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Abstract

We consider a wireless network where each flow (instead of each link) runs its own CSMA
(Carrier Sense Multiple Access) algorithm. Specifically, each flow attempts to access the radio
channel after some random time and transmits a packet if the channel is sensed idle. We prove
that, unlike the standard CSMA algorithm, this simple distributed access scheme is optimal
in the sense that the network is stable for all traffic intensities in the capacity region of the
network.

Keywords: Wireless network, conflict graph, CSMA, flow-level dynamics, stability,
throughput performance.

1. Introduction

The CSMA (Carrier Sense Multiple Access) algorithm is one of the most common medium
access schemes in today’s networks, both wired (e.g. IEEE 802.3) and wireless (e.g. IEEE
802.11). However, this algorithm is known to be inherently unfair, as illustrated by the two
scenarios of Fig. 1. The first scenario relates to the downstream vs. upstream bandwidth
sharing for a single access point. In the presence of n active mobiles on the upstream, the
access point competes with n nodes for accessing the channel, resulting in a downstream
to upstream bandwidth ratio of 1/n, independently on the number of active flows on the
downstream. The second scenario illustrates the impact of interference on bandwidth sharing.
The center access point cannot transmit if one of the edge access points is active and thus gets
much less transmission opportunities. Moreover, the resulting bandwidth sharing is inefficient
since the edge access points can access the channel alternately, preventing the center access
point from sending its traffic. Thus the CSMA algorithm is not able to fully utilize network
capacity, a statement that will be made more precise later in the paper.

(a) Downstream vs. up-
stream

(b) Interference

Figure 1: Unfairness of standard CSMA.

We propose a slight modification of the standard CSMA algorithm that consists in running
the algorithm for each flow instead of each transmitter. In this paper, we refer to a flow as
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any file transfer from a source to a destination; it can typically be identified through the usual
5-uple: IP source and destination addresses, source and destination ports, protocol. For a
single access point, each flow (either downstream or upstream) runs the CSMA algorithm
and thus gets the same bandwidth share. The whole system can then be viewed as a unique,
evenly shared wireless link. The focus of the present paper is rather on the second scenario
where some links suffer from high interference. Specifically, we show that the flow-aware
CSMA algorithm is optimal in the sense that it stabilizes the network whenever possible. In
the example of Fig. 1, the center access point is likely to access the channel when it has a
high number of active flows; at the end of the corresponding activity period, the edge access
points can access the channel and will likely be simultaneously active, which is a necessary
condition for fully utilizing network capacity.

The main result of the paper is to demonstrate that the flow-aware CSMA algorithm is
optimal for any network topology. We consider a general model consisting of an arbitrary
number of wireless links whose mutual interference is represented by some conflict graph.
Flows of random size arrive at random at each link. In order to study the flow-level dynamics,
we calculate the throughput of each flow granted by the CSMA algorithm under the usual
time-scale separation assumption. We then prove that, provided there exists some schedule of
the links that stabilizes the network, the flow-aware CSMA algorithm will do so, in a purely
distributed and asynchronous way.

The rest of the paper is organized as follows. Related work is presented in the next
section. We then present the model and analyse its stability under standard and flow-aware
CSMA, respectively. The impact of network load on the mean throughput of each flow under
flow-aware CSMA is considered in Section 6. Section 7 concludes the paper.

2. Related work

The problem of optimal bandwidth sharing in wireless networks has first been tackled by
Tassiulas and Ephremides, who showed in [19] that the so-called maximal weight scheduling
policy, which activates a set of links that maximizes the total backlog of active links, stabilizes
any network whenever possible. A number of distributed implementations of this policy
have then been proposed, all relying on some message passing protocol between nodes, see
e.g. [11, 16]. Simple heuristics based on greedy algorithms that require limited or no message
passing have also been studied, most selecting schedules of maximal size (in terms of number
of links) instead of maximal weight and, as such, being suboptimal [4, 6, 8, 9, 13, 21].

A new approach to optimal scheduling has recently been proposed by Jiang and Walrand,
who introduced in [7] a distributed CSMA algorithm where at each link, the attempt rate
is adapted to the arrival rate and service rate so as to meet the demand. The result is
based on a time-scale separation assumption whereby the activity states of the links, which
depend on the CSMA algorithm, evolve much faster than the attempt rates of the links.
In practice, the algorithm used for adapting the attempt rates must be carefully designed
in order to guarantee convergence and optimality [7, 14]. Similar problems arise for those
adaptive CSMA algorithms where the attempt rates are functions of the queue lengths instead
of some slowly varying estimates of the arrival rates and service rates [12, 15]: the algorithm
converges only for some specific choices of these functions.

In all these papers, optimality is defined either in terms of stability, assuming exogenous
random packets arrivals at each link, or in terms of utility maximization, cf. [7, 14]. The
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flow-level dynamics are not considered, whereas they are key to understanding network per-
formance [18]. In particular, it can be argued that the very notion of congestion should be
defined at the flow level [1]. In a recent paper, van de Ven, Borst and Shneer have shown that
the maximal weight scheduling policy, which is known to stabilize the network at the packet
level, may be unable to stabilize the network at the flow level, which highlights the difference
between the two notions of stability [20]. The main contribution of the present paper is to
provide an algorithm that stabilizes the network at flow level whenever possible. With this
objective in mind, it is very natural to think of flow-aware CSMA. The fact that it suffices
for each flow to run its own CSMA algorithm is far from obvious, however. It is for instance
well-known that maximizing the total throughput of the network at any time may make the
network unstable at flow level [3]. It turns out that the fairness imposed by the proposed
flow-aware CSMA is indeed sufficient to achieve stability.

Specifically, the flow-aware CSMA algorithm selects each feasible schedule in proportion
to its weight, where the weight of a schedule is the product of the number of flows on the
corresponding links. For a large number of flows, the selected schedules are close to the
corresponding maximal weight schedule (with product weights instead of additive weights),
a policy that turns out to be optimal. We note that a similar property is used by Ni, Bo
and Srikant in [12] for proving the stability of queue-length based CSMA at packet level.
The constraints imposed by the packet level, like the above mentioned problem of time-
scale separation that restricts the set of eligible weight functions, make their algorithm very
different from ours, however. Our model is purely asynchronous and stateless, the number
of active flows at each link being determined by the packet headers in the corresponding
buffer; moreover, the time-scale separation assumption is very natural in our case since the
attempt rates are adapted at the flow time-scale, which is typically much slower than the
packet time-scale.

3. Model

Wireless network. We consider the general model described in [7]. There are K links in the
network, where each link is an ordered transmitter-receiver pair. The network is associated
with a conflict graph G = (V,E), where V is the set of vertices (each representing a link)
and E is the set of edges (each representing a conflict). Two links k, l can be simultaneously
active if and only if they do not conflict, that is if (k, l) 6∈ E. We refer to a feasible schedule

as any set of links S ⊂ V (possibly empty) that do not conflict with each other. We denote
by N the number of distinct feasible schedules and by Si the set of active links in schedule i,
for all i = 1, . . . , N . By convention, schedule 1 corresponds to the schedule where all nodes
are idle, that is S1 = ∅.

Consider the network of K = 3 links depicted by Fig.2 for instance. Two links conflict
if and only if the distance between the transmitter or receiver of one link and the trans-
mitter or receiver of the other link is less than some fixed threshold. The conflict graph
is linear and there are N = 5 feasible schedules, corresponding to the sets of active links
∅, {1}, {2}, {3}, {1, 3}.

Capacity region. Let ϕk be the physical rate of link k when scheduled, in bit/s. The through-
put of link k when each schedule i is selected with probability pi, with

∑N
i=1 pi = 1, is given

by:

∀k = 1, . . . ,K, φk = ϕk

∑

i:k∈Si

pi. (1)
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Figure 2: A 3-link network and its conflict graph.

Let φ be the corresponding vector. We refer to the capacity region as the set of vectors φ
generated by all probability measures p1, . . . , pN .

Flow-level dynamics. Assume that flows arrive according to a Poisson process of intensity
λk > 0 at link k and have exponential flow sizes of mean σk > 0, in bits. We denote by
ρk = λkσk the traffic intensity at link k (in bit/s) and by ρ the corresponding vector. Let xk
be the number of active flows at link k. We refer to the vector x as the network state.

We shall consider random access algorithms that select each schedule i with some proba-
bility pi(x) that depends on the network state x, with

∑N
i=1 pi(x) = 1. Under the time-scale

separation assumption, the schedules change at a very high frequency compared to the flow-
level time-scale, so that the throughput of link k in state x is given by:

φk(x) = ϕk

∑

i:k∈Si

pi(x). (2)

The evolution of the network state then defines a Markov process X(t) with transition
rates λk from state x to state x + ek and µk(x) = φk(x)/σk from state x to state x − ek
(provided xk > 0), where ek denotes the K-dimensional unit vector on component k.

Stability condition. We are interested in the stability of the network in the sense of the
positive recurrence of the Markov process X(t). A necessary condition is that the vector
traffic intensities ρ lies in the capacity region. We look for distributed access schemes that
stabilize the network whenever possible, that is for all vectors of traffic intensities ρ in the
interior of the capacity region. Such access schemes are referred to as optimal. For the sake
of completeness, we first give an example showing the suboptimality of standard CSMA, that
realizes some form of maximal size scheduling. We then prove the optimality of flow-aware
CSMA.

4. Standard CSMA

Algorithm. We first consider a standard CSMA algorithm where each link waits for a period
of random duration referred to as the backoff time before each transmission attempt. If
the radio channel is sensed idle (in the sense that no conflicting link is active), a packet is
transmitted; otherwise, the link waits for a new backoff time before the next attempt. Packets
have random sizes of mean θk bits at link k and are transmitted at the physical rate ϕk; the
backoff times are random with mean τk at link k. We denote by αk = θk/(ϕkτk) the ratio of
mean packet transmission time to mean backoff time at link k.
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Equivalent scheduling. We look for the steady-state probability pi(x) that the set of active
links corresponds to schedule i in state x. We assume that, in state x, each link k such that
xk > 0 takes all opportunities offered by the CSMA algorithm to transmit packets; any other
link remains idle. If the packet sizes and the backoff times had exponential distributions
and there were no conflict, the evolution of the set of active links S would form a reversible
Markov process. A stationary measure of this Markov process is given by 1 if S = ∅ and:

∏

k∈S

αk1(xk > 0)

otherwise. By reversibility, the actual stationary measure induced by the conflict graph is the
truncation of this measure to the set of feasible schedules. Specifically, the weight wi(x) of
feasible schedule i in the stationary measure is given by:

w1(x) = 1, wi(x) =
∏

k∈Si

αk1(xk > 0) for all i = 2, . . . , N.

We deduce that schedule i is selected in state x with probability:

pi(x) =
wi(x)

∑N
j=1wj(x)

. (3)

By the insensitivity property of the underlying loss network, this is also the probability that
schedule i is selected in state x for arbitrary phase-type distributions of packet sizes and
backoff times with the same means; such distributions are known to form a dense subset
within the set of all distributions with real, non-negative support [2].

Suboptimality. We provide simple examples showing the suboptimality of the standard CSMA
algorithm. We consider unit physical rates, that is ϕk = 1 for all links k. For a single link,
the optimal stability condition is ρ1 < 1. In view of (2) and (3), the throughput is given by:

φ1(x) =
α1

1 + α1
.

We deduce the actual stability condition:

ρ1 <
α1

1 + α1
.

This loss of efficiency is due to the backoff times, that must be chosen sufficiently small to
limit the overhead of the CSMA algorithm.

Now consider the example of Fig. 2 with K = 3 links. The optimal stability condition is
given by:

ρ1 + ρ2 < 1 and ρ2 + ρ3 < 1.

Assume for simplicity all links have the same mean packet sizes and mean backoff times, so
that α1 = α2 = α3 = α for some α > 0. In view of (2) and (3), the throughput of the links
in state x are given by:

φ1(x) =











α
1+α

if x2 = 0,
α

1+2α if x2 > 0, x3 = 0,
α+α2

1+3α+α2 if x2 > 0, x3 > 0,
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and

φ2(x) =







α
1+α

if x1 = 0, x3 = 0,
α

1+2α if x1 > 0, x3 = 0, or x1 = 0, x3 > 0,
α

1+3α+α2 if x1 > 0, x3 > 0.

The throughput of link 3 follows by symmetry. As for a single link, the backoff times must be
chosen sufficiently small to limit the overhead of the algorithm. In the limit α → ∞, we get:

(φ1(x), φ2(x), φ3(x)) =















(1, 0, 1) if x1 > 0, x3 > 0,
(1/2, 1/2, 0) if x1 > 0, x2 > 0, x3 = 0,
(1, 0, 0) if x1 > 0, x2 = 0, x3 = 0,
(0, 1, 0) if x1 = 0, x2 > 0, x3 = 0,

(4)

the other cases following by symmetry. Note that link 2 is not served when both links 1 and
3 are active. This is due to the fact that link 2 is in conflict with both links 1 and 3 and thus
cannot access the channel for an infinitely small backoff time. This results in a suboptimal
stability region:

Proposition 1. The stability region is given by:

ρ1 <
1 + ρ3

2
, ρ3 <

1 + ρ1
2

, ρ2 < π0 +
π1,3
2

,

or

ρ1 <
1 + ρ3

2
,
1 + ρ1

2
≤ ρ3 <

1 + ρ1
2

+
1− ρ1

2
π2,1, ρ2 <

1− ρ1
2

,

or

ρ3 <
1 + ρ1

2
,
1 + ρ3

2
≤ ρ1 <

1 + ρ3
2

+
1− ρ3

2
π2,3, ρ2 <

1− ρ3
2

,

where π0, π1,3, π2,1 and π2,3 are the respective probabilities that:

• both links 1 and 3 are idle when link 2 is always active;

• one of the links 1 or 3 is idle when link 2 is always active;

• link 2 is idle given that link 1 is idle, when link 3 is always active;

• link 2 is idle given that link 3 is idle, when link 1 is always active.

More precisely, the Markov process X(t) is positive recurrent if the vector of traffic intensities

ρ lies in this region and transient if it lies outside its closure.

The proof is given in the Appendix. Note that, when one of the links is always active,
the two other links form a coupled system of two queues as considered by Fayolle and Iasno-
gorodski [5]. In particular, the stability region can be calculated exactly. In the symmetric
case ρ1 = ρ3, the stability condition reduces to ρ1 < 1, ρ2 < π0 + π1,3/2. Fig. 3 shows that
the corresponding stability region for equal mean flow sizes.
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Figure 3: Stability condition for the network of Fig. 1 under standard CSMA (ρ1 = ρ3).

5. Flow-aware CSMA

Algorithm. We now consider the flow-aware CSMA algorithm where each flow (instead of
each link) waits for a random backoff time before each transmission attempt. If the radio
channel is sensed idle (in the sense that no conflicting link is active, nor any other flow on
the same link), a packet of this flow is transmitted; otherwise, the flow remains idle for a new
random backoff time before the next attempt. The backoff times have random durations of
mean τk for each active flow at link k. We still denote by αk = θk/(ϕkτk) the ratio of mean
packet transmission time to mean backoff time at link k.

Equivalent scheduling. Again, we look for the steady-state probability pi(x) that the set of
active links corresponds to schedule i in state x. We assume that all active flows take each
opportunity offered by the CSMA algorithm to transmit packets. If the packet sizes and the
backoff times had exponential distributions and there were no conflict, the evolution of the
set of active links S would again form a reversible Markov process. Since there are xk flows
attempting to access the channel at link k, a stationary measure of this Markov process is
given by 1 if S = ∅ and:

∏

k∈S

αkxk

otherwise. By reversibility, the actual stationary measure induced by the conflict graph is
the truncation of this measure to the set of feasible schedules. The weight wi(x) of feasible
schedule i in the stationary measure is given by:

w1(x) = 1, wi(x) =
∏

k∈Si

αkxk for all i = 2, . . . , N.

Schedule i is then selected with probability pi(x) given by (3) in state x. By the insensitivity
property of the underlying loss network, this probability remains the same for arbitrary phase-
type distributions of packet sizes and backoff times with the same means, cf. [2].

Optimality. We now give the main result of the paper, that demonstrates the optimality of
the above flow-aware CSMA algorithm.
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Theorem 1. The network is stable for all vectors of traffic intensities ρ in the interior of

the capacity region.

Proof. We apply Foster’s criterion. Specifically, we look for some Lyapunov function F (x)
such that the corresponding drift, given by:

∆F (x) =

K
∑

k=1

λk(F (x+ ek)− F (x)) +
∑

k:xk>0

µk(x)(F (x − ek)− F (x)),

satisfies:
∆F (x) ≤ −δ

for some δ > 0, in all states x but some finite number.
If the vector of traffic intensities ρ lies in the interior of the capacity region, there exists

some ǫ > 0 and some probability measure q1, . . . , qN on the set of feasible schedules such that
qi > 0 for all i = 1, . . . , N and:

∀k = 1, . . . ,K, ρk = (1− 2ǫ)ϕk

∑

i:k∈Si

qi. (5)

Define:
F (x) =

∑

k:xk>0

σk
ϕk

xk(log(αkxk)− 1).

We get:

∆F (x) = G(x) +
∑

k:xk>0

ρk
ϕk

(xk + 1)(log(1 +
1

xk
)− 1)

+
∑

k:xk>0

φk(x)

ϕk

(xk − 1)(log(1−
1

xk
) + 1), (6)

with:

G(x) =
∑

k:xk>0

ρk − φk(x)

ϕk

log(αkxk).

Noting that, for any probability measure p1, . . . , pN on the set of feasible schedules:

∑

k:xk>0

∑

i:k∈Si

pi log(αkxk) =
N
∑

i=1

pi log(wi(x)),

we get using (5):

G(x) = −ǫ
N
∑

i=1

qi log(wi(x)) +
N
∑

i=1

(qi(1− ǫ)− pi(x)) log(wi(x)).

We then need the following lemma.

Lemma 1. Let:

w(x) = max
i=1,...,N

wi(x).

Then, for all states x but some finite number,

N
∑

i=1

pi(x) log(wi(x)) ≥ (1− ǫ) log(w(x)).
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Proof. The proof is similar to that of [12, Proposition 2]. Let:

I(x) =
{

i = 1, . . . , N : log(wi(x)) ≥ (1−
ǫ

2
) log(w(x))

}

.

We have:
N
∑

i=1

pi(x) log(wi(x)) ≥ (1−
ǫ

2
) log(w(x))

∑

i∈I(x)

pi(x).

Moreover,

∑

i 6∈I(x)

pi(x) =

∑

i 6∈I(x) wi(x)
∑N

i=1wi(x)
,

≤
(N − |I(x)|)w(x)1−

ǫ

2

w(x)
,

=
N − |I(x)|

w(x)
ǫ

2

.

Since w(x) tends to +∞ when |x| =
∑K

k=1 xk tends to +∞, this quantity is less than ǫ/2 for
all states x but some finite number. We deduce that in all states x but some finite number:

N
∑

i=1

pi(x) log(wi(x)) ≥ (1−
ǫ

2
)2 log(w(x)) ≥ (1− ǫ) log(w(x)).

✷

In view of Lemma 1, we have for all states x but some finite number:

G(x) ≤ −ǫ

N
∑

i=1

qi log(wi(x)) + (1− ǫ)

N
∑

i=1

(qi log(wi(x))− log(w(x))).

Since wi(x) ≤ w(x) for all states x, we deduce that for all states x but some finite number:

G(x) ≤ −ǫ

N
∑

i=1

qi log(wi(x)).

Since qi > 0 for all i = 1, . . . , N , this expression tends to −∞ when |x| =
∑K

k=1 xk tends to
+∞. The other terms of ∆F (x) in (6) being bounded, we deduce that there exists δ > 0 such
that ∆F (x) ≤ −δ for all states x but some finite number. ✷

6. Throughput performance

This section is devoted to the throughput performance of flow-aware CSMA, under the
stability condition. We are interested in the mean throughput, defined as the ratio of the
mean flow size to the mean flow duration. By Little’s law, the mean throughput at link k is
given by:

γk =
ρk

E[xk]
. (7)

We consider unit physical rates, that is ϕk = 1 for all links k.
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Single link. We first analyse the impact of the mean backoff time on the mean throughput in
the case of a single link. In the presence of x1 flows, the total throughput is given by:

φ1(x1) =
α1x1

1 + α1x1
.

The number of flows then behaves as the number of customers in a processor-sharing queue
with state-dependent service rate. The corresponding stationary distribution is given by:

π(x1) = π(0)

x1
∏

n=1

ρ1
φ1(n)

,

under the stability condition ρ1 < 1. The mean throughput then follows from (7). For
α1 → ∞, the throughput is constant and equal to 1 and the mean throughput is given
by γ1 = 1 − ρ1; for α1 = 1, the system corresponds to a processor-sharing queue with an
additional permanent customer representing the backoff times and we have γ1 = (1 − ρ1)/2;
in general, we have γ1 → α1/(1 + α1) when ρ1 → 0. These results are illustrated by Fig. 4.
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Figure 4: Impact of the mean backoff time on the mean throughput for a single link (ratio of mean packet
transmission time to mean backoff time α1 = 0.1, 1, 10, from bottom to top).

Networks. In the following, we consider network scenarios and assume that the mean backoff
time is the same for all flows and equal to the mean packet transmission time, so that αk = 1
for all links k. Flows have unit mean flow sizes. The traffic intensity is the same on all links,
equal to ρ1. We refer to the network load as the ratio of the per-link traffic intensity ρ1 to
its maximum value, given by the stability condition. Fig. 5 and 7 give the results obtained
for the 3-link line of Fig. 2 and for the three 4-link networks of Fig. 6, for the same mean
flow sizes . The results are obtained by the simulation of 107 jumps of the underlying Markov
process, after a warm-up period of 105 jumps. We observe that the throughput decreases
from its maximum value 1/2 to 0 when the load grows from 0 to 1; it is lower on links that
are in conflict with many other links, just like in wired networks, the mean throughput is
lower on long routes, where flows go through many links [3].
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Figure 5: Mean throughput in the 3-link line.
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Figure 6: Conflict graphs of the square, the 4-link line and the 4-link star.

7. Conclusion

The standard CSMA algorithm is inherently unfair and inefficient. We have shown that
the proposed flow-aware CSMA algorithm, where each flow (instead of each link) runs its
own CSMA algorithm, is not only fair but efficient, in the sense that the network is stable
whenever possible. To our knowledge, this is the first distributed algorithm that is provably
optimal in terms of flow-level stability.

The considered packet-level model relies on a number of simplifying assumptions that we
plan to relax in future work. These include the absence of collisions and hidden nodes. The
interaction with the usual back-off mechanism of IEEE 802.11 should also be studied. One
may also envisage different implementations of the proposed flow-aware CSMA algorithm
where the attempt rate of each link is equal to some increasing function of the number of
flows and the transmission opportunities are shared in a fair way between active flows, using
a deficit round-robin scheduler for instance.

From a more theoretical perspective, it would be worth relaxing the assumption of expo-
nential flow sizes and deriving bounds or approximations on the throughput performance of
the algorithm.
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Figure 7: Mean throughput in 4-link networks.

Appendix

Proof of Proposition 1

This example is similar to the one studied in [17, p274]. We consider the fluid limits of
the Markov process X(t). Specifically, we define X(n)(t) as the Markov process X(t) whose
initial state is X(n)(0) = (⌊β1n⌋, ⌊β2n⌋, ⌊β3n⌋) for some non-negative real numbers β1, β2, β3
such that β1 + β2 + β3 = 1. We then define:

X̄(n)(t) =
1

n
X(n)(nt).

The fluid limits of the Markov process X(t), if they exist, are the limiting points of this set
of processes when n → +∞. It is easy to check that the Markov process X(t) belongs to the
class (C) defined in [17, p241] and that the associated Proposition 9.3 applies. In particular,
the set {X̄(n)(t), n ∈ N} is tight and the fluid limits are continuous. The Markov process X(t)
is then positive recurrent if there exists some finite time after which all fluid limits are null,
cf. [17, Theorem 9.7, p259]; it is transient if there exists some initial state β1, β2, β3 such that,
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after some finite time, some components of the fluid limits grow at least linearly to infinity
[10].

We first calculate the fluid limit until the first time where one component reaches 0, if any,
for all possible initial states. The three components of the process X(n)(t) behave as three
coupled M/M/1 queues, with arrival rates λ1, λ2, λ3 and state-dependent service rates. We
denote by µk = 1/σk the maximum service rate of queue k, so that ρk = λk/µk. The Markov
process is positive recurrent if all queues empty in finite time in the limit and transient if,
starting from some initial state, at least one queue grows linearly to infinity after some finite
time.

We start with the case β1 > 0, β2 > 0, β3 > 0. The three queues are then mutually
independent, with respective service rates µ1, 0, µ3. The scaling property of the M/M/1
queue shows that the process X̄(n)(t) weakly converges to the function:

(β1 + (λ1 − µ1)t, β2 + λ2t, β3 + (λ3 − µ3)t),

until one of the components reaches 0, if any.
We now consider the case β1 = 0, β2 > 0, β3 > 0. In view of (4), queue 1 has service

rate µ1 and is empty with probability 1 − ρ1. Queues 2 and 3 have service rates 0, µ3 with
probability ρ1 and µ2/2, µ3/2 with probability 1 − ρ1. Proposition 9.14 of [17] applies and
the process X̄(n)(t) weakly converges to the function:

(0, β2 + (λ2 − µ2
1− ρ1

2
)t, β3 + (λ3 − µ3

1 + ρ1
2

)t),

until one of the components reaches 0, if any.
Next, we consider the case β1 = β2 = 0, β3 > 0. In view of (4), queue 1 has service rate

µ1. Queue 2 has service rate µ2/2 if queue 1 is empty and 0 otherwise. This queue is stable if
ρ2 < (1− ρ1)/2, which we assume. Queue 2 then remains empty in the limit, and the service
rate of queue 3 is equal to µ3 with probability ρ1 + (1 − ρ1)π2,1 and to µ3/2 otherwise. We
deduce that the process X̄(n)(t) weakly converges to the function:

(0, 0, β3 + (λ3 − µ3(
ρ1 + 1

2
−

1− ρ1
2

π2,1))t),

whenever component 3 is positive.
Finally, we consider the case β1 = β3 = 0, β2 > 0. In view of (4), the service rates

of queues 1 and 3 are equal to µ1 and µ3 when both are non-empty and to µ1/2 and µ3/2
otherwise. This system is stable if ρ1 < (1 + ρ3)/2 and ρ3 < (1 + ρ1)/2, which we assume.
Queues 1 and 3 then remain empty in the limit. The service rate of queue 3 is equal to µ2

with probability π0 and to µ2/2 with probability π1,3. The process X̄(n)(t) weakly converges
to the function:

(0, β2 + (λ2 − µ2(π0 −
π1,3
2

))t, 0),

whenever component 2 is positive.
To conclude the proof, we consider the evolution of the fluid limit in the following five

cases (the others follow by symmetry):

1. Assume ρ1 < (1 + ρ3)/2 and ρ3 < (1 + ρ1)/2. Note that this implies ρ1 < 1 and ρ3 < 1.
Queue 1 and 3 empty in finite time, independently of queue 2. Queue 2 then empties
in finite time if ρ2 < π0 + π1,3/2; it grows linearly to infinity if ρ2 > π0 + π1,3/2.
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2. Assume ρ1 < (1 + ρ3)/2 and ρ3 > (1 + ρ1)/2. If ρ1 ≥ 1 then ρ3 > 1 and queue 3
grows linearly to infinity. We now assume ρ1 < 1. If ρ2 > (1−ρ1)/2 then queue 2 grows
linearly to infinity. If ρ2 = (1−ρ1)/2 then starting from a state where β1 = 0, β2 > 0 and
β3 > 0, queue 1 stays empty, queue 2 is constant and queue 3 grows linearly to infinity.
We assume that ρ1 < 1 and ρ2 < (1−ρ1)/2. Starting from the initial state β1 = β2 = 0,
β3 > 0, queue 3 grows linearly to infinity if ρ3 > (1 + ρ1)/2+π2,1(1− ρ1)/2. We assume
that ρ3 < (1 + ρ1)/2+π2,1(1− ρ1)/2. Starting from the initial state β1 = β2 = 0, β3 > 0,
queue 3 then empties in finite time. It remains to prove that, starting from any initial
state, queues 1 and 2 empty in finite time. We first note that, since ρ1 < 1 and ρ3 < 1,
queue 1 or queue 3 empties in finite time. Moreover, if both queues 1 and 3 are empty
but not queue 2, then queue 3 grows linearly. Thus we can assume that queue 1 empties
before queue 3. We know that queue 2 empties in finite time in this case.

3. Assume ρ1 < (1 + ρ3)/2 and ρ3 = (1 + ρ1)/2. Note that ρ1 < 1 and ρ3 < 1 in this case.
Moreover, we have π0 = 0 and π1,3 = 1 − ρ1, so that the inequality ρ2 < π0 + π1,3/2
is equivalent to ρ2 < (1 − ρ1)/2. If the latter is satisfied, then if queue 1 is non-
empty then queue 2 empties in finite time independently of queue 3. We just have
to consider the case where β1 = β2 = 0 and β3 > 0. Because ρ3 = (1 + ρ1)/2 <
(1 + ρ1)/2+π2,1(1− ρ1)/2, queue 3 empties in finite time. If ρ2 > (1−ρ1)/2, we choose
an initial state such that queue 1 empties before 3. When queue 1 is empty, queue 3 is
constant and queue 2 grows linearly to infinity.

4. Assume ρ1 ≥ (1 + ρ3)/2 and ρ3 > (1 + ρ1)/2. Then ρ1 > 1 and ρ3 > 1 so that queues 1
and 3 grow linearly to infinity.

5. Assume ρ1 = (1 + ρ3)/2 and ρ3 = (1 + ρ1)/2. Then ρ1 = ρ3 = 1 and π0 = π1,3 = 0.
If ρ2 = 0, the vector ρ lies on the boundary of the stability region. If ρ2 > 0, queue 2
grows linearly to infinity.
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