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Abstract

In stochastic fluid models the drift at which the fluid level changes in
the fluid buffer and the generator of the underlying process might de-
pend on the discrete state of the system and on the fluid level itself. In
this paper we analyze the stationary behaviour of finite buffer Markov
fluid models in which the drift and the generator of the underlying
continuous time Markov chain (CTMC) depends on both of these pa-
rameters. Especially, the case when the drift changes sign at a given
fluid level is considered. This case requires a particular treatment, be-
cause at this fluid level probability mass might develop. When dealing
with sign changes, new problems that were not addressed in previous
works arises in the solution process. The set of stationary equations
is provided and a transformation of the unknowns is applied to obtain
a solvable system description. Numerical examples introduce the be-
haviour of fluid systems with various discontinuities and sign changes
of the drift.

Key words: Stochastic fluid model, stationary distribution.

1 Introduction

There is a wide range of performance analysis problems in which the system
behaviour is Markovian over a mixed discrete and continuous state space

∗This work is partially supported by the Italian-Hungarian bilateral R&D program and
by OTKA grant n. T-34972.
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and there are several stochastic models developed for the analysis of these
systems. Examples of such models are Markov reward models, Markov mod-
ulated Brownian motion and stochastic fluid models. The case when the
variation of the continuous system parameter is bounded (at least from one
side) is commonly referred to as fluid model.

The complexity of fluid models depends on several model features among
which one of the most important is the dependency structure of the discrete
and continuous part of the model. In case of several real life examples the
discrete state process of the system form a continuous time Markov chain
(CTMC) on its own (independent of the continuous part) and the continuous
system variable (commonly referred to as fluid level) evolves according to
the discrete system state [10]. In these cases the marginal distribution of the
discrete system state can be analyzed independent of the fluid part of the
model. In this paper we consider the more complex case when the discrete
and the continuous part of the model are mutually dependent, such that none
of them can be analyzed independently [7, 3].

Further classifying model feature is the kind of dependence of the fluid
increment on the discrete and the continuous part of the system. In first
order fluid models there is a deterministic relation between the discrete state
and the fluid increment [1, 10], while in second order fluid models this relation
is stochastic (the discrete state determines the mean and the variance of the
fluid increment) [3, 12].

The analytical description of fluid models is provided by a set of partial
differential equations (PDEs) and associated boundary conditions. For non-
trivial cases the symbolic solution of the system equations is not available.
Instead, the transient analysis is carried out with numerical solution of the
PDEs considering the boundary conditions and the initial distribution of the
system [7, 12]. The availability of an initial distribution, to start the numeri-
cal solution, is a significant advantage of the transient analysis of fluid models
compared with their stationary analysis. In case of stationary analysis we
can eliminate the derivative of the time variable, which simplifies the PDEs
to ordinary differential equations (ODEs), but there is no initial condition
available for the numerical solution of the ODEs. It is a significant drawback
of the stationary analysis of fluid models. To obtain the “initial conditions”
of the ODEs a set of equations is composed based on the boundary equa-
tions, the solution of the ODE and a normalizing condition. For example,
in case of fluid level independent transition matrix and fluid drift vector,
the solution of the ODE is assumed to be exponential and the coefficients of
the exponential solution are calculated from the boundary equations and the
normalizing condition [10]. Unfortunately, this effective solution approach is
not applicable when the transition matrix or the fluid drift vector depends
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on the fluid level.
One of the most important result of this paper is that the nature of the

considered problem inhibits the use of previously applied model description
with fluid density and mass probability and it requires the introduction of
new measures to analyze the system. Conventional techniques, like the one
proposed in [6], applied in this context, produce systems of equations that
cannot be solved.

The rest of the paper is organized as follows. Section 2 compare the results
proposed in this paper with the one previously presented in the literature.
Section 3 introduces the considered fluid model and its transient description
over the continuous regions. Section 4 provides the boundary equations to
describe the behaviour at discontinuities and boundaries. The number of
obtained equations and unknowns are considered in section 5. A modified
set of equations is introduced in section 6 and the properties of the obtained
set of equations are provided in 7. Section 8 discusses the case when there are
states with zero fluid rate and section 9 provides the normalizing conditions.
A set of numerical examples demonstrate the applicability of the proposed
method in section 10 and the paper is concluded in section 11.

2 Related works

There are several papers dealing with the transient analysis of fluid level
dependent transition matrix and fluid drift vector [12, 7, 3], but rather few
results available for the stationary analysis of these systems mainly due to
the mentioned lack of an initial condition. The approach to compose the set
of equation characterizing the initial condition without using the assumption
on the exponential solution of the set of ODEs was provided in [6], but the
first real non-exponential ODE system was introduced in [5], because [6] still
assumed fluid level independent transition matrix and fluid drift vector.

There is a meaningful restriction applied in [5]. The elements of the
fluid drift vector do not change sign. This restriction results that the fluid
level distribution is continuous (i.e., there is no probability mass of the fluid
distribution) between the fluid bounds.

The transient behaviour of the case when the fluid drift changes sign in
a particular state was studied in [3]. In this paper we use slightly different
assumptions (not the discontinuity, but the sign change of the fluid drift
function separates “continuous pieces” and the behaviour of the “isolating
state” is different in this work) and provide the stationary analysis of first
order fluid models with mutually dependent continuous and discrete parts.

An analytical solution to fluid models with state dependent flow rate has
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been proposed in [8]. In that case, the system was analyzed both in transient
and steady state, using Laplace Transforms. With respect to that work, we
restrict our analysis to steady state, but we allow the background process to
depend on the fluid level, and consider sign changes. Fluid model with fluid
dependent rates, were also addressed in [9]. In that case, a system with two
fluid variables, with interdependent fluid rates where considered. Our work
will focus only on systems with a single fluid variable, but will allow them
to be driven by a more complex stochastic process. The problem of dealing
with states with zero flow rate was also considered in [2] and in [11]. Here
we will use a similar solution to remove zero flow rate states from a model.

3 Stationary description of fluid models with

single finite fluid buffer

The Z(t) = {M(t), X(t); t ≥ 0} process represents the state of a fluid model
with single fluid buffer, where M(t) ∈ S is the (discrete) state of the en-
vironment process and X(t) ∈ [0, B] is the fluid level of the fluid buffer at
time t. S denotes the finite set of states of the environment and B the max-
imum fluid level. The fluid level distribution might have probability masses
at particular fluid levels and it is continuous between these levels. We de-
fine π̂j(t, x) and ĉj(t, x) to describe the continuous part and the probability
masses of the transient fluid distribution as follows

π̂j(t, x) = lim
∆→0

Pr(M(t) = j, x ≤ X(t) < x + ∆)

∆
,

ĉj(t, x) = Pr(M(t) = j,X(t) = x) ,

and, assuming the system converges to a single stationary solution, the sta-
tionary fluid density function and fluid mass function are

πj(x) = lim
t→∞

π̂j(t, x) and cj(x) = lim
t→∞

ĉj(t, x) .

Since we are only considering bounded systems, stability is not an issue.
However, the system may have some transient states, and thus the stationary
solution may depend on the initial state of the model.

On the continuous intervals of the fluid level distribution, π(x) = {πj(x)},
satisfies [10]

d

dx

(
π(x)R(x)

)
= π(x)Q(x) , (1)

where matrix Q(x) is the transition rate matrix of the environment process
when the fluid level is x, and the diagonal matrix R(x) = diag < rj(x) > is
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composed by the fluid rates rj(x), j ∈ S 1. The fluid rate determines the rate
at which the fluid level changes when the environment is in state j and the
fluid level is x, i.e., d

dt
X(t) = rj(x) when X(t) = x and M(t) = j.

To avoid non-ergodic model behaviour we assume that Q(x) is a bounded
irreducible generator matrix, R(x) is a bounded diagonal matrix for ∀x ∈
[0, B], such that ε < |rj(x)| < ξ or rj(x) = 0, where ε is a small positive
number and ξ is the upper bound of the drift2and Z(t) = {M(t), X(t)}
is irreducible in the sense that there is a valid trajectory from any state
{i, x}; i ∈ S, x ∈ [0, B] to any state {j, y}; j ∈ S, y ∈ [0, B] with a positive
probability.

In the following, we will use the notation x− and x+ to identify the left
and right limit of a function to point x respectively. In particular we will
define:

x+ = lim
h→0+

(x + h) , x− = lim
h→0+

(x− h) .

The cases when rj(x) = 0 or when rj(x
−) and rj(x

+) has different sign
result in boundaries of the fluid distribution. The boundary conditions of eq.
(1) are discussed in section 4.

Let 0 = x0 < x1 < x2 < . . . < xn−1 < xn = B denote the set of
boundaries, where the fluid distribution might have probability mass. In the
first part of this paper we assume that rj(x) 6= 0, ∀j ∈ S for xi < x < xi+1.
The case when ∃j ∈ S such that rj(x) = 0 for xi < x < xi+1 is discussed in
section 8.

To obtain the solution of (1) between xi and xi+1 we rearrange it to

d

dx
π(x) = π(x)

(
Q(x)− d

dx
R(x)

)
R−1(x) = π(x)B(x) , (2)

where

B(x) =

(
Q(x)− d

dx
R(x)

)
R−1(x) .

For xi < x < xi+1, the solution of (2) can be written as

π(x) = π(x+
i )W(xi, x) , (3)

where W(xi, xi) = I and W(xi, x) is the solution of

d

dx
W(xi, x) = W(xi, x)B(x) . (4)

1The fact that the generator of the environment process depends on the fluid level
prevents us to apply the solution presented, e.g., in [4].

2The assumption that ε < |rj(x)| < ξ or rj(x) = 0 results that a discontinuity is
associated with all sign change.
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Various solution methods of eq. (4) are discussed in [5]. In the present
paper we neglect the discussion about this kind of inhomogeneous ODEs and
refer interested readers to [5].

In the special case when Q(x) and R(x) are level independent in the
(xi, xi+1) range, i.e., for x ∈ (xi, xi+1), Q(x) = Qi and R(x) = Ri then

B(x) = Qi R−1
i and W(xi, x) = e(x−xi)Qi R−1

i .

4 Boundaries and discontinuities

When at least one element of matrix R(x) have discontinuity with sign change
at level xi we divide the analysis into “pieces” at these xi levels. We assume
that the number of pieces are finite. Let n−1 the number of possible discon-
tinuities between 0 and B and x1, x2, . . . , xn−1 the points of discontinuities.
x0 = 0 is the lower bound and xn = B is the upper bound of the fluid
level. Note that, the R(xi) values have to be defined at x0, x1, . . . , xn as well,
because they characterize the model behaviour at the discontinuities in the
subsequent analytical description.

4.1 Managing discontinuities

Discontinuity of matrix Q(x) do not generate particular problems in the ap-
plication of the technique. Discontinuity of matrix R(x) instead can produce
probability masses or ambiguous situations if the rate changes sign. In par-
ticular, for each discontinuity xi four different situations are possible (See
for example [3]). Figure 1 represents those cases. These cases can be further
subdivided in other subcases, depending on the value that R(x) assumes on
the discontinuity. In particular, following the terminology given in [3]:

a) and b): (Emitting states) are states where the sign does not change.
Depending on the value of the rate at the discontinuity point, the probability
flux simply flows from one side of the discontinuity to the other and no
probability mass is formed (if the rate at the discontinuity point has the
same sign), or the flow is stopped and some probability mass builds up (if
the rate is zero or has the opposite sign). Probability mass coming from other
states simply adds to the flux or to the mass depending on the sign of the
rate at the discontinuity point. Figure 2a) shows a physical representation
of the case where the sign does not change at the environment of xi, e.g.,
r(x−i ) > 0, r(x+

i ) > 0 and r(xi) > 0. Figure 2b) show the case when the sign
of r(x−i ) equals with the sign of r(x+

i ), but the sign r(xi) is different, e.g.,
r(x−i ) > 0, r(x+

i ) > 0 and r(xi) ≤ 0. In the figures the horizontal move of
the ball represents the change of the fluid level at the fluid place.
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Figure 1: The four possible discontinuity situations

c): (Absorbing states) when the sign changes from positive to negative,
the probability accumulates around the discontinuity point, creating thus
some probability mass. Probability mass coming from other states, adds to
the probability mass generated into this state.

d): (Insulating states) when the sign changes from negative to positive,
things becomes a little more complicated. The system is in a situation of
unstable equilibrium. No probability mass is generated due to the probability
flow. Probability mass coming from other states may either flow to the left,
to the right, or stand still forming a probability mass in this state. Placing
probability mass in this discontinuity is like placing a ball on the top of a
hill (as shown in Figure 3). It may either fall on one side, on the other,
or stand still in equilibrium. Which of the three possible behavior will be
chosen, depends on the value of the rate at the discontinuity point.

We will now present the equations that in a generic state j couple the
probability densities at the beginning πj(x

+
i ) and at the end πj(x

−
i+1) of each

continuous piece (xi, xi+1), with the probability masses cj(xi) in all of the
four previous cases.

Case a): positive emitting states rj(x
+
i ) > 0 and rj(x

−
i ) > 0.

0 = cj(xi)qjj(xi) + α≤j (xi)

(
πj(x

−
i )rj(x

−
i ) +

∑

k 6=j

ck(xi)qkj(xi)

)
,
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Figure 2: The two possible behavior in the Emitting state

πj(x
+
i )rj(x

+
i ) = α>

j (xi)

(
πj(x

−
i )rj(x

−
i ) +

∑

k 6=j

ck(xi)qkj(xi)

)
,

where αrel
j (xi) = 1{rj(xi) “rel” 0} with 1{.} being the indicator function and

“rel” stands for one of the following relations: <, =, >,≤,≥. E.g., α≥j (xi) = 1
if rj(xi) ≥ 0 and it is 0 otherwise.

The first equation defines the probability mass in state j at fluid level
xi. It is zero if the probability flows through level xi (i.e. rj(xi) > 0). If it
is not the case the probability mass is equal to the sum of the probability
masses coming from neighboring states plus the one that flows from the left
piece. The second equation relates the initial probability density of piece i
with the final probability density of piece i−1. If rj(xi) > 0 the difference of
the two is coming from the probability masses that other neighboring states
may have at fluid level xi. If rj(xi) ≤ 0 the fluid level is stopped at xi in
state j, hence πj(x

+
i ) = 0. These equation can be derived by observing the

rate conservation law.
Case b): negative emitting states rj(x

+
i ) < 0 and rj(x

−
i ) < 0.

0 = cj(xi)qjj(xi) + α≥j (xi)

(
−πj(x

+
i )rj(x

+
i ) +

∑

k 6=j

ck(xi)qkj(xi)

)
,

−πj(x
−
i )rj(x

−
i ) = α<

j (xi)

(
−πj(x

+
i )rj(x

+
i ) +

∑

k 6=j

ck(xi)qkj(xi)

)
.

The equations are identical to the one presented for case a), except for the
presence of the minus sign, which is required since the rates are negative.
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Figure 3: The three possible behavior in the Insulating state

Case c): absorbing states rj(x
+
i ) < 0 and rj(x

−
i ) > 0.

cj(xi)qjj(xi)− πj(x
+
i )rj(x

+
i ) + πj(x

−
i )rj(x

−
i ) +

∑

k 6=j

ck(xi)qkj(xi) = 0 .

In this case we have only one equation that can be used to compute the
probability mass cj(xi) from the probability at the boundaries of the two
pieces that are on the two sides of the discontinuity xi. Note that we have
an expression equal to 0 since qjj(x) is negative by definition.

Case d): isolating states rj(x
+
i ) > 0 and rj(x

−
i ) < 0.

0 = cj(xi)qjj(xi) + α=
j (xi)

(∑

k 6=j

ck(xi)qkj(xi)

)
,

πj(x
+
i )rj(x

+
i ) = α>

j (xi)

(∑

k 6=j

ck(xi)qkj(xi)

)
,

−πj(x
−
i )rj(x

−
i ) = α<

j (xi)

(∑

k 6=j

ck(xi)qkj(xi)

)
.

In this case we have three equations: one for the probability mass, and one
for the probability density at each side of the boundary. The probability
mass coming from the other states is directed along one of those three cases
according to the flow rate at the discontinuity point.
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4.2 Boundary condition

Boundary condition, at 0 and at the upper boundary B can be seen as special
cases of discontinuities. In this case only two different cases per bound arises,
depending on the direction of the fluid flow. (In contrast with the cases of
discontinuities we use capital letters to denote the cases of boundaries.)

Case A): absorbing states The first case is the one in which the fluid
flow is directed towards the bound, that is rj(0

+) < 0 (for the lower bound),
or rj(B

−) > 0 (for the upper bound). In this case, independently on the sign
of the rate at the discontinuity, probability mass builds up at the bound. In
this case we can characterize the bound by a single equation:

cj(0)qjj(0)− πj(0
+)rj(0

+) +
∑

k 6=j

ck(0)qkj(0) = 0 ,

for the lower bound, and for the upper bound:

cj(B)qjj(B) + πj(B
−)rj(B

−) +
∑

k 6=j

ck(B)qkj(B) = 0 .

Note that the equation is almost identical to the one for the absorbing state
in the intermediate discontinuities.

Case B): emitting states The second case is the one in which the
fluid flow is directed in the opposite direction with respect to the bound,
that is rj(0

+) > 0 (for the lower bound), or rj(B
−) < 0 (for the upper

bound). In this case we may have two different behaviors depending on
the sign of the rate at boundary. No probability mass will be formed if
sign(rj(0)) = sign(rj(0

+)), that is α>
j (0) = 1, and if sign(rj(B))sign(rj(B

−)),
that is α<

j (B) = 1. Probability mass will instead build up if the sing of the
rate at the boundary is zero or opposite to the fluid flow next to the boundary.
In any case we will have two equations per boundary, that are:

0 = cj(0)qjj(0) + α≤j (0)

(∑

k 6=j

ck(0)qkj(0)

)
,

πj(0
+)rj(0

+) = α>
j (0)

(∑

k 6=j

ck(0)qkj(0)

)
,

for the lower bound, and for the upper bound:

0 = cj(B)qjj(B) + α≥j (B)

(∑

k 6=j

ck(B)qkj(B)

)
,
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−πj(B
−)rj(B

−) = α<
j (B)

(∑

k 6=j

ck(B)qkj(B)

)
.

Note that also in this case the equations are basically identical to the one
for the emitting states in the intermediate discontinuities.

5 The number of equations and unknowns

If the total number of pieces that composes functions Q(x) and R(x) is n,
and the number of discrete states of the model is m (m = |S|), then the
total number of unknown is (3n + 1)m. In particular, each discontinuity has
associated a possible probability mass. Since the number of discontinuities
is n + 1, this means that there will be (n + 1)m unknowns: one for each
discontinuity and state. For each continuous segment, we will be interested
in the probability density at the beginning of the segment and the one at the
end of the segment (2n unknowns). Multiplying this number by the number
of states and adding the number of probability masses we obtain (3n + 1)m
unknowns.

Theorem 1. The number of equations presented in Section 3 and 4 is equiv-
alent with the number of unknowns, i.e., there are (3n + 1)m equations to
determine the (3n + 1)m unknowns.

To prove the theorem we need the following lemma.

Lemma 2. The number of equations (Ne()) given by the arguments
of Section 4 for the unknowns associated with state j and the ini-
tial and final density values of the first i (i < n) pieces (i.e.,
πj(0

+), πj(x
−
1 ), πj(x

+
1 ), . . . , πj(x

−
i ), πj(x

+
i )) is Ne(i) = 2i + 2 if the sign of

the rate of the last piece is positive (rj(x
+
i ) > 0), and Ne(i) = 2i + 1 if it is

negative (rj(x
+
i ) < 0).

Proof: By simply counting the equations for each case. For i = 0 it is true,
since for the lower boundary we have one equation (Ne(0) = 1) if rj(0

+) < 0
and two equations (Ne(1) = 2) if rj(0

+) > 0. By counting the number of
equations that are given in each case we have that:

Number of equations per case.
rj(x

+
i−1) < 0 rj(x

+
i−1) > 0

rj(x
+
i ) < 0 2 (Case b) 1 (Case c)

rj(x
+
i ) > 0 3 (Case d) 2 (Case a)
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Note that since rj(x) has a constant sign over a piece, this implies that
sign(rj(x

+
i−1)) = sign(rj(x

−
i )). If we express the number of equations Ne(i+1)

at piece i + 1 as a function of the number of equations at piece i, we have
that:

Ne(i) = Ne(i−1) + 1 = 2i + 1 = 2i + 1 if rj(x
+
i−1) > 0 and rj(x

+
i ) < 0 ,

Ne(i) = Ne(i−1) + 2 = 2i−1 + 2 = 2i + 1 if rj(x
+
i−1) < 0 and rj(x

+
i ) < 0 ,

Ne(i) = Ne(i−1) + 2 = 2i + 2 = 2i + 2 if rj(x
+
i−1) > 0 and rj(x

+
i ) > 0 ,

Ne(i) = Ne(i−1) + 3 = 2i−1 + 3 = 2i + 2 if rj(x
+
i−1) < 0 and rj(x

+
i ) > 0 .

¤
Proof of Theorem 1 : There are n×m equations obtained by the descrip-
tion of the fluid behavior over the continuous pieces (equation (3)), which
relates the vectors {πj(x

+
i−1)} with {πj(x

−
i )}.

We still need to show that the boundary conditions presented in section
4 provides 2n + 1 further equations for every state.

Using Lemma 2 we have that Ne(n−1) = 2n if rj(x
+
n−1) > 0 and Ne(n−

1) = 2n − 1 if rj(x
+
n−1) < 0. Considering that the number of equations at

the upper bound (B) is 1 if rj(x
−
n ) > 0 (absorbing upper boundary) and it

is 2 if rj(x
−
n ) < 0 (emitting upper boundary) the total number of equations

associated with state j is 2n + 1. ¤

6 Modified system of equations

Theorem 1 shows that the number of unknowns and the number of equations
presented in Section 3 and 4 are equal. Unfortunately, the set of equations
presented in Section 3 and 4 has only a trivial solution (cj(xi) = πj(x

−
i ) =

πj(x
+
i ) = 0) in general cases3. To overcome this difficulty we introduce a

modified system of equations to describe the same fluid system.
We define the probability flux ϕj(x) and the probability mass flux dj(x)

as
ϕj(x) = πj(x)rj(x), and dj(x) = −cj(x)qjj(x) ,

and to deal with the probability mass flux we define matrix A(x) = {ajk(x)}
as

ajk(x) =





qjk(x)

−qjj(x)
if j 6= k ,

0 if j = k .
(5)

3Actually, this fact resulted in the major difficulty in our way to find the stationary
solution of general fluid systems. This problem is not present in fluid models with single
piece, that is why it is not mentioned in previous studies of the subject.
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6.1 Continuous pieces

Based on equation (1) the probability flux satisfies

d

dx
ϕ(x) = ϕ(x)

(
R−1(x)Q(x)

)
. (6)

We can use this equation to relate the probability flux at the beginning of
piece i, ϕ(x+

i−1), to the probability flux at the end of the same piece, ϕ(xi)
−.

In particular, we define the flux transition matrix V(x+
i−1, x

−
i ) such that:

ϕ(x−i ) = ϕ(x+
i−1) V(x+

i−1, x
−
i ) . (7)

By inserting equation (7) into equation (6), we can determine the flux transi-
tion matrix by solving the following matrix differential equation up to x = x−i :

d

dx
V(x+

i−1, x) = V(x+
i−1, x)

(
R−1(x)Q(x)

)
, (8)

with initial condition V(x+
i−1, x

+
i−1) = I.

In the special case when Q(x) and R(x) are level independent in the
(x+

i−1, x
−
i ) range, i.e., for x ∈ (x+

i−1, x
−
i ), Q(x) = Qi and R(x) = Ri then

V(x+
i−1, x) = e(x−xi−1)R−1

i Qi .

6.2 Discontinuities

Case a): positive emitting states rj(x
+
i ) > 0 and rj(x

−
i ) > 0.

dj(xi) = α≤j (xi)

(
ϕj(x

−
i ) +

∑

k

dk(xi)akj(xi)

)
, (9)

ϕj(x
+
i ) = α>

j (xi)

(
ϕj(x

−
i ) +

∑

k

dk(xi)akj(xi)

)
. (10)

Case b): negative emitting states rj(x
+
i ) < 0 and rj(x

−
i ) < 0.

dj(xi) = α≥j (xi)

(
−ϕj(x

+
i ) +

∑

k

dk(xi)akj(xi)

)
, (11)

−ϕj(x
−
i ) = α<

j (xi)

(
−ϕj(x

+
i ) +

∑

k

dk(xi)akj(xi)

)
. (12)

13



Case c): absorbing states rj(x
+
i ) < 0 and rj(x

−
i ) > 0.

dj(xi) = −ϕj(x
+
i ) + ϕj(x

−
i ) +

∑

k

dk(xi)akj(xi) . (13)

Case d): isolating states rj(x
+
i ) > 0 and rj(x

−
i ) < 0.

dj(xi) = α=
j (xi)

(∑

k

dk(xi)akj(xi)

)
, (14)

ϕj(x
+
i ) = α>

j (xi)

(∑

k

dk(xi)akj(xi)

)
, (15)

−ϕj(x
−
i ) = α<

j (xi)

(∑

k

dk(xi)akj(xi)

)
. (16)

6.3 Boundary conditions

Case A): absorbing states rj(0
+) < 0 (for the lower bound), or rj(B

−) > 0
(for the upper bound).

dj(0) = −ϕj(0
+) +

∑

k

dk(0)akj(0) , (17)

dj(B) = ϕj(B
−) +

∑

k

dk(B)akj(B) . (18)

Case B): emitting states rj(0
+) > 0 (for the lower bound), or rj(B

−) <
0 (for the upper bound).

dj(0) = α≤j (0)

(∑

k

dk(0)akj(0)

)
, (19)

ϕj(0
+) = α>

j (0)

(∑

k

dk(0)akj(0)

)
, (20)

dj(B) = α≥j (B)

(∑

k

dk(B)akj(B)

)
, (21)

−ϕj(B
−) = α<

j (B)

(∑

k

dk(B)akj(B)

)
. (22)
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6.4 Properties of W(xi, x) and V(xi, x)

According to the basic rules of the infinitesimal generator of CTMCs the
row-sum of Q(x) (

∑
k∈S Qjk(x)) must be 0 for ∀x ≥ 0,∀j ∈ S. One of

the main differences between (2) and (6) comes from the fact that Q(x) is
multiplied with R−1(x) from the right in (2), and from the left in (6). The
matrix multiplication of Q(x) with the R−1(x) diagonal matrix from the
right multiplies the columns of Q(x) with the associated drift values. This
transformation modifies the row-sum. In contrast, the multiplication of Q(x)
with R−1(x) from the left multiplies the rows of Q(x) with the associated drift
values, hence the row-sum of the product remains 0 for all x. We emphasize
an important consequence of this property in the following theorem.

Theorem 3. The aggregate probability flux,
∑

j∈S ϕj(x), remains constant in

each continuous intervals, (x+
i−1, x

−
i ), and the row-sum of matrix V(x+

i−1, x
−
i )

is 1.

Proof: Let 11 be the column vector of ones. The row-sum of matrix
R−1(x)Q(x) is 0, hence

d

dx
ϕ(x)11 = ϕ(x) R−1(x) Q(x) 11︸ ︷︷ ︸

0

= 0 ,

i.e., the differential quation (6) preserves the aggregate probability flux in
each infinitesimal intervals in (x+

i−1, x
−
i ) and so in the whole continuous in-

terval (x+
i−1, x

−
i ).

The theorem on the row-sum of matrix V(x+
i−1, x

−
i ) can be proved by

contradiction. Since it has already been proved that the probability flux
is constant over a piece, let us consider ϕ(x+

i−1)11 = ϕ(x−i )11 = c. If
V(x+

i−1, x
−
i )11 6= 1, then we would have:

c = ϕ(x−i )11 = ϕ(x+
i−1)V(x+

i−1, x
−
i )11 6= ϕ(x+

i−1)11 = c .

¤

7 Set of equations

In this section we compose a matrix representation of the set of linear equa-
tion describing the behaviour of the fluid system. Basically, we collect the
constant coefficients presented in the scalar equations above in a matrix T
such that the row vector of the unknowns ψ is the solution of the equation
ψT = 0. We proceed in two steps. First we represent equations (9)-(22) and
then equation (7). Figure 4 shows the general structure of the coefficient
matrices defined by equations (9)-(22), and of vector ψ.
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Figure 4: General structure of the coefficient matrix

Considering the restriction that the fluid rate is non-zero between dis-
continuities we have 2 × 2 × 3 = 12 different cases with respect to the sign
of the fluid rate on the left (rj(x

−
i )), on the right (rj(x

+
i )) and at the i-th

discontinuity (rj(xi)). The sign of the rate at the discontinuities (rj(xi)) are
represented by the α•(xi) function in the above equations. The different pos-
sible signs of the fluid rate on the left (rj(x

−
i )) and on the right (rj(x

+
i )) of

the discontinuity are considered in cases a), b), c) and d). At discontinuity

xi we divide the set of states into the following disjoint subsets: S(i)
a , S(i)

b ,

S(i)
c and S(i)

d according to cases a) to d). I.e., j ∈ S(i)
a if rj(x

−
i ) > 0 and

rj(x
+
i ) > 0; j ∈ S(i)

b if rj(x
−
i ) < 0 and rj(x

+
i ) < 0; j ∈ S(i)

c if rj(x
−
i ) > 0 and

rj(x
+
i ) < 0; j ∈ S(i)

d if rj(x
−
i ) < 0 and rj(x

+
i ) > 0. According to this division

of states at discontinuity xi matrix A(xi) and V(x+
i−1, x

−
i ) are subdivided as

follows

A =




Aaa Aab Aac Aad

Aba Abb Abc Abd

Aca Acb Acc Acd

Ada Adb Acd Add


 , V =




Vaa Vab Vac Vad

Vba Vbb Vbc Vbd

Vca Vcb Vcc Vcd

Vda Vdb Vcd Vdd


 ,
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where the dependence on the particular discontinuity is neglected for nota-
tional simplicity. Using this division of states the structure of the coefficient
matrix at discontinuity xi depends on the sign of the rate at the discon-
tinuity (rj(xi)) as it is summarized in Figure 5. In the figure, matrix 0uu

indicates that equations (9)-(22) do not define the associated quantity and
matrix Iuu is the unity matrix of size |Su| for u ∈ {a, b, c, d}. Matrix A∗

uu

denotes A∗
uu = −Iuu + Auu (for u ∈ {a, b, c, d}).

������ ����� ������
� 	 
 � � 	 
 � � 	 
 �

� ��� ��
������ 	 ��


 ��� ��
� ��
� ������ ��� ��� ���

����� 	 ���� ��� ��� ���

 ��� ���� ��� ���
� ��� ��������� ���
� ���

������ 	 ��� ���

 ��� ���
� ���

if rj(xi) > 0

������ ����� ������
� 	 
 � � 	 
 � � 	 
 �

� ��� ��
������ 	 ��


 ��� ��
� ��
� ������� ������

����� 	 ������� ��� ���

 ������ �������
� ������ �������
� ���

������ 	 ��� ���

 ��� ���
� ���

if rj(xi) = 0

������ ����� ������
� 	 
 � � 	 
 � � 	 
 �

� ��� ��
������ 	 ��


 ��� ��
� ��
� ��� ������� ���

����� 	 ��� ������������

 ��� ������ ����
� ��� ������ ������
� ���

������ 	 ��� ���

 ��� ���
� ���

if rj(xi) < 0

Figure 5: Coefficient matrix at xi

We place the coefficients provided by equation (7) into the idle columns

of matrix T, i.e., into the columns of the 0uu matrices The S(i)
a , S(i)

b , S(i)
c ,

S(i)
d partition of S is associated with discontinuity xi. Due to the defini-
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tion of the discontinuities the drift (rj(x)) can not change sign in the con-
tinuous (x+

i−1, x
−
i ) interval, hence (as pointed out before) sign(rj(x

−
i )) =

sign(rj(x
+
i−1)). Based on this property the partitioning at xi−1 (S(i−1)

u ,
u ∈ {a, b, c, d}) is such that

j ∈ S(i)
a ⇒ j ∈ S(i−1)

a

⋃S(i−1)
d , j ∈ S(i)

b ⇒ j ∈ S(i−1)
b

⋃S(i−1)
c ,

j ∈ S(i)
c ⇒ j ∈ S(i−1)

a

⋃S(i−1)
d , j ∈ S(i)

d ⇒ j ∈ S(i−1)
b

⋃S(i−1)
c ,

i.e., S(i)
a

⋃S(i)
c = S(i−1)

a

⋃S(i−1)
d and S(i)

b

⋃S(i)
d = S(i−1)

b

⋃S(i−1)
c .

Figure 6 shows a part of matrix T with the items obtained from equations
(9)-(22) and with the discontinuity dependent partitioning of the states. u′ =
S(i−1)

u (u ∈ {a, b, c, d}) denotes the state partitioning according to the sign of
the drift around xi−1 and matrices I′uv, V′

uv (u, v ∈ {a, b, c, d}) are obtained
from matrices Iuv, Vuv with a reordering of states according to the state
partitioning at xi−1.

�������
� ������

�	 
	 �	 �	 � 
 � �
�	 ����� ����� ����� �	��� �	���

�������
� 
	 ����� ����� �	��� �	����	 ����� ����� �	��� �	����	 ����� ����� ����� �	��� �	���
� ���

������ 
 �	��� �	��� ���� ���� �	��� �	��� ���

Figure 6: A block of matrix T with discontinuity dependent state partitioning

Finally, Figure 7 introduces the final structure of the T matrix at level
xi. The figure contains all non-zero entries associated with level xi. The
state partitioning at level xi−1 is denoted with u′ (as before) and at level
xi+1 is denoted with u” (u ∈ {a, b, c, d}). Matrices I′uv and V”uv are defined
according to the relevant state partitioning.

The matrix structure in Figure 7 already suggests the following essential
property of matrix T.

Theorem 4. The set of equations (9)-(22) and (7) is linearly dependent,
and the ψT = 0 equation has non-trivial solution.
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Figure 7: The final structure of the T matrix at xi (with rj(xi) < 0)

Proof: The row-sum of matrices A(xi) and matrices V(x+
i−1, x

−
i ) (i ∈

{1, . . . , n}) is 1 based on eq. (5) and Theorem 3. By the described con-
struction of matrix T, the row-sum of T is 0 in all above mentioned possible
cases. The theorem is a direct consequence of the row-sum of matrix T. ¤

Note that the introduction of the probability flux (ϕ(x)) instead of the
fluid density (π(x)) results in the use of matrix V(x+

i−1, x
−
i ) instead of matrix

W(x+
i−1, x

−
i ), and the introduction of the probability mass flux (d(x)) instead

of the probability mass (c(x)) results in the use of matrix A(xi) instead
of matrix Q(xi). We have to remark however, that Theorem 4, does not
ensure that the dimension of the solution space of ψT = 0 is equal to 1, and
thus that ψ can be uniquely determined using some normalizing condition.
However, if the system is irreducible and has a unique stationary distribution
independent of its initial state, this can be determined using the proposed
procedure.

8 Extension to states with zero rate

In the previous sections we have always considered rj(x) 6= 0 for all the
continuous piece. In many practical situation however, there are cases where
rj(x) = 0 for a piece xi < x < xi+1. When there are this kind of zero states,
both the continuous part and the boundary conditions changes accordingly.
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8.1 Considering zero states between the discontinu-
ities

Let us denote with π0(x) the probability density of the states j where rj(x) =
0 (zero states), and with π∅(x) the probability of the other states (non-zero
states). We can rewrite equation (1) as:

d

dx

(
π∅(x)R∅∅(x)

)
= π∅(x)Q∅∅(x) + π0(x)Q0∅(x) , (23)

0 = π∅(x)Q∅0(x) + π0(x)Q00(x) ,

where Q∅∅(x), Q∅0(x), Q0∅(x), Q00(x) and R∅∅(x) refers to the sub-matrices
of Q(x) and R(x) that have elements corresponding to the zero or non-zero
states according to their superscript. From equation (23) we obtain:

π0(x) = −π∅(x)Q∅0(x)Q00−1
(x) , (24)

d

dx

(
π∅(x)R∅∅(x)

)
= π∅(x)

[
Q∅∅(x)−Q∅0(x)Q00−1

(x)Q0∅(x)
]

.

Note that
Q̂(x) = Q∅∅(x)−Q∅0(x)Q00−1

(x)Q0∅(x) ,

is the generator of the discrete state process restricted to the non-zero states
at fluid level x.

Let R̂(x) = R∅∅(x) and by changing π(x) to ϕ(x) we obtain:

d

dx
ϕ∅(x) = ϕ∅(x)

(
R̂−1(x)Q̂(x)

)
. (25)

The solution of equation (25) can also be expressed in the form

ϕ∅(x−i ) = ϕ∅(x+
i−1) V̂(x+

i−1, x
−
i ) . (26)

In the special case when Q(x) and R(x) are level independent in the
(xi−1, xi) range, i.e., for x ∈ (xi−1, xi), Q(x) = Qi and R(x) = Ri then

V̂(xi−1, x) = e(x−xi−1)bR−1
i

bQi .

We can compute the actual solution of π(x) from ϕ∅(x) using the following
equations:

π∅(x) = ϕ∅(x)R̂−1(x) , (27)

π0(x) = −ϕ∅(x)R̂−1(x)Q∅0(x)Q00−1
(x) .
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8.2 Zero states at the discontinuities

When one of the pieces around discontinuity xi might have a zero state the
set of cases considered in section 6 needs to be extended with the following
ones:
Discontinuities

Case e): rj(x
+
i ) = 0 and rj(x

−
i ) < 0.

dj(xi) = α≥j (xi)

(∑

k

dk(xi)akj(xi)

)
, (28)

ϕj(x
+
i ) = 0 , (29)

−ϕj(x
−
i ) = α<

j (xi)

(∑

k

dk(xi)akj(xi)

)
. (30)

Case f): rj(x
+
i ) = 0 and rj(x

−
i ) > 0.

dj(xi) = ϕj(x
−
i ) +

∑

k

dk(xi)akj(xi) , (31)

ϕj(x
+
i ) = 0 . (32)

Case g): rj(x
+
i ) < 0 and rj(x

−
i ) = 0.

dj(xi) = −ϕj(x
−
i ) +

∑

k

dk(xi)akj(xi) , (33)

ϕj(x
−
i ) = 0 . (34)

Case h): rj(x
+
i ) > 0 and rj(x

−
i ) = 0.

dj(xi) = α≤j (xi)

(∑

k

dk(xi)akj(xi)

)
, (35)

ϕj(x
+
i ) = α>

j (xi)

(∑

k

dk(xi)akj(xi)

)
, (36)

−ϕj(x
−
i ) = 0 . (37)

Case i): rj(x
+
i ) = 0 and rj(x

−
i ) = 0.

dj(xi) =
∑

k

dk(xi)akj(xi) , (38)

ϕj(x
+
i ) = 0 , (39)

−ϕj(x
−
i ) = 0 . (40)
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Boundary conditions
Case C): rj(0

+) = 0.

dj(0) =
∑

k

dk(0)akj(0) , (41)

ϕj(0
+) = 0 . (42)

Case D): rj(B
−) = 0.

dj(B) =
∑

k

dk(B)akj(B) , (43)

ϕj(B
−) = 0 . (44)

These equations can be obtained as special cases of the equations in sec-
tion 6 by omitting the flux towards the piece with zero state.

8.3 Number of equations

Theorem 5. The number of equations presented in this section is equivalent
with the number of unknowns, i.e., (3n + 1)m.

To prove the theorem we need the following notations and lemma.
Let m0

i be the number of zero states in piece i. In piece i the ma-
trix equation (26) represents m − m0

i equations. We associate each of
these equations with a different non-zero state of piece i. Let Nej(i) be
the number of equations available for determining the unknowns associ-
ated with state j at the discontinuities x0, . . . , xi. These unknowns are
dj(0), ϕj(0

+), ϕj(x
−
1 ), dj(x1), ϕj(x

+
1 ), . . . , ϕj(x

−
i ), dj(xi), ϕj(x

+
i ). This way

Nej(i) contains the boundary and discontinuity equations associated with
pieces 0, . . . , i and one equation of (26) for all pieces on the left of xi where
j is a non-zero state.

Lemma 6. For 0 ≤ i < d the number of equations are Nej(i) = 3i + 2, if
rj(x

+
i ) > 0, Nej(i) = 3i+2, if rj(x

+
i ) = 0 and Nej(i) = 3i+1, if rj(x

+
i ) < 0.

Proof of Lemma 6: For i = 0 the lemma is true. The number of equations
at discontinuity xi is:

Number of equations per case.
rj(x

+
i−1) < 0 rj(x

+
i−1) = 0 rj(x

+
i−1) > 0

rj(x
+
i ) < 0 2 (Case b) 2 (Case g) 1 (Case c)

rj(x
+
i ) = 0 3 (Case e) 3 (Case i) 2 (Case f)

rj(x
+
i ) > 0 3 (Case d) 3 (Case h) 2 (Case a)
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Assuming the lemma valid for discontinuity xi−1, we have:

Nej(i) = Nej(i−1) + 2 + 1 = 3i + 1 if rj(x
+
i−1) < 0 and rj(x

+
i ) < 0 ,

Nej(i) = Nej(i−1) + 3 + 1 = 3i + 2 if rj(x
+
i−1) < 0 and rj(x

+
i ) = 0 ,

Nej(i) = Nej(i−1) + 3 + 1 = 3i + 2 if rj(x
+
i−1) < 0 and rj(x

+
i ) > 0 ,

Nej(i) = Nej(i−1) + 2 = 3i + 1 if rj(x
+
i−1) = 0 and rj(x

+
i ) < 0 ,

Nej(i) = Nej(i−1) + 3 = 3i + 2 if rj(x
+
i−1) = 0 and rj(x

+
i ) = 0 ,

Nej(i) = Nej(i−1) + 3 = 3i + 2 if rj(x
+
i−1) = 0 and rj(x

+
i ) > 0 ,

Nej(i) = Nej(i−1) + 1 + 1 = 3i + 1 if rj(x
+
i−1) > 0 and rj(x

+
i ) < 0 ,

Nej(i) = Nej(i−1) + 2 + 1 = 3i + 2 if rj(x
+
i−1) > 0 and rj(x

+
i ) = 0 ,

Nej(i) = Nej(i−1) + 2 + 1 = 3i + 2 if rj(x
+
i−1) > 0 and rj(x

+
i ) > 0 .

where the number of additive equations describing discontinuity xi and the
relation of the flux of non-zero states at the beginning and the end of piece
i (equation (26)) are treated separately. ¤
Proof of Theorem 5 : Applying Lemma 6 for the last but one discontinuity
(xn−1) and adding the boundary equations at B, we have

Nej(n) = Nej(n−1) + 2 + 1 = 3n + 1 if rj(x
+
n−1) < 0 ,

Nej(n) = Nej(n−1) + 2 = 3n + 1 if rj(x
+
n−1) = 0 ,

Nej(n) = Nej(n−1) + 1 + 1 = 3n + 1 if rj(x
+
n−1) > 0 .

¤

8.4 Set of linear equations

Using equation (26) and the discontinuity and boundary equations presented
in this section we can compose a similar system of equations as before (ψT =
0), but the structure of the ψ and the T matrix is much more complex since
we need to introduce 3 subsets of states (with positive, negative and zero
drift) which results in 9 cases (a to i) to consider at each discontinuity, in
contrast with the 4 cases (a, b, c, d) discussed in Section 7.

Without further explanation we conclude that the main equation set ob-
tained with the presence of zero states remains solvable in a similar way. We
only demonstrate the applicability of the approach for the case with zero
states via our implementation which automatically generates the T matrix
and solves the linear system also in this case.

9 Normalizing condition

The normalizing condition is obtained from the fluid distribution as follows
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1 =
∑
j∈S

n∑
i=0

cj(xi) +
∑
j∈S

n∑
i=1

∫ xi

xi−1

πj(x)dx , (45)

=
∑
j∈S

n∑
i=0

dj(xi)

−qjj(xi)
+

∑
j∈S

n∑
i=1

∫ xi

xi−1

ϕj(x)

rj(x)
dx . (46)

Unfortunately, the normalizing condition can not be evaluated based
on the V(xi−1, xi) matrices, but it also requires the evaluation of the∫ xi

xi−1
πj(x)dx integral.

When some of the states have associated zero drift in a continuous piece
(6) is no longer valid and the integrals of the probability densities are calcu-
lated based on (24) instead of (1).

The normalizing condition can also be expressed using a normalizing vec-
tor η. In this case the normalizing condition becomes: ψηT = 1.

Vector η can be constructed from the definition of ψ and equations (45)
and (46). In particular, from (26) and (27) we may compute for each pieces
(xi−1, xi):

∫ xi

xi−1

π∅(x)dx = ϕ∅(x+
i−1)

∫ xi

xi−1

V̂(x+
i−1, x)R̂−1(x)dx ,

∫ xi

xi−1

π0(x)dx = −ϕ∅(x+
i−1)

∫ xi

xi−1

V̂(x+
i−1, x)R̂−1(x)Q∅0(x)Q00−1

(x)dx .

Introducing

U∅
i =

∫ xi

xi−1

V̂(x+
i−1, x)R̂−1(x)dx ,

U0
i = −

∫ xi

xi−1

V̂(x+
i−1, x)R̂−1(x)Q∅0(x)Q00−1

(x)dx ,

we have
∑
j∈S

∫ xi

xi−1

πj(x)dx =

∫ xi

xi−1

π∅(x)dx11 +

∫ xi

xi−1

π0(x)dx11 =

= ϕ∅(x+
i−1)

[
U∅

i 11 + U0
i 11

]
.

Using the row vectors η
(ϕ)
i =

(
U∅

i 11 + U0
i 11

)T
, and η

(d)
i =

{
1

−qjj(xi)

}
, j ∈ S,

we can build the normalizing vector η as follows:

η = [ η
(d)
0︸︷︷︸

d(0)

, η
(ϕ)
1 , 00

1︸ ︷︷ ︸
ϕ(0+)

, 0︸︷︷︸
ϕ(x−1 )

, η
(d)
1︸︷︷︸

d(x1)

, η
(ϕ)
2 , 00

2︸ ︷︷ ︸
ϕ(x+

1 )

, 0︸︷︷︸
ϕ(x−2 )

, . . . , η(d)
n︸︷︷︸

d(B)

] , (47)
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where 00
i and 0 are the row vectors with as many zero components as the

number of zero states in piece i, and the number of states, respectively. The
under braces indicate the ϕ vector elements associated with the particular η
vector elements. Note that the non-zero η elements are associated with the
discontinuities (η

(d)
i ) and the states of non-zero rate at the lower boundary

of continuous pieces (η
(ϕ)
i ).

10 Numerical example

To demonstrate the solution method introduced in the previous sections we
evaluate various versions of the high-speed network model presented in [4].

Source 1

Buffer

Source K

loss mechanism

with level dependent

loss

channel

feedback

feedback

data

data

Figure 8: The multiplexer model

The model is composed by K identical 2 state sources and a buffer (see
Figure 8). The sources generate data with J (1, . . . , J) different priorities.
The traffic behaviour of each source is governed by a 2-state Markov chain

with generator G(x) =

[ −α(x) α(x)
β(x) −β(x)

]
, where x, the fluid level, repre-

sents the queue length in the buffer. When the Markov chain of a source is in
state i at queue length x the source generates priority j data at rate λ

(j)
i (x).

To reduce the probability of buffer overflow the buffer drops lower priority
data, when the buffer level is high. The B1, B2, . . . , BJ−1 levels determine the
dropping mechanism. When the buffer content is higher than Bj the buffer
drops all incoming priority j data. In state i and fluid level x the actual rate

of a source is λi(x) =
∑

j:x>Bj

λ
(j)
i (x).

Case I: When the source behaviour (G(x) and λ
(j)
i (x)) is independent of
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the buffer level, i.e., G(x) =

[ −α α
β −β

]
and λ

(j)
i (x) = λ

(j)
i , the obtained

model is identical with the one in [4], hence we can compare the results
obtained there with the results of our solution method.

The basic set of model parameters is the following:

Model parameters
K 20 number of sources
α 0.4 transition rate (OFF→ON)
β 1.0 transition rate (ON→OFF)
C 11.428 channel capacity
J 2 number of priority levels

λ
(1)
1 = λ

(2)
1 0 data generation in OFF state

λ
(1)
2 1.0 low priority data generation

λ
(2)
2 0.5 high priority data generation
B 1.5 buffer size
B1 0.4− 1.2 threshold of dropping low priority data
B2 B threshold of dropping high priority data

In the following cases we indicate only the modified values with respect to
this basic set of parameters.

Figure 9 depicts the joint distribution of the buffer content and the system
state when the parameters are taken from the basic parameter set.
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Figure 9: Buffer content distribution with 8 and 10 active users (Case I)

To compare the results with the one presented in [4], we also evaluate
the loss probability of the low priority data. Since the exact loss probability
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values are not given in [4] we only present figure 10, which is supposed to be
identical with figure 4a of [4] and leave the verification for the reader.
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Figure 10: Loss probability of priority 1 data

Case II: Increasing the number of sources to K = 30, changing B = 1,
C = 17.142 and varying B1 from 0.3 to 0.7 results the distribution presented
in Figure 11.
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Figure 11: Buffer content distribution with 30 sources (Case II)

Case I and II can also be evaluated with the method presented in [4].
The next case instead can no longer be solved using the approach proposed
in [4].

Case III: In the following we assume a more sophisticated system be-
haviour. The sources adapt their behaviour to the actual dropping of the
buffer, which becomes known for the sources via feedback signals (e.g., miss-
ing acknowledgements). There are two ways to adjust the source behaviour.
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The source might change the data generation rate and also the governing
Markov chain. The procedure presented in the paper allows to consider both
of these adjustments. First we make the governing Markov chain buffer level

dependent such that α(x) =

{
1.0 if x < B1

a2 if B1 < x < B
, where a2 varies be-

tween 0.001 and 1. The rest of the modified model parameters with respect
to the basic set are B = 1, B1 = 0.7. Figure 12 provides the buffer content
distribution in this case.
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Figure 12: Buffer content distribution with adaptive source behaviour (Case
III.)

Case IV: Finally, we consider a model behaviour which contains isolat-
ing state as well. (Isolating state is not allowed in [4].) In this version
of the model the data accumulation rate depends on the buffer level, such
that the channel capacity drops down when the buffer is heavily loaded,

C(x) =

{
11.428 if x < B1

s2 · 11.428 if B1 < x < B
, where s2 varies between 10% and

100%. This may happen, for example, when the system drops packets at
high buffer level. Similar to Case III, B = 1 and B1 = 0.7. The distribu-
tions are given in Figure 13. Figure 13a reflects the expectations based on
the physical understanding of the model. The lower is the system capacity
at high buffer levels the higher is the buffer content. (Curves closer to the
horizontal axes means higher average buffer level.)

The proposed numerical procedure is composed by 3 main sets:

• calculation of V(xi, xi+1) matrices (eq. (8)),

• solving the linear system of equations ϕT = 0,
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Figure 13: Buffer content distribution with varying channel capacity (Case
IV.)

• normalizing the solution (eq. (46)).

The computational complexity of these steps are characterized by the fol-
lowing model parameters. The cardinality of matrix V(xi, xi+1) is m × m,
while the cardinality of matrix T is m(3n + 1) × m(3n + 1). Matrices
V(xi, xi+1), 0 ≤ i < n are complete matrices and should be stored in com-
plete matrix form, while matrix T has a regular block structure which can
be exploited to reduce memory usage and speed up computation. Equation
(8) is solved n times. The possible computational methods for solving (8)
are detailed in [6] and [5] together with their computational complexity. We
applied Gauss elimination for solving the linear system. For all presented
examples, the computation of the d(x) and ϕ(x) vectors took less than a
minute with our C implementation on regular PC.

According to our experiences the main limitation of the proposed method
is not the complexity of the computation, but its numerical stability. De-
pending on the model parameters the elements of the V(xi, xi+1) matrices
might become extremely large (as it is discussed in [5]) and the linear sys-
tem becomes ill conditioned. In some cases, the division of continuous pieces
by the introduction of “artificial” discontinuity points helps to improve the
numerical properties (because it decreases the large values in the V(xi, xi+1)
matrices associated with the divided continuous pieces). We observed that
the elements of the V(xi, xi+1) matrices should be less than 1015 for all con-
tinuous pieces to obtain a reasonable solution with our implementation.
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11 Conclusion

The stationary solution of bounded fluid models with fluid level dependent
drift and transition matrix is considered in this paper. The set of equation
to characterize the unknown quantities of the stationary distribution has a
non-linear dependence on the applied system measures.

The commonly applied system measures, the fluid density and the fluid
mass functions, result in over-determined system of equations in case of more
than one continuous pieces. Due to the non-linear dependence of the equation
system on the applied system measures we could prove that a given linear
transformation of the system measures results in a solvable set of equations.

We also implemented the computational method based on the trans-
formed system measures and provided numerical examples using the pro-
posed analysis method.
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[5] R. German, M. Gribaudo, G. Horváth, and M. Telek. Stationary analysis
of FSPNs with mutually dependent discrete and continuous parts. In
International Conference on Petri Net Performance Models – PNPM
2003, pages 30–39, Urbana, IL, USA, Sep. 2003. IEEE CS Press.

[6] M. Gribaudo and R. German. Numerical solution of bounded fluid mod-
els using matrix exponentiation. In Proc. 11th GI/ITG Conference on
Measuring, Modelling and Evaluation of Computer and Communication
Systems (MMB), Aachen, Germany, Sep. 2001. VDE Verlag.

30



[7] G. Horton, V. G. Kulkarni, D. M. Nicol, and K. S. Trivedi. Fluid stochas-
tic Petri nets: theory, application, and solution techniques. European
Journal of Operations Research, 105(1):184–201, Feb. 1998.

[8] O. Kella and W. Stadje. Exact results for a fluid model with state-
dependent flow rates. Probability in the Engineering and Informational
Sciences, 16(4):389–402, 2002.

[9] D. P. Kroese and Scheinhardt W. R. W. Joind distributions for inter-
acting fluid queues. Queueing Systems, 37:99–139, 2001.

[10] V. G. Kulkarni. Fluid models for single buffer systems. In J. H. Dsha-
lalow, editor, Models and Applications in Science and Engineering, Fron-
tiers in Queueing, pages 321–338. CRC Press, 1997.

[11] L. C. G. Rogers. Fluid models in queueing theory and Wiener-Hopf
factorization of Markov chains. Annals of Applied Probability, 4(2):390–
413, 1994.

[12] K. Wolter. Second order fluid stochastic petri nets: an extension of
GSPNs for approximate and continuous modelling. In Proc. of World
Congress on System Simulation, pages 328–332, Singapore, Sep. 1997.

31


