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Substitute Valuations: Generation and

Structure

Bruce Hajek

Abstract

Substitute valuations (in some contexts called gross substitute valuations) are promi-
nent in combinatorial auction theory. An algorithm is given in this paper for gen-
erating a substitute valuation through Monte Carlo simulation. In addition, the
geometry of the set of all substitute valuations for a fixed number of goods K is
investigated. The set consists of a union of polyhedrons, and the maximal polyhe-
drons are identified for K = 4. It is shown that the maximum dimension of the
polyhedrons increases with K nearly as fast as two to the power K. Consequently,
under broad conditions, if a combinatorial algorithm can present an arbitrary sub-
stitute valuation given a list of input numbers, the list must grow nearly as fast as
two to the power K.
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1 Introduction

Roughly speaking, one commodity is a substitute for another if the commodi-
ties are approximately interchangeable. In the economics literature, the notion
of substitute valuations dates back to the work of Walras on equilibrium the-
ory and is prominent in the development of general equilibrium theory (see, for
example, [1, 2, 32]). Kelso and Crawford [20] formulated a version of substitute
property for discrete goods, opening the doors to a generalization of the theory
of pricing and ascending auctions that had been developed earlier for matching
markets by Damange, Gale, Leanord, Shapley, Shubik, Sotomayor, and others
(see [11]). More recently, new characterizations of substitute valuations have
been found, and algorithms and auctions for finding efficient allocations and
market clearing prices for economies with buyers having substitute valuations
have been found [3, 4, 18, 19, 21, 23, 26, 29].

For readers unfamiliar with the concept of substitute valuations in economics,
we introduce it by describing a special case of an auction algorithm given
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in [20]. Suppose there are K goods to be auctioned to n buyers, using an
ascending price auction with nonnegative integer prices, as follows. Initially
the price for each good is zero and each good is provisionally assigned to
some buyer. During each round of the auction, suppose that if a good k is not
provisionally assigned to a particular buyer, then the buyer can place a bid
for the good at price pk + 1, where pk is the current price. If there are any
bids made for a good in the round, then the good is provisionally assigned
to one of the buyers placing a bid for the good, and the price of the good is
increased to the price bid. If no new bids are made in a particular round, then
the auction ends. Once a good is provisionally assigned to a buyer, if no higher
bids are ever placed on that good, it is sold to the highest buyer at the price
bid. Although all the goods are sold in such an auction, the outcome can be
very inefficient. For example, suppose one of the buyers would greatly value
receiving two particular goods, but that neither good by itself would be of any
value to the buyer. For example, the goods could be two communication links
in series. The buyer could place bids for both goods. But suppose a second
buyer aggressively competes for one of the two goods, eventually outbidding
the first buyer for that good. Then the first buyer could be stuck buying the
other good, even though that good alone has no value to the buyer. If all
buyers have substitute valuations, however, and if all bid in a straight-forward
manner based on those valuations, then the auction is indeed efficient. The
substitutes property is that, if a buyer prefers a particular bundle of goods
for one set of prices, and then if the prices of some goods are increased, then
there is a new bundle preferred by the buyer which includes all items in the
original bundle that did not have a price increase. Hence, if the valuations of
all buyers satisfy the substitute condition, the vector of final prices for the
goods is such that the supply of goods (i.e. one of each type) is matched by
the demand. In summary, the substitute valuation property is precisely what
is needed to make ascending price auctions efficient.

Auctions have been implemented for sale of such diverse resources as: wireless
spectrum licenses, gate access at airport terminals, truckload transportation,
bus routes, and polution permits [9, 10]. Large sums of money can be involved
and it may be very expensive to rely on learning from experience. There is
thus a need to be able to produce simulations with buyers having realistic
valuations. Design of realistic models for valuations is an art that involves
spatial and/or temporal dependencies among the goods and buyers, which
depend heavily on the particular market addressed. This topic is beyond the
scope of this paper, but we refer to [22] for background, and presentation of a
graph based approach to modeling dependencies.

Substitute valuations (a.k.a. gross substitute valuations) play a central role in
the theory of auctions because they (1) are in a sense necessary for existence of
market clearing prices [18, 24], (2) are related to existence of monotone price
auctions, (3) are related to desirable monotonicity of prices and immunity from
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strategic behavior by subgroups of buyers for the important family of Vickrey
auctions [6]. In practice, the valuations of buyers in a given auction might not
have the substitutes property. However, designing algorithms that work well in
particular for substitute valuations, but also have reasonable behavior for the
other valuations one is likely to encounter in a given market, is a reasonable
approach to practical auction design [25].

Given the importance of the class of substitute valuations, it is useful to be
able to:

• Check whether a given valuation v has the substitute property.
• Generate random substitute valuations by Monte Carlo simulation, for the
purposes of testing auction algorithms and exploring the structure of sub-
stitute valuations.

• Determine the size of the class of substitute valuations, in various senses,
for example to determine how much information must be generated, trans-
mitted, or stored in connection with the use of the valuations.

There exist nice results addressing the first or these items, including the result
of [23, 29] given as Proposition 4 below, and the connection to matroid theory
mentioned at the end of the next section. Also, a valuation has the substitute
property if and only if its dual is submodular [5, Theorem 10].

The contributions of this paper are focused on the second and third items.
First, a complete parameterization of all (nondecreasing) substitute valuations
on four items is given in Section 3. Our motivation for this is threefold: (1) Gain
intuition on the family of all substitute valuations, (2) Illustrate the geometry
of the space of substitute valuations as a union of maximal polyhedrons, and
identify the dimension of the polyhedrons. These concepts are used in Section
6. (3) Point out a lemma that will be used in the proof of convergence of the
Monte Carlo algorithm.

Second, a Monte Carlo simulation algorithm for generating substitute valua-
tions is given in Section 4. The first step of the algorithm is to generate an
arbitrary valuation, and then the algorithm performs a finite number of mod-
ifications leading to a substitute valuation. A proof of convergence is given
which involves the characterization of a substitute valuation on the class of
sets of a given size by a local exchange property.

The third contribution of the paper is to give an indication of how much
richer the class of substitute valuations is than the subclass arising from the
assignment problem. Section 5 shows that the assignment valuations comprise
a useful and interesting set of substitute valuations, which covers much of the
set of all substitute valuations in the case of four goods. In particular, a sub-
class of assignment allocations is reviewed in Section 5.1 for which essentially
no computation is needed to compute the value of a given bundle. This section
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gives further intuition about the use of the dimension of the space of allocation
valuations leading to a better understanding of the result of Section 6. Section
5.2 examines how much of the space of substitute valuations is covered by the
assignment valuations for the case of four goods. This naturally ties together
Sections 3 and 5.1.

Fourth, Section 6 displays a set of substitute valuations that, for a large num-
ber of goods, is markedly different from the set of assignment valuations. The
existence of those valuations implies that for a large class of algorithms for
presenting substitute valuations, the number of real-valued inputs must grow
exponentially in the number of goods. Section 6 shows that for any ǫ > 0, if
K is sufficiently large, then the space of substitute valuations contains poly-
hedrons with dimension at least 2(1−ǫ)K . As explained, this has a negative
implication regarding the existence of presentation algorithms capable of pro-
ducing arbitrary substitute valuations.

The results of this paper are interrelated as follows. As mentioned above, we
present an algorithm for generating a substitute valuation in Section 4. A re-
lated problem is to find algorithms for presenting substitute valuations. The
number of values of a valuation, 2K , grows quickly with K. The idea of a pre-
sentation algorithm is to ask a buyer to specify a smaller list of numbers, and
to use a polynomial complexity algorithm which, given the input list from the
buyer and a bundle of goods, can determine the value of the bundle. The use
of allocation valuations, discussed in Section 5, is an excellent prototype of a
presentation algorithm. For allocation valuations, the list of numbers specified
by a buyer are the weights on a bipartite graph, and the value of a bundle
of goods is given by the maximum weight of the matchings in a subgraph
determined by the bundle. More complex but related presentation algorithms
are given in [7]. However, there are no known presentation algorithms which
cover the entire set of substitute valuations. If such an algorithm did exist, one
could use it to generate random valuations by inputting to the algorithm a
list of random numbers, offering a perhaps more attractive alternative to our
generation algorithm in Section 4. Thus, the question of whether there exists
a presentation algorithm that can cover the set of all substitute valuations
is naturally related to the problem of simulating substitute valuations. This
question is addressed in this paper in two ways: First, by giving the structure
of the space of all substitute valuations for four goods. Secondly, by showing
(Section 6) that, for large numbers of goods, under fairly general conditions,
for any ǫ > 0, the list of numbers a buyer would need to input to specify arbi-
trary substitute valuations must have length at least 2(1−ǫ)K for large K. This
negative result about possibilities for presentation algorithms strengthens the
case to search for good generation algorithms. A final connection between sec-
tions is that we used the algorithm of Section 4 to help discover the class of
valuations presented in Section 6.
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Section 2 gives notation and background, states some useful known properties
of substitute valuations which can be used to build up families of such valua-
tions, and briefly points to where substitute valuations can be found under a
different name in some recent literature on matroid theory.

2 Notation and background

Suppose K goods, represented by K = {1, . . . , K}, are to be allocated. The
set of possible bundles of goods (i.e. subsets of K) is denoted by 2K. If A is a
bundle and i is a good not in A, we write Ai for the set A∪ i. If A is a bundle
and i and j are distinct goods not in A, we write Aij for A∪ {i, j}. Similarly,
if i and j are distinct goods, we sometimes write ij to denote the set {i, j}.
The notation |A| denotes the cardinality of A.

A function f : 2K → R is submodular if for any bundles A and B, f(A∪B)−
f(A)−f(B)+f(A∩B) ≤ 0. An equivalent condition is that f(Aij)−f(Ai)−
f(Aj) + f(A) ≤ 0, whenever A is a bundle and i and j are goods not in A
(see [31]). A function f is supermodular if −f is submodular.

Definition 1 A triplet of numbers (x, y, z) has the double maximum property
if at least two of the numbers are equal to the maximum of the three numbers,
or equivalently, x ≤ max{y, z} and y ≤ max{x, z} and z ≤ max{x, y}. A
triplet of numbers (x, y, z) has the double minimum property if at least two of
the numbers are equal to the minimum of the three numbers, or equivalently,
if x ≥ min{y, z} and y ≥ min{x, z} and z ≥ min{x, y}.

Following terminology common in the economics literature, a valuation v is
a mapping from 2K to R. Throughout this paper, we require that valuations
be normalized to assign value zero to the empty set. We consider quasi-linear
payoffs. Thus, given a price vector p, by which we mean an element of RK

+ ,
the payoff function of a buyer with valuation v is v(A) − p · A for A ∈ 2K,
where the notation p · A =

∑
k∈A pk is used. The demand correspondence D

for a buyer with valuation v is defined by D(p) = argmaxA v(A)− p · A.

Definition 2 (Substitute valuation [20]) A valuation v for K distinct goods is
a substitute valuation if, for any price vectors p and q such that p ≤ q and any
A ∈ D(p), there exists a bundle A′ ∈ D(q) such that {k ∈ A : pk = qk} ⊂ A′.

The following condition is a key to checking whether a given valuation has the
substitute property. (A brief intuitive explanation is given after Fact 8 below.)

Definition 3 (Properties S3(L) and S3) Let 2 ≤ L ≤ K − 1. A valuation v
has property S3(L) if (v(Aij) + v(Ak), v(Aik) + v(Aj), v(Ajk) + v(Ai)) has
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the double maximum property whenever A is a bundle with |A| = L − 2, and
i, j, k are distinct goods not in A. The valuation v is said to satisfy S3 if it
satisfies S3(L) for 2 ≤ L ≤ K − 1.

Proposition 4 [23, 29] A nondecreasing valuation v is a substitute valuation
if and only if v is submodular and v has property S3.

It is useful to represent a valuation as a linear function minus an interaction
function, defined as follows.

Definition 5 An interaction function is a function θ : 2K → R such that
θ(A) = 0 for bundles A with |A| ≤ 1.

Given a valuation v, let µ be the vector of valuations of singleton sets, so
µ(k) = v({k}) for 1 ≤ k ≤ K. Then the interaction function of v is defined by
θ(A) = µ ·A−v(A) for all bundles A. Obviously, v(A) = µ ·A−θ(A). In order
to specify a substitute valuation v, it suffices to specify µ and θ. We work
with the interaction function rather than always working with the original
valuation in this paper mainly for two reasons. First, in the case of four goods
(K=4, Sections 3 and 5.2), it is easier to deal with the 11 nonzero values
of the interaction function than with the 15 nonzero values of the original
valuation. Second, in the generation algorithm we present in Section 4, the
sequence of interaction functions converging to the final output is monotone
nondecreasing. This could be written in terms of the original valuations, but
then there would be difficulty with the valuations going negative or not being
monotone nondecreasing. The properties S3 and S3(L) can be expressed in
terms of θ or in terms of another related function, as described next.

Definition 6 (Properties S3θ(L) and S3θ) Let 2 ≤ L ≤ K−1. An interaction
function θ has property S3θ(L) if (θ(Aij) + θ(Ak), θ(Aik) + θ(Aj), θ(Ajk) +
θ(Ai)) has the double minimum property whenever A is a bundle with |A| =
L− 2, and i, j, k are distinct goods not in A. An interaction function θ is said
to satisfy S3θ if it satisfies S3θ(L) for 2 ≤ L ≤ K − 1.

The two-point conditional interaction function δ for a valuation v is defined
as follows. For any bundle A and goods i and j not contained in A, δij|A =
(v(Ai)− v(A)) + (v(Aj)− v(A))− (v(Aij)− v(A)), so that, intuitively, δij|A
is the penalty in value for the buyer acquiring both i and j, given the buyer
has already acquired the bundle A. The definition simplifies to δij|A = v(Ai)+
v(Aj)− v(Aij)− v(A), or it can be written in terms of θ as δij|A = θ(Aij)−
θ(Ai) − θ(Aj) + θ(A). For brevity we write δij instead of δij|∅. Note that
δij = θ(ij) for distinct goods i and j.

Definition 7 (Properties S3δ(L) and S3δ) Let 2 ≤ L ≤ K − 1. A two-point
conditional interaction function δ has property S3δ(L) if (δij|A, δik|A, δjk|A) has
the double minimum property whenever A is a bundle with |A| = L − 2, and
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i, j, k are distinct goods not in A. The function δ is said to satisfy S3δ if it
satisfies S3δ(L) for 2 ≤ L ≤ K − 1.

The following facts are obvious.

Fact 8 If v is a valuation with interaction function θ and two-point condi-
tional interaction function δ, then:
(a) The following are equivalent: v is submodular, θ is supermodular, δ is non-
negative.
(b) v is nondecreasing if and only if µ(k) ≥ maxA:k 6∈A θ(Ak)− θ(A) for all k.
(c) For 2 ≤ L ≤ K − 1, the following are equivalent: v satisfies S3(L), θ
satisfies S3θ(L), δ satisfies S3δ(L).
(d) The following are equivalent: v satisfies S3, θ satisfies S3θ, δ satisfies S3δ.

For the reader unfamiliar with Proposition 4, we give a brief explanation for
why substitute valuations must be submodular (we’ll show for K = 2) and
why they must satisfy condition S3 (we’ll show S3δ(2) holds for K = 3).
See [23] for a complete, direct proof of the general result of Proposition 4. If
K = 2 and v(ij) > v(i) + v(j) (violating submodularity) then prices pi and
pj could be selected so that v(ij) > pi + pj, v(i) < pi, and v(j) < pj . Then
{i, j} ∈ D(p). But if pi is increased enough, the demand set shrinks to ∅,
instead of including j, so v is not a substitute valuation. Moving to K = 3,
suppose v is submodular, but that the condition δij ≥ min{δik, δjk} fails to
hold. Then the price vector p can be selected so that

0 ≤ δij < (v(j)− pj) < (v(i)− pi) = (v(k)− pk) < min{δik, δjk}.

Then {i, j} ∈ D(p). Indeed, {i} yields the same payoff as {k} and a greater
payoff than either {j} or ∅. Since δij < v(j)−pj , {i, j} has a larger payoff than
{i}. By the same reasoning, {i, k} and {j, k} have smaller payoffs than {k}, or
equivalently, {i}. So {i, j} has a larger payoff than any other bundle of zero,
one, or two goods. Finally, by submodularity, the change in payoff for adding
k to {i, j} is less than or equal to the change in payoff for adding k to {j}
alone, which is negative. Thus, {i, j} ∈ D(p). But if pi is greatly increased,
the unique new demand set is {k}, which does not include j as required by
the substitute condition.

Next, we collect together some facts about substitute valuations which are
useful for building up interesting classes of valuations. For example, these
properties are used in the construction of presentation algorithms in [7]. A
valuation v is linear if v(A) = µ · A for a vector µ of nonnegative weights.
A valuation v is additively concave if there is a partition of K into (disjoint)
subsets S1, . . . , SJ , and if there are nonnegative concave functions φ1, · · · , φJ ,
such that v(A) =

∑
j φj(|A∩Sj |). Both linear valuations and additively concave

valuations are substitute valuations, as can be seen directly from the definition
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of substitute valuations [18].

The aggregate, or max convolution, of two valuations, v1 and v2, is the valua-
tion v1 ∗ v2, defined by:

v1 ∗ v2(A) = max
B⊂A

v1(A−B) + v2(B).

The value v1 ∗ v2(A) is the sum of values for two buyers if the bundle A is
optimally split between them. The family of substitute valuations is closed
under aggregation [21, 28]. A valuation v is called a single unit valuation if
there exist nonnegative weights (wk : k ∈ K) such that v(A) = max{wk :
k ∈ A}. Single unit valuations are substitute valuations. Section 5 discusses
assignment valuations, which arise as the aggregation of multiple single unit
valuations.

Following Gul and Stacchetti [18], given L with 0 ≤ L ≤ K, the L-satiation
of a valuation v is the valuation v̂ defined by

v̂(A) = max
B⊂A,|B|≤L

v(B).

The L-satiation of a substitute valuation is also a substitute valuation. This
result was obtained by Gul and Stacchetti [18] for linear or additively concave
valuations, and in general by Bing et al. [7]. Another proof is given below (see
Corollary 19).

For completeness, we point out that the class of substitute valuations forms a
natural link between the theory of matroids and auction theory. With the ex-
ception of Remark 18, the terminology in this paragraph is not used elsewhere
in this paper. Fujishige and Yang [15] showed that, within the class of mono-
tone valuations, the class of substitute valuations is equivalent to the class of
M ♮-concave (read “M natural concave”) functions introduced by Murota and
Shioura [28]. The notion of M ♮-concavity is an extension of the notion of M-
concavity, introduced by Murota [27]. In turn, M-concavity is a generalization
of the notion of valuated matroids introduced by Dress andWenzel [12, 13], and
valuated matroids are generalizations of matroid rank functions. As pointed
out by Gale [16], matroids are intertwined with the theory of problems for
which the greedy algorithm is optimal. Substitute valuations are associated
with markets such that a simple ascending price auction is optimal. Further-
more, the assignment problem (a.k.a. weighted bipartite matching problem)
is a prototype of both the theory of algorithms in matroid theory, and equi-
librium theory in economics. So the connection between matroid theory and
auction theory is a strong one.
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3 Parameterization of substitute valuations on four goods

Let SK denote the set of all nondecreasing substitute valuations on K (with
value zero at ∅), viewed as a subset of R

2K . Recall that a polyhedron (or
polyhedral set) is a nonempty set that can be represented as the intersection
of finitely many half-spaces. The following is a corollary of Proposition 4:

Corollary 9 For K ≥ 1, the set SK can be represented as the union of finitely
many polyhedrons.

Proof. By Proposition 4, the set SK is the subset of R2K , satisfying the nor-
malization at ∅, monotonicity, submodularity, and S3 conditions. The normal-
ization constraint, namely v(∅) = 0, requires that v be in the intersection of
the two half-spaces, {v(∅) ≤ 0} and {v(∅) ≥ 0}. Also, each constraint in the
definition of monotonicity or submodularity is equivalent to constraining v to
be in a half-space. Condition S3 is equivalent to the requirement that for any
bundle A and ordered set of goods i, j, k not in A, at least one of the following
two constraints holds:

v(Aij) + v(Ak) ≥ v(Aik) + v(Aj) or v(Aij) + v(Ak) ≥ v(Ajk) + v(Ai).

That is, v must be in one of two half-spaces. Making a particular choice of half-
space for each such A, i, j, k, thus specifies a subset of substitute valuations
forming a polyhedron. The union of such polyhedrons, over all choices for the
half-space for each A, i, j, k, is SK .

The maximal polyhedral subsets of SK are the polyhedral subsets of SK which
are not proper subsets of any other polyhedral subsets of SK . Corollary 9
implies that SK is equal to the union of its maximal polyhedral subsets. The
dimension of a polyhedron is the dimension of the smallest affine subspace
containing the polyhedron. In this section we identify the maximal polyhedral
subsets of SK for 1 ≤ K ≤ 4, and note their dimensions. The emphasis is on
the case K = 4, but the other cases help build intuition.

3.1 K=1

Clearly, S1 = {(v(∅), v(1)) : v(∅) = 0, v(1) ≥ 0}, so that S1 itself is a polyhe-
dron, which is one dimensional.
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3.2 K=2

The set S2 consists of all four-vectors (v(∅), v(1), v(2), v(12)) satisfying the
normalization constraint: v(∅) = 0, the monotonicity constraints: v(1) ≥
0, v(2) ≥ 0, v(12) ≥ v(1), v(12) ≥ v(2), and the submodularity constraint
v(12)− v(1)− v(2) + v(∅) ≤ 0. Note that condition S3 is vacuous for K = 2.
Therefore, S2 itself is a polyhedron, which is three dimensional.

3.3 K=3

The set S3 consists of vectors of length eight, so it is tedious to write out the
constraints directly in terms of the values of v. We instead use the representa-
tion v(A) = µ ·A− θ(A). Let v be a substitute valuation on K = {1, 2, 3}. Let
a = min{θ(12), θ(13), θ(23)}. By the double minimum property of θ, S3θ, there
is a permutation (i, j, k) of (1, 2, 3) so that θ(ij) = θ(ik) = a. Let b = θ(jk)
and c = θ(ijk). We claim that the following conditions are satisfied by the six
parameters a, b, c, µi, µj, µk:

0 ≤ a ≤ b, a + b ≤ c, µi ≥ c− b, µj ≥ c− a, µk ≥ c− a. (1)

We have 0 ≤ a by the supermodularity of θ (or equivalently the submodularity
of v), and a ≤ b by the choice of a and b. The next inequality, a + b ≤ c,
also follows from the supermodularity of θ. The last three inequalities in (1)
result from the monotonicity of v: they insure that adding a third good to
the other two does not decrease v. So any substitute valuation for K = 3 can
be represented as above as claimed. Conversely, if (i, j, k) is a permutation of
(1, 2, 3) and the six parameters a, b, c, µi, µj, µk satisfy (1), then the interaction
function θ with θ(ij) = θ(ik) = a, θ(jk) = b, and θ(ijk) = c, together with
µ, determines a substitute valuation. (Since submodularity is insured by the
first two sets of inequalties, monotonicity of v when going from two goods
to three implies monotonicity in general.) The set of all substitute valuations
obtained this way, for the permutation (i, j, k) fixed, specifies a six dimensional
polyhedral subset of S3. Goods j and k play a symmetric role in the above,
so that the same polyhedron results if j and k are swapped. Thus, S is the
union of three six-dimensional polyhedrons, determined as above for i = 1,
i = 2, or i = 3. The three polyhedrons can also be compactly expressed as
S3∩{δ12 = δ13},S3∩{δ12 = δ23}, and S3∩{δ13 = δ23}. The intersection of any
two of these three maximal polyhedrons is the five-dimensional polyhedron
S3 ∩ {δ12 = δ13 = δ23}.
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3.4 K=4

Let v be a valuation on K = {1, 2, 3, 4}. We can focus on identifying the
possible values of the interaction function θ(A) on bundles with |A| = 2 and
|A| = 3. Indeed, suppose θ is specified on such sets consistently with super-
modularity (i.e. so that δij ≥ 0 and δij|k ≥ 0 for distinct goods i, j, k). Then, θ
will be supermodular if θ(1234) is large enough, and v will be nondecreasing if
the components of µ are large enough. The resulting v will be a nondecreasing
substitute valuation if and only if θ satisfies conditions S3θ(2) and S3θ(3), or
equivalently, δ satisfies conditions S3δ(2) and S3δ(3).

Suppose that v is a substitute valuation. Consider the complete undirected
graph with vertex set K and associate with an edge ij the value δij. By condi-
tion S3δ(2), the δ’s around any triangle in the graph have the double minimum
property. Let a be the minimum value of the δ’s for the six edges. At least one
vertex has two incident edges with δ’s equal to a. Denote by Case 1 the case
that some vertex i has three edges incident with δ’s equal to a. In Case 1, let
b denote the smallest δ value on the triangle jkl. By permuting the vertices
if necessary, we assume that δjk = δjl = b. Let c = δkl. Then a ≤ b ≤ c,
and it is possible that a < b < c. Denote by Case 2 the case that there is
a cycle of length four such that all four δ’s around the cycle are equal to
a. By renumbering the vertices, if necessary, we can assume in Case 2 that
δij = δjk = δkl = δil = a. Let δik = b and δjl = c. Then a ≤ min{b, c}, and it
is possible that a < min{b, c}.

The two cases are indicated in Figure 1. On one hand, at least one of the cases
must hold (for a suitable labeling of the vertices). On the other hand, both
cases hold if and only if at least five of the δ’s are equal to a. By checking

Case 2

i

j k

l

a a

a

b

b c

i

j k

l

a

a

cb

a

a

Case 1

Fig. 1. Possibilities for the δ values for a substitute valuation with K = 4.

each of the two cases, the following lemma, used in the next section, is easily
verified.

Lemma 10 If v satisfies S3δ(2) then (δij+δkl, δik+δjl, δil+δjk) has the double
minimum property for any distinct goods i, j, k, and l.

Condition S3δ(3) is summarized in Table 1. Each row of the table lists a
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single good, followed by the three δ’s given that good. For example, the first
row begins with good i, and the three values following it are equal to δkl|i, δjl|i,
and δjk|i. Here θ−i = θjkl = v(j) + v(k) + v(l) − v(jkl), and θ−j , θ−k, and
θ−l are defined similarly, and we use the fact δij|k = θ−l − δik − δjk. Condition
S3δ(3) means that the three quantities in each row of the table have the double
minimum property.

Table 1
Summary of Condition S3δ(3) for K = 4.

i θ−j − δik − δil θ−k − δij − δil θ−l − δij − δik

j θ−i − δjk − δjl θ−k − δij − δjl θ−l − δij − δjk

k θ−i − δjk − δkl θ−j − δik − δkl θ−l − δik − δjk

l θ−i − δjl − δkl θ−j − δil − δkl θ−k − δil − δjl

Table 2
Specialization of Table 1 to Case 1, with the main subcase indicated by boxes.

i θ−j − a− a θ−k − a− a θ−l − a− a

j θ−i − b− b θ−k − a− b θ−l − a− b

k θ−i − b− c θ−j − a− c θ−l − a− b

l θ−i − b− c θ−j − a− c θ−k − a− b

Let us now examine Case 1 further. If Case 1 holds, Table 1 becomes Table 2.
(Ignore the boxes in Table 2 for a moment.) It turns out that if a = b or b = c,
or if the three entries in a row of the table are all equal, then the substitute
valuation v is in the intersection of multiple maximal polyhedrons of S4. So,
for the purposes of identifying individual maximal polyhedrons, assume that
a < b < c, and seek values of θ−i, θ−j , θ−k, and θ−l so that precisely two entries
in each row achieve the row minimum. A priori, there are 81 possible choices
of two entries per row of Table 2 to be row minimums, but as we will see, the
condition a < b < c greatly reduces the number of possibilities. One possibility
is indicated by the boxes in Table 2, showing which entries in each row are
equal to the minimum value in the row. We call this the main subcase of Case
1. The two boxed terms in each row are equal, and the third term in each row
is strictly larger than the two equal terms, if and only if the following two con-
ditions are satisfied: θ−k = θ−l, θ−i = θ−j+b−a, and a−b > θ−k−θ−i > a−c.
Looking for more possibilities, notice that if the last two entries in the first
row are boxed as in the main subcase of Case 1, then the same must be true
in the second row. Similarly, the choice in the third row forces the choice in
the fourth row. Suppose we change the choice in the third row to boxing the
second and third terms. This forces θ−i+a−b > θj = θ−l+c−b, and therefore
forces the second and third terms in the fourth row to be boxed. This gives
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rise to the case shown in Table 3, in which no term involving θ−i is boxed.
We call this Case 1i. There are three more subcases of Case 1, which we de-
note by Case 1j, Case 1k, and Case 1l. Case 1i, (1j, 1k, or 1l, respectively),
corresponds to θ−i (θ−j , θ−k, or θ−l, respectively) being so large that none of
the terms in Table 2 involving it (i.e. all terms in one column of the table)
are a minimum in their row. Due to the assumption a < b < c, the choice
of boxed terms in Case 1i is unique even for the first row of the table. The
main subcase and cases 1i through 1l comprise all possibilities. Each of the

Table 3
Case 1i is indicated by boxes.

i θ−j − a− a θ−k − a− a θ−l − a− a

j θ−i − b− b θ−k − a− b θ−l − a− b

k θ−i − b− c θ−j − a− c θ−l − a− b

l θ−i − b− c θ−j − a− c θ−k − a− b

five subcases of Case 1 corresponds to a maximal polyhedron contained in the
set of all substitute valuations. All five subcases of Case 1 can be combined
into the following set of conditions:

Case 1:
a− b ≥ min{θ−k, θ−l} −min{θ−i, θ−j + b− a} ≥ a− c, where
either the first inequality holds with equality, or θ−k = θ−l, and
either the second inequality holds with equality, or θ−i = θ−j + b− a.
min{θ−k, θ−l} ≥ a + b (needed for submodularity)
min{θ−i, θ−j + b− a} ≥ b+ c (needed for submodularity)

For Case 2 we assume that a < min{b, c}, for, as can be checked at the end,
if this assumption does not hold, then v is in multiple maximal polyhedrons.
With this asumption, Case 2 can similarly be divided into five subcases, with
each subcase corresponding to a maximal polyhedron in S4. In the main sub-
case of Case 2, the boxed items in Table 4 are the minimums in their rows.
All five subcases of Case 2 can be combined into the following:
Case 2:

b− a ≥ min{θ−j , θ−l} −min{θ−i, θ−k} ≥ a− c, where
either the first inequality holds with equality, or θ−j = θ−l, and
either the second inequality holds with equality, or θ−i = θ−k.
min{θ−j , θ−l} ≥ a + b (needed for submodularity)
min{θ−i, θ−k} ≥ a+ c (needed for submodularity)

Proposition 11 There are 75 maximal polyhedrons comprising S4, and each
is ten-dimensional. Of the 75 maximal polyhedrons, there are 12 corresponding
to each of the five subcases of Case 1, and three corresponding to each of the
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Table 4
Specialization of Table 1 to Case 2, with the main subcase indicated by boxes.

i θ−j − b− a θ−k − a− a θ−l − a− b

j θ−i − a− c θ−k − a− c θ−l − a− a

k θ−i − a− a θ−j − b− a θ−l − b− a

l θ−i − c− a θ−j − a− a θ−k − a− c

five subcases of Case 2.

Proof. If Case 1 holds and a < b < c, then vertices i and j are uniquely
identified, but if vertices k and l are swapped, Case 1 still holds. Consequently,
there are 12 ways that Case 1 can hold, due to four possibilities for which
vertex to label i, and then three possibilities of which vertex to label j, and, as
described above, five subcases for each labeling of the vertices. If a < min{b, c},
then up to exchanging values of b and c, there are three ways that Case 2 can
hold, corresponding to the three ways to select the pair of non-overlapping
edges having values other than a. And there are five subcases of Case 2 for each
possibility. The maximal polyhedrons comprising S4 are constrained by three
equalities among the δij ’s, two equalities among the θ−i’s, and the equality
v(∅) = 0, leaving ten out of 16 dimensions remaining.

Remark 12 The above parameterization suggests a simple way to generate
substitute valuations on four goods. First choose i, j, k, l to be a random per-
mutation of 1, 2, 3, 4. Then select which of the ten subcases should hold, and
then generate an element of the corresponding polyhedron.

4 Generation of substitute valuations by Monte Carlo simulation

An algorithm for generating a nondecreasing substitute valuation on a com-
puter using a random number generator is presented in this section. The al-
gorithm is formulated using the representation v(A) = µ · A− θ(A), in terms
of v’s interaction function θ and vector of valuations of singleton sets, µ. That
is, the algorithm produces (θ(A) : A ∈ 2K) with θ(A) = 0 for |A| ≤ 1 so that
for all bundles A and distinct goods i, j not in A:

θ(Aij) ≥ θ(Ai) + θ(Aj)− θ(A) (2)

and for all bundles A and distinct goods i, j, k not in A:

θ(Aij) + θ(Ak) ≥ min{θ(Aik) + θ(Aj), θ(Ajk) + θ(Ai)}, (3)
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Algorithm 1. Substitute Valuation Generation Algorithm

Step 1 Generate θo and µo. Initialize θ to θo.
Step 2 for 2 ≤ L ≤ K

for bundles A with |A| = L− 2 and distinct i, j 6∈ A
increase θ(Aij) by the minimum amount so (2) holds.

while changes, for bundles A with |A| = L− 2 and distinct i, j, k 6∈ A
increase θ(Aij) by the minimum amount so (3) holds.

Step 3 for 1 ≤ k ≤ K
µ(k) := max{µo(k),maxA:k 6∈A θ(A)− θ(Ak)}.

and it produces µ so that for all goods k:

µ(k) ≥ max
A:k 6∈A

θ(Ak)− θ(A). (4)

The algorithm is shown in brief in the box, and is now explained in more
detail. In Step 1, nominal values θo and µo are generated. To avoid problems
with roundoff error and to insure convergence, we require θo and µo to be
integer valued. The θ, µ, and v produced by the algorithm will also be integer
valued. The nominal valuation vo = µo ·A−θo(A) need not have the substitute
property. For example, we could take the value θo(A) for each bundle A to be
a random variable which is uniformly distributed over the interval of integers
[0, m|A|] for some constant m, or the sum of |A| independent random vari-
ables, each uniformly distributed over the interval [0, m] for some m. These
suggestions are rather arbitrary, but they give larger means and variances for
larger bundles. In a particular application, there may be a priori knowledge
about the typical distribution of the valuations which could be incorporated
into this step. The nominal values θo(A) need not be independent.

Step 2 of the algorithm produces θ in K − 1 phases, indexed by L running
from 2 to K, and each phase has two parts. In the first part of phase L, for
each bundle A with |A| = L− 2, and each choice of distinct goods i and j not
in A, the following statement is executed:

θ(Aij) := max{θ(Aij), θ(Ai) + θ(Aj)− θ(A)}. (5)

This insures supermodularity of θ up to level L. There is no need to visit a
particular A, i, j more than once in this part of the phase. The second part of
phase L consists of one or more iterations. In each iteration, for each bundle
A with |A| = L − 2, and each choice of distinct goods i, j, k not in A, the
following statement is executed:

θ(Aij) := max {θ(Aij),min{θ(Aik) + θ(Aj), θ(Ajk) + θ(Ai)} − θ(Ak)} .
(6)
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Multiple iterations may be needed in the second part of phase L because of
the terms θ(Aik) and θ(Ajk), which also involve θ evaluated on sets of cardi-
nality L, in the righthand side of (6). These terms may be increased after the
statement for θ(Aij) is executed, during the same iteration, which can require
that θ(Aij) be increased again later. The inclusion of the term θ(Aij) on the
righthand sides of (5) and (6) insures that the θ values are nondecreasing
during execution of the algorithm. If there are no changes during an iteration,
then the second part of phase L of the algorithm is complete. This happens if
and only if θ satisfies condition S3θ(L) before the iteration. By the nature of
the algorithm, the proof of correctness comes down to a proof that the number
of iterations needed in each phase of Step 2 is finite.

Step 3 of the algorithm sets µ to the smallest vector greater than or equal to
µo such that (4) is satisfied. The description of the algorithm is complete.

Note that randomization is used only in Step 1 of the algorithm. The de-
terministic portion of the algorithm, Steps 2 and 3, insure that the θ and µ
produced satisfy the substitutes and monotonicity conditions. There may be
other applications for the deterministic portion of the algorithm. For exam-
ple, the true valuation of a buyer may not quite be a substitute valuation, and
participation in a particular auction may require an input that is a substitute
valuation. Then the deterministic portion of the algorithm could be run to
find a substitute valuation close to the original valuation.

We define a partial ordering “≺” on the set of interaction functions, which
is pointwise within levels and lexicographic among levels, as follows. Write
θ′ ≺ θ if θ′ = θ or if there exists L with 2 ≤ L ≤ K such that θ(A) = θ′(A)
if |A| < L, θ(A) ≤ θ′(A) if |A| = L, and θ(Ao) < θ′(Ao) for some Ao with
|Ao| = L.

Proposition 13 The algorithm terminates in finite time, and the correspond-
ing valuation v(A) = µ ·A− θ(A) is a nondecreasing substitute valuation. The
interaction function θ produced is minimal in the “≺” order, among all super-
modular interaction functions satisfying S3θ which pointwise dominate θo.

A proof of Proposition 13 is given in this section, but first some properties
connected with substitute valuations are given.

Definition 14 (Property F4θ(L)) Let 2 ≤ L ≤ K−2. An interaction function
θ is said to have property F4θ(L) if (θ(Aij)+θ(Akl), θ(Aik)+θ(Ajl), θ(Ail)+
θ(Ajk)) has the double minimum property whenever A is a bundle with |A| =
L− 2, and i, j, k, l are distinct goods not in A.

Lemma 15 Let 2 ≤ L ≤ K−2. If θ satisfies S3θ(L) then it satisfies F4θ(L).

Proof. This result for K = 4 was already stated as Lemma 10. That is, if
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K = {i, j, k, l}, then the fact that the double minimum property is satisfied by
any three of the six numbers δij , δik, δil, δjk, δjl, δkl corresponding to a triangle,
implies the double minimum property for the triple (δij+δkl, δik+δjl, δil+δjk).
In general, for 2 ≤ L ≤ K − 2, for a bundle A fixed with |A| = L − 2, and
for distinct goods i, j, k, l not in A, condition S3θ(L), which is equivalent to
condition S3δ(L), implies that the double minimum property is satisfied by
any three of the six numbers δij|A, δik|A, δil|A, δjk|A, δjl|A, δkl|A corresponding to
a triangle. So by the same reasoning used for Lemma 10, S3θ(L) implies that
(δij|A + δkl|A, δik|A + δjl|A, δil|A + δjk|A) satisfies the double minimum property,
and thus that F4θ(L) holds.

Lemma 16 Suppose either L = 1, or 2 ≤ L ≤ K − 1 and (θ(A) : |A| = L)
satisfies F4θ(L). Also, suppose µ ∈ R

K, and suppose θ is determined on sets
A with |A| = L+ 1 as follows:

θ(A) = min
i∈A

(θ(A− i) + µ(i)). (7)

Then θ satisfies S3θ(L+ 1).

Proof. Let |A| = L − 1 and suppose i, j, k are distinct goods not in A. Let
l∗ be a good in Aij such that θ(Aij) = θ(Aij − l∗) + µ(l∗). It must be shown
that

θ(Aij − l∗) + µ(l∗) + θ(Ak) ≥ (8)

min
{
min
l′∈Aik

θ(Aik − l′) + µ(l′) + θ(Aj), min
l′′∈Aik

θ(Ajk − l′′) + µ(l′′) + θ(Ai)
}
.

If l∗ = i, then trivially,

θ(Aij − l∗) + µ(l∗) + θ(Ak) = θ(Aik − l∗) + µ(l∗) + θ(Aj).

Since l∗ is a possible value of l′ in (8), (8) follows. Similarly, (8) is true if
l∗ = j. So for the remainder of this proof we suppose that l∗ ∈ A, which can
happen only if L ≥ 2. Let B = A− l∗. By F4θ(L),

θ(Bij) + θ(Bl∗k) ≥ min{θ(Bik) + θ(Bjl∗), θ(Bjk) + θ(Bil∗)}

which is equivalent to

θ(Aij − l∗) + µ(l∗) + θ(Ak) ≥

min{θ(Aik − l∗) + µ(l∗) + θ(Aj), θ(Ajk − l∗) + µ(l∗) + θ(Ai)}.

Since l∗ is a possible value for either l′ or l′′, this implies (8).
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Proof of Proposition 13. Step 3 insures that the output valuation is non-
decreasing, so it is sufficient to show that Step 2 of the algorithm eventually
terminates, and the interaction function θ produced satisfies the properties ad-
vertised in the proposition. Suppose θ′ is any supermodular interaction func-
tion satisfying S3θ which pointwise dominates θo. During phase L, the algo-
rithm only modifies values of θ(B) with |B| = L, and it does so by increasing
the values the smallest amount possible, so as to satisfy the supermodularity
and S3θ(L) conditions. If phase L is completed, θ must be supermodular up
to level L and satisfy S3θ(L). Moreover, if θ(B) = θ′(B) for all sets B with
|B| < L, then θ(B) ≤ θ′(B) for all sets B with |B| = L. Therefore, if the algo-
rithm terminates, the interaction function θ produced must have the desired
properties.

It remains to show that the algorithm terminates. To that end, it will be shown
by induction on L that, for 1 ≤ L ≤ K, the following statement is true: Either
L = 1 or the algorithm completes phase L. The statement is trivially true
for the base case L = 1. For the sake of argument by induction, suppose the
statement is true for some L with 1 ≤ L ≤ K − 1. If L ≥ 2, then at the end
of execution of phase L, θ satisfies S3θ(L), and hence also F4θ(L), by Lemma
15. Thus, either L = 1, or 2 ≤ L ≤ K − 1 and θ satisfies F4θ(L). Let

θ(A) =





θ(A) if |A| ≤ L

c+mini∈A θ(A− i) if |A| = L+ 1,

where c is a constant chosen large enough that θ is supermodular up to level
L+1, and θ(A) ≥ θo(A) for all A with |A| = L+1. By Lemma 16 with µ(i) = c
for all i, it follows that θ satisfies S3θ(L+1). It follows that (θ(A) : |A| = L+1)
is bounded above by (θ(A) : |A| = L+1) throughout execution of phase L+1
of the algorithm. Since some entry in (θ(A) : |A| = L + 1) strictly increases
each time the algorithm finds a violation of S3θ, since (θ(A) : |A| = L+ 1) is
bounded above, and since all the values are integers, execution of phase L+1
must terminate in a finite number of steps. Therefore, the induction statement
is true for L+ 1, and hence for all L in the range 1 ≤ L ≤ K, as required.

Remark 17 The number of iterations required by the algorithm was proved to
be finite by appealing to the assumption that integer values are used. Unfortu-
nately, the number of iterations of the algorithm is not bounded by a function
of K alone. Indeed, if K = 6, and the nonzero values of θo are θo(111100) =
θo(110011) = θo(001111) = m ≥ 1 and θo(000111) = θo(010111) = θo(100111) =
1, then θo satisfies S3θ(2) and S3θ(3) and θo is submodular up to level L = 4.
Thus, at the beginning of the second half of phase L = 4 of Step 2, θ = θo.
Starting from that point, for 1 ≤ j ≤ m, after j iterations, θ(A) = j for
all A with |A| = 4 and A 6∈ {111100, 110011, 001111}, and θ is still equal to
m on {111100, 110011, 001111}. After m iterations, θ(A) = m for all A with
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|A| = m, and no changes are made during the (m+ 1)th iteration. Therefore,
m+1 iterations are needed. Since m is an arbitrary positive integer, the num-
ber of iterations is thus not bounded by a function of K alone. However, for
all distributions of θo that we tried along the lines of those we suggested for
Step 1, the average number of iterations per level was less than 2.1 per level,
for up to K = 20. It was only through running millions of examples that we
discovered the behavior exhibited in this example.

Remark 18 Condition F4θ(L) for L fixed, when translated to a condition
on v, is a special case of the local exchange property EXCloc introduced by
Murota [27, p. 282]. As noted at the end of Section 2, substitute valuations
are M ♮ concave functions. It follows that valuations restricted to a single level
{A ∈ 2K : |A| = L} are M-concave (in fact they are valuated matroids).
Murota [27] showed that the local exchange property implies the seemingly
more general exchange property in the definition of M-concavity.

As a by-product of the proof of convergence of Proposition 13, we recover the
following result about L-satiation (defined in Section 2):

Corollary 19 [7] Let 0 ≤ L ≤ K. Then the L-satiation of a substitute valu-
ation is also a substitute valuation.

Proof. Let v̂ be a substitute valuation, and let v denote its L-satiation. To
avoid trivialities, assume 1 ≤ L ≤ K − 1. Since v equals v̂ up to level L, v is
nondecreasing, is submodular, and satisfies S3, all up to level L. That is,

(1) v(A) ≤ v(Ai) whenever A is a bundle with |A| ≤ L − 1 and i is a good
not in A

(2) v(Aij)−v(Ai)−v(Aj)+v(A) ≤ 0 whenever A is a bundle with |A| ≤ L−2
and i and j are distinct goods not in A

(3) S3(L′) holds for 0 ≤ L′ ≤ L.

It suffices to show that v is nondecreasing, submodular, and satisfies S3, all up
to level L+1, for then an obvious proof by induction can be used to show that
these properties hold for all levels, implying that v is a substitute valuation.

Clearly, v is nondecreasing up to level L + 1. To prove that v is submodular
up to level L + 1, let A be any bundle with |A| = L − 1, and let i and j be
goods not in A. It must be shown that for any item k ∈ Aij, v(Aij − k) −
v(Ai) − v(Aj) + v(A) ≤ 0. If k ∈ {i, j} this inequality is true because v is
nondecreasing. If k ∈ A, then with B = A− k, the inequality reduces to

v(Bij)− v(Bik)− v(Bjk) + v(Bk) ≤ 0 (9)

But, by property S3(L), either v(Bij)+ v(Bk) ≤ v(Bik)+ v(Bj) or v(Bij)+
v(Bk) ≤ v(Bjk) + v(Bi). Either one of these inequalities and the fact v is
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nondecreasing implies (9). Therefore, v is submodular up to level L+ 1.

By Lemma 15, the interaction function of v satisfies F4θ(L). Let the vector
µ in the construction (7) of Lemma 16 denote the single item price vector for
v. Then, with θ denoting the interaction function of v, (7) is equivalent to
v(A) = maxi∈A v(A− i). That is, the extension formula (7) is the same as the
definition of v on level L + 1 as the L-satiation of v̂. Therefore, Lemma 16
implies that v has property S3(L+ 1).

Remark 20 Submodularity by itself is not necessarily preserved by L-satiation.
For example, the following valuation is nondecreasing and submodular (but is
not a substitute valuation):

A ∅ i j k l ij ik il jk jl kl ijk ijl ikl jkl ijkl

v̂(A) 0 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5

Its 2-satiation satisfies v(ijkl) − v(ijk) − v(ijl) + v(ij) > 0, and so it is not
submodular.

5 Assignment valuations

Assignment valuations form an important subclass of substitute valuations,
and they can be described as follows. An economy of n buyers, each with a
single unit valuation, can be represented by an n×K weight matrix W , with
entry wi,k denoting the value of good k to buyer i. The aggregate valuation
v = v1 ∗ · · · ∗ vn for such a set of buyers is determined by an assignment
problem for each bundle A, described as follows. For notational convenience,
let △ be a null item, not in K, and let wi△ = 0 for any buyer i. For any
A ⊂ K, an assignment of the goods in A to the n buyers is given by a mapping
σ : {1, · · · , n} → A ∪ {△} such that σi = σj only if σi = σj = △. The
interpretation is that buyer i is allocated good σi. All goods in A need not
be allocated. Let T (A) denote the set of such assignments. Then v(A) =
max{

∑n
i=1wi,σi

: σ ∈ T (A)}. A valuation v arising from a weight matrix
W in this way is called an assignment valuation. Assignment valuations are
an important subclass of substitute valuations. Special cases of assignment
valuations include the linear valuations and the separable concave valuations,
mentioned in Section 1.
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5.1 Assignment valuations with monotone assignments

If the weight matrix W for an assignment valuation v satisfies certain con-
ditions, then there is a very simple formula for the valuation. Specifically,
suppose W has dimension K ×K with the following properties:

(1) (Nonnegative) w(i, k) ≥ 0 for 1 ≤ i ≤ K, 1 ≤ k ≤ K,
(2) (Nonincreasing in i) w(i+ 1, k) ≤ w(i, k) for 1 ≤ k ≤ K, 1 ≤ i ≤ K − 1,
(3) (Supermodular) w(i + 1, k + 1) − w(i, k + 1)− w(i+ 1, k) + w(i, k) ≥ 0

for 1 ≤ i ≤ K − 1, 1 ≤ k ≤ K − 1.

An example for K = 5 is as follows:

W =




32 35 25 26 22

24 30 20 21 19

16 22 14 16 14

9 15 7 9 9

2 8 1 4 5




.

Writing a bundle A as A = {k1, . . . , kL} with k1 < · · · < kL, we claim that
an optimal assignment for A is given by σi = ki for 1 ≤ i ≤ L. That is, for
1 ≤ i ≤ L, the ith buyer is allocated the ith good in A. To see this, note by the
monotonicity and nonnegativity that the goods should be assigned to buyers
1 through L, and then the supermodularity implies that if 1 ≤ i < i′ ≤ L and
if buyer i is assigned a good with a higher index than the good assigned to
buyer i′, then the value of the assignment is not decreased if the goods are
swapped.

Hence, the valuation v can be expressed in terms of W as follows:

v({k1, · · · , kL}) =
L∑

i=1

w(i, ki).

An interpretation is that there is a variable value for each item k included in
the assigned set. The variable value for an item k is w(i, k) if k is the ith good
in the bundle.

Since the maximum matchings do not involve w(i, k) for k < i, the same
matchings are still maximum weight matchings with the same values if W is
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changed by setting w(i, k) = 0 for k < i, to obtain a matrix of the form:

Ŵ =




32 35 25 26 22

0 30 20 21 19

0 0 14 16 14

0 0 0 9 9

0 0 0 0 5




.

The matrix Ŵ satisfies the following conditions:

(0̂) (Upper triangular) ŵ(i, k) = 0 for 1 ≤ k < i ≤ K,
(1̂) (Nonnegative) ŵ(i, k) ≥ 0 for 1 ≤ i ≤ K, 1 ≤ k ≤ K,
(2̂) (Supermodular on upper triangle) ŵ(i + 1, k + 1) − ŵ(i, k + 1) − ŵ(i +
1, k) + ŵ(i, k) ≥ 0 for 1 ≤ i ≤ K − 1, i < k ≤ K − 1,
(3̂) (Nonincreasing in i for k = K) ŵ(i+ 1, K) ≤ ŵ(i, K) for 1 ≤ i ≤ K − 1,
(4̂) (Extension condition) (ŵ(k, k) + ŵ(k + 1, k + 1) · · ·+ ŵ(K,K))−
(ŵ(k, k + 1) + ŵ(k + 1, k + 2) + · · ·+ ŵ(K − 1, K)) ≥ 0 for 1 ≤ k ≤ K − 1.

Moreover, in general, the reverse direction can be taken:

Proposition 21 Suppose a weight matrix Ŵ satisfies the conditions 0̂ − 4̂
above. Then an optimal assignment for any bundle A = {k1, . . . , kL} with
k1 < · · · < kL, is given by σi = ki for 1 ≤ i ≤ L.

Proof. It suffices to show that Ŵ can be modified in positions i > k so that the
modificationW satisfies the original conditions 1-3. Working from right to left,
it is clear that if Ŵ is to be modified for indices i > k so that the modification
is supermodular everywhere, then the maximal such modification is such that
ŵ(i + 1, k + 1) − ŵ(i, k + 1) − ŵ(i + 1, k) + ŵ(i, k) = 0 for 1 ≤ k < i ≤ K.
Such a supermodular modification of Ŵ will be nonincreasing in i for all k
because of the supermodularity and condition 3̂. It remains to check that the
modification is nonnegative. However, the quantities in condition 4̂ are the first
K − 1 entries of the last row of the modified matrix. Thus, the modification
W of Ŵ satisfies conditions 1-3, as claimed.

See [31, Section 3.2] for much more general versions of this monotonicity result.

Just as the set of all substitute valuations SK can be represented as a union
of finitely many polyhedrons, the same is true for the set of assignment val-
uations. Indeed, there is a finite number of ways to select an assignment σ
for each set of goods A. Some selections are the optimal ones for a nonempty
set of weight matrices W , which forms a polyhedron within the set of weight
matrices. The corresponding valuations for the fixed selections thus form a
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polyhedral subset of SK . The union of such sets is precisely the set of assign-
ment valuations.

There are K(K + 1)/2 degrees of freedom in the choice of Ŵ for the weight
matrices described in Proposition 21. Thus,K(K+1)/2 is a lower bound on the
largest dimension of a polyhedral subset of the set of assignment valuations.
An upper bound is K2 − (K − 1), which can be seen as follows. For each
good, we can form a list of the buyers according to decreasing weight, with
ties broken arbitrarily. If a given good is assigned to some buyer, the other
buyers higher on the list for that good should also be assigned to some good.
It can be seen that at most one good would ever be forced to be assigned to
its Kth choice of buyer.

5.2 Assignment valuations for four goods

The following proposition shows the relationship between the maximal poly-
hedrons of the set of substitute valuations and the maximal polyhedrons of
the set of assignment valuations, for four goods.

Proposition 22 All five subcases of Case 1 for K = 4 correspond to as-
signment valuations, and in particular the valuations of Case 1i are those that
arise from Proposition 21 for K = 4, but none of the valuations of Case 2 with
0 < a < min{b, c} are assignment valuations. That is, the maximal polyhe-
drons of assignment valuations in S4 are precisely the 60 maximal polyhedrons
of S4 corresponding to Case 1.

Proof. The valuations in the main subcase of Case 1 correspond to assignment
valuations for the ordering of states (i, j, k, l) = (1, 2, 3, 4) and weight matrices
of the form

W =




µ1 µ2 µ3 µ4

µ1 − a µ2 − b µ3 − c 0

0 µ2 − d µ3 − e 0

0 0 µ3 − f 0




.

under the following constraints on the constants involved. The constants a, b, c
and the vector µ have the same significance as in Case 1. The constraints on
a, b, c, d, e, f are 0 ≤ a ≤ b ≤ c ≤ e ≤ f and 0 ≤ e − d ≤ c − b, while
the constants d, e, f parameterize the remaining three degrees of freedom in
the choice of θ. The vector µ must be large enough so that for any bundle
A, it is optimal to assign all goods in A for the purposes of computing v(A).
Equivalently, if only such full matchings are considered, the resulting valuation
should be nondecreasing in A. In this case, it means that µ should satisfy the
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constraints:

µ1 ≥ a+ d− b+ f − e, µ2 ≥ d+ f − e, µ3 ≥ f, µ4 ≥ f

In the description of other cases below, the constraints on µ are determined
similarly, without comment. Under these constraints, the assignment valuation
falls into the main subcase of Case 1 with θ−l = θ−k = a + d, θ−j = a + e,
θ−i = b + e, and θ(1234) = a + d + f . It is not difficult to show that all
valuations in the main subcase of Case 1 can be so obtained.

The same weight matrixW covers Case 1j under the conditions 0 ≤ a ≤ b ≤ c,
e ≤ f , and 0 ≤ d− b ≤ e− c.

The same weight matrix W covers Case 1k under the conditions 0 ≤ a ≤ b ≤
c ≤ e ≤ min{d, f}. Since k and l play a symmetric role in Case 1, we can
cover Case 1l by using W with the third and fourth columns interchanged.

Finally, to obtain Case 1i we can use the weight matrix

W ′ =




µ1 µ2 µ3 µ4

µ1 − a µ2 − b µ3 − c 0

µ1 − d µ2 − e 0 0

µ1 − f 0 0 0




.

with the conditions a ≤ b ≤ c, e−b ≥ d−a ≥ 0, and f ≥ d. The set of possible
values of the matrix W ′ as the ten constants vary (including the constraints on
the µk’s) corresponds to the set of matrices Ŵ given by Proposition 21, except
with the columns listed in reverse order. That is, for K = 4, Proposition 21
refers to the valuations of Case 1i.

Lehmann et al. [21, Example 1] gives an example of a substitute valuation for
K = 4 which is not an assignment valuation. The example falls into Case 2
with a = 1 and b = c = 5. The following argument, also used in [21], shows
that none of the valuations of Case 2 with 0 < a < min{b, c} are assignment
valuations. For the sake of argument by contradiction, suppose v is a valuation
in Case 2 with 0 < a < min{b, c}, and that v is an assignment valuation for a
weight matrix W . Since all the pairwise δ’s are strictly positive, some row of
W must equal (v(i), v(j), v(k), v(l)), and each of these entries is the maximum
entry in its respective column. Since δik > a, any other entry of column k must
be strictly less than v(k)−a. Similarly, since δjl > a, any other entry of column
j must be strictly less than v(j) − a. But then it is impossible that δjk = a.
Therefore, as claimed, none of the valuations of Case 2 with 0 < a < min{b, c}
are assignment valuations.
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6 Speckled valuations

It turns out that some substitute valuations are significantly different from
assignment valuations, and they cover polyhedrons with substantially larger
dimension.

Proposition 23 There is a polyhedron contained in S16 with dimension 2,727,
and a polyhedron contained in S24 with dimension 424,607. For any K ≥ 2,
there is a polyhedron contained in SK with dimension at least 2K−1+ 2K−1−2

K
.

Before getting to the proof of the proposition, we shall introduce some termi-
nology from the theory of binary codes. A codeword of length K is a binary
sequence of length K, and the weight of a codeword is the number of one’s in
the codeword. A bundle A naturally corresponds to the codeword with a one in
the kth position if and only if good k is in A, for 1 ≤ k ≤ K. Let dH(A,A

′) de-
note the Hamming distance between two sets: i.e. dH(A,A

′) = |A\A′|+|A′\A|.

The proof of the proposition is based on the following construction, valid for
K ≥ 2. Let α1, · · · , αK and β2, β3, . . . βK be constants in the interval [0, 1].
Let β0 = β1 = 0. Let C denote a collection of bundles such that

(1) For all A ∈ C, 2 ≤ |A| ≤ K − 1 and |A| is even.
(2) If A,A′ ∈ C and |A| = |A′| then dH(A,A

′) ≥ 4.

Let γA be an element of [0, 1] for any A ∈ C. Define the interaction function θ
by

θ(A) = β|A| + I{A∈C}γA + φ(|A|)

where φ(L) = (1.5)L(L−1), and define the vector µ by µk = (3K−1)+αk. Let
v be the corresponding valuation: v(A) = µ ·A− θ(A). We call the valuations
of this form speckled valuations, thinking of the many values of γA for A ∈ C
as specks, or small spots, on the valuation.

Lemma 24 The valuation v is a nondecreasing substitute valuation. For C
fixed, there are 2K − 1 + |C| degrees of freedom in the choice of v.

Proof. It suffices to show that θ has property S3θ, that θ is submodular,
and that v is nondecreasing. Property S3θ amounts to showing that (θ(Aij)+
θ(Ak), θ(Aik) + θ(Aj), θ(Ajk) + θ(Ai)) has the double minimum property
whenever A is a bundle and i, j, k are distinct goods not in A. For fixed
A, i, j, k with |A| = L− 2, this condition involves θ evaluated on three sets of
cardinality L − 1 and three sets of cardinality L. Moreover, the three sets of
cardinality L − 1 each have Hamming distance two to the other two sets of
cardinality L−1. Likewise, the three sets of cardinality L each have Hamming
distance two to the other two sets of cardinality L. Therefore, at most one
of the six sets involved is in C. If none of the six sets is in C, then the three
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values θ(Aij) + θ(k), θ(Aik) + θ(j), θ(Ajk) + θ(Ai) are equal. If one of the six
sets is in C, then (θ(Aij) + θ(k), θ(Aik) + θ(j), θ(Ajk) + θ(Ai)) still has the
double minimum property. So θ has property S3θ.

To see that θ is supermodular, let 2 ≤ L ≤ K, let A be a bundle with car-
dinality L− 2, and let i, j be goods not in A. Note that φ(L) − 2φ(L− 1) +
φ(L− 2) = 3, and also that at most one of Ai and Aj are in C. These obser-
vations and the fact that the β’s and γ’s are in the interval [0, 1] imply that
θ(Aij)−θ(Ai)−θ(Aj)+ θ(A) ≥ 3−2βL−1−1 ≥ 0, so that θ is supermodular.

As for the monotonicity of v, note that for 1 ≤ L ≤ K, φ(L) − φ(L − 1) =
3(L − 1) ≤ 3(K − 1). So if A is a bundle with some cardinality L − 1, and i
is a good not in A, then

v(Ai)− v(A) ≥ 3K − 1− βL−1 − I{A∈C}γA − 3(K − 1) ≥ 0.

Thus v is nondecreasing.

For fixed C, there are 2K − 1+ |C| degrees of freedom in the choice of the α’s,
β’s and γ’s. It is easy to check that the mapping from these variables to v is
linear and invertible.

Proof of Proposition 23. For a fixed C, the dimension of the set of valuations
constructed above is 2K − 1+ |C|, so it remains to show that |C| can be taken
large enough. The maximum possible cardinality of C subject to the above
conditions can be expressed as follows:

|C| =
∑

L:L even, 2≤L≤K−1

A(K, 4, L), (10)

where A(K, 4, L) denotes the maximum possible cardinality of a set of weight
L binary codewords of lengthK with Hamming distance at least 4 between any
two codewords. By symmetry, A(K, 4, L) = A(K, 4, K−L). Tables in [8] show
that A(16, 4, 2) = 8, A(16, 4, 4) ≥ 140, A(16, 4, 6) ≥ 615, and A(16, 4, 8) ≥
1170, so for K = 16 it is possible that |C| = 2(8 + 140 + 615) + 1170 = 2696,
giving the bound for K = 16 in Proposition 23. Similarly, for K = 24, it is
possible that |C| = 2 ∗ (12 + 498 + 7084 + 34914 + 96496) + 146552 = 424560.

It is shown in [17] that A(K, 4, L) ≥ 1
K

(
K

L

)
. This, combined with (10) and the

fact
∑

L:L even
(
K
L

)
= 2K−1, implies that C can be selected with cardinality at

least 2K−1−2
K

, which implies the last statement of the proposition.

Remark 25 The existence of speckled valuations has negative implications
for the problem of finding a computationally efficient way to present arbitrary
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substitute valuations. Suppose, for example, that an algorithm for presenting
substitute valuations takes as input a string x of real numbers, and then the
algorithm determines v(A) for any bundle A as a linear transformation of x,
with coefficients depending on A and x. Symbolically, we can write this as
v(A) =

∑
a h(A, x, a)xa. Suppose further that for each bundle A and index a,

there are only finitely or countably infinitely many possible values of the coeffi-
cient h(A, x, a) as x varies. For example, the assignment valuations described
in Section 5 can be put into this form, with the coefficients h(A, x, a) taking
values {0, 1}. The same is true of the S-presentations and H-presentations
given in [7]. If for every substitute valuation on K items, there is a choice of
input x so that the algorithm outputs the substitute valuation, then the possible
outputs of the algorithm must cover the polyhedrons in SK consisting of speck-
led valuations. But the set of possible output valuations is a finite or countably
infinite union of sets of dimension less than or equal to the length of the input
vector x. Therefore, in view of Proposition 23, the length of x must be greater
than or equal to 2K − 1 + 2K−1−2

K
. For any ǫ > 0, this lower bound exceeds

2(1−ǫ)K for sufficiently large K.

7 Discussion

This paper addresses valuations for single-unit markets, for which each of the
K goods is distinct. In a multi-unit market, there may be multiple goods of the
same type, and the valuation should be invariant with respect to substituting
one good with another of the same type. This poses additional constraints on
v. The Monte Carlo algorithm we presented extends immediately to this case,
because if the nominal function θo satisfies invariance under swapping goods
of the same type, then the resulting θ constructed by the algorithm will be
similarly invariant. That is, to use the terminology of [26], the algorithm can
be used to generate strong substitute valuations for multi-unit auctions. Note
that by mapping from single- to mulit-unit auctions in this way, different goods
of each type can have different prices. Another class of valuations, called weak
substitute valuations in [26], are defined as in Definition 2, with the prices of
all goods of the same type being the same. It would be interesting to find a
method to generate weak substitute valuations.

It would be interesting to find an algorithm for generating substitute valu-
ations such that the running time is bounded by a function of K alone. As
mentioned in Remark 17, there is no such bound for our algorithm. Another
topic for additional work is to see how well a generation algorithm, either the
one we suggested or a new one, can produce valuations with given distribu-
tions. Roughly speaking, if the valuations generated in Step 1 of our algorithm
have a specified distribution, and if the valuations aren’t changed too much by
steps 2 and 3, then the output valuation should approximately have the given
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distribution. As noted in the introduction, there is also much interest in gen-
erating realistic valuations for various practical settings, and such valuations
typically do not have the substitute property.

The examination of the richness of the class of assignment valuations and the
class of all substitute valuations in this paper is purely mathematical, rather
than based on the valuations that arise in practice. While the existence of
the speckled valuations shows that the set of substitute valuations is much
richer than the set of assignment valuations, it is not clear whether the extra
richness has practical value. Further, there are important simple examples of
valuations which are not substitute valuations. The most prominent of them
is the case of two complementary goods: (v(∅), v(1), v(2), v(12)) = (0, 0, 0, 1).

Echenique [14] pursued a different approach to determining the richness of
the set of substitute valuations. The framework for his results is the notion of
substitute introduced by Roth [30]. Roth’s framework is more general than the
original one of [20] (see [19]). Echenique [14] counts the number of substitute
choice functions. The results of [14] are not directly comparable to those here,
but the conclusions are somewhat similar.
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