
phases each with rate 1

βfcfs,k
, which results in an Erlang distribution with shape parameter nfcfs,k + 1 and rate parameter
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1
βfcfs,k

. For the PS node, the correlation between the sojourn times and number of customers present upon arrival is less
clear, and intuitively seems to be weaker than for FCFS nodes. These observations suggest that the cross-correlation
terms are rather small. In our previous work for a queueing network with only one FCFS node we performed a variety
of simulation experiments to validate this conjecture, and we found that the cross-correlation coefficients (between PS
and FCFS nodes) were about a factor two smaller than the correlation coefficient for successive sojourn times at the PS
node. Also we found that the correlation coefficient for sojourn times at the FCFS node were about three times larger
than the PS node correlation coefficient. These results confirm the conjecture that the cross-correlation terms for the
sojourn times of visits to different nodes are indeed negligible compared to the correlation terms of successive visits
to the same node. For queueing networks with multiple FCFS nodes the impact of ignoring cross-correlations on the
approximation accuracy is even less, as the numerical results in Section 5 will demonstrate.

Finally, substituting the exact formula for the variance of the sojourn time in the FCFS nodes and approximations
(20)-(24) in the expression for Var[S] in (17) we obtain the following approximation for the variance of the sojourn
time for the case of exponential service times at the PS node:

Varexp[S] ≈ 1

1 − p

2 + ρps

2 − ρps

(
βps

1 − ρps

)2

+ 2pρpsβ
2
ps

(2 − ρps − p + pρps)(1 − p)2(2 − ρps)(1 − ρps)2

+
M∑

k=1

qk

1 − qk

(
β2

fcfs,k + πk(2 − πk)β2
fcfs,k

c2
k(1 − ρfcfs,k)2

)
+

M∑
k=1

2q2
kπkβ

2
fcfs,k((1 − ρfcfs,k)2c2

k + πk(2 − πk))

(1 − qk)2(1 − qkρfcfs,k + qk)(1 − ρfcfs,k)2c2
k

+
M∑

k=1

qk

(1 − qk)2

(
βps

1 − ρps
+ βfcfs,k + πkβfcfs,k

ck(1 − ρfcfs,k)

)2

+
∑
k �=m

pkpm

(1 − p)2

(
βps

1 − ρps
+ βfcfs,k + πkβfcfs,k

ck(1 − ρfcfs,k)

)(
βps

1 − ρps
+ βfcfs,m + πmβfcfs,m

cm(1 − ρfcfs,m)

)
.

(25)

In the next subsection we will extend the approximations to the case of general service times at the PS node.

4.3. The case of general service times at the PS node

For the case of general service times at the PS node we adopt the assumptions AA1–AA3. Based on AA1, we
can approximate Var[S(ps)

1 ] by the variance of the sojourn time in an M/G/1-PS system with arrival rate λ
1−p

and
service-time distribution Bps. van den Berg and Boxma [1] propose the following simple approximation for the second
moment of the sojourn time SM/G/1 in an M/G/1-PS with mean service time βM/G/1, load ρ and squared coefficient
of variation c2

M/G/1, which is a linear interpolation between the cases of exponential and deterministic service times,
respectively:

Eapp[SM/G/1]2 = c2
M/G/1

(
1 + 2 + ρ

2 − ρ

)
β2

M/G/1

(1 − ρ)2 + (1 − c2
M/G/1)

(
2β2

M/G/1

(1 − ρ)2 − 2β2
M/G/1

ρ2(1 − ρ)
(eρ − 1 − ρ)

)
.

(26)

Using this expression, we approximate the second moment of S
(ps)
1 for an arbitrary visit of a customer to the PS by

E[S(ps)
1 ]2 ≈ c2

ps

(
1 + 2 + ρps

2 − ρps

)(
βps

1 − ρps

)
+ (1 − c2

ps)

(
2β2

ps

(1 − ρps)2 − 2β2
ps

ρ2
ps(1 − ρps)

(eρps − 1 − ρps)

)
(27)

and hence

Var[S(ps)
1 ] ≈ E[S(ps)

1 ]2 −
(

βps

1 − ρps

)2

, (28)

where c2
ps is the squared coefficient of variation of the service times at the PS node.
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In general, the variance of the sojourn times in an M/G/1-PS system depends on the third moment of the service-
time distribution at that node, whereas the simple approximation in (26) only depends on the first two moments
of the service-time distribution at the PS node. For sake of simplicity, we adopt (26) in our approximations. We
refer to [1] for a discussion on the refined approximations that do take into account third moments of the service
times.

In the adoptation of AA2(a) we assume that the covariance of the successive sojourn times at the PS node with
delayed feedback is still approximated by a single M/M/1-PS node, rather than a M/G/1-PS node. The reason for
this is that although an exact analysis of the covariances of the successive sojourn times for the M/G/1-PS feedback
system is possible, the expressions are not explicit (see [1] for details) and require the solution of a non-linear set of
equations. Since our goal is to develop closed-form approximations for the variance of the sojourn times we adopt
approximation (23).

Finally, these observations lead to the following expression for Var[S] for the case of general service times at the
PS node:

Vargen[S] ≈ 1

1 − p

{
c2

ps

(
1 + 2 + ρps

2 − ρps

)
βps

(1 − ρps)2 + (1 − c2
ps)

(
2β2

ps

(1 − ρps)2 − 2β2
ps

ρ2
ps(1 − ρps)

(eρps−1−ρps)

)}

− 1

1 − p

(
βps

1 − ρps

)2

+ 2pρpsβ
2
ps

(2 − ρps − p + pρps)(1 − p)2(2 − ρps)(1 − ρps)2

+
M∑

k=1

qk

1 − qk

(
β2

fcfs,k + πk(2 − πk)β2
fcfs,k

c2
k(1 − ρfcfs,k)2

)
+

M∑
k=1

2q2
kπkβ

2
fcfs,k((1 − ρfcfs,k)2c2

k + πk(2 − πk))

(1 − qk)2(1 − qkρfcfs,k + qk)(1 − ρfcfs,k)2c2
k

+
M∑

k=1

qk

(1 − qk)2

(
βps

1 − ρps
+ βfcfs,k + πkβfcfs,k

ck(1 − ρfcfs,k)

)2

+
∑
k �=m

pkpm

(1 − p)2

(
βps

1 − ρps
+ βfcfs,k + πkβfcfs,k

ck(1 − ρfcfs,k)

)(
βps

1 − ρps
+ βfcfs,m + πmβfcfs,m

cm(1 − ρfcfs,m)

)
.

(29)

In the next section we assess the accuracy of the approximations.

5. Numerical results

To validate the accuracy of the approximations for the variance of the sojourn times proposed in Section 4, we have
performed extensive numerical experiments, comparing the approximations with simulations. To this end, we have
checked the accuracy of approximations for many parameter combinations, by varying the arrival rate, the service-times
distributions, the asymmetry in the loads of the nodes, the numbers of servers at the FCFS nodes, and the values of the
routing probabilities pk. From the simulations, we have calculated the point estimates for the variance of the sojourn
times, and 95% confidence intervals (C.I.’s). We calculated the confidence intervals for the sojourn time variance
using the Jackknife method (see [9]). For each parameter case we ran 10 simulation runs. The runs lengths were taken
long enough to ensure that all the confidence intervals were at most 15% of the point estimator value. In Tables 1–9
we present results for a subset of the parameter cases that we validated. Denoting the point estimations based on
simulations by “simulation”, and the approximated values by “approx”, the relative error of the approximations is
defined as

�% = approx − simulation

simulation
× 100%. (30)

The results of the validation experiments will be discussed below. In Section 5.1 we give the results for the case of
exponential service times at the PS node. In Section 5.2 we discuss the results for non-exponential service times at the
PS node.
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Table 1
Sojourn time variance with two identical FCFS nodes: approximations vs. simulations

p βps βfcfs ρps ρfcfs Simulation 95% C.I. Approx �% Simple �%

0.2 0.4 1.6 0.5 0.2 4.86 (4.84, 4.89) 4.92 1.2 4.54 −6.7
0.2 0.4 4 0.5 0.5 43.50 (42.89, 44.10) 43.52 0.1 39.11 −10
0.2 0.4 6.4 0.5 0.8 642.5 (631.7, 653.4) 643.7 0.2 559.9 −13
0.5 0.1 0.4 0.2 0.2 1.11 (1.10, 1.12) 1.11 0.2 0.87 −21
0.5 0.25 1 0.5 0.5 19.19 (18.94, 19.44) 19.31 0.7 14.21 −26
0.5 0.4 0.4 0.8 0.2 40.45 (38.91, 42.00) 41.15 1.7 28.29 −30
0.5 0.1 1.6 0.2 0.8 247.3 (234.3, 260.2) 244.1 −1.3 163.1 −34
0.5 0.4 1.6 0.8 0.8 338.3 (326.8, 349.9) 340.4 0.6 232.7 −31
0.8 0.1 0.1 0.5 0.2 3.01 (2.99, 3.03) 3.03 0.5 1.66 −45
0.8 0.1 0.25 0.5 0.5 13.1 (13.1, 13.2) 13.12 −0.1 7.21 −45
0.8 0.1 0.4 0.5 0.8 159.0 (153.3, 164.7) 158.8 −0.1 74.41 −53

5.1. Exponential service times at PS node

To assess the accuracy of the approximations developed in Section 4, one might question whether including co-
variance terms in the approximation (i.e., the last summation in (25)), which make the approximation slightly more
complex, indeed lead to a higher level of accuracy. To illustrate the ‘added value’ of including covariance terms in the
approximation we also compare it to a simple, straightforward approximation, which completely ignores dependencies
between successive sojourn times of a tagged customer in the PS or FCFS nodes. In particular, the simple approximation
is the same as approximation (25) without the covariance terms, resulting in the expression:

Varsimple[S] ≈ 1

1 − p

2 + ρps

2 − ρps

(
βps

1 − ρps

)2

+
M∑

k=1

qk

1 − qk

(
β2

fcfs,k + πk(2 − πk)β2
fcfs,k

c2
k(1 − ρfcfs,k)2

)

+
M∑

k=1

qk

(1 − qk)2

(
βps

1 − ρps
+ βfcfs,k + πkβfcfs,k

ck(1 − ρfcfs,k)

)2

. (31)

Throughout we will denote the results of this simple approximation by ”simple”.

5.1.1. Single server at FCFS nodes
Let us first consider the accuracy of the approximations for models with single-server FCFS nodes, i.e., c1 = · · · =

cM = 1. To start, consider the model with M = 2 identical FCFS nodes (i.e. βfcfs,1 = βfcfs,2 =: βfcfs), λ = 1 and
where the routing probabilities to the FCFS nodes are p1 = p2 = p

2 . Table 1 shows the simulated and approximated
value of the Var[S] for various combinations of βps and βfcfs. Note that in these symmetric models the load values
of the FCFS nodes are the same, i.e. ρfcfs,1 = ρfcfs,2 =: ρfcfs. The results in Table 1 show that the approximations in
(25) are extremely accurate. The relative error of the approximation does not exceed 2%. As expected the “simple”

Table 2
Sojourn time variance with two identically loaded FCFS nodes, but with different service times: approximations vs. simulations

p βps βfcfs,1 βfcfs,2 ρps ρfcfs Simulation 95% C.I. Approx �% �simple%

0.2 0.4 1.05 3.15 0.5 0.20 5.46 (5.40, 5.51) 5.46 0.0 −8.2
0.2 0.4 2.7 8.1 0.5 0.51 56.85 (55.08, 58.62) 56.81 −0.1 −14.1
0.2 0.4 4.3 12.9 0.5 0.81 899.53 (860.92, 938.14) 881.07 −2.1 −12.2
0.5 0.1 0.3 0.9 0.2 0.23 1.66 (1.65, 1.67) 1.66 0.0 −23.3
0.5 0.25 0.6 1.8 0.5 0.45 15.87 (15.71, 16.02) 15.72 −0.9 −30.4
0.5 0.4 0.3 0.9 0.8 0.23 42.72 (41.34, 44.09) 42.31 −1.0 −29.1
0.5 0.1 1.05 3.15 0.2 0.79 249.29 (238.68, 259.91) 245.78 −1.4 −27.8
0.5 0.4 1.05 3.15 0.8 0.79 337.35 (320.88, 353.82) 337.66 0.1 −18.8
0.8 0.1 0.07 0.21 0.5 0.21 3.16 (3.12, 3.19) 3.19 1.2 −42.2
0.8 0.1 0.17 0.51 0.5 0.51 14.61 (14.49, 14.74) 14.7 0.6 −48.7
0.8 0.1 0.27 0.81 0.5 0.81 186.98 (181.18, 192.79) 192.49 2.9 41.0
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Table 3
Sojourn time variance with two asymmetrically loaded FCFS nodes: approximations vs. simulations

p βps βfcfs,1 βfcfs,2 ρps ρfcfs,1 ρfcfs,2 Simulation Approx �% �simple%

0.2 0.4 2.65 8 0.5 0.5 0.5 53.48 53.83 0.6 −7.5
0.2 0.4 1.1 12.8 0.5 0.21 0.8 579.53 566.34 −2.3 −7.2
0.2 0.4 4.3 3.2 0.5 0.81 0.2 250.43 243.74 −2.7 −14.6
0.5 0.25 0.67 2 0.5 0.5 0.5 21.88 22.14 1.2 −22.3
0.5 0.25 0.27 3.2 0.5 0.2 0.8 186.15 181.01 −2.8 −18.9
0.5 0.25 1.07 0.8 0.5 0.8 0.2 97.99 97.81 −0.2 −28.8
0.8 0.04 0.17 0.51 0.2 0.51 0.51 10.00 10.03 0.3 −42.7
0.8 0.04 0.07 0.8 0.2 0.21 0.8 74.27 75.74 2.0 −33.9
0.8 0.04 0.27 0.2 0.2 0.81 0.2 59.3 60.73 2.4 −45.6

Table 4
Sojourn time variance with five FCFS nodes: approximations vs. simulations

p1 p2 p3 p4 p5 ρps ρ
fcfs

Simulation Approx �% �simple%

0.1 0.1 0.1 0.1 0.1 0.4 0.2 0.2 0.2 0.2 0.2 7.09 7.11 0.4 −30.8
0.1 0.1 0.1 0.1 0.1 0.4 0.8 0.8 0.8 0.8 0.8 1344.2 1352.8 0.6 −33.3
0.1 0.1 0.1 0.1 0.1 0.4 0.8 0.64 0.48 0.32 0.16 297.8 297.3 −0.2 −23.0
0.1 0.1 0.1 0.1 0.1 0.4 0.9 0.2 0.2 0.2 0.2 1081.5 1070.9 −1.0 −16.6
0.4 0.1 0.1 0.1 0.1 0.5 0.8 0.2 0.2 0.2 0.2 74.6 77.4 3.7 −47.3
0.4 0.1 0.1 0.1 0.1 0.5 0.8 0.8 0.8 0.8 0.8 823.5 837.7 1.7 −55.4
0.3 0.2 0.15 0.1 0.05 0.5 0.8 0.53 0.4 0.27 0.13 98.3 100.8 2.5 −51.6
0.3 0.2 0.15 0.1 0.05 0.5 0.6 0.6 0.6 0.6 0.6 124.6 126.1 1.2 −53.6

approximation consistently and strongly underestimates the variance of the total sojourn time; it appears to be an
inaccurate lower bound. The relative error of the “simple” approximation becomes higher for higher p when load is
fixed. When p is increased, the expected number of times a job will be fed back grows. When p is increased, the
correlation between the successive sojourn times of a job tends to increase. Since this rough approximation omits the
covariance of successive sojourn times of a job, the accuracy of the “simple” approximation degrades as p increases.
Also, the relative error of the “simple” approximation becomes higher for higher load when p is fixed. When the load
increases, the covariance of successive sojourn times of a job grows faster than the variance. As a result, the covariance
part in the total variance will increase more than proportionally in comparison with the variance for increasing load.
Because the covariance is not taken into account in the “simple” approximation, the relative error grows. These
observations also hold for the other cases. Therefore, we conclude that the “simple” approximation is too inaccurate

Table 5
Sojourn time variance with three symmetric multi-server FCFS nodes: approximations vs. simulations

βPS βfcfs c ρPS ρfcfs Simulation Approx �% Simple �simple%

0.02 0.33 2 0.20 0.50 22.90 23.67 3.35 9.50 −58.4
0.02 0.53 2 0.20 0.50 271.43 269.03 −0.88 93.56 −65.5
0.05 0.13 2 0.50 0.20 5.88 6.08 3.53 2.39 −59.3
0.05 0.53 2 0.50 0.80 306.54 306.97 0.14 107.43 −64.9
0.08 0.13 2 0.80 0.20 47.85 48.90 2.20 14.3 −70.0
0.08 0.33 2 0.80 0.50 87.11 90.55 3.95 30.96 −64.5
0.01 0.33 4 0.10 0.25 11.85 11.90 0.46 5.33 −55.0
0.01 1.20 4 0.10 0.90 1680.76 1637.24 −2.59 550.25 −67.3
0.03 0.13 4 0.25 0.90 2.67 2.70 1.18 1.17 −56.0
0.08 1.20 4 0.75 0.90 1829.87 1842.08 0.67 629.58 −65.6
0.09 0.13 4 0.90 0.75 230.90 235.73 2.09 59.96 −74.0
0.09 1.00 4 0.90 0.75 592.27 718.54 3.79 246.18 −64.4
0.02 1.67 10 0.20 0.50 286.38 290.27 1.36 129.57 −54.8
0.05 0.67 10 0.50 0.20 56.97 57.64 1.17 25.33 −55.5
0.08 0.67 10 0.80 0.20 123.59 128.96 4.34 48.69 −60.6
0.08 1.67 10 0.80 0.50 430.20 440.47 2.39 184.36 −57.2
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Table 6
Sojourn time variance with three symmetric multi-server FCFS nodes: approximations vs. simulations

p1 p2 p3 βPS β
fcfs

c ρPS ρ
fcfs

Simulation Approx �% Simple �%

0.1 0.2 0.3 0.08 0.80 0.40 0.27 1 0.20 0.20 0.20 0.20 1.97 1.99 0.87 1.38 −29.8
0.1 0.2 0.3 0.20 4.00 2.00 1.33 2 0.50 0.50 0.50 0.50 51.39 52.73 2.61 35.62 −30.7
0.1 0.2 0.4 0.24 7.20 3.60 1.80 3 0.80 0.80 0.80 0.80 675.26 685.68 1.54 390.88 −42.1
0.1 0.2 0.4 0.06 2.40 1.20 0.60 4 0.20 0.20 0.20 0.20 13.85 13.85 0.01 9.37 −32.3
0.1 0.3 0.4 0.10 5.00 1.67 1.25 5 0.50 0.50 0.50 0.50 122.15 126.17 3.29 71.35 −41.9
0.1 0.3 0.4 0.16 9.60 3.20 2.40 6 0.80 0.80 0.80 0.80 949.43 987.05 3.96 494.13 −48.0
0.1 0.3 0.5 0.02 1.40 0.47 0.28 7 0.20 0.20 0.20 0.20 25.66 25.84 0.69 12.77 −50.2
0.2 0.3 0.5 0.05 2.00 1.33 1.00 8 0.50 0.50 0.50 0.50 208.88 213.75 2.33 95.02 −54.5

Table 7
Sojourn time variance with three asymmetric multi-server FCFS nodes: approximations vs. simulations

p1 p2 p3 β
fcfs

c1 c2 c3 ρPS ρ
fcfs

Simulation Approx �%

0.1 0.2 0.3 3.00 2.00 1.00 1 2 3 0.50 0.75 0.50 0.25 135.49 131.78 −2.8
0.1 0.2 0.4 2.25 2.70 1.69 1 3 5 0.75 0.75 0.60 0.45 211.61 216.96 −2.5
0.1 0.3 0.4 1.80 0.40 0.15 1 8 9 0.75 0.90 0.08 0.03 638.54 642.47 0.6
0.1 0.3 0.4 1.80 3.20 1.35 1 8 9 0.75 0.90 0.60 0.30 904.46 909.08 0.5
0.3 0.3 0.3 0.40 0.67 0.53 6 4 3 0.80 0.20 0.50 0.80 194.92 199.34 2.3

and the additional complexity of the approximation presented in Section 3 (due to inclusion of the covariance terms)
is justified, for increasing the approximation accuracy.

To summarize, Table 1 shows that the approximation works very well in these symmetric cases. Also the errors are
positive for some cases and negative for other cases, and all lie in the 95% confidence interval.

To investigate the impact of asymmetry in the number of visits per FCFS node on the accuracy of the approximations,
we have also considered a variety of parameter combinations with unequal visits per node. In this second case the
loads of both FCFS nodes are still equal, but the probabilities of a visit to each FCFS nodes are not equal (and thus
the service times are unequal too). This represents, for example, a database system that authenticates a request (visit
to FCFS node 2) and then retrieves information from a database (visit to FCFS node 1) once or several times. We have
chosen the relative distribution of visits to each of the FCFS nodes as: p1 = 3

4p, p2 = 1
4p. Table 2 presents the results

for case 2. In the third case we consider an even more asymmetric network scenario, where the number of visits to the
FCFS nodes and the loads of the FCFS nodes are taken asymmetric. The results for this case are presented in Table 3.
The relative distribution of visits to each of the FCFS nodes remains: p1 = 3

4p, p2 = 1
4p. The results in Tables 2 and 3

demonstrate that for asymmetric cases the relative error is still very low, smaller than 3% and all approximation results
are within the confidence intervals. Again, the estimation is sometimes higher and sometimes lower than the centre of
the confidence interval. It does not seem to make any difference whether the loads of the nodes are very different, e.g.
0.20–0.80, or close to each other. Observing that the relative errors are very low, we impute the difference in sign to

Table 8
Sojourn time variance for general service times at the PS node: approximations vs. simulations

p βps c2
PS βfcfs,1 βfcfs,2 Simulation Approx �%

0.2 0.40 0 2.65 8.00 52.60 52.82 0.4
0.2 0.40 1 2.65 8.00 53.76 53.83 0.1
0.2 0.40 4 2.65 8.00 56.98 57.23 0.4
0.2 0.40 16 2.65 8.00 68.18 68.81 0.9

0.5 0.25 0 0.67 2.00 21.43 21.50 0.3
0.5 0.25 1 0.67 2.00 22.08 22.14 0.2
0.5 0.25 4 0.67 2.00 24.45 24.32 −0.5
0.5 0.25 16 0.67 2.00 31.88 31.95 0.2

0.8 0.25 0 0.17 0.51 9.91 10.02 1.1
0.8 0.25 1 0.17 0.51 9.93 10.03 0.8
0.8 0.25 4 0.17 0.51 9.95 10.08 1.1
0.8 0.25 16 0.17 0.51 10.12 10.23 1.1
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Table 9
Sojourn time variance for general service times at the PS node: approximations vs. simulations

p βps c2
PS βfcfs,1 βfcfs,2 Simulation Approx �%

0.2 0.64 0 5.34 24.00 159.3 161.3 1.2
0.2 0.64 1 5.34 24.00 179.9 181.8 1.1
0.2 0.64 4 5.34 24.00 254.2 253.0 −0.5
0.2 0.64 16 5.34 24.00 532.9 527.5 −1.0

0.2 0.64 0 2.13 38.40 837.4 830.4 −0.8
0.2 0.64 1 2.13 38.40 863.9 850.8 −1.5
0.2 0.64 4 2.13 38.40 923.5 922.92 −0.1
0.2 0.64 16 2.13 38.40 1205.6 1197.3 −0.7

0.2 0.64 0 8.53 9.60 314.3 313.9 −0.7
0.2 0.64 1 8.53 9.60 336.6 334.4 −1.5
0.2 0.64 4 8.53 9.60 399.5 406.3 1.7
0.2 0.64 16 8.53 9.60 697.3 680.8 −2.4

0.8 0.16 0 0.33 1.50 71.3 73.7 3.4
0.8 0.16 1 0.33 1.50 76.7 78.8 2.8
0.8 0.16 4 0.33 1.50 96.3 96.7 0.4
0.8 0.16 16 0.33 1.50 162.4 159.8 −1.6

0.8 0.16 0 0.13 2.40 169.6 171.9 1.3
0.8 0.16 1 0.13 2.40 173.1 177.0 2.3
0.8 0.16 4 0.13 2.40 190.9 195.1 2.2
0.8 0.16 16 0.13 2.40 260.1 257.9 −0.8

0.8 0.16 0 0.53 0.60 124.9 127.5 2.0
0.8 0.16 1 0.53 0.60 130.9 132.6 1.3
0.8 0.16 4 0.53 0.60 149.8 150.7 0.6
0.8 0.16 16 0.53 0.60 218.6 213.6 −2.3

the randomness of the simulation. Asymmetric loads do not cause the approximation to perform significantly worse.
This could be expected, as the approximation contains separate covariance terms for the PS-node and the FCFS-nodes.
Consequently the formulas can adapt to asymmetric loads. Again, the accuracy is at least an order of magnitude better
than in the case of the “simple” approximation.

To validate the approximation for a network with more than two FCFS nodes, we also include the results for a
case with five FCFS nodes in Table 4. For notational convenience, define β

fcfs
:= (βfcfs,1, . . . , βfcfs,N

)
, and ρ

fcfs
:=

(ρfcfs,1, . . . , ρfcfs,N ). As expected, the “simple” approximation still underestimates the variance of the total sojourn
time in this case with five FCFS nodes. As can be seen the more advanced approximation behaves very well in systems
with five FCFS nodes. The relative error is not larger than 4%. We expect that the approximation will also behave well in
systems with another number of FCFS nodes, because a larger number of FCFS nodes will reduce the cross-correlations
and the correlations between subsequent visits to each FCFS node. This conjecture is supported by our efforts to find
a worst-case scenario for the approximation. In fact, we did not find any parameter scenario where the approximation
was less accurate than the worst-case scenario that we found in our previous work, with a feedback network with only
one FCFS node. The worst-case scenario presented in our previous work was a pathological scenario in which the
arrival processes at the PS node and FCFS node are highly non-Poisson by taking the external arrival rate λ close to
0 and p close to 1. We demonstrated that the approximation tends to become less accurate when rate λ very low and
p very high, but in several cases still acceptable. However, the cases for which the approximation becomes poor are
quite pathological and less relevant from a practical point of view.

5.1.2. Multiple servers at FCFS nodes
To check the accuracy of the approximations for models with multiple servers at the FCFS nodes, we first consider

the following symmetric model with multiple servers at the FCFS nodes: λ = 1, M = 3, c1 = c2 = c3 =: c, p1 =
p2 = p3 = 0.3, βfcfs,1 = βfcfs,2 = βfcfs,3 =: βfcfs. Note that ρfcfs,1 = ρfcfs,2 = ρfcfs,3 =: ρfcfs. Table 5 shows the results
for a variety of combinations of βPS, βfcfs, c, ρPS and ρfcfs. The parameters have been varied in such a way that the
approximations are tested for a broad range of load combinations of the PS node and the FCFS nodes. The results in
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Table 5 show that our approximation also works very well for models with multi-server FCFS nodes, and show that
the simple approximation is strongly outperformed, reducing the error by two orders of magnitude.

Next, we consider the accuracy of the approximations for asymmetric models with multi-server FCFS nodes. The
results are shown in Tables 6 and 7. Table 6 shows the results for the model with λ = 1 and c1 = c2 = c3 = c. Table
7 shows the results for a variety of parameter settings in which the numbers of servers are also asymmetric.

Tables 6 and 7 demonstrate that the approximations work very well for multi-server nodes at the FCFS nodes.

5.2. General service times at PS node

In this subsection we assess the accuracy of the approximations for non-exponential service-time distributions at the
PS node. To this end, we first consider a model with M = 2 FCFS nodes, with c1 = c2 = 1 and routing probabilities
p1 = p

4 and p2 = 3p
4 . Table 8 shows the results the simulated and approximated values of Var[S] for a variety of param-

eter, where the squared coefficient of variation of the service-time distribution at the PS node (i.e., c2
PS) is varied as 0, 1, 4

and 16. The service times are deterministic for the case c2
PS = 0 and exponential for c2

PS = 1. For the other cases the ser-
vice times at the PS node areH2(pps, βps,1, βps,2)-distributed; here the notationH2(pps, βps,1, βps,2) means that samples
from the hyper-exponential distribution are drawn from an exponential distribution with parameter βps,1 with probability
pps and with probability 1 − pps the sample is drawn from an exponential distribution with parameter βps,2. The param-
eters pps, βps,1 and βps,2 are chosen such that the squared coefficient of variation of the service times equals approxi-
mately c2

PS = 4 and 16. The precise parameter values of the H2 distribution are as follows. The parameters for the cases
with c2

PS = 4 are (pps, βps,1, βps,2) = (0.75, 0.1, 1.3), (pps, βps,1, βps,2) = (0.75, 0.06, 0.82), (pps, βps,1, βps,2) =
(0.75, 0.01, 0.13), for the cases p = 0.2, p = 0.5, respectively. These H2 parameters result in an actual squared coef-
ficient of variation of c2

PS = 4.38, c2
PS = 4.47 and c2

PS = 4.38, respectively. Similarly, for cases denoted by c2
PS = 16

the parameters are (pps, βps,1, βps,2) = (0.95, 0.15, 5.15), (pps, βps,1, βps,2) = (0.95, 0.09, 3.29), (pps, βps,1, βps,2) =
(0.95, 0.015, 0.515), for the cases p = 0.2, p = 0.5 and p = 0.8, respectively. Hence, the precise H2 parameters result
in an actual squared coefficient of variation of c2

PS = 15.84, c2
PS = 16.56, respectively, c2

PS = 15.84.
Finally, Table 9 shows the results for the same model as in Table 8, but with multiple servers: c1 = 2 and c2 = 3.

For the results shown in Table 9 the H2-distribution for c2
PS = 4 and p = 0.2 the parameters were (pps, βps,1, βps,2) =

(0.6, 0.01, 1.6), which results in an actual squared coefficient of variation of c2
PS = 3.91. For cases denoted by c2

PS = 4
and p = 0.8 the parameters were (pps, βps,1, βps,2) = (0.6, 0.001, 0.4), which results in an actual squared coefficient
of variation of c2

PS = 3.96. For cases denoted by c2
PS = 16 and p = 0.2 the parameters were (pps, βps,1, βps,2) =

(0.9, 0.05, 6), which results in an actual squared coefficient of variation of c2
PS = 16.32. Finally, for cases denoted by

c2
PS = 16 and p = 0.8 the parameters were (pps, βps,1, βps,2) = (0.9, 0.01, 1.51), which results in an actual squared

coefficient of variation of c2
PS = 16.82.

The results presented in Tables 8 and 9 demonstrate that our approximation (29) is also highly accurate for non-
exponential service-time distributions at the PS node, with errors of at most a few percent.

Remark 1. The numerical results presented in Tables 1–9 show that the approximation for the variance of the sojourn
times in (29) are highly accurate for a remarkably broad range of parameter combinations. Apparently, our closed-form
approximation covers the main factors that determine the variance of the total sojourn times of customers in the system.

Remark 2. Despite the remarkable accuracy of the approximation in (29), almost by definition there are parameter
combinations for which the accuracy of the approximation degrades. For the approximation in (29) there are several
sources of inaccuracy, which open possibilities for further reducing the inaccuracy of the approximations, at the expense
of the simplicity of the approximation. The first source of inaccuracy stems from the Poisson assumption in AA1, which
is generally not the case in networks with feedback loops. Similarly, approximating the results for delayed feedback
by known results for non-delayed feedback (AA2), and neglecting the covariance of the successive sojourn times at
the different nodes (AA3) are not generally true and hence additional sources of inaccuracy. In the context of the
approximations for non-exponential service times at the PS node there are additional sources of inaccuracy. First, the
covariance terms in Eq. (23) are only valid for the case of exponential service times at the PS node (considered in
isolation) [1], but not for general non-exponential service times. Second, in general the approximations for Var[S]
also depend on the third moments of the service-time distribution at the PS node, whereas approximation (29) only
depends on the first two moments of the service-time distributions at the PS node. We refer to [1] for refinements on
the approximation for Var[S] in an isolated PS node.
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6. Topics for further research

The results presented above lead to a number of topics for further research. First, in this paper customers traverse
routes through the queueing network according to a Bernoulli feedback scheme, where customers after departing from
the PS either leave the system or jump to FCFS node k with probability pk. An extension of this model, which is very
interesting from an application point of view, is to assume deterministic routing, where customers visit the queues in a
fixed predetermined order. In this context, notice that product-form solutions, and hence closed-form expressions for the
mean sojourn times E[S], also exist for deterministic routing schemes, and moreover, that the covariance results from
[1] are applicable to non-Markovian routing schemes. Extension of the results towards deterministic routing schemes
is a challenging topic for further research. Second, another model extension that is very interesting from an application
point of view is the inclusion of multiple customer types that may each be governed by different routing schemes and/or
service times. In this context, notice that product-form solutions and hence exact results for E[S], still exist for multiple
customer classes under several additional assumptions. Third, in many applications the maximum number of requests
that a server will handle simultaneously is limited to some fixed maximum in order to protect the server-side system
from getting overloaded. This type of limitations may be included in the model by a token-based mechanism, where
customers may need to wait to get access to a token before entering the system. Extension of the model and the results
to include the impact of limitations in the number of customers in the system is an interesting topic for further research.
Fourth, it is assumed here that the service times at the FCFS nodes are exponentially distributed, whereas in practice
the processing times may be non-exponential. Notice that the case of non-exponential service times at the FCFS nodes
is fundamentally more complex, and does not admit a product-form solution, so that exact expressions for E[S] cannot
even be obtained. Extension of the results to incorporate non-exponential service-time distributions for FCFS nodes is
an challenging research topic, see [3] for initial results. Finally, the methodology developed in this paper is new and
the results are remarkably accurate. Therefore, it is a challenging topic for further research to investigate to what extent
the methodology can be applied in a more general context, e.g. application to non-product-form queueing networks.
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