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Abstract

A C-congestion period of an M/M/∞-queue is a period during which the number of customers in the system is continuously
above level C. Interesting quantities related to a C-congestion period are, besides its duration DC , the total area AC above C, and
the number of arrived customers NC . In the literature Laplace transforms for these quantities have been derived, as well as explicit
formulae for their means. Explicit expressions for higher moments and covariances (between DC, NC and AC), however, have not
been found so far.

This paper presents recursive relations through which all moments and covariances can be obtained. Up to a starting condition,
we explicitly solve these equations; for instance, we write ED2

C explicitly in terms of ED2
0 . We then find formulae for these starting

conditions (which directly relate to the busy period in the M/M/∞ queue).
Finally, a C-intercongestion period is defined as the period during which the number of customers is continuously below level C.

Also for this situation a recursive scheme allows us to explicitly compute higher moments and covariances. Additionally we present
the Laplace transform of a so-called intercongestion triple of the three performance quantities. It is also shown that expressions for
the quantities of a C-intercongestion period can be used in an approximation for the C-congestion period. This is especially useful
as the expressions for the C-intercongestion period are numerically more stable than those for the C-congestion period.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: M/M/∞; Transient behavior; C-congestion period; Busy period

1. Introduction

In this paper we consider an M/M/∞ queueing system. Customers arrive according to a Poisson process with arrival
rate λ and have an exponential service requirement with mean µ−1. There are an infinite number of identical servers
and customers start service immediately upon arrival.

The M/M/∞ queueing system can be used as a flow-level model for the occupancy of a link in a communication
network, see e.g. [1]. In order to avoid a degradation of the Quality of Service (QoS) of the underlying applications, a
network operator should dimension the network links such that the fraction of time that the link occupancy exceeds
a certain critical level (close to the link capacity) is kept small, i.e., below a target value ε (which can be evaluated
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easily; the number of flows has a Poisson distribution). However, QoS as perceived by the users of the network is not
only affected by the frequency of congestion periods, but also by their duration. This motivates the interest in so-called
C-congestion periods in a M/M/∞ system.

A C-congestion period is defined as the period during which the number of users present is continuously above level
C. In other words: a C-congestion period is the period starting at the epoch that an arriving customer finds C customers
in the system, until the first time that a departing customer leaves behind C customers. The duration of a C-congestion
period is denoted by DC. Other interesting quantities which are related to a C-congestion period are the number of
users that arrive during the congestion period, denoted by NC, and the total amount of work in excess of level C during
the C-congestion period, which is the so-called area AC above level C.

First, in the following section we provide an overview of the existing literature related to congestion periods. This
allows us to clarify our contribution in the subsequent section.

1.1. Literature

Keilson [4] studied passage times of birth–death process by decomposing a passage time into the convolution
of congestion periods; due to the general nature of birth–death processes the results are rather implicit. There are
several papers that have studied the congestion period in M/M/∞-queueing systems. Guillemin and Simonian [3]
present closed-form expressions for the means of DC, NC and AC. They also obtained the Laplace transforms (LTs)
for the above-mentioned quantities, and analyzed the first passage time of level C starting in steady-state. Preater [7]
elaborates on the results of Guillemin and Simonian; by using an alternative derivation he finds a more attractive
form of the LT of the congestion period. He also presents the joint LT of the congestion period triple ΘC(DC, NC, AC)

of the duration, number of arrivals and the area. In another paper [8] Preater examines the height of a congestion
period, e.g., the maximum level that is reached during a congestion period. Knessl and Yang [5] study P(DC > t)
in several asymptotic regimes. Both Guillemin and Simonian [3] and Preater [7] observe that, when C grows large,
a C-congestion period of an M/M/∞-queue behaves similarly to the busy period of the M/M/1-queue. The LT of the
duration and number of arriving customers in the busy period of an M/M/1-queue can easily be obtained, and see [2]
for an analysis of the area of a busy period. Robert [9] presents an approximation of the order of the mean passage
time from level n to level 0 for large n.

Another related subject of frequent study is the busy period of the M/G/∞ queueing system, which in fact coincides
with the congestion period of level 0 (i.e., the 0-congestion period), with generally distributed service times. One of
the earliest works on the busy period is by Takács [13]. He presents the LST of the busy cycle duration of a so-called
type II counter, which is similar to an M/G/∞-queue. This result is used by others, e.g. Stadje [12] and Liu and Shi
[6]. Liu and Shi [6] consider the busy period in GIX/G/∞-queueing systems with batch arrivals and for several special
cases they obtain expressions for the first and second moment of both the busy period and busy cycle. A joint LT for
both the duration and number of arrivals was already presented by Shanbhag [11].

Although the Laplace transforms of DC, NC and AC are known [3,7], differentiating these is fairly non-
straightforward due to the rather implicit nature of the functions involved. This explains the absence of explicit
formulae for higher moments (the means are known) and covariances (between DC, NC and AC). Also, so far no
attention was paid to C-intercongestion periods, which are the periods during which the number of customers in the
system is continuously below C.

1.2. Contribution

This paper studies the duration, number of arrivals and area swept above C (i.e., DC, NC and AC) for C-congestion
periods in an M/M/∞-queue. Recursive relations are derived through which all the moments of the above-mentioned
values can be obtained. In particular it is demonstrated that there is a recursive relation between the congestion periods
of two adjacent levels, e.g., level C and level C − 1: any quantity of level C can be expressed in terms of the same
quantity of a (C − 1)-congestion period. Iterating these, we can express the quantities related to a C-congestion period
in terms of the quantities related to a 0-congestion period (which is, as observed above, a busy period of the M/M/∞-
queue). For instance, we write ED2

C explicitly in terms of ED2
0 . Furthermore, similar recursions are derived for the

covariances between the quantities DC, NC and AC.
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Thus, in order to solve for the higher moments, we have to find the starting values for our recursion; in our
example: to find an expression for ED2

C we have to find an explicit formula for ED2
0 . The derivation of these

starting values can be done through the differentiation of the LT of these busy-period related quantities. In particular,
explicit expressions for the first and second moments are presented. In addition to this, we find the covariances
Cov (DC, NC), Cov (DC, AC) and Cov (NC, AC). With EDC, ENC and EAC being known, this reduces to finding
the ‘joint expectations’ E[DC NC], E[DC AC] and E[NC AC]. Again, we first express these in terms of the busy-period
quantities (for example, E[DC NC] is phrased in terms of E[D0 N0]), and then the busy-period related starting condition
is solved. Theoretically, all moments (joint expectations) of the quantities of a C-congestion period can be obtained by
differentiating the LT of the quantities (from Preater’s [7] congestion triple), but practically this is far from trivial. It
is considerably easier to obtain the moments (and joint expectations) of the busy-period quantities and to insert these
as the starting conditions into the recursive relations.

Analogously to a C-congestion period, a C-intercongestion period is defined as the period that the number of users
is continuously below level C. The analysis and results for the quantities duration, number of arrivals, and the area
below C are presented, which are also recursive relations for the moments and covariances. Again, the recursion can
be solved in terms of the quantities of level 0. Importantly, these relate to the period that the system has less than 0
customers; hence, all moments and joint expectations of the quantities are 0. The recursion has attractive numerical
properties: it is more stable than those of the C-congestion periods. In addition, similarly to Preater’s derivation of the
LT of a congestion triple [7], the LT of the intercongestion triple is derived.

Guillemin and Simonian [3] and Preater [7] already observed that, for large C, the busy period of an M/M/1-queue
can be used to approximate the behavior of a C-congestion period of an M/M/∞-queue. The approximation works well
for large Cbut not for C close to the average number of users in the system ρ. Results in this paper indicate that the
quantities of a C-congestion period can be approximated accurately by a ρ − (C − ρ)-intercongestion period (which
has, as indicated above, favorable numerical properties). The approximation works particularly well for C close to ρ,
and can consequently be used complementary to the above-mentioned M/M/1-based approximation.

1.3. Outline

The outline of this paper is as follows. Section 2 introduces the notation and illustrates how a transient period of
an M/M/∞-queue can be subdivided into C-congestion periods. Section 3 presents the recursion schemes for the first
and second moment of the DC, NC and AC. The recursions are solved resulting in closed-form expressions which still
contain the starting condition: for instance, ED2

C is explicitly written in terms of ED2
0 . Similarly, Section 4 yields

the derivation of the covariances of the quantities in terms of the covariances relating to the busy period: E[DC NC]

is presented in terms of E[D0 N0]. In Section 5 the first and second moments of D0 as well as the joint expectation
E[D0 N0] are obtained. These busy-period quantities are then the ‘starting conditions’ of the recursions of Sections 3
and 4. For the first and second moments of N0 and A0 and for the joint expectations E[D0 A0] and E[N0 A0] we refer
the reader to Section 5 of [10]. Section 6 presents the definition, analysis and results for C-intercongestion periods.
Section 7 provides some numerical results and illustrates that a ρ − (C − ρ)-intercongestion period can be used as an
accurate approximation of a C-congestion period when C is close to ρ. Section 8 concludes this paper.

2. Preliminaries

2.1. Definitions

Consider an M/M/∞-queue with arrival rate λ and mean service requirement µ−1. For convenience we introduce
the notation νn := λ + nµ. The average workload of the system is denoted by ρ = λ/µ. Let the Markov process
Λt ∈ {0, 1, 2, . . .} denote the number of customers in the system at time t . Let

D j (i) := inf{t > 0 : Λt = j | Λ0 = i}, i > j, (1)
N j (i) := #{t : Λt − Λt− = 1, 0 < t ≤ D j (i)}, i > j,

A j (i) :=

∫ D j (i)

t=0
(Λt − j)dt, i > j, (2)
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where Λt− := limε↓0 Λt−ε . Then, D j (i) is the first passage time of state j from state i , N j (i) the number of arrivals
during this first passage time D j (i), and A j (i) is the area above j during the same period of time. Note that Guillemin
and Simonian (GS) [3] have a slightly different interpretation of the number of arrivals.1

An important sub-class of these passage times is the class of C-congestion periods. A C-congestion period is the
duration until the first return to level C after an arriving customer raised the number of users above level C. So, a
C-congestion period is the period that the system is continuously above level C. Duration DC is defined by (1) where
i = C+1 and j = C. For short-hand notation we introduce DC := DC(C+1), NC := NC(C+1) and AC := AC(C+1).
The special case where C = 0 is called the ‘busy period’.

2.2. Decomposition of a passage time into congestion periods

By its definition D j (i) is a stopping time of the Markov process Λt . It can be decomposed as the sum of the
hitting times Di−1 and D j (i − 1). The strong Markov property states that these hitting times are independent. The
first component is already a congestion period and the second term can be decomposed repeatedly in a similar way
and finally results in the following equality in distribution:

D j (i) =

i−1∑
k= j

Dk, (3)

where the Dk for k = j, . . . , i − 1 are independent. Expression (3) resembles expression (5.1.1) of Keilson [4].
The number of arrivals N j (i) and the area A j (i) can also be decomposed, based on the decomposition of the

duration D j (i), resulting in

N j (i) =

i−1∑
k= j

Nk, (4)

A j (i) =

i−1∑
k= j

(Ak + (k − j)Dk). (5)

Proof. Eq. (4) follows directly due to (3). Eq. (5) is obtained because area A j (i) can be decomposed in a similar way
as D j (i) and N j (i), but caution is required because of the definition of the area. A j (i) can be decomposed into the
terms Ai−1 and A j (i − 1), but Ai−1 only consists of the area above level i − 1, ignoring the area between i − 1 and j
for the duration Di−1. The missing area for Ai−1 is (i − 1 − j)Di−1 and correction of all terms Ak leads to (5). �

This subdivision of the passage times into the sum of independent congestion periods simplifies the analysis. All
the moments can be directly derived from the moments of the individual congestion periods, e.g., for the duration it
yields

ED j (i) =

i−1∑
k= j

EDk and ED2
j (i) =

i−1∑
k= j

ED2
k + 2

i−2∑
k= j

i−1∑
l=k+1

EDkEDl .

2.3. Analysis of a C-congestion period

In this section a recursive relation for the quantities of a C-congestion period are derived using straightforward
analysis.

A C-congestion period is initiated by a customer who finds C other customers in the system upon arrival. The
number of customers is increased to C + 1 and the system will remain at this level for an exponentially νC+1
distributed time, as both the interarrival time and the service times are exponentially distributed. The next transition of

1 GS [3] include the arrival that starts a C-congestion period. Formally this arrival did not occur within the C-congestion period as the customer
entered the system when only C customers where present. Preater [7] also ignores the arrival that initiates the congestion period.
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the system is caused either by the arrival of a new customer or by the departure of one of the C + 1 customers present.
With probability (C + 1)µ/νC+1 the next transition is a departure, which immediately ends the currently ongoing
C-congestion period. With probability λ/νC+1 the next transition is initiated by an arrival, which increases the number
of customers to C + 2; then the remaining duration of the C-congestion period is the duration of a transient period
DC(C + 2).

Let TC be the duration that the system remains at level C, which is exponentially νC+1 distributed, and define the
random variable PC as

PC =

{
1 with probability λ/νC

0 with probability Cµ/νC.

Notice that, as PC is alternatively distributed all moments are the same: EPk
C = λ/νC for all k. Now, for the duration

of a C-congestion period DC the above reasoning leads to:

DC = TC+1 + PC+1 DC(C + 2) = TC+1 + PC+1(DC+1 + D′
C). (6)

Here X ′ denotes an independent, statistically identical copy of X . By the memoryless property of the exponential
distribution all the random variables, e.g., TC+1, PC+1 and DC(C + 2), are mutually independent. Expression (6) is a
recursive relation which illustrates that the duration of a C-congestion period can be expressed in terms of the duration
of a (C − 1)-congestion period. By repeated iteration the duration can be expressed in terms of D0, which is the
duration of a busy period.

For the quantities NC and AC the following similar relations can be derived:

NC = PC+1(1 + NC(C + 2)) = PC+1(1 + NC+1 + N ′
C). (7)

AC = TC+1 + PC+1 AC(C + 2) = TC+1 + PC+1(AC+1 + DC+1 + A′
C). (8)

Note that by definition of NC the (possible) arrival that ends TC+1 and initiates the passage time DC(C + 2) is not
accounted for in NC(C + 2) and has to be accounted for separately. The second equality of (8) follows directly from
(5).

3. Quantities of a C-congestion period

In this section we present the mean and second moment of the duration, number of arrivals and the area swept
above C. For the quantity duration the mean, the second moment and also higher moments are written out. Next, the
moments of the number of arrivals and the mean of the area are rather trivial, the second moment of the area is more
complicated as definition (8) includes a term DC which requires the joint expectation of the quantities DC and AC.

3.1. Duration of a C-congestion period

For the derivations of the moments of the duration we use result (6) of Section 2.3. Although the expected duration
of a congestion period is already given in Guillemin and Simonian [3], the derivation of the mean duration is presented
to become acquainted with the methodology of the recursions.

3.1.1. Mean duration of a C-congestion period
Taking the expectation on both sides of expression (6) yields

EDC = E[TC+1 + PC+1(DC+1 + D′
C)] =

1
νC+1

+
λ

νC+1
(EDC+1 + EDC).

By isolating EDC+1 at the left side, we obtain the following expression:

EDC+1 =
(C + 1)µEDC − 1

λ
. (9)

Expression (9) is a difference equation and illustrates that the mean duration of a (C + 1)-congestion period depends
on the mean duration of C-congestion period. By iteration EDC+1 (or preferably EDC) can be expressed in terms of
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ED0, which is the expected duration of a busy period. This yields the following closed-form expression

EDC =
C!

ρC
ED0 −

C!

λρC

C∑
j=1

ρ j

j !
=

C!

λρC

∞∑
j=C+1

ρ j

j !
, (10)

where ED0 is obtained via renewal arguments. Let π0 denote the fraction of time that the system is empty, Tidle
the duration that the system is empty, and Tbusy the duration that the system is busy. As π0 = e−ρ , ETidle = 1/λ,
ED0 = ETbusy and π0 = ETidle/(ETbusy + ETidle) it follows that ED0 = (eρ

− 1)/λ.

3.1.2. Second moment of duration of a C-congestion period
The second moment of the duration can also be obtained by taking the second moment of expression (6). Then we

obtain

ED2
C = E[TC+1 + PC+1(DC+1 + DC)]2

= E[T 2
C+1 + 2TC+1 PC+1(DC+1 + DC) + P2

C+1(D2
C+1 + 2DC+1 DC + D2

C)]

=
2

ν2
C+1

+
2λ

ν2
C+1

(EDC+1 + EDC) +
λ

νC+1
(E D2

C+1 + 2EDC+1EDC + ED2
C)

as E[DC+1 DC] = EDC+1EDC by the strong Markov property. Rearranging leads to the following difference equation:

ED2
C+1 =

C + 1
ρ

ED2
C −

2
λνC+1

−
2

νC+1
(EDC+1 + EDC) − 2EDC+1EDC.

This equation can be solved in terms of ED2
0 , the second moment of the duration of a busy period which is treated in

Section 5.2, and yields

ED2
C =

C!

ρC
ED2

0 − 2
C!

ρC

C∑
j=1

ρ j

j !
1
ν j

[ED j−1 + ED j ] − 2
C!

ρC

C∑
j=1

ρ j

j !
ED j−1ED j −

2
λ

C!

ρC

C∑
j=1

ρ j

j !
1
ν j

. (11)

3.1.3. Higher moments of the duration of a C-congestion period
Higher moments can also be obtained using the recursive relation (6), although calculations are more tedious. By

using the binomial theorem for both EDn
C and EDn

C(C + 2) we obtain:

EDn
C =

n∑
l=0

(n
l

)
ET n−l

C+1 E[PC+1 DC(C + 2)]l

=
n!

νn
C+1

+
λ

νC+1

n−1∑
l=1

(n
l

) (n − l)!

νn−l
C+1

l∑
k=0

(
l
k

)
EDk

C+1EDl−k
C +

λ

νC+1

n∑
l=0

(n
l

)
EDl

C+1 EDn−l
C .

Rearranging leads to a difference equation which can be solved in terms of EDn
0 :

EDn
C =

C!

ρC
EDn

0 −
C!

ρC

C∑
j=1

ρ j

j !

n−1∑
l=1

(n
l

) (n − l)!

νn−l
j

l∑
k=0

(
l
k

)
EDk

j EDl−k
j−1

−
C!

ρC

C∑
j=1

ρ j

j !

n−1∑
l=1

(n
l

)
EDl

j EDn−l
j−1 −

n!

λ

C!

ρC

C∑
j=1

ρ j

j !
1

νn−1
j

. (12)

From expression (12) it can be observed that the n-th moment of level C depends on all moments EDm
C for m < n and

EDm
k for k < C, m ≤ n. This illustrates that for EDn

C all moments EDm
0 for m = 1, . . . , n have to be known. This is a

drawback as closed-form expressions for the second and higher moments are not presented in literature. An expression
for ED2

0 will be derived in Section 5.2. The method can also be used for higher moments, but the calculations become
substantially more tedious.
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3.2. Number of arriving customers during a C-congestion period

The mean and second moment are obtained by taking the expectation of expression (7) and the square of expression
(7) respectively.

3.2.1. Mean number of arriving customers in a C-congestion period
Taking the expectation of expression (7) and rearranging leads to a difference equation in terms of EN0, which is

the number of arrivals during a busy period. EN0 is easily obtained as EN0 = λED0 = eρ
− 1 and the solution of the

difference equation is the following closed-form expression:

ENC =
C!

ρC
EN0 −

C!

ρC

C−1∑
j=0

ρ j

j !
=

C!

ρC

∞∑
j=C+1

ρ j

j !
. (13)

3.2.2. Second moment of the number of arriving customers
The second moment is derived in terms of EN 2

0 in a similar manner and yields

EN 2
C =

C!

ρC
EN 2

0 −
C!

ρC

C∑
j=1

ρ j

j !
(1 + 2EN j EN j−1 + 2EN j + 2EN j−1). (14)

For the derivation of EN 2
0 we refer to Section 5.3 of [10].

3.3. Area swept above C during a C-congestion period

The mean and second moment can be obtained by using expression (8).

3.3.1. Mean area swept above C

Taking the expectation of (8) leads to a difference equation that can be solved iteratively in terms of EA0. EA0,
the area above 0 during a busy period, can be obtained by considering that the system is a renewal process of cycles
consisting of busy and idle periods. The average workload ρ during a cycle should all be obtained during a busy
period. Then ρ = EA0/(ED0 + 1/λ) and thus EA0 = ρeρ . Finally, we obtain the following closed-form expression
for EAC:

EAC =
C!

ρC
EA0 −

C∑
j=1

C!

j !

(
ED j +

1
λ

)
=

1
λ

C!

ρC

∞∑
j=C+1

ρ j

j !
. (15)

3.3.2. Second moment of the area swept above C

Taking the second moment of (8) and isolating EA2
C+1 leads to a difference equation. The difference equation

includes the ‘joint expectation’ E[DC+1 AC+1], which results from the term E[AC(C + 2)]2. By definition (2) AC+1 is
dependent on DC+1, hence E[DC+1 AC+1] 6= EDC+1EAC+1; an expression for E[DC+1 AC+1] is required and will be
derived in Section 4. Then, the difference equation can be solved in terms of EA2

0 (see Section 5.4 of [10]) and the
solution yields

EA2
C =

C!

ρC
EA2

0 −
C!

ρC

C∑
j=1

ρ j

j !
(ED2

j + 2EA j EA j−1 + 2E[D j A j ] + 2ED j EA j−1)

− 2
C!

ρC

C∑
j=1

ρ j

j !
1
ν j

(EA j + ED j + EA j−1) −
2
λ

C!

ρC

C∑
j=1

ρ j

j !
1
ν j

. (16)

Observe that expression (16) requires, besides EA2
0, the terms ED2

j and E[D j A j ] for 1 ≤ j ≤ C. Recall that ED2
j is

given by (12), and E[D j A j ] can be obtained from Section 4, so expressions are available for all the required terms.
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4. Joint expectations of the C-congestion period quantities

In this section the joint expectations E[DC NC], E[DC AC] and E[NC AC] are derived. The covariances between the
quantities can easily be found as, e.g., Cov (DC, NC) = E[DC NC] − EDCENC. Furthermore, the joint expectation
E[DC AC] is required to determine the second moment of the area swept above k for all k ≥ C, see Section 3.3.

4.1. Joint expectation of the duration and number of arrivals

By (6) and (7) we have

E[DC NC] = E[(TC+1 + PC+1 DC(C + 2))PC+1(1 + NC(C + 2))]

=
λ

νC+1
(ETC+1 + ETC+1ENC+1 + ETC+1ENC + E[DC+1 NC+1]

+ EDC+1ENC + EDCENC+1 + E[DC NC] + EDC+1 + EDC).

This difference equation can be solved in terms of E[D0 N0], the derivation of which is presented in Section 5.3, and
yields

E[DC NC] =
C!

ρC
E[D0 N0] −

C!

ρC

C∑
j=1

ρ j

j !
(ED j EN j−1 + ED j−1EN j + ED j + ED j−1)

−
C!

ρC

C∑
j=1

ρ j

j !
1
ν j

(1 + EN j + EN j−1). (17)

4.2. Joint expectation of the duration and the area swept above C

By (6) and (8) we have

E[DC AC] = E[(TC+1 + PC+1 DC(C + 2))(TC+1 + PC+1 AC(C + 2))].

Isolating E[DC+1 AC+1] yields

E[DC+1 AC+1] =
C + 1

ρ
E[DC AC] − (ED2

C+1 + EDCEAC+1 + EDC+1EAC + EDC+1EDC)

−
1

νC+1
(2EDC+1 + EDC + EAC+1 + EAC) −

2
λνC+1

.

Notice that this expression includes a term ED2
C+1 which results from the decompositions of DC(C+2) and AC(C+2)

that both consist of a term DC+1. The difference equation can be solved in terms of E[D0 A0], which is deduced in
Section 5.6 of [10], and yields

E[DC AC] =
C!

ρC
E[D0 A0] −

C!

ρC

C∑
j=1

ρ j

j !
(ED2

j + ED j−1EA j + ED j−1EA j + ED j ED j−1)

−
C!

ρC

C∑
j=1

ρ j

j !
1
ν j

(2ED j + ED j−1 + EA j + EA j−1) −
2
λ

C!

ρC

C∑
j=1

ρ j

j !
1
ν j

. (18)

Observe that the solution requires the second moments ED2
j for 1 ≤ j ≤ C, which are given by (11).

4.3. Joint expectation of the number of arrivals and the area swept above C

By (7) and (8) we have

E[NC AC] = E[PC+1(1 + NC(C + 2))(TC+1 + PC+1 AC(C + 2))].
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The solution in terms of E[N0 A0], see Section 5.7 of [10], yields

ENC AC =
C!

ρC
E[N0 A0] −

C!

ρC

C∑
j=1

ρ j

j !
(E[D j N j ] + EN j EA j−1 + EN j−1EA j + ED j EN j−1

+ EA j + ED j + EA j−1) −
C!

ρC

C∑
j=1

ρ j

j !
1
ν j

(1 + EN j + EN j−1). (19)

5. Moments and joint expectations of the busy-period quantities

In Sections 3 and 4 expressions were obtained for the moments and joint expectations for the quantities of a C-
congestion period. The expressions are all solved in terms of the busy-period quantities (i.e., 0-congestion period
quantities). The goal of this section is to derive these busy-period quantities. This section only presents the first and
second moments of the duration and the joint expectation of the duration and number of arrivals; the derivations of
the other busy-period quantities EN0, EA0, E[D0 A0] and E[N0 A0] are presented Section 5 of [10].

The moments of the quantities are obtained by differentiating the Laplace transform (LT) of the congestion triple
(D0, N0, A0) that was obtained by Preater [7]. Section 5.1 presents Preater’s LT and additionally a lemma that
simplifies the calculations that are presented in the succeeding subsections.

Theoretically, all moments and joint expectations of the quantities of level C can be obtained by differentiating
Preater’s LT of the congestion triple, but this task appeared to be far from trivial. Therefore we decided to first
express them in terms of moments and joint expectations of the 0-congestion period; subsequently, we derive these
0-congestion period quantities through (relatively easy, but still tedious) differentiations.

5.1. Preater’s LT of the 0-congestion triple (D0, N0, A0)

Analogously to Guillemin and Simonian [3], Preater uses µ = 1, and so λ = ρ. To obtain the Laplace transform
of the C-congestion triple, Preater first considers the LT of the duration of a C-congestion period. By two different
derivations he obtains the LT in two different expressions: the first is a continued fraction, the second is a fraction
of the functions IC+1 and IC (see (21)). The equality of these two expressions is the most important result of his
Proposition 2.2. In his Theorem 3.1 he derives the (joint) LT of the congestion triple by the first derivation and the
result is also in the form of a continued fraction. Using the equality of his Proposition 2.2, the continued fraction can
be rewritten as a fraction of IC+1 and IC. The LT for C = 0 resulting from his Proposition 2.2 and Theorem 3.1 is
stated below.

Preater’s Theorem 3.1 and Proposition 2.2 combined for C= 0. The vector (D0, N0, A0) has Laplace transform

Θ∗

0 (s, t, u) := E exp(−s D0 − t N0 − u A0) =
1

u + 1
I1(a − b, b)

I0(a − b, b)
(20)

where

a := a(s, t, u) =
s + ρ

u + 1
, b := b(s, t, u) =

ρe−t

(u + 1)2 ,

IC(a, b) :=

∫ 1

0
e−bx (1 − x)a−1x Cdx . (21)

Differentiating (21) is a tedious job, but can be simplified considerably by the next lemma.

Lemma 1.

I0(a, b) = e−b
∞∑

k=0

1
a + k

bk

k!
, I1(a, b) = I0(a, b) − I0(a + 1, b). (22)
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Proof of (22).

I0(a, b) =

∫ 1

0
e−bx (1 − x)a−1dx = e−b

∫ 1

0
ebx xa−1dx

= e−b
∞∑

k=0

bk

k!

∫ 1

0
xk+a−1dx = e−b

∞∑
k=0

1
a + k

bk

k!
.

I1(a, b) =

∫ 1

0
e−bx (1 − x)a−1xdx = e−b

∫ 1

0
ebx xa−1(1 − x)dx

= e−b
∞∑

k=0

bk

k!

∫ 1

0
(xk+a−1

− xk+a)dx
by (22)

= I0(a, b) − I0(a + 1, b). �

Furthermore, we introduce the following notation:

ξ(ρ) :=

∞∑
k=0

1
(k + 1)2

ρk

k!
.

Notice that ξ(ρ) < ∞.

5.2. Moments of the duration of the busy period

By (20) and using (22) we have

D∗

0(s) = Θ∗

0 (s, 0, 0) = 1 −
f (s)
n(s)

, (23)

where

f (s) :=

∞∑
k=0

1
s + k + 1

ρk

k!
and n(s) :=

∞∑
k=0

1
s + k

ρk

k!
.

Let n(m)(s) denote the m-th derivative of n(s) (hence n(s) = n(0)(s)). Then it can be shown that

n(m)(s) =

∞∑
k=0

(−1)m
· m!

(s + k)m+1
ρk

k!
and lim

s→0
n(m)(s) ∼

(−1)mm!

sm+1 .

The first equation is obtained by repeated derivation of n(s). The second statement is obtained by proving that the
(k ≥ 1)-terms can be bounded by a finite term as follows:

∞∑
k=1

ρk

km · k!
≤

∞∑
k=1

ρk

k!
<

∞∑
k=0

ρk

k!
= eρ .

Then the second statement is proven by observing that the second statement is exactly the (k = 0)-term which goes
to infinity for s close to 0.

5.2.1. First moment
Although the first moment is already obtained in Section 3.1, we also present its derivation for the sake of

completeness. It is well known that ED0 = −(D∗

0)′(0). Differentiation of (23) yields

(D∗

0)′(s) =
d
ds

(
1 −

f (s)
n(s)

)
=

n′(s) f (s)
n2(s)

−
f ′(s)
n(s)

.

We conclude that ED0 = f (0) − 0 = (eρ
− 1)/ρ, which coincides with the results earlier obtained in Section 3.1 for

µ = 1.
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5.2.2. Second moment
Now ED2

0 = (D∗

0)′′(0). The second derivative is

(D∗

0)′′(s) =
d
ds

(
n′(s) f (s)

n2(s)
−

f ′(s)
n(s)

)
= −

f ′′(s)
n(s)

+ 2
n′(s) f ′(s)

n2(s)
− 2

(n′(s))2 f (s)
n3(s)

+
n′′(s) f (s)

n2(s)
.

The first of these four terms goes to 0, and the second to −2 f ′(0). The third term goes to −∞, and, as n′′(s) ∼ 2/s3,
the fourth term goes to +∞. Define for ease

gn(s) :=

∞∑
k=1

1
(k + s)n

ρk

k!
;

for any n ∈ N, it holds that gn(0) < eρ < ∞. Simple manipulations yield

lim
s↓0

(
n′′(s)
n2(s)

− 2
(n′(s))2

n3(s)

)
= lim

s↓0

(s−1
+ g1(s))(2s−3

+ 2g3(s)) − 2(s−2
+ g2(s))2

(s−1 + g1(s))3 = 2g1(0).

Thus

ED2
0 = 2g1(0) f (0) − 2 f ′(0) = 2

(
∞∑

k=1

1
k

ρk

k!

)
eρ

− 1
ρ

+ 2
∞∑

k=0

1
(k + 1)2

ρk

k!
= 2eρξ(ρ). (24)

5.2.3. Relation between (24) and the results of Liu and Shi [6]
Liu and Shi [6] obtained the following expression for the second moment of the busy period of an M/G/∞-queue:

ED2
0 =

2
λP2

0

∫
∞

0
[P0(t) − P0]dt

where P0(t) = exp{−ρ
∫ t

0 e−x dx} = exp{−ρ(1−e−t )} and P0 is the probability that the system is idle, thus P0 = e−ρ .
Then, by using that exp{ρe−t

} =
∑

∞

k=0(ρe−t )k/k!, we have

2
ρ P2

0

∫
∞

0
[P0(t) − P0]dt =

2e2ρ

ρ

∫
∞

0
e−ρ

[eρe−t
− 1]dt =

2eρ

ρ

∫
∞

0

∞∑
k=1

(ρe−t )k

k!
dt

=
2eρ

ρ

∞∑
k=1

ρk

k!

∫
∞

0
e−kt dt =

2eρ

ρ
ρ

∞∑
k=0

ρk

(k + 1)2 k!
= 2eρξ(ρ).

We conclude that expression (24) and the result of Liu and Shi [6] coincide.

5.3. Joint expectation E[D0 N0] of the busy period

The joint expectation E[D0 N0] can be obtained by differentiating the Laplace transform (20) by both s and t :

E[D0 N0] = lim
s↓0,t↓0

d2

dsdt
Ee−s D0−t N0 .

By (20) and (22) we have

Ee−s D0−t N0 = Θ∗

0 (s, t, u) = 1 −
I0(a − b + 1, b)

I0(a − b, b)
= 1 −

f (s, t)
n(s, t)

,

where a = a(s, t) = s + ρ and b = b(s, t) = ρe−t and by the definition we have

n(s, t) :=

∞∑
k=0

ρk

k!

e−kt

s + ρ(1 − e−t ) + k
; f (s, t) :=

∞∑
k=0

ρk

k!

e−kt

s + ρ(1 − e−t ) + k + 1
.
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Define n′
s := dn(s, t)/ds, n′

t := dn(s, t)/dt and n′′
st := d2n(s, t)/dtds. Analogously, the derivatives f ′

s , f ′
t and f ′′

st are
defined. Then

d2

dtds
Ee−s D0−t N0 =

d
dt

[
f n′

s

n2 −
f ′
s

n

]
= −

f ′′
st

n
+

f ′
s n′

t + f ′
t n′

s

n2 +
f n′′

st

n2 −
2 f n′

sn′
t

n3 .

For s, t → 0, the first term goes to 0, and the second term yields −ρ f ′
s (0, 0) − f ′

t (0, 0). The third and fourth terms
result in (∞ − ∞), and require careful analysis, similar as for ED2

0 . This eventually yields 2ρ2ξ(ρ) f (0, 0). Then we
obtain the following expression for E[D0 N0]:

E[D0 N0] = −ρ f ′
s (0, 0) − f ′

t (0, 0) + 2ρ2ξ(ρ) f (0, 0). (25)

Notice that E[D0 N0] is bounded for finite ρ; f (0, 0) ≤
∑

∞

k=0 ρk/k! = eρ and similar bounds can be obtained for
f ′
s (0, 0) and f ′

t (0, 0).

5.4. Moments for service times other than 1

In this section expressions are derived for the moments of D0 and the joint expectation of D0 N0 with mean service
time µ = 1. To adapt the derived expressions for service times µ 6= 1, it suffices to see that varying λ or µ for fixed
ρ is only a scaling of time. Time scaling does not influence the number of arrivals, but it does influence the duration
and area. The expressions derived in this section can be adapted to µ 6= 1 by a factor (µ−1)n where n is the order of
the moment, e.g., in self-evident notation:

EDn
C = µ−nEDn

C|{µ=1}
, EDC NC = µ−1EDC NC|{µ=1}.

6. C-intercongestion periods

Besides the duration of a C-congestion period, we are also interested in the time that the system is below level
C, a so-called C-intercongestion period. This section consists of the definitions of a C-intercongestion period, the
derivation of a LT of the intercongestion triple, and the derivation of the first and second moments of the quantities
and the covariances between the quantities.

6.1. Definitions

Analogously to the definitions of a C-congestion period in Section 2.1 we define

D j (i) := inf{t > 0 : Λt = j | Λ0 = i}, i < j,

N j (i) := #{t : Λt − Λt− = 1, 0 < t ≤ D j (i)}, i < j,

A j (i) :=

∫ D j (i)

t=0
( j − Λt )dt, i < j,

where D j (i) is the duration of the transient period to go from state i to state j for i < j , N j (i) is the number
of arrivals during D j (i), and A j (i) is the area under C during D j (i). For convenience we use the following short
notation: DC := DC(C − 1), NC := NC(C − 1) and AC := AC(C − 1). D j (i) is a hitting time which allows for
the following decomposition D j (i) =

∑ j
k=i+1Dk . Due to the definition of N j (i) and A j (i) these can be similarly

decomposed N j (i) =
∑ j

k=i+1Nk and A j (i) =
∑ j

k=i+1(Ak + ( j − k)Dk).
Finally, we derive a recursive structure for a C-intercongestion period. Using random variables TC and PC, which

have the same definition as in Section 2.1, the duration DC (C ≥ 2) can be subdivided into the independent durations
TC−1 and DC(C − 2) as follows:

DC = TC−1 + (1 − PC−1)DC(C − 2) for C ≥ 2.

Similarly decompositions of NC and AC give the following recursive equations:

NC = PC−1 + (1 − PC−1)NC(C − 2) for C ≥ 2,

AC = TC−1 + (1 − PC−1)AC(C − 2) for C ≥ 2.
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This set of equations again gives rise to recursions for DC, NC and AC, which can be solved in terms of D0, N0 and
A0.

6.2. Laplace transforms of the duration and the intercongestion triple

The derivation of the Laplace transforms is done analogously to the derivation of the LTs of the congestion period
done by Preater [7]. First, the LT of the duration will be derived in two different ways which result in two different
forms. The equality of these two forms is exploited in the derivation of the LT of the intercongestion triple. In this
section we follow Preater’s assumption that µ = 1.

6.2.1. Laplace transform of the intercongestion period duration

Lemma 2. Let xn be a non-negative, bounded sequence satisfying

xn :=
a + bn

n + c − xn−1
, n ≥ 1,

where a, c > 0, b ≥ 0. Then

x0 = L(a, b, c) := −1 − c +
a + b

−2 − c +
a+2b

−3−c+ a+3b
−4−c+···

. (26)

Proof. The proof is derived by mimicking Lemma 2.1 of [7] for

xn−1 := −n − c +
a + bn

xn
, n ≥ 1.

Writing x0 as a continued fraction yields (26). �

Proposition 1. The Laplace transform of the duration DC is

D∗
C(s) = C−1L(λC, λ, λ + s + C − 1)

=
λ

C

IC(s, λ)

IC−1(s, λ)

C−1∑
k=0

(
C−1

k

)
λk

k!
I2k(s + C − 1 − k, λ)

C∑
k=0

( C
k

)
λk

k!
I2k(s + C − k, λ)

. (27)

Proof. (a) An n-intercongestion period starts with a sojourn time Tn−1 at level n − 1. At the end of Tn−1 with
probability (n − 1)/(λ + n − 1) a customer departs, starting a (n − 1)-intercongestion period followed by another
sojourn at level n − 1. At the end of each sojourn time Tn−1 a new (n − 1)-intercongestion period can be started by a
departure or the n-intercongestion can be ended by the arrival of a new customer. With obvious notation, we find the
following equality in distribution:

Dn = T (0)
n−1 +

Gn−1−1∑
i=1

(D(i)
n−1 + T (i)

n−1), n ≥ 0,

where all variables on the right are independent, Tn is exponentially (λ + n) distributed and Gn is geometrically
(pn := λ/(λ + n)) distributed. Then,

T ∗
n (s) := Ee−sTn =

λ + n
s + λ + n

,

and

D∗
n(s) =

pn−1T ∗

n−1(s)

1 − (1 − pn−1)T ∗

n−1(s)D
∗

n−1(s)
=

λ

n − 1 + s + λ − (n − 1)D∗

n−1(s)
. (28)
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Let xn = (n + C)D∗
n+C(s). Then (28) fulfils the setting of Lemma 2 with a = λC, b = λ and c = λ + s + C − 1.

Hence, the first equality in (27) follows from (26).
(b) We follow the lines of the proof of Proposition 2.2 of Preater [7]. Let X t be a stationary version of the

M/M/∞ occupation process, so X t is Poisson (ρ) distributed (ρ = λ as µ = 1). Preater defined πn(t) := P(X t =

n | X0 = 0), which is Poisson (λ(1 − e−t )) distributed and has LT π∗
n (s) = (λn/n!)In(s, λ). Additionally we define

χn(t) := P(X t = n | X0 = n) and denote its LT by χ∗
n (s). By conditioning on the number k ≤ n of the initial n

customers that were present at epoch 0 and that are still present at epoch t , we obtain

χn(t) =

n∑
k=0

(n
k

)
(1 − e−t )n−k(e−t )kπk(t).

Then its LT can be obtained as follows:

χ∗
n (s) =

∫
∞

0
e−st

n∑
k=0

(n
k

)
(1 − e−t )k(e−t )n−k (λ(1 − e−t ))k

k!
e−λ(1−e−t )dt

=

n∑
k=0

(n
k

) λk

k!

∫ 1

0
(1 − u)s+n−k−1u2ke−λudu =

n∑
k=0

(n
k

) λk

k!
I2k(s + n − k, λ),

by using the substitution u := 1 − e−t in the second step.
Next, we introduce the first passage time τn := inf{t ≥ 0 : X t = n | X0 = 0}. Then for n ≥ 0∫ t

0
χn(t − x)P(τn ∈ dx) = πn(t).

Taking Laplace transforms on both sides results in Ee−sτn = π∗
n (s)/χ∗

n (s). We thus obtain

D∗
C(s) =

Ee−sτC

Ee−sτC−1
=

λ

C

IC(s, λ)

IC−1(s, λ)

C−1∑
k=0

(
C−1

k

)
λk

k!
I2k(s + C − 1 − k, λ)

C∑
k=0

( C
k

)
λk

k!
I2k(s + C − k, λ)

which proves the second equality in (27). �

A ‘sanity check’ of (27) is the special case C = 1; for C = 1 the intercongestion period reduces to an exponentially
(λ) distributed idle period. In Appendix B of [10] it is shown that then (27) indeed reduces to λ/(λ + s).

6.2.2. Laplace transform of C-intercongestion triple (DC,NC,AC)

Theorem 1. Let C ∈ N. The vector (DC,NC,AC) has LT

Ω∗
C (s, t, u) := E exp(−sDn − tNn − uAn) = C−1L(a′C, a′, b′)

where a′
:= λe−t ; b′

:= s + λ + u + C − 1.
In particular,

Ω∗
C (s − u, t, u) =

λ

C

IC(s, λ)

IC−1(s, λ)

C−1∑
k=0

(
C−1

k

)
λk

k!
I2k(s + C − 1 − k, λ)

C∑
k=0

( C
k

)
λk

k!
I2k(s + C − k, λ)

.

Proof.

Ω∗
n (s, t, u) = E exp(−sDn − tNn − uAn)

= E exp(−(s + u)Dn − tNn − u(An −Dn))

= E exp

(
−(s + u)T (0)

n−1 − t −

Gn−1−1∑
i=1

[
(s + u)T (i)

n−1 + (s + u)Dn−1 + tNn−1 + uAn−1

])
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= T ∗

n−1(s + u)pne−t
[1 − (1 − pn)T ∗

n−1(s + u)Ω∗

n−1(s + u, t, u)]−1

=
λe−t

n − 1 + s + u + λ − (n − 1)Ω∗

n−1(s + u, t, u)
. (29)

Let xn = (n + C)Ω∗
n+C(s − nu, t, u). Then (29) falls in the framework of Lemma 2 with a = a′C; b = a′; c = b′.

�

6.3. Moments of the C-intercongestion period quantities

The derivations of the moments and joint expectations of the intercongestion-period quantities are analogous to the
derivation of the congestion-period quantities in Sections 3 and 4, although there is a large difference in obtaining the
starting conditions. As the system can never have less than 0 customers, all quantities corresponding to level 0 are 0
themselves, e.g., EDn

0 = 0, EN n
0 = 0, EAn

0 = 0, ED0N0 = 0, ED0A0 = 0, EN0A0 = 0.

6.3.1. Moments of the duration of an C-intercongestion period

EDC =
1
λ

(C − 1)!

ρC−1

C−1∑
j=0

ρ j

j !
, (30)

ED2
C =

(C − 1)!

ρC−1
2
λ2 + 2

(C − 1)!

ρC

C−1∑
j=1

ρ j

( j − 1)!

1
ν j

(ED j+1 + ED j )

+ 2
(C − 1)!

ρC

C−1∑
j=1

ρ j

( j − 1)!
(ED j+1ED j ) +

2
λ

(C − 1)!

ρC−1

C−1∑
j=1

ρ j

j !
1
ν j

. (31)

6.3.2. Moments of the number of arrivals during a C-intercongestion period

ENC =
(C − 1)!

ρC

C−1∑
j=1

ρ j

( j − 1)!
+ 1,

EN 2
C =

(C − 1)!

ρC−1 + 2
(C − 1)!

ρC

C−1∑
j=1

ρ j

( j − 1)!
EN j+1EN j +

(C − 1)!

ρC−1

C−1∑
j=1

ρ j

j !
1
ν j

.

6.3.3. Moments of the area swept under C during a C-intercongestion period

EAC =
1
λ

(C − 1)!

ρC−1 +
(C − 1)!

ρC−1

C−1∑
j=1

ρ j

( j − 1)!
ED j +

1
λ

(C − 1)!
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6.3.4. Joint expectations of a C-intercongestion period
The joint expectations can be obtained in a similar fashion; they can be found in Section 6.4 of [10].
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Fig. 1. Approximation of the simulated C-congestion period (CP) duration by an analytically derived (2ρ − C)-intercongestion period (IP). Left:
duration moments. Right: Relative error between simulated C-congestion period and derived (2ρ − C)-intercongestion period.

Fig. 2. Approximation of a simulated C-congestion period (CP) by an analytically derived (2ρ − C)-intercongestion period (IP). Left: Number of
arrivals. Right: Area swept above C.

7. Intercongestion period as an approximation of a congestion period

From a numerical perspective a drawback of the congestion period recursions is that the starting condition
corresponds to a busy period; for high loads the system will hardly ever be empty, and hence the busy-period quantities
will tend to grow large, thus resulting in numerical instability. The intercongestion period recursions do not have this
problem; as remarked before, all moments of the quantities of level 0 are 0, and consequently the recursions are
numerically stable.

Congestion and intercongestion periods are similar in the sense that a C-congestion period is the duration that the
system is above level C and a C-intercongestion period is the duration that the system is below level C. For C close to ρ,
the birth rate (λ) and the death rate (ρµ) are (almost) identical, hence Pρ ≈ 1 − Pρ in distribution. As Tn ≈ Tρ−(n−ρ)

in distribution for n close to ρ, it follows that a ρ-congestion and a ρ-intercongestion period exhibit similar stochastic
behavior; a ρ-congestion period can be approximated by a ρ-intercongestion period. More generally, C-congestion
periods can be approximated by (ρ − (C − ρ))-intercongestion periods by the observation Pn ≈ 1 − Pρ−(n−ρ) for n
close to ρ. In particular, this approximation is expected to work well for C close to the average load ρ.

Figs. 1 and 2 present numerical results of the proposed approximation for arrival rate λ = 1 and mean service
time µ−1

= 1000, so the average load ρ is 1000. The moments of the congestion period quantities are obtained by
simulations; the recursions are numerically unstable as the busy periods are very large due to the high average load.
The intercongestion period quantities are obtained analytically by the recursive relations presented in Section 6. The
left graph of Fig. 1 shows the first four moments of C-congestion period duration and an approximation of the duration;
the approximation is the duration of a (2ρ − C)-intercongestion period. The right graph presents the relative error of
the approximation. We see that for values of C in the neighborhood of ρ the approximation is close to the simulated
results. Especially for ‘lower’ moments the approximation is accurate; as could be expected, for higher moments the
relative error becomes larger. In the range of C = (ρ, . . . , 1100) the error of the second moment is less than 7%; here
it is important to notice that the system will hardly ever have more than 1100 customers (probability is in the order of
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0.001). Fig. 2 presents the results for the number of arrivals and the area for the same scenario. The results for these
quantities are also accurate, so the intercongestion period seems to be a very good approximation for the congestion
period, in particular for C close to average load ρ.

Another approximation was proposed earlier by Guillemin and Simonian [3]. They argue that a C-congestion
period converges (after a specific scaling) to an M/M/1 busy period for large C. They propose to use the death-rate Cµ

of the M/M/∞ queue as the death-rate for the M/M/1 queue, which results in an accurate approximation for C large
compared to ρ. For C close to ρ the approximation is not so good; the behavior of the M/M/∞-congestion period differs
significantly from the M/M/1-busy period. However, as concluded earlier, the approximation of a congestion period by
an intercongestion period is very accurate for C close to the average load ρ. We remark that the regime in which C is
close to ρ is from a practical point of view perhaps the most relevant regime: networks are usually dimensioned such
that C is exceeded only a small fraction of time. Hence, our main conclusion is that our approximation (for C close to
ρ) nicely complements the one proposed by Guillemin and Simonian.

8. Concluding remarks

This paper studied the quantities duration, number of arrivals, and area for C-congestion periods of an M/M/∞-
queue. We presented a derivation using recursive relations thus obtaining all moments and ‘joint expectations’ of the
above quantities. The starting conditions of the recursions correspond to the busy period (a 0-congestion period); it
is noted that the derivation of the higher moments and the joint expectations of these busy-period quantities were far
from trivial, and followed from tedious calculations.

Furthermore, this paper introduced C-intercongestion periods, which are the intervals in which the system is below
level C. Analogously to C-congestion periods, recursive relations are presented for the moments and joint expectations
of the quantities. These are also solved in terms of a starting condition, but in contrast with C-congestion periods, the
starting conditions of C-intercongestion period quantities are easily obtained: all moments and joint expectations of
0-intercongestion period quantities are 0. For the C-intercongestion period we also derived the Laplace transforms of
the duration and the so-called intercongestion triple.

Finally, it was shown that an intercongestion period can be used in an approximation of a congestion period,
in particular for C close to the average load ρ. This approximation is especially useful as the calculations of the
intercongestion period are numerically more stable than those of the congestion periods. The proposed approximation
complements other approximations proposed in literature, as these tend to be less accurate for C close to the average
load ρ.
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