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Abstract

Many network applications rely on stochastic QoS guarantees. With respect

to loss-related performance, the Effective Bandwidth/Capacity theory has

proved useful for calculating loss probabilities in queues with complex input-

and server-processes and for formulating simple admission control tests to

ensure associated QoS guarantees. This success has motivated the appli-

cation of the theory for delay-related QoS too. However, up to now this

application has been justified only heuristically for queues with variable ser-

vice rate. The paper fills this gap by establishing rigorously that the Effec-

tive Bandwidth/Capacity theory may be used for the asymptotically correct

calculation and enforcement of delay tail-probabilities in systems with vari-
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able rate servers too. Subsequently, the paper applies the general results to

IEEE802.11 WLANs, by representing each IEEE802.11 station as an On/Off

server and employing the Effective Capacity function for this model. Com-

parison of analytical results with simulation validates the effectiveness of

the On/Off IEEE802.11 model for delay-related QoS, complementing earlier

results on loss-related performance.

Keywords: Effective Bandwidth, Effective Capacity, delay

tail-probabilities, IEEE 802.11, QoS, Admission control, large deviations

1. Introduction

Stochastic Quality of Service (QoS) guarantees are an important in-

gredient of many network services. Here we focus on QoS of the form

Pr{D > d} ≤ e−ε, where D denotes the delay experienced by traffic arriving

at a queue, d is the delay threshold and ε represents the QoS requirement.

Early relevant analyses include the development of exponential bounds of

this form for GI/GI/1 FCFS queues, obtained via martingale theory [1, 2],

and subsequent generalizations for Markovian arrival processes [3].

When the tail-related QoS requirement is stringent (i.e., ε and d are large),

large deviations theory is a natural choice for obtaining the relevant results.

This path has been followed for QoS requirements related to buffer overflows,

leading to the, now mature, so called Effective Bandwidth/Capacity theory,

which provides a linkage between traffic characteristics (captured by the Eff.

Bandwidth function), system resources (server capacity and buffer size) and

buffer content tail-probabilities. The theory was developed by many contri-

butions over the years (see [4] for a survey in the field). It originally con-
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sidered queueing systems with a constant service rate and was subsequently

generalized to also address systems with time-varying servers, by introduc-

ing the Effective Capacity function to represent the server’s characteristics

(see, e.g., [5, 6]), analogously to the way the Effective Bandwidth function

represents the input traffic.

The conceptual simplicity of the Eff. Bandwidth/Capacity theory makes

it an attractive choice for coping with delay-related QoS as well. For FCFS

queueing systems with a constant service rate this is directly possible, because

delay probabilities of the form Pr{D > d} are equal to the queue length

probabilities Pr{Q > cd}, where Q and c are the queue length and the

constant service rate, respectively. However, this simple equivalence does

not hold when the service rate is time-varying.

Due to the prevalence of wireless networking, systems with time-varying

servers are becoming all the more important. Indeed, a wireless station

can be regarded as a time-varying data server, due to rate fluctuations at

the Physical [7–10] or at the Medium Access Control (MAC) [11, 12] layer.

Accordingly, [7] employed the Eff. Capacity function to capture the effect of a

Rayleigh-fading channel on delay-related performance. However, the results

developed therein cover only the restricted setting of queueing systems with

constant bit rate traffic and variable service rate. Publications [8–11], as

well as others, take the methodology of [7] as if it was applicable in a general

setting, although no formal justification for this exists. Undoubtedly, there

is a need to formalize the Eff. Bandwidth/Capacity theory for addressing

delay-related QoS in the general setting of both variable input and service

rates.
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Fortunately, there exist suitable prior results [13–17] (not all of them di-

rectly connected with the Eff. Bandwidth/Capacity theory) that can be used

for this task. By suitable extension and combination of these results, and

by using an appropriate representation of the delay as the supremum of a

stochastic process, this paper establishes formally that the Eff. Bandwidth/

Capacity theory may be applied for the asymptotically correct calculation of

delay tail-probabilities. In particular, the paper establishes rigorously the,

formerly heuristic, association of the asymptotic exponential decay rate of

the delay tail-probabilities with its counterpart for the queue content tail-

probabilities, through the server’s Eff. Capacity function. The theory applies

to queueing systems operating in either of the discrete-time or the continuous-

time domain and featuring arbitrary traffic and service processes, provided

these processes are independent and possess well-defined Eff. Bandwidth and

Eff. Capacity functions, respectively. Besides the asymptotically tight ap-

proximation to the delay distribution’s tail, the theory also suggests simple

traffic admission control tests for enforcing related QoS specifications.

With the general results in hand, the paper proceeds with their applica-

tion to IEEE 802.11, the prevalent standard for Wireless LANs (WLANs).

To the best of the authors’ knowledge, few works have been directed towards

calculating delay tail-probabilities in IEEE 802.11 WLANs. Such works usu-

ally rely on classical queueing theory, thus, besides being restricted to a

particular form of input traffic, they address mainly the first few moments

of the delay distribution rather than tail-percentiles. The mean value of the

access delay to the shared wireless medium (i.e., the first component of the

overall end-to-end delay from packet generation until its single-hop delivery
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considered here) was calculated in [18–20], while [21–26] investigated higher-

order statistics as well. References [23–25] primarily target the calculation

of end-to-end related metrics, taking into account the packet waiting-time

in the buffer of the IEEE 802.11 station. More specifically, [23, 24] initially

characterize the access delay using z-transform techniques and then employ

a queueing system whose service time features the same probability generat-

ing function as the said access delay. The model in [23] employs an infinite

G/G/1 queueing system towards calculating the mean waiting-time, while

[24] relies on a simpler M/G/1/K model.

None of the results reviewed up to now are directly applicable to bursty,

correlated input traffic or to QoS expressed in terms of a low probability

percentile. Although the analysis in [25] is more suitable for this context, it

makes the rather gross assumption that the IEEE 802.11 access delay follows

a gaussian distribution when every station always has a packet to send (i.e.,

in saturation conditions). Furthermore, the results of [25] refer only to a

restricted setting, where the data flows in the IEEE 802.11 WLAN evolve

according to only two traffic profiles and one of these two types of traffic is

assumed to not require any degree of QoS.

With respect to the use of the Eff. Bandwidth/Capacity theory in the

context of IEEE 802.11 WLANs, publications [11, 12] are relevant. Ref. [11]

models the service capacity of each IEEE 802.11 station in the WLAN as

a Markov-Modulated Poisson Process (MMPP). The model is based on the

assumption that the IEEE 802.11 Distributed Coordination Function (DCF)

exhibits memoryless behavior when all competing stations have backlogged

packets and the additional strong assumption that all stations in the WLAN

5



feature a homogeneous traffic load (whose profile is restricted to the expo-

nential On/Off type). The establishment of the MMPP model involves a

series of further approximations, towards representing the MAC dynamics

in simplified terms. The Eff. Capacity of IEEE 802.11 DCF is derived from

the resulting MMPP model, and is then used for the provision of stochastic

delay guarantees (by employing the heuristic results of [7] and further heuris-

tic approximations). Moreover, the traffic-control policies of [11] inherently

assume that each station has a complete knowledge of the traffic load of all

competing stations.

The focus of [12] is different: it targets the accurate calculation of the

Eff. Capacity of each IEEE 802.11 station with the use of locally available

information only, without requiring global knowledge of WLAN traffic de-

tails. Each IEEE 802.11 station is modeled as an On/Off server and the

Eff. Capacity is subsequently derived from the On/Off model. The model is

firstly developed on the basis of the assumption that, apart from the observed

station, all other competing stations are saturated. This is a conservative as-

sumption that leads to accurate results when the network is highly loaded.

The saturation assumption is relaxed when each station measures a few model

parameters (probabilities of simple local events) in a distributed manner, in-

stead of calculating their values on the basis of the saturation assumption.

This adaptation makes the model accurate for all network loads. Note that

the measurement-assisted variant of the model, in common with the origi-

nal saturation-based model, avoids the requirement for any knowledge about

input traffic details of competing stations. This is possible because the traf-

fic loading conditions at these stations are assessed indirectly through the
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measurement of the previously mentioned probabilities of local events.

This paper employs the IEEE 802.11 Eff. Capacity function proposed

by [12] and uses it, in conjunction with the general results in the first part

of the paper, for calculating delay tail-probabilities in IEEE 802.11 WLANs

and for performing admission control to ensure a desired level of delay-related

QoS. Comparison of the analytical results with simulation validates the effec-

tiveness of the On/Off IEEE 802.11 model in the delay-related QoS context,

complementing the results of [12] on loss-related performance. It is men-

tioned that the IEEE 802.11 Eff. Capacity model provides a framework for

obtaining asymptotically tight approximations of tail-probabilities and for

formulating associated traffic control schemes in a unified way, applicable to

arbitrary traffic patterns (provided these patterns possess a well-defined Eff.

Bandwidth function). In contrast, conventional queueing theory approaches

would require a separate model and perhaps a different methodological ap-

proach for every different type of traffic that may be encountered.

The rest of the paper is organized as follows: Section 2 discusses large

deviations results for the supremum of a stochastic process. By virtue of

Lindley’s equation, these results lead directly to the ‘ordinary’ application of

the Eff. Bandwidth/Capacity theory, i.e., in connection with queue content

tail-probabilities. Section 2 is not just a review of preexisting results; it devel-

ops appropriately strengthened versions of these results, so that they become

usable in the context of delay distributions. Section 3 firstly establishes that

the delay experienced by traffic arriving at a FCFS queue has the same distri-

bution as the supremum of a stochastic process and then applies the results

of Section 2 in conjunction with preexisting results about inverse processes
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and process compositions, ultimately providing a rigorous justification for

the use of the Eff. Bandwidth/Capacity theory in connection with delay tail-

probabilities. Section 4 applies the general results to IEEE 802.11 WLANs:

Firstly, the section briefly reviews the modeling of each IEEE 802.11 com-

peting station as an On/Off server with On- and Off-sojourn times of known

distributions. Subsequently, it discusses computational and algorithmic is-

sues related to the application of the general theory of Section 3 with the

particular Eff. Capacity function of this On/Off model. Section 5 validates

the IEEE 802.11 model in the delay context, through comparison of analyt-

ical results with simulations. Finally, the article is concluded in Section 6.

2. Logarithmic tail-probability asymptotics for the supremum of a

stochastic process

Consider a stochastic process Y (t), t ∈ T. The time-domain may be

either discrete (T = Zo+) or continuous (T = Ro
+). We will be interested in

asymptotics for the tail-probabilities of

Q , sup
t∈T

Y (t). (1)

In a typical application,

Y (t) = V (t)− C(t), (2)

where V (t) is the amount of data fed to a queue in the interval (−t, 0] and

C(t) is the amount of data that can be processed in the same interval. Then,

by Lindley’s equation, Q is the queue length at time zero, provided the

queueing system started operation empty an infinite amount of time ago. In
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Section 3 we will encounter a stochastic process such that the supremum in

(1) has the same distribution as the delay experienced by traffic arriving in

a FCFS queue.

We employ throughout the following assumption about the cumulant gen-

erator of Y (t), asymptotically as t→ +∞:

Assumption 1.

1. The limit

uY (θ) , lim
t→∞

t−1 log E
[
eθY (t)

]
(3)

exists in the extended sense for all θ ∈ R. Let DY , {θ : uY (θ) < +∞}

be the effective domain of uY (·) and denote its interior by Do
Y .

2. Do
Y is nonempty and contains zero.

3. uY (·) is essentially smooth, namely differentiable throughout Do
Y and

steep (i.e., featuring limn→∞ |u′Y (θn)| = ∞ for any sequence θn taking

values in Do
Y and converging to a point on the boundary of Do

Y ).

Since the convexity of the cumulant generator log E
[
eθY (t)

]
is preserved by

the limiting operation, uY (·) in (3) is automatically convex with uY (0) = 0.

Items 1 and 2 in Assumption 1 guarantee (see, e.g., Lemma 2.3.9 in [27]) that

uY (θ) > −∞ everywhere, so the effective domain DY is exactly the set where

uY (·) is finite. Furthermore, by virtue of convexity DY is always an interval,

i.e., there exist θ`Y < 0 < θuY (because 0 ∈ Do
Y ) such that Do

Y = (θ`Y , θ
u
Y ).

Each of the endpoints may be finite or infinite. If an endpoint is finite it

belongs to the boundary of Do
Y (and the steepness property in Item 3 of

Assumption 1 applies to it), but it may or may not belong to DY . The

convexity additionally implies that uY (·) is continuous in Do
Y and upper
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semicontinuous at θuY and θ`Y (i.e., lim supθ↑θuY uY (θ) ≤ uY (θuY ) and similarly

for θ ↓ θ`Y ).

Typically, Assumption 1 is accompanied by the additional requirement

that uY (·) is lower semicontinuous1. Then, whenever the upper endpoint θuY

(lower endpoint θ`Y ) is finite, uY (·) is left- (right-) continuous at it. Assump-

tion 1 together with the additional lower semicontinuity condition ensure the

applicability of the Gärtner-Ellis Theorem for Y (t)/t (see, e.g., Item c of

Theorem 2.3.6 in [27]). However, in this paper we do not require uY (·) to

be lower semicontinuous, the primary reason being that the stochastic pro-

cess associated with the delay in FCFS queues does not always satisfy this

requirement, even in cases where both the input traffic and server processes

do.

With the semicontinuity assumption removed, the lower bound of the

Gärtner-Ellis Theorem does not hold in its usual form anymore. Instead, a

weaker form applies (see, e.g., Item b of Theorem 2.3.6 in [27]), which makes

use of the exposed points of u∗Y (·), the Fenchel-Legendre transform of uY (·).

It will be shown that this weaker form suffices for establishing the results of

interest.

We note that Assumption 1 has another implication: By Jensen’s in-

equality t−1 log E
[
eθY (t)

]
≥ θE [Y (t)]/t, so for any θ > 0 one has uY (θ)/θ ≥

lim supt→∞(E [Y (t)]/t). Since u′Y (0) exists, taking the limit θ ↓ 0 yields

u′Y (0) ≥ lim supt→∞(E [Y (t)]/t). This result, combined with a completely

analogous argument involving lim inft→∞(E [Y (t)] /t) and θ < 0, establishes

1By convexity this property is automatically guaranteed in Do
Y , but not necessarily on

the boundary of Do
Y .
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that limt→∞(E [Y (t)] /t) exists and

u′Y (0) = lim
t→∞

E [Y (t)]

t
, r̄Y . (4)

When Y (·) has stationary (or wide-sense stationary) increments r̄Y is merely

the mean increment per unit time.

In view of (4), one may define the ‘rate’ function aY (·) associated with

uY (·) as follows:

aY (θ) ,

 uY (θ)/θ, θ ∈ DY−{0},

r̄Y , θ = 0.
(5)

Since uY (·) is convex with uY (0) = 0, it may be shown (see, e.g., Lemma 2.1

in [28]) that aY (·) is increasing in DY and continuous in Do
Y .

Now consider

θ∗Y , sup{θ : uY (θ) ≤ 0}. (6)

Since uY (0) = 0, one always has θ∗Y ≥ 0. The following lemma summarizes

relevant facts:

Lemma 1.

1. uY (θ) > 0 for all θ > θ∗Y (this holds with uY (θ) = +∞ if θ 6∈ DY ).

2. If θ∗Y > 0, then uY (θ) ≤ 0 for all 0 < θ < θ∗Y .

3. If θ∗Y ∈ Do
Y then:

(a) θ∗Y is a root of uY (·), i.e., uY (θ∗Y ) = 0, and u′Y (θ) > 0 for all

θ ∈ Do
Y such that θ > θ∗Y .

(b) Furthermore, if there exists θo > 0 such that uY (θo) < 0, then θ∗Y

is the unique positive root of uY (·) and u′Y (θ∗Y ) > 0.
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4. If r̄Y < 0, there exists θo > 0 such that uY (θo) < 0, so θ∗Y > 0. Thus,

θ∗Y = 0 implies r̄Y ≥ 0.

Lemma 1 is a consequence of the convexity of uY (·) and Assumption 1.

The complete proof is in Appendix A.

The quantity θ∗Y is intimately connected with the tail-probabilities of Q

in (1). Indeed, under appropriate conditions, limb→∞ b
−1 log Pr{Q > b} =

−θ∗Y . Important results related to this asymptotic expression appear in [13–

15]. The result in [13] treats discrete-time processes (T = Zo+) and requires a

set of assumptions more restrictive than Assumption 1 (namely, that DY = R

and that E
[
eθY (t)

]
satisfies additional boundedness conditions for all t ∈ T).

Ref. [14] is more general, but still addresses mostly the discrete-time case.

Also, it requires that θ∗Y ∈ Do
Y (treating essentially the case covered by

Item 3.b of Lemma 1). The result in [15] is the most general: It consid-

ers asymptotic cumulant generators of the form limt→∞ v
−1
t log E

[
eθvtY (t)/at

]
,

which generalize the linear scaling vt = at = t addressed in [13, 14] and

used here, and also provides results for continuous-time processes (T = Ro
+)

through additional local regularity assumptions for these processes. How-

ever, the results in [15] are expressed as separate upper and lower bounds

for the tail-probabilities and these bounds are not shown to be always equal.

Moreover, all mentioned results of [13–15] require that uY (·) be lower semi-

continuous (the result in [13] implicitly so, by demanding DY = R). To

address these restrictions, we now provide the following slight strengthening

of Theorems 2.1 and 2.2 in [15] for the special case vt = at = t.

Theorem 1. Let Assumption 1 hold. For Item 2 of the theorem only, if

T = Ro
+ additionally assume that, either Hypothesis 2.3 in [15] holds, or that
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Y (·) is the difference of two independent processes, each having nonnegative

increments and possessing an asymptotic cumulant generator as in (3). Let

θ∗Y be as in (6). Then, with Q as in (1),

1. lim infb→∞ b
−1 log Pr{Q > b} ≥ −θ∗Y . Thus, if θ∗Y = 0 then limb→∞ log Pr{Q >

b} = 0.

2. If there exists θo > 0 such that uY (θo) < 0 (in which case necessarily

θ∗Y > 0) then limb→∞ b
−1 log Pr{Q > b} = −θ∗Y .

The proof, to be found in Appendix B, makes use of Theorems 2.1 and

2.2 in [15] (the first of these modified to reflect the weaker Gärtner-Ellis lower

bound) and Lemma 1. The method of proof makes clear that the requirement

for steepness in Item 3 of Assumption 1 is only necessary when θ∗Y 6∈ Do
Y . If

θ∗Y ∈ Do
Y , the results of Theorem 1 hold also when uY (·) is differentiable but

non-steep.

Item 2 of Theorem 1 may be regarded as a proof that the lower and upper

bounds of Theorems 2.1 and 2.2 in [15], as specialized for the linear scaling,

always coincide. With respect to the additional assumptions required for

continuous-time processes, it is noted that a sufficient (but not necessary)

condition for satisfying Hypothesis 2.3 in [15] is that the increments of Y (·)

are bounded. The alternative condition of Theorem 1 is automatically satis-

fied in real-world queues where Y (·) is the difference of the amount of data

fed to the queue minus the amount of data that can be processed. Both of

these have nonnegative increments.

Item 4 of Lemma 1 ensures that whenever r̄Y < 0 (i.e., whenever the

system is stable), Item 2 of Theorem 1 applies, so the full limit therein

exists. The next corollary suggests that when the rate function aY (·) is
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strictly increasing, the existence of this full limit is always guaranteed:

Corollary 1. If the assumptions in the beginning of Theorem 1 hold and fur-

thermore aY (·) in (5) is strictly increasing, then always limb→∞ b
−1 log Pr{Q >

b} = −θ∗Y .

Proof. If aY (0) < 0, then by continuity aY (θo) < 0 for θo > 0 close enough

to zero, thus uY (θo) = θoaY (θo) < 0 and Item 2 of Theorem 1 applies. If

aY (0) ≥ 0, by strict monotonicity aY (θ) > 0, ∀θ > 0, so Item 1 of Theorem 1

applies with θ∗Y = 0.

Given a stochastic process Y (t), t ∈ T, Theorem 1 determines the asymp-

totic exponential decay rate of the tail-probabilities of Q. However, many

practical queueing applications call for the ‘reversed’ objective of ensuring

that the decay rate be bounded from below2 by some threshold determined

by the QoS requirements. Corollary 2 below links such guarantees with

associated conditions expressed in terms of the asymptotic cumulant gener-

ator uY (·). As we shall see later in this section, these conditions essentially

pose a limit to the amount of traffic entering the queue, thus they act as

natural traffic admission control tests.

Corollary 2. Let the assumptions in the beginning of Theorem 1 hold. Then,

for any θ > 0:

1. uY (θ) < 0 implies limb→∞ b
−1 log Pr{Q > b} ≤ −θ.

2. lim supb→∞ b
−1 log Pr{Q > b} < −θ implies that uY (θ) ≤ 0.

2Decay rates are defined as positive quantities; in Theorem 1 and Corollary 1 the decay

rate is θ∗Y , not −θ∗Y .
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3. Furthermore, if aY (·) is strictly increasing and supDY , θuY = +∞,

then

uY (θ) ≤ 0⇔ lim
b→∞

b−1 log Pr{Q > b} ≤ −θ

and equality at one side of the equivalence implies equality at the other

side too.

Proof. With respect to Item 1, the condition uY (θ) < 0 and (6) yield θ ≤ θ∗Y ,

so −θ ≥ −θ∗Y = limb→∞ b
−1 log Pr{Q > b}, the equality following from Item 2

of Theorem 1. For Item 2 of the corollary, combine the condition with Item 1

of Theorem 1 to get

−θ∗Y ≤ lim inf
b→∞

b−1 log Pr{Q > b} ≤ lim sup
b→∞

b−1 log Pr{Q > b} < −θ.

Therefore, θ < θ∗Y and uY (θ) ≤ 0 by Item 2 of Lemma 1. With respect to

Item 3, the strict monotonicity of aY (·) and Corollary 1 ensure the existence

of the limit at the right hand side of the equivalence. Then, the implication

from the left to the right hand side follows by the reasoning used in proving

Item 1. Moreover, equality at the left hand side for some θ > 0 and the

strict monotonicity of aY (·) imply that θ = θ∗Y and equality holds at the

right hand side too. In the reverse direction, assume that the right hand side

of the equivalence holds; then, Corollary 1 yields θ ≤ θ∗Y . If θ∗Y = +∞ both

sides of the equivalence hold with strict inequality (the left side due to the

strict monotonicity of aY (·)). Otherwise, θ∗Y ∈ Do
Y (due to the assumption

supDY = +∞), and this fact, coupled with the strict monotonicity of aY (·)

make Item 3.b of Lemma 1 applicable. Therefore, θ < θ∗Y (resp. θ = θ∗Y )

implies that both sides of the equivalence hold with strict inequality (resp.

equality).

15



Item 1 of Corollary 2 establishes the sufficiency of the condition uY (θ) < 0

for ensuring that the asymptotic exponential decay rate of the tail-probabilities

of Q is bounded from below by θ. Item 2 is a partial converse, showing that

the slightly more general condition uY (θ) ≤ 0 is necessary for such a bound

to exist. According to Item 3, the strict monotonicity of the rate function

enables a full equivalence. The requirement for supDY = θuY = +∞ in this

last item is a technical condition to exclude cases with θ∗Y = θuY < +∞ and

uY (θ∗Y ) 6= 0. (In such cases the equivalence could break for θ = θ∗Y but would

still hold for θ < θ∗Y .) As the proof reveals, the technical condition is needed

only for the implications from the right to the left part of the equivalence.

It is noted that the first two items of Corollary 2 may be regarded as gen-

eralizations of Theorem 3.8 and part (i) of Theorem 3.9 in [13] to a broader

context.

We close this section by linking its results with the ‘ordinary’ application

of the Eff. Bandwidth/Capacity theory for queue content tail-probabilities.

As already mentioned, in this case the process Y (t) has the form (2). If the

traffic process V (t) and server process C(t) are independent and if both have

asymptotic cumulant generators, uV (·) and uC(·), of the form (3), then

uY (θ) = uV (θ) + uC(−θ). (7)

Moreover, if each of the traffic and server processes satisfies Assumption 1,

then their difference (2) does too. Also, for the case T = Ro
+, if both V (t)

and C(t) either satisfy Hypothesis 2.3 of [15] or have nonnegative increments,

then their difference (2) satisfies the additional assumption of Theorem 1 and

the results of this section apply.

In view of (4), the asymptotic mean rate takes the intuitive form r̄Y =
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r̄V − r̄C , so the ‘stability condition’ r̄Y < 0 (see Item 4 of Lemma 1 and

the comments before Corollary 1) translates to the usual queue stability

condition. Similarly, by virtue of (5) and (7), the rate function takes the form

aY (θ) = aV (θ)− aC(−θ); the function aV (·) is the Eff. Bandwidth function,

while aC(·) is the Eff. Capacity function. In connection with Corollary 1 and

Item 3 of Corollary 2, it is noted that if at least one of the Eff. Bandwidth

and the Eff. Capacity functions is strictly increasing, then aY (·) also is.

Given the particular form of the rate function in the queueing context,

(6) suggests that, whenever θ∗Y > 0, it may be determined as θ∗Y = sup{θ :

aV (θ) ≤ aC(−θ)}, i.e., as the maximum parameter θ for which the Eff. Band-

width does not exceed the Eff. Capacity. Under this point of view, aV (θ)(
resp. aC(−θ)

)
is to be interpreted as the bandwidth requirements of the

traffic (resp. the server’s capacity) with respect to parameter θ and then

θ∗Y emerges as the maximal parameter value that satisfies the corresponding

“generalized queue stability condition”. Furthermore, in the usual (but not

exclusively encountered in applications) case when θ∗Y ∈ Do
Y , the asymptotic

decay rate satisfies aV (θ∗Y ) = aC(−θ∗Y ).

Similar comments apply with respect to Corollary 2: the condition uY (θ) <

0 (resp. uY (θ) ≤ 0) therein translates again to the abovementioned “gen-

eralized queue stability condition”, viz., aV (θ) < aC(−θ)
(
resp. aV (θ) ≤

aC(−θ)
)
. These conditions are very suitable for admission control tests.

The complexity of these tests does not grow even when the traffic is a

complex superposition of independent traffic streams, as in this case the

overall Eff. Bandwidth function is merely the sum of the Eff. Bandwidth

functions of the constituent streams. The value of θ to be used in the
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tests is determined as follows: The stochastic, loss-related QoS specifica-

tion dictates that the queue content should not exceed some given level x

(this event being taken as a proxy to overflows in a system with finite

buffer of size x) with probability higher than e−ε. Provided that both x

and ε are large maintaining a finite ratio, the QoS specification leads to

−ε/x ≥ x−1 log Pr{Q > x} ≈ limb→∞ b
−1 log Pr{Q > b}, so θ = ε/x should

be used in the admission control tests.

3. Effective Bandwidth/Capacity theory for delay probabilities in

FCFS queues

We now revisit the queueing context discussed in the last part of the

previous section. We assume that the queue operates according to the FCFS

policy and let D stand for the delay experienced by data entering the queue

at t = 0 (an infinite amount of time after the system has started operation).

Moreover, we employ the following:

Assumption 2.

1. The traffic process V (t) and the server process C(t), t ∈ T, are mutually

independent.

2. C(t), t ∈ T, has nonnegative and stationary increments.

3. Each of V (t) and C(t), t ∈ T, satisfy Assumption 1 with asymptotic

cumulant generators uV (·) and uC(·), respectively.

4. Furthermore, uC(·) is lower semicontinuous.

5. For continuous time processes only (T = Ro
+): V (t), t ∈ T, also has

nonnegative increments.
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Items 1 and 3 of this assumption are the requirements used in the last

part of Section 2 for applying the Eff. Bandwidth/Capacity theory to the tail-

probabilities of the queue content distribution. As will be discussed later,

Items 2 and 4 (also Item 5, when T = Ro
+) are additional requirements to

ensure that D has the same distribution as the supremum of a stochastic

process featuring a well-behaved asymptotic cumulant generator, so that the

results of Section 2 may be applied.

Indeed, the nonnegativity of increments in Item 2 of the assumption en-

sures that C(·) possesses an inverse process [17], namely

T (v) , inf{s ≥ 0 : C(s) ≥ v}. (8)

The following result links the inverse process T (·) and the traffic process V (·)

to the delay D, analogously to the way Lindley’s equation links the workload

process to the queue content:

Proposition 1. If Items 1 and 2 in Assumption 2 hold, then D =d supt∈T Z(t),

where

Z(t) , T
(
V (t)

)
− t, t ∈ T. (9)

Proof. Let C(t1, t2] denote the amount of data that can be processed in the

time-interval (t1, t2]. With this notation, C(t) , C(−t, 0]. We now show

that Pr{D > d} = Pr{supt∈T Z(t) > d}, for all d ∈ R. This is immediate

for d < 0, since both D and supt∈T Z(t) are nonnegative (the second one by

construction, in view of (9) and the fact that V (0) and T (0) are zero w.p. 1).
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For d ≥ 0, one has:

Pr{D > d} = Pr{C(0, d] < Q}

= Pr
{
C(0, d] < supt∈T{V (t)− C(t)}

}
= Pr

{
∪t∈T {C(0, d] < V (t)− C(−t, 0]}

}
= Pr

{
∪t∈T {C(−t, d] < V (t)}

}
= Pr

{
∪t∈T {C

(
−(t+ d), 0

]
< V (t)}

}
= Pr

{
∪t∈T {C(t+ d) < V (t)}

}
= Pr

{
∪t∈T {T

(
V (t)

)
> t+ d}

}
= Pr

{
∪t∈T {Z(t) > d}

}
= Pr{supt∈T Z(t) > d}.

The first equality above is due to the FCFS policy, while the second follows

from Lindley’s equation (see (1) and (2)). The fourth equality is a result of

stationarity, which implies that the joint distribution of the increments of the

server process is invariant to a translation of time by −d. Finally, the fifth

equality, which proves the result, is a direct consequence of the definition

T (·) in (8), Item 1 of Assumption 2 and (9).

By its definition, the inverse process T (·) has nonnegative and stationary

increments, inheriting these properties from C(·). Thus, Item 5 in Assump-

tion 2 is enough to guarantee that nonnegativity of increments is also a

feature of T (V (·)), so Z(·) in (9) is the difference of two independent pro-

cesses, each with nonnegative increments, and the additional requirement of

Theorem 1 when T = Ro
+ is satisfied.

In view of (9) we proceed to determine the asymptotic cumulant genera-

tor uZ(·) and to check whether Assumption 1 is satisfied. Clearly (see (3) and

(9)),

uZ(ξ) = uT◦V (ξ)− ξ, ∀ξ ∈ R, (10)

provided the asymptotic cumulant generator uT◦V (·) is well defined. (Here

and in the following we employ the usual composition operator notation
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T ◦ V (·) , T
(
V (·)

)
.) Since C(·), thus also T (·), is independent from V (·),

Theorem 5 in [16] yields

uT◦V (ξ) =

uV
(
uT (ξ)

)
, ξ ∈ Do

T◦V = Do
V ∩ uT (Do

T ),

+∞, R \Do
T◦V .

(11)

Note that, although the theorem clearly determines the values of uT◦V (·) in

the interior of its effective domain (which is also designated), it cannot spec-

ify what happens on the boundary of DT◦V . Indeed, if DV is closed at any

of its endpoints, e.g., DV = (θ`V , θ
u
V ], and if there exists ξ0 ∈ Do

T , such that

uT (ξ0) = θuV , it may happen that uT◦V (ξ0) = +∞, although uV (uT (ξ0)) is fi-

nite and, moreover, limξ↑ξ0 uT◦V (ξ)) = uV (uT (ξ0)) < uT◦V (ξ0). Consequently,

uT◦V (·) (thus also uZ(·)) may fail to be lower semicontinuous even when both

uV (·) and uT (·) are. This observation provided the primary motivation in

this paper for developing Theorem 1, which avoids the dependence on lower

semicontinuity assumptions.

We now express uT (·) in terms of uC(·). In preparing for this, we observe

that the nonnegativity in Item 2 of Assumption 2 implies that uC(·) is non-

decreasing throughout the interior of its effective domain Do
C = (−∞, θuC),

where θuC > 0 by virtue of Item 3 in the assumption. Let θ̂`C , inf{θ :

uC(θ) > uC(−∞)}; by convexity, uC(θ) is strictly increasing for all θ > θ̂`C

(and constant and equal to uC(−∞) for all θ ≤ θ̂`C). Although in most ap-

plications uC(·) is strictly increasing throughout Do
C and θ̂`C = −∞, in the

interest of generality we also consider the possibility that θ̂`C is finite. The

degenerate case of a null service process (i.e., C(t) = 0 w.p. 1, for all t ∈ T) is

excluded from further consideration, because in this case T (v) = +∞ w.p. 1

for all v > 0, so D = +∞ w.p. 1 as well, (unless the traffic process is null
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too). With the degenerate case excluded, one always has θ̂`C < 0 (because

u′C(0) = r̄C > 0).

In the context just discussed one may employ Theorem 1 in [17] (whose

application requires Items 3 and 4 of Assumption 2) to obtain uT (·) as follows:

uT (ξ) =


−θuC , ξ ≤ −uC(θuC),

−u−1
C (−ξ), −uC(θuC) < ξ < −uC(θ̂`C),

+∞, ξ > −uC(θ̂`C) = −uC(−∞).

(12)

The theorem ensures that uT (·) satisfies Assumption 1, inheriting this prop-

erty from uC(·). It is noted that, whenever θ̂`C > −∞, the value of uT
(
−uC(θ̂`C)

)
is ambiguous (it may be equal to +∞, or to −θ̂`C). However, in all cases

Do
T =

(
−∞,−uC(θ̂`C)

)
.

It is now straightforward to combine (12) with (11) for determining Do
T◦V

(which is equal to Do
Z , due to (10)). Indeed, with Do

V = (θ`V , θ
u
V ) and Do

T◦V =

Do
Z , (ξ`Z , ξ

u
Z), one has

ξ`Z =

−∞, θ`V ≤ −θuC ,

−uC(−θ`V ), θ`V > −θuC ,
and ξuZ = −uC

(
−min{−θ̂`C , θuV }

)
.

(13)

When V (·) has nonnegative increments, the relation for ξ`Z above reduces

always to the first branch, because θ`V = −∞. This is consistent with the

earlier observation that Item 5 of Assumption 2 is sufficient for ensuring that

T ◦ V (·) also has nonnegative increments.

Up to this point we have established that uZ(·) is well defined (through (10),

(11) and (12)) and that the interior of its effective domain is nonempty and

contains zero. The differentiability of uZ(·) follows from the differentiabil-
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ity of uV (·) and uC(·), itself assured by Item 3 of Assumption 2. Moreover,

Appendix C shows that uZ(·) is steep. Therefore, uZ(·) fulfills all the re-

quirements for the validity of Assumption 1 and it becomes possible to apply

Theorem 1 for the tail-probabilities of the delay D. According to the theo-

rem, the asymptotic decay rate of these probabilities is

ξ∗Z , sup{ξ : uZ(ξ) ≤ 0}. (14)

As discussed in Section 2, always ξ∗Z ≥ 0. Furthermore, (10), (11) and

(12) suggest that, when ξ ≥ 0 (actually also for negative values in a range),

the form of uZ(ξ) simplifies to

uZ(ξ) =

uV
(
−u−1

C (−ξ)
)
− ξ, max{ξ`Z ,−uC(θuC)} < ξ < ξuZ ,

+∞, ξ > ξuZ ,

(15)

with ξ`Z and ξuZ as in (13). However, it is not even necessary to apply (15) and

(14) for determining ξ∗Z , because the following result shows how to obtain it

from the corresponding decay rate of the queue content tail-probabilities:

Theorem 2. If Assumption 2 holds, then ξ∗Z = −uC(−θ∗Y ), with ξ∗Z as in (14)

and θ∗Y as in (6).

Proof. For all 0 ≤ ξ < ξ∗Z ≤ −uC(θ̂`C) (see (13) and (12)), the function

−u−1
C (−·) is strictly increasing. Similarly, the inverse function −uC(−·) is

also nondecreasing and continuous. Thus, using the one-to-one transfor-

mation θ = −u−1
C (−ξ) together with (13), (14) and (15), we obtain ξ∗Z =

supθ∈Θ{−uC(−θ)} = −uC(− sup Θ), where, using also (7), Θ ,
{
θ : θ <

min{−θ̂`C , θuV }, uY (θ) = uV (θ)+uC(−θ) ≤ 0
}
. Therefore, sup Θ = min{−θ̂`C , θuV , θ∗Y } =

min{−θ̂`C , θ∗Y }, because always θ∗Y ≤ θuV .
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If θ∗Y ≤ −θ̂`C there is nothing further to prove. In the complementary

case, −θ∗Y < θ̂`C and since uC(·) is constant for all θ ≤ θ̂`C , it follows that

ξ∗Z = −uC(θ̂`C) = −uC(−θ∗Y ), yielding the same result.

In a sense, Theorem 2 provides a natural generalization over systems

with a constant server rate c. In such systems always Pr{D > d} = Pr{Q >

cd}, so the asymptotic decay rates are necessarily linked by the relation

ξ∗Z = cθ∗Y . The theorem reflects this because, when the service rate is con-

stant uC(θ) = cθ. Moreover, in a general setting with variable service rate,

−uC(−θ∗Y ) = aC(−θ∗Y )θ∗Y , so the system “appears” as if it featured a con-

stant server rate equal to aC(−θ∗Y ). This is consistent with the discussion at

the end of Section 2 about the role of the Eff. Bandwidth value aV (θ∗Y ) and

the Eff. Capacity value aC(−θ∗Y ) as descriptors of the traffic’s bandwidth

requirements and the server’s capacity, respectively.

By Item 3 of Lemma 1 and (7), uV (θ∗Y ) + uC(−θ∗Y ) = 0 whenever θ∗Y ∈

Do
Y , so ξ∗Z may be expressed in this case through the asymptotic cumulant

generator of the traffic process as ξ∗Z = uV (θ∗Y ). However, the result of

Theorem 2 and its interpretation discussed in the previous paragraph hold

even in settings where θ∗Y 6∈ Do
Y with uY (θ∗Y ) 6= 0. Such cases are not

necessarily exotic; for an example see Appendix D.

It is noted that, besides Theorem 2, the intimate relationship between

queue content and delay is manifested in other aspects too. Indeed, (15),

(7) and (4) suggest that r̄Z = r̄V /r̄C − 1, so r̄Z < 0 iff r̄Y = r̄V − r̄C < 0,

i.e., the system is stable in terms of the queue content if and only it is stable

in terms of the delay. Similarly, (15), (5) and the strict monotonicity of

−u−1
C (−·) reveal that if at least one of the Eff. Bandwidth function aV (·)
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and the Eff. Capacity function aC(·) is strictly increasing, then both the rate

functions aY (·) and aZ(·) will also be strictly increasing and, by Corollary 1,

the tail-probabilities of the queue content and of the delay will both possess

a full logarithmic limit.

As with the queue content, we now consider admission control for ensuring

delay-related QoS guarantees. For this purpose we can apply Corollary 2 to

the process Z(t), t ∈ T, and the quantities associated with it. Then, in order

to ensure that the decay rate of the delay tail-probabilities is bounded below

by some ξ > 0, the admission control condition uZ(ξ) < 0 (or uZ(ξ) ≤ 0,

if Item 3 in the corollary applies) must be tested. In light of (15), this is

equivalent to setting

θ(ξ) , −u−1
C (−ξ) (16)

and then testing for uV (θ(ξ)) < ξ. The test may also be expressed in terms

of the Eff. Bandwidth function as

aV (θ(ξ)) < ξ/θ(ξ). (17)

Obviously, these tests are no different than uY (θ(ξ)) = uV (θ(ξ))+uC(−θ(ξ)) <

0 for the first form and aV (θ(ξ)) < aC(−θ(ξ)) for the second. These alternate

forms (together with the fact ξ = −uC(−θ(ξ)) and Theorem 2) emphasize

the connection with the queue length context, but are computationally less

appealing than their previous counterparts.

The value of the parameter ξ to employ in the tests is determined in

a way analogous to the one used for loss-related QoS requirements. This

time the QoS specification dictates that the delay should not exceed some

given threshold τ with probability higher than e−ε. Provided that both τ
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and ε are large maintaining a finite ratio, the QoS specification leads to

−ε/τ ≥ τ−1 log Pr{D > τ} ≈ limd→∞ d
−1 log Pr{D > d}, so ξ = ε/τ should

be used in the admission control tests.

There is one further thing that requires attention: Theorem 2 suggests

that the asymptotic exponential decay rate of the delay tail-probabilities can-

not exceed −uC(−∞). Thus, if this quantity is finite, any QoS specification

greater than it cannot be satisfied, regardless of how low the input traffic may

be3. In light of these comments, the admission control tests presented before

should be preceded by the test ξ < −uC(−∞). If this test fails, then the

admission control test fails too, otherwise the normal test described before is

applied. Note that the extra test just discussed is never required in settings

where the server rate is always maintained greater than a positive threshold,

because in this case it is guaranteed that uC(−∞) = −∞ and any degree of

QoS may be accommodated (provided the input traffic is suitably restricted).

However, if the server rate may attain zero values over some period of time,

a finite value of uC(−∞) may indeed occur. We will encounter this phe-

nomenon in the next section, where IEEE 802.11 stations are modeled as

On/Off servers.

4. The Effective Capacity of IEEE 802.11 stations

We now apply the general results to IEEE 802.11 WLANs. Subsection 4.1

describes the representation of IEEE 802.11 stations in the WLAN as On/Off

3An alternative way of seeing this effect is through (13), which shows that when ξ >

−uC(−∞) = −uC(θ̂`C) then also ξ > ξuZ , so uZ(ξ) = +∞ and the conditions in Item 1 (or

Item 3) of Corollary 2 cannot be satisfied.
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servers, according to [12]. Subsection 4.2 discusses the use of the Eff. Capac-

ity resulting from this On/Off model in connection with delay-related QoS

requirements. Subsection 4.1 is limited only to the material absolutely neces-

sary for stating the On/Off model and for associating it with the IEEE 802.11

MAC protocol (with which the reader is assumed to be familiar). For further

details, proofs and additional insight, the reader is referred to [12].

4.1. Representing mobile stations as On/Off servers

Because of the Carrier Sense Multiple Access/Collision Avoidance (CSMA/

CA) access algorithm used by the IEEE 802.11 protocol, a mobile station be-

haves as a On/Off server. The server is On (at a rate equal to the channel bit

rate r̂) when transmitting successfully the payload of a packet. In all other

states of the IEEE 802.11 protocol (station backing-off, colliding with other

stations, or doing overhead operations before or after a successful transmis-

sion, e.g., RTS/CTS or ACK), the server is Off. Note that the On/Off model

puts in the Off period all signaling and other overhead operations (including

the transmission of the packet’s header), and thus assigns a zero service rate

to them, even though the IEEE 802.11 station actually transmits signaling

data and/or packet header (at the channel rate r̂) during some of these op-

erations. This arrangement is appropriate for representing the service rate

available to higher layers of the protocol stack.

Let Ton and Toff stand for the On- and Off-sojourn times, respectively.

The moment generator of Ton is simply

γon(ω) , E
[
eωTon

]
= E

[
eωP/r̂

]
, (18)

where P is the payload size of the packet being transmitted. When packets
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have a constant payload, Ton is a deterministic random variable. The moment

generator of Toff reads

γoff(ω) , E
[
eωToff

]
= eωtover

(
Bo + (1−Bo)e

ωtslotγbo(ω)
)
. (19)

This equation reflects the fact that, when the station, after a successful trans-

mission, draws a 0th-stage backoff window equal to zero (an event of proba-

bility Bo), the Off period simply lasts a constant time tover, equal to the time

required for performing the overhead operations before and after the success-

ful transmission. In the complementary event, with probability 1 − Bo, the

Off period additionally includes the constant time tslot, required for initially

decrementing the backoff counter by one, plus the time spent by the station

in backoff mode. The moment generator for this backoff time is

γbo(ω) =
go
(
γs(ω)

)
−Bo

γs(ω)(1−Bo)

∞∑
l=0

(
(1− p)pleltcollω

l∏
j=1

gj
(
γs(ω)

))
, (20)

where tcoll is the constant time required for detecting a collision and gj(·) is

the generator function of the backoff window Wj drawn at the jth backoff

stage, j ≥ 0. Always, Bo = g0(0). Eq. (20) allows the use of general backoff

window distributions. For the special uniform distributions employed by

the IEEE 802.11 standard, gj(z) = wj
−1
∑wj−1

l=0 zl = wj
−1(zwj − 1)/(z − 1),

where wj = 2min{j,m}wo, j ≥ 0 and m is the threshold of the backoff stage

index beyond which the backoff window distributions remain invariant.

The quantity p in (20), called conditional collision probability, denotes

the collision probability observed by a packet attempting transmission. The
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value of p is obtained by solving the system of equations

1− p = (1− τ)n−1, τ =
[
1 + (1− p)

(E [Wo]

1−Bo

− 1 +
∞∑
i=1

piE [Wi]
)]−1

(21)

for the conditional collision probability p and the transmission probability τ

[29]. In (21), n is the number of competing stations and E [Wi] = g′i(1) is the

mean backoff window at the ith backoff stage.

Finally, the function γs(ω) appearing in (20) is the moment generator of

the time required for the reduction of the backoff counter by one, viz.,

γs(ω) = Pcolle
ωtcoll + Pemptye

ωtslot + Psucc
(1−Bo)γon(ω)eωtover

1−Boγon(ω)eωtover
eωtslot , (22)

where

Psucc = (n− 1)τ(1− τ)n−2, Pempty = (1− τ)n−1, Pcoll = 1−Psucc−Pempty,

(23)

are the probabilities with which a successful transmission, an empty slot and

a collision, respectively, are observed by a station backing-off (this station

observing n− 1 other independent stations).

It is noted that when the backoff stage index threshold m is finite, the

infinite sum in the expression for τ within (21) specializes to
∑m−1

i=1 piE [Wi]+

pmE [Wm] /(1 − p). Similarly, the infinite sum in (20) may also be written

in closed form. At this point it is noted that the constant times tslot, tover

and tcoll, used in (19), (20) and (22), are simple functions of basic MAC

parameters specified by the standard; for details, see [12].

The formulation of (21) assumes saturation conditions, in which all other

competing stations always have a packet to send. This is a conservative as-

sumption, suitable for highly loaded networks. The dependence of γoff(·) on
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the saturation assumption is only through the conditional collision probabil-

ity p, used in (20) and the probabilities Psucc, Pempty and Pcoll employed

by (22). Under non-saturation conditions these parameters retain their

meaning, but take different values. Thus, if each mobile station assesses these

probabilities by direct measurement, rather than computing them through

(21) and (23), the model works well in all settings, lightly loaded ones in-

cluded.

4.2. Using the IEEE 802.11 Effective Capacity for delay-related QoS

The moment generators of the On- and Off-periods of the IEEE 802.11

model in (18) and (19) have open effective domains, Don and Doff, respec-

tively, both of them containing zero. Indeed, Don = R, because the size

of transmitted packets is always nonnegative and upper bounded by the

maximum PDU size. Also, Doff = (−∞, ω∗off), where ω∗off is determined by

the requirement that the infinite sum in (20) converges. If the threshold

stage m is finite, as in the standard, then the infinite sum in (20) can be

expressed in closed form and ω∗off is the unique positive value of ω satisfying

gm
(
γs(ω)

)
eωtcoll = 1/p.

Given the properties of the effective domains just mentioned, it is possible

to determine the asymptotic cumulant generator (3) of the On/Off model,

by employing general results for semi-Markovian models [28]. According to

these results, uC(·) is a finite and analytic function in the entire set of real

numbers and can be derived by means of an implicit function problem, which,

for the On/Off case of interest here, takes the form

f(θ, uC(θ)) = 0, f(θ, u) , log γon(r̂θ − u) + log γoff(−u). (24)
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In light of the previous comments and the fact that the rate process of the

On/Off model is nonnegative and stationary, Items 2–4 of Assumption 2 are

seen to be satisfied. Moreover, in connection with Corollary 1 and Item 3

in Corollary 2, it is mentioned that, since Toff is not constant w.p. 1, it is

guaranteed [28] that the Eff. Capacity function aC(·) is strictly increasing,

with aC(0) = r̄C and limθ→−∞ aC(θ) = 0.

Assume now that the IEEE 802.11 station is loaded by a traffic process

with nonnegative increments and an asymptotic cumulant generator uV (·)

satisfying Assumption 1. Then Assumption 2 is satisfied in full and the

results of Section 3 can be used. In view of Theorem 2, the asymptotic decay

rate ξ∗Z of the delay tail-probabilties can be obtained through θ∗Y in (6), with

uY (·) as in (7). Determination of θ∗Y for the IEEE 802.11 On/Off setting

specializes as follows: If the effective domain DV of uV (·) is closed from

above, i.e., θuV , supDV ∈ DV (in which case also θuV = supDY ∈ DY )

and if, additionally, uV (θuV ) ≤ −uC(−θuV ) (this condition being equivalent

to f(−θuV ,−uV (θuV )) ≤ 0, because f(θ, ·) in (24) is a decreasing function for

any θ), then θ∗Y = θuV and the decay rate of the delay tail-probabilities ξ∗Z =

−uC(−θuV ) is obtained by (24), as the unique solution in ξ of f(−θuV ,−ξ) = 0.

The case just discussed may arise when the traffic has characteristics similar

to those of the example in Appendix D. In all other cases it is guaranteed

that θ∗Y ∈ Do
Y , so, by Item 3 of Lemma 1, θ∗Y is a root of uY (·) in (7) (more

precisely, the unique positive root, due to the monotonicity of aC(·)), so

uC(−θ∗Y ) = −uV (θ∗Y ). Therefore, in view of (24), θ∗Y can be obtained as the

unique positive solution in θ of f(−θ,−uV (θ)) = 0. Computation of this

solution will simultaneously also produce uV (θ∗Y ) = −uC(−θ∗Y ) = ξ∗Z without
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any additional computational cost.

Calculations for the admission control test are simpler. According to

the results of Section 3, given the QoS specification ξ, one must first deter-

mine θ(ξ) in (16) and then check if inequality (17) holds. Since uC(−θ(ξ)) =

−ξ, (24) suggests that θ(ξ) is the unique solution in θ of f(−θ,−ξ), thus

θ(ξ) = ξ/r̂ − (log γon)−1
(
− log γoff(ξ)

)
/r̂. (25)

This requires only a single evaluation of the function γoff(·) at the argument ξ,

keeping the computational complexity low. (In contrast, the computations

for determining the asymptotic decay rate ξ∗Z typically require repetitive eval-

uation of this function, in the course of some numerical zero finding method.)

Moreover, when the payload of transmitted packets has a constant value P ,

(18) yields (log γon)−1(x) = r̂x/P , so (25) simplifies further to the closed

form solution θ(ξ) = ξ/r̂+log γoff(ξ)/P. Note that, as long as the conditions4

in the WLAN remain unchanged, a single evaluation of θ(ξ) suffices to en-

able an arbitrary number of admission control tests (17), each of them being

invoked whenever the mobile station is about to engage a new traffic flow.

The function uC(·) corresponding to the IEEE 802.11 On/Off model is

such that the value of limθ→−∞ uC(θ) is always finite. Indeed, (24) suggests

that

log γoff

(
−uC(θ)

)
= − log γon

(
r̂θ − uC(θ)

)
, ∀θ ∈ R.

In order to maintain the left hand side finite, −uC(θ) < ω∗off, thus limθ→−∞ uC(θ) ≥

−ω∗off. Moreover, by Jensen’s inequality uC(θ) ≥ r̄Cθ, so when θ → −∞ the

4Number of active stations in the WLAN and (if the measurement-assisted variant of

the model is used), loading conditions at other stations.
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argument of γon(·) in the right hand side r̂θ − uC(θ) ≤ (r̂ − r̄C)θ → −∞.

Therefore, when θ → −∞ the right hand side tends to− limω→−∞ log γon(ω) =

− log Pr{Ton = 0} = +∞, because the payload of a transmitted packet can

never be empty. The left hand side must also approach infinity, thus neces-

sarily limθ→−∞ uC(θ) = −ω∗off.

As already remarked at the end of Section 3, the finiteness of this limit

implies that the decay rate of the delay tail-probabilities cannot exceed ω∗off.

Thus, the admission control test discussed earlier must be preceded by the

test ξ < ω∗off. If this test fails then the whole admission control test fails,

otherwise the normal test is applied. The quantity ω∗off is determined as

explained in the beginning of this subsection. We note that the inherent

reason why the decay rate ξ cannot exceed some finite bound with servers of

the On/Off type is that, even when the traffic is arbitrarily low and packets

arbitrarily small, the incoming packets may find the queue empty but they

still have to wait until the server’s residual Off period is finished before they

can be processed.

5. Validation of the IEEE 802.11 model for delay-related QoS

We now validate the IEEE 802.11 Eff. Capacity model by comparing an-

alytical results with simulation. In alignment with the paper’s focus, we con-

centrate on delay-related QoS; for the effectiveness of the model in connection

with loss-related performance see [12]. The simulation results were obtained

with the help of the ns-2 simulator [30], using system parameter values cor-

responding to IEEE 802.11g, operating in Direct-Sequence Spread Spectrum

(DSSS) Orthogonal Frequency-Division Multiplexing (OFDM) mode with
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Figure 1: Delay tail-probabilities at a mobile station, in a WLAN with nine additional

saturated stations, for two different traffic loads.

RTS/CTS handshaking enabled [31]. A constant payload size P = 8184 bits

was used in all cases.

The first set of results, depicted in Fig. 1, assesses the potential of the

IEEE 802.11 Eff. Capacity function to track closely the tail of the delay prob-

abilities. A WLAN with 10 mobile stations was studied; 9 of these stations

were subjected to a very high traffic load, so they operated under satura-

tion conditions, while the 10th station was loaded with traffic of a known

profile and the delay, from a packet’s entrance to the station’s queue until

the completion of its transmission, was measured. These measurements were

used for constructing the empirical complementary probability distribution

function of the delay, which is plotted in the figure in semilog scale, using

dashed lines.

Two simulations were run, each using a different traffic profile for the

observed station: The first scenario (blue lines in Fig. 1) employed Poisson

traffic with packets of constant size (equal to P ), while in the second case (red

lines) the traffic consisted of a superposition of constant bit rate traffic at

335.4 kbps and a bursty On/Off traffic source with exponentially distributed
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On and Off periods, of mean durations equal to 0.4 sec and 0.8 sec, respec-

tively, and a peak rate equal to 1006.2 kbps. The overall mean traffic load

was the same in both scenarios, equal to 670.8 kbps.

The simulation results are accompanied by model-derived straight-line

curves (solid lines in Fig. 1), at slopes equal to the corresponding asymptotic

decay rates of the delay tail-probabilities, as predicted by the Eff. Bandwidth/

Capacity theory of Section 3. The relevant calculations were performed by

the methodology described in Subsection 4.2, using the Eff. Bandwidth func-

tion corresponding to the traffic profile pertaining to each scenario. It can

be seen that the delay tail-probabilities derived from the simulation decay

exponentially, at a rate that agrees with the analytical result.

We now turn to the potential of the IEEE 802.11 function with respect

to admission control decisions. A WLAN containing 10 stations is again

considered, but this time all stations feature the same Poisson traffic, with

packets of constant size P and a mean rate equal to 600 kbps. One of the

stations attempts to initiate additional flows on top of the existing Poisson

background traffic, one after the other. The traffic profile of each of these

flows is of the On/Off type, with exponentially distributed On and Off periods

of mean durations equal to 0.4 sec and 0.8 sec, respectively, and a peak rate

equal to 480 kbps. These parameters yield a mean rate of 160 kbps per flow.

Admission control is exercised to assess whether a flow may be admitted

on top of the previously existing traffic without violating the QoS speci-

fication, which dictates that the delay should not exceed 1 sec with prob-

ability higher than 10−2. This QoS specification corresponds to a target

decay rate ξ = − log 10−2/(1 sec) = 2 log 10 sec−1. This, in turn, corresponds
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through (25), the specialized form of (16) for the IEEE 802.11 setting, to a

decay rate for the queue content tail-probabilities equal to θ(ξ), which is then

used in the admission control test (17). When testing for admission of the

kth On/Off flow, the Eff. Bandwidth function at the left hand side of (17)

is set to aV (·) = aPoisson(·) + kaonoff(·). It is noted that the IEEE 802.11

Eff. Capacity function used here is not the same as the one in the previous

set of results, despite the fact that the WLAN contains 10 stations in both

cases. The reason is that the other competing stations are not saturated in

the present context. Thus, the measured values of the conditional collision

probability p and the probabilities Psucc, Pempty and Pcoll are different from

the values that would have been obtained in a saturated environment, leading

to a different (greater) Eff. Capacity function.

For the scenario considered, the admission control procedure accepts up to

4 On/Off flows in addition to the Poisson background traffic. The correctness

of this decision is validated by Fig. 2, which plots probabilities of exceeding

delay thresholds when the station is loaded with 4 (blue lines) and 5 (red

lines) On/Off flows in addition to the Poisson background load. Results from

both simulation (dashed lines) and analysis (solid lines) are included, as with

Fig. 1. It may be seen that with 4 flows the probability of the delay exceeding

1 sec is below the target value 10−2 and that the introduction of the 5th flow

raises the value of this probability above the threshold, violating the QoS.

Of course this was to be expected for the analytically derived straight-line

curves, the result being nothing more than a manifestation of Corollary 2,

as applied to the delay process Z(t). However, Fig. 2 further illustrates that

the exact delay probabilities (as determined by simulation) also follow the
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Figure 2: Delay tail-probabilities when the mobile station admits four and five On/Off

flows, on top of Poisson background traffic.

predictions of the admission control test, closely enough.

6. Conclusions

The paper provided the, up to now missing, formal justification for the

use of the Effective Bandwidth/Capacity theory in delay-related performance

contexts. By representing the delay experienced by traffic entering a FCFS

queue as the supremum of a stochastic process and by suitably extending and

applying prior results, it was established rigorously that the theory is capable

of providing an asymptotically tight approximation to delay tail-probabilities.

In particular, the paper formalized the, previously heuristic, association of

the asymptotic exponential decay rate of the queue content probabilities with

its counterpart for the delay probabilities, through the server’s Eff. Capac-

ity function. The asymptotic approximation to the delay tail-probabilities

was complemented by associated admission control schemes that are useful

for providing delay-related QoS guarantees. The results apply to queueing

systems operating in either discrete- or continuous-time and featuring ar-

bitrary time-varying traffic and service processes, provided these processes
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are independent and possess well-defined Eff. Bandwidth and Eff. Capacity

functions, respectively.

The general results were applied to the important setting of IEEE 802.11

WLANs, by modeling each IEEE 802.11 station as an On/Off server and then

using the Effective Capacity function corresponding to this model. Computa-

tional and algorithmic details relating to the application of the general theory

with the particular Eff. Capacity function of this On/Off model were also dis-

cussed. Comparison of the analytical results with simulation validated the

effectiveness of the On/Off IEEE 802.11 model in providing delay-based QoS

guarantees.

Appendix A. Proof of Lemma 1

Item 1 is an immediate consequence of the definition in (6). For Item 2,

note that for any 0 < θ < θ∗Y one may find a θ′, such that 0 < θ < θ′ < θ∗Y ,

and uY (θ′) ≤ 0. Thus, there exists 0 < h < 1 such that θ = (1 − h)0 + hθ′.

Since uY (0) = 0, the convexity of uY (·) implies that uY (θ) ≤ (1− h)uY (0) +

huY (θ′) = huY (θ′) ≤ 0. To prove Item 3, note that uY (·) is convex in DY ,

hence continuous in Do
Y . Since θ∗Y ∈ Do

Y , Item 1 suggests that uY (θ∗Y ) =

limθ↓θ∗Y uY (θ) ≥ 0, while, by Item 2, uY (θ∗Y ) = limθ↑θ∗Y uY (θ) ≤ 0; hence

uY (θ∗Y ) = 0. Furthermore, since uY (·) is convex and differentiable in Do
Y , it

holds
uY (θ2)− uY (θ1)

θ2 − θ1

≤ u′Y (θ2), ∀ θ2 > θ1. (A.1)

By applying this result with θ2 = θ and θ1 = θ∗Y , one has

u′Y (θ) ≥
(
uY (θ)− uY (θ∗Y )

)
/(θ − θ∗Y ) = uY (θ)/(θ − θ∗Y ) > 0,
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where the last inequality is due to Item 1. Now assume that there exists

θo > 0 such that uY (θo) < 0. By virtue of (6), θ∗Y ≥ θo > 0. Also, since

uY (0) = uY (θ∗Y ) = 0 and uY (θo) < 0, the convexity of uY (·) implies that

uY (θ) < 0 for all θ ∈ (0, θo) and all θ ∈ (θo, θ
∗
Y ), thus there is no positive root

of uY (·) in (0, θ∗Y ). By Item 1 there is no root greater than θ∗Y , so θ∗Y is the

unique positive root of uY (·). By applying (A.1) with θ1 = θo and θ2 = θ∗Y ,

one obtains u′Y (θ∗Y ) ≥ −uY (θo)/(θ
∗
Y − θo) > 0. Lastly, in connection with

Item 4 assume that r̄Y < 0. Since aY (0) = r̄Y and aY (·) is continuous, there

exists θo > 0 such that aY (θo) < 0, so uY (θo) = θoaY (θo) < 0.

Appendix B. Proof of Theorem 1

For Item 1, if θ∗Y =∞ there is nothing to prove. Thus, assume θ∗Y <∞.

Following the reasoning of Theorem 2.1 in [15] (specialized to the linear case

of interest here), for each a > 0,

lim inf
b→∞

1

b
log Pr{Q > b} ≥ lim inf

t→∞

1

at
log Pr{Y (t) > at} = a−1 lim inf

t→∞
t−1 log Pr{Y (t)/t > a}.

Let u∗Y (x) , supθ∈R{θx−uY (θ)} be the Fenchel-Legendre transform of uY (·).

If uY (·) had been assumed lower semicontinuous, the ‘usual’ lower bound

of the Gärtner-Ellis Theorem would apply and the right-hand side of the

previous inequality would be bounded below by −a−1 infx>a u
∗
Y (x), leading

to the outcome of Theorem 2.1 in [15] for the special linear case.

Without the semicontinuity assumption, the weakened form of the Gärtner-

Ellis lower bound applies (see, e.g., Item b of Theorem 2.3.6 in [27]), so one

obtains

lim inf
b→∞

1

b
log Pr{Q > b} ≥ −1

a
inf
x>a
x∈F

u∗Y (x), ∀a > 0, (B.1)
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where F is the set of exposed points of u∗Y (·) whose exposing hyperplane

belongs to Do
Y . For a complete description of an exposed point and its

associated exposing hyperplane see Definition 2.3.3 in [27]. For the purposes

of this proof it is sufficient to employ Item b of Lemma 2.3.9 in [27], according

to which, for any θ ∈ Do
Y , the value xθ = u′Y (θ) is an exposed point of u∗Y (·)

with exposing hyperplane θ and, furthermore, u∗Y (xθ) = θxθ − uY (θ).

Now consider firstly the case θ∗Y ∈ Do
Y . By Item 3 of Lemma 1, for any

θ ∈ Do
Y with θ > θ∗Y , xθ = u′Y (θ) > 0 is a positive exposed point. Thus, for

any 0 < a < xθ,

inf
x>a
x∈F

u∗Y (x) ≤ u∗Y (xθ) = θxθ − uY (θ) ≤ θxθ,

the last inequality following by Item 1 of Lemma 1, because θ > θ∗Y . In

conjunction with (B.1), one gets

lim inf
b→∞

1

b
log Pr{Q > b} ≥ −θxθ

a
, ∀a < xθ, θ ∈ Do

Y , θ > θ∗Y ,

By letting a ↑ xθ and subsequently letting θ ↓ θ∗Y , the result follows.

If θ∗Y 6∈ Do
Y then one has θ∗Y = supDo

Y and, since θ∗Y has been assumed

finite, the steepness condition of Assumption 1 applies, thus

lim
θ↑θ∗Y

u′Y (θ) = +∞. (B.2)

Hence, for all θ ∈ Do
Y suitably close to θ∗Y , xθ = u′Y (θ) > 0 is a positive

exposed point. Therefore,

−a−1 inf
x>a
x∈F

u∗Y (x) ≥ −a−1u∗Y (xθ) = −θxθ
a

+
uY (θ)

a
, ∀a < xθ,

and by combining with (B.1) and letting a ↑ xθ,

lim inf
b→∞

1

b
log Pr{Q > b} ≥ −θ +

uY (θ)

xθ
= −θ +

uY (θ)

u′Y (θ)
(B.3)
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for all θ ∈ Do
Y suitably close to θ∗Y . By (B.2) uY (θ) is increasing in a neighbor-

hood of θ∗Y , thus limθ↑θ∗Y uY (θ) exists and is finite (due to Item 2 of Lemma 1).

Given these properties, the result follows by letting θ ↑ θ∗Y in the right-hand

side of (B.3). The second claim of Item 1 is immediate upon realizing that

always lim supb→∞ b
−1 log Pr{Q > b} ≤ 0.

We now turn to the proof of Item 2: We want to apply Theorem 2.2

in [15] and obtain

Iu , lim sup
b→∞

b−1 log Pr{Q > b} ≤ − inf
x>0

u∗Y (x)

x
. (B.4)

Indeed, if T = Zo+, or if T = Ro
+ and the process Y (t) additionally satisfies

Hypothesis 2.3 in [15], then Theorem 2.2 in [15] is directly seen to apply.

(Note that lower semicontinuity of uY (·) is not required, because the the-

orem uses just the upper bound of the Gärtner-Ellis Theorem, for which

Assumption 1—in fact the first two items therein—suffices.) Furthermore,

we will show later that (B.4) also applies when T = Ro
+ and the alternative

condition in the statement of Theorem 1 holds.

For any 0 < θ < θ∗Y (such θ exists, because θ∗Y > 0) one has u∗Y (x) ,

supθ′∈R{θ′x − uY (θ′)} ≥ θx − uY (θ) ≥ θx, where the last inequality fol-

lows from Item 2 of Lemma 1. Therefore, u∗Y (x)/x ≥ θ for any x > 0, so

infx>0{u∗Y (x)/x} ≥ θ and (B.4) leads to Iu ≤ −θ. By letting θ ↑ θ∗Y and

combing with Item 1 of this theorem, we are led to the result.

It remains to show that (B.4) holds when T = Ro
+ and Y (t) = V (t) −

C(t), where the processes in the difference are independent and each of

them has nonnegative increments and an asymptotic cumulant generator

satisfying Assumption 1. Towards this end, for any κ > 0 define Ŷκ,n ,

supnκ≤t<(n+1)κ Y (t). Then, Q = supt≥0 Y (t) = supn≥0 Ŷκ,n. Moreover, by the
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nonnegativity of increments, Ŷn,κ ≤ Ȳn,κ , V
(
(n+ 1)κ

)
− C(nκ), so

Iu = lim sup
b→∞

b−1 log Pr{Q > b} ≤ lim sup
b→∞

b−1 log Pr{sup
n≥0

Ȳn,κ > b}. (B.5)

The discrete-time process Ȳn,κ has an asymptotic cumulant generator too.

Indeed,

uȲ (θ) , lim
n→∞

n−1 log E
[
eθȲn,κ

]
= lim

n→∞
n−1 log E

[
eθV
(

(n+1)κ
)
−θC(nκ)

]
= κ

(
uV (θ) + uC(−θ)

)
= κuY (θ), (B.6)

using the independence of the two processes and (7). It follows that uȲ (·)

fulfills the conditions of Assumption 1 (and the existence of a θo > 0 satisfy-

ing uȲ (θo) < 0), because uY (·) does. Thus, Theorem 2.2 in [15] applies to the

discrete-time process Ȳn,κ and bounds the right hand side of (B.5), yielding

Iu ≤ − infx>0(u∗
Ȳ

(x)/x). Moreover, (B.6) implies that u∗
Ȳ

(x) , supθ∈R{θx−

uȲ (θ)} = κu∗Y (x/κ). Therefore, infx>0 x
−1u∗

Ȳ
(x) = infx>0 x

−1u∗Y (x) and

(B.4) is seen to hold.

Appendix C. The steepness of uZ(·)

By (13), Do
Z has a boundary point from below only if θ`V > −θuC , in

which case the middle branch in (12) applies as ξ ↓ ξ`Z . By employing the

strictly increasing function −u−1
C (−·) in the continuous transformation θ =

−u−1
C (−ξ) one obtains

lim
ξ↓ξ`Z

u′Z(ξ) = lim
ξ↓−uC(−θ`V )

u′V
(
−u−1

C (−ξ)
)
/u′C

(
u−1
C (−ξ)

)
− 1

= lim
θ↓θ`V

(u′V (θ)/u′C(−θ))− 1 = +∞,

by the steepness of uV (·) and the fact that u′C(−θ`V ) > 0 and bounded (be-

cause 0 < −θ`V < θuC). The reasoning for the upper boundary of Do
Z is similar:
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When θuV < −θ̂`C , then limξ↑−uC(−θuV ) u
′
Z(ξ) = limθ↑θuV (u′V (θ)/u′C(−θ)) − 1 =

+∞, for the same reasons as before. Finally, in the complementary case

−θ̂`C ≤ θuV , one has limξ↑−uC(θ̂`C) u
′
Z(ξ) = limθ↑−θ̂`C

(u′V (θ)/u′C(−θ))− 1 = +∞,

because u′V (−θ̂`C) > 0 and +∞ = limξ↑−uC(θ̂`C) u
′
T (ξ) = limθ↑−θ̂`C

(1/u′C(−θ)),

due to the steepness of uT (·).

Appendix D. An example of a system featuring θ∗Y 6∈ Do
Y and

uY (θ∗Y ) 6= 0

Consider a constant server rate c and Poisson arrivals of packets, whose

size features a distribution with corresponding moment generator γ(θ), finite

in (−∞, θo] and infinite otherwise. Such a distribution may result from a

density of the form f(x) = αse−xs/(1 + (xs)2), x ≥ 0, where α is the normal-

ization constant. Then θo = s and γ(θo) = απ/2. In this example, uV (θ) =

λ(γ(θ)−1) withDV = DY = (−∞, θo]. If the Poisson rate λ < cθo/(γ(θo)−1),

then θ∗Y = θo and ξ∗Z = cθo, while uY (θo) = λ(γ(θo)− 1)− cθo < 0.
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