arXiv:1010.1862v1 [math.OC] 9 Oct 2010

Utility Optimal Scheduling in Processing Networks

Longbo Huang, Michael J. Neely

Abstract—We consider the problem of utility optimal schedul- time slot, based on the observed network state, and subject
ing in general processing networkswith random arrivals and to the constraint thathe network queues must have enough
network conditions. These are generalizations of traditioal data contents to support the actiohe chosen action generates

networks where commodities in one or more queues can be tilitv. but al t of tents f
combined to produce new commodities that are delivered to ber some utility, but also consumes some amount ot contents from

parts of the network. This can be used to model problems suchsa SOMe queues, and possibly generates new C_0”te”t5 for some
in-network data fusion, stream processing, and grid compuing. other queues. These contents cause congestion, and thlus lea

Scheduling actions are complicated by theinderflow problemthat to backlogs at queues in the network. The goal of the coetroll

arises when some queues with required components go empty.; Figa it i i ; .
In this paper, we develop the Perturbed Max-Weight algoritm is to maximize its time average utility subject to the coaistr

(PMW) to achieve optimal utility. The idea of PMW is to pertur b that the time aV‘?r_age tOt_al _bac_:klog in the m_':'twork is finite.
the weights used by the usual Max-Weight algorithm to “push” Many of the utility maximization problems in data networks
queue levels towards non-zero values (avoiding underflowsjVe fall into this general framework. For instance, [10],][11],

show that when the perturbations are carefully chosen, PMW § [12] [13], [14], can be viewed as special cases of the above

able to achieve a utility that is within O(1/V) of the optimal - gamework which allow scheduling actions to be independent
value for any V' > 1, while ensuring an average network backlog . -
of O(V). of the content level in the queues (séel[15] for a survey of

problems in data networks). By comparing the processing
networks with the data networks, we note that the main
difficulty in performing utility optimal scheduling in thes
processing networks is thate need to build an optimal
. INTRODUCTION scheduling algorithm on top of a mechanism that prevents

Recently, there has been much attention on developing OF%J_eue underflowsSuch scheduling problems with underflow

mal scheduling algorithms for the classpybcessing networks constraints are usually formulated as dynamic prograngs, e.

. [16], which require substantial statistical knowledge bé t
e.g., [11, [2], [3], [4], [5]. These networks are generatiaas network randomness, and are usually very difficult to solve.

of traditional data networks. Contents in these networks ca . .
represent information, data packets, or certain raw n@seri In this paper, we develop the Perturbed Max-Weight al-
' ' grithm (PMW) for achieving optimal utility in processing

that need to go through multiple processing stages in tHa . . o
network beforg they an be utﬂizez. One egamplge of sud etworks. PMW is a greedy algorithm that makes decisions

: . . . every time slotwithout requiring any statistical knowledge of
processing networks is the Fork and Join network con5|dert qunetwork randomnesBMW is based on the Max-Weight

ol 25 srear process) £) 70" fortm developed i th data newor con (17 (11
puting 1]. P 9 ’ - There, Max-Weight has been shown to be able to achieve

in the network represent different types of data, say v0|cetime average utility that is withi)(1/V) of the optimal

. . .. a
and video, that need to be combined or Jomt_ly compressendétwork utility for anyV” > 1, while ensuring that the average
and the network topology represents a particular sequenc

of operations that needs to be conducted during processineEiWOrk d_elay IOV, vyhen the network dynamlcs are .""d'
. . . The idea of PMW is to perturb the weights used in the
Another example of a processing network is a sensor netw) . .) .
: :) x-Weight algorithm so as to “push” the queue sizes towards
that performs data fusionl[9], in which case sensor data mus .
. - . . . some nonzero values. Doing so properly, we can ensure that
first be fused before it is delivered. Finally, these proicess

networks also contain the class of manufacturing networkﬂs1e queues aways have enough contents for the scheduling

. . actions. Once this is accomplished, we then do scheduling as
where raw materials are assembled into products [3], [5].
. : . - _in the usual Max-Weight algorithm with the perturbed wegght
In this paper, we develop optimal scheduling algorithms

for the following general utility maximization problem in n this way, we simultaneously avoid queue underflows and

processing networks. We are given a discrete time Stomaa,“chleve good utility performance, and also eliminate thedne

: . . 0 solve complex dynamic programs.
processing network. The network state, which descn_bgs ¢ “The PMW algorithm is quite different from the approaches
network randomness (such as random channel conditions or

. i N . . used in the processing network literatuiéd. [1] analyzesunan
commodity arrivals), is time varying according to some pro . . . i .
ability law. A network controller performs some action aeey acturing networks using Brownian approxlmgtloﬁsk. [2] mﬂ)_
' the Max-Weight algorithm to do scheduling in manufacturing
Longbo Huang (web: http://www-scf.usc.eduéngbohu) and Michael J. networks, assuming all th_e _queues al_WayS ha_/e enoth con-
Neely (web: http:/www-rcf.usc.edwjneely) are with the Dept. of Electri- tents. [3] develops the Deficit Max-Weight algorithm (DMW),

cal Eng., University of Southern California, Los Angeleg\ @0089, USA. by using Max-Weight based on an alternative control pro-
This material is supported in part by one or more of the foltmy the

DARPA IT-MANET program grant W911NF-07-0028, the NSF grp¢e C€SS for decision makingl[4] formulates the problem as a
0520324, the NSF Career grant CCF-0747525. convex optimization problem to match the input and output

Index Terms—Dynamic Control, Processing Networks, Data
Fusion, Lyapunov Analysis, Stochastic Optimization

http://arxiv.org/abs/1010.1862v1
http://www-scf.usc.edu/~longbohu

rates of the queues, without considering the queueing lewslery time slot, the network controller first decides whethe
dynamics. PMW instead provides a way to explicitly avoidr not to admit the new arrivals, given that accepting any one
gueue underflows, and allow us to compute explicit backlagew arrival unit incurs a cost of. The controller then has
bounds. Our algorithm is perhaps most similar to the DMW6 decide how to activate the two processéts P for data
algorithm in [3]. DMW achieves the desired performance byrocessing. We assume that both processors can be activated
bounding the “deficit” incurred by the algorithm and appliesimultaneously. When activatef;, consumes one unit of data
to both stability and utility maximization problems. Whase from both ¢; and g2, and generates one unit of fused data
PMW uses perturbations to avoid deficits entirely and allowsto ¢s. This data needs further processing that is done by
for more general time varying system dynamics, e.g., randaf. When P, is activated, it consumes one unit of data from
arrivals and random costs. g3, and generates one unit of processed data. We assume that
The paper is organized as follows: In Sectidn Il we set wgach unit of successfully fused and processed data geserate
our notations. In Sectiof1ll, we present a study on a dataprofit of p(¢), wherep(¢) is i.i.d. and takes valug or 1
fusion example to demonstrate the main idea of the papeith equal probabilities. The network controller’'s objeetis
In Section[IV¥ we state the general network model and the maximize the average utility, i.e., profit minus cost, jsab
scheduling problem. In Sectidn] V we characterize optimalitto queue stability.
and in Sectiong_YI we develop the PMW algorithm and show For the ease of presenting the general model later, we define
its utility can approach the optimum. Sectib VIl consteucta network stateS(t) = (R; (t), Ra(t)), ll which describes the
a PMW algorithm for a more specific yet general networlcurrent network randomness. We also denote the contller’

Simulation results are presented in SecfionVIlI. action at time ¢ to be z(t) = (D1(t), D2(t), (1), I2(t)),
where D;(t) = 1 (D;(t) = 0) means to admit (reject) the
I1. NOTATIONS new arrivals into queug, andI;(t) = 1 (I;(t) = 0) means

processorP; is activated (turned off). We note the following
no-underflow constraintsnust be met for all time when we
activate processorB;, Ps:

Here we first set up the notations used in this pafier:
represents the set of real numbeRs. (or R_) denotes the
set of nonnegative (or non-positive) real numb&s.(or R")
is the set ofx dimensionakolumnvectors, with each element Li(t) < aqi(t), I1(t) < qa(t), Io(t) < g3(2). (1)
being in R (or R,). Bold symbolsa and a” represent a)
columnvector and its transpose > b means vectom is 1hatis, i(t) = 1 only wheng, andg, are both nonempty,
entrywise no less than vectdr |la — b|| is the Euclidean @nd/2(t) =1 only if g5 is nonempty. Note thak[3] is the first

distance ofa andb. 0 and1 denote column vectors with all {0 identify such no-underflow constraints and propose expli
elements being and1. For any two vectors = (ar, ..., an)" solution to the queue underflow problems for the context of

andb = (by,...,b,)T, the vectora ® b = (ayby,...,anb,)". @& Processing network. Subject {d (1), we can then write the
Finally [a]* = max][a, 0]. amount of arrivals intay, g2, g3, and the service rates of the
queues at time as functions of the network statg(¢) and

the actionz(t), i.e.
Ill. A DATA PROCESSING EXAMPLE w(t), ’

In this section, we study a data fusion example and develop A;(t) = A;(S(t),z(t)) = D;(t)R;(t), j=1,2,
the Perturbed Max-Weight algorithm (PMW) in this case. This A3(t) = A3(S(t),z(t)) = L1 (t). 2
e oaceme = PP WIS () = (S(0.510) = 0. 5 =12
' ps(t) = pa(S(t), x(t) = I(t). ®)
A. Network Settings Then we see that the queues evolve according to the following
We consider a network shown in FId. 1, where the network q;(t+1) = q;(t) — p;(t) + A;(t), j=1,2,3, Vt.(4)
performs a2-stage data processing for the data entering into o
the network. The instantaneous utilitys given by:
@) = F(S(),x(t))
Ra(t) @ pa(t) = p(t)I2(t) — D1(t)R1(t) — D2(t)R2(t). (5)
Ha(t)

Ri(t) a @ _> Output The goal is to maximize the time average valugf ¢f) subject
M1(to network stability.

Note that the constrairfl(1) greatly complicates the desfgn
Fig. 1. An example network consisting of three quegesgs, g3 and two ~@n optimal scheduling algorithm. This is because the d&tisi
processors’y, . made at timg may affect the queue states in future time slots,
which can in turn affect the set of possible actions in tharkeit
In this network, there are two random data streams
R1(t), R2(t), which represent, e.g., sensed data that come intdThe network state here contains just () and Ra(t). More complicated
’ . . . ttings, where the amount consumed from queues may alsmdiem the
sensors, or video and voice data that need to be mixed.

A fdom link conditions between queues and processors sarbal modeled
assume thafz;(t) = 1 or 0, equally likely, fori = 1,2. At by incorporating the link components into the network statg., [19].

In the following, we will develop the Perturbed Max-Weight else choosd; (t) = 0. Similarly, choosel,(t) = 1, i.e.,
algorithm (PMW) for this example. The idea of PMW is use activate processaP, if ¢s(t) > 1, and that:

the usual Max-Weight algorithm, but to perturb the weights

so as to push the queue sizes towards certain nonzero values. g3(t) =05 +p(H)V > 0, (11)
By carefully designing the perturbation, we can simultarsbp else choosd,(t) = 0.

ensure that the queues always have enough data for progessir8) Queueing updateJpdateg;(t), V j, according to[(4).
and the achieved utility is close to optimal. -

C. Performance of PMW

B. The Perturbed Max-Weight algorithm (PMW) Here we analyze the performance of PMW. We will first
We now present the construction of the PMW algorithrprove the following important claimunder a prope® vector,

for this simple example (this is extended to general netwoPMMW minimizes the RHS dfl(8) over all possible policies of

models in Sectiof YI). To start, we first defingarturbation arrival admission and processor activation, including $eo

vector @ = (61,6,,05)" and the Lyapunov functiod(t) = that choose actions regardless of the constraift. (2je
%Z?Zl[qj(t) — 6,]%. We then define the one-slot conditionathen use this claim to prove the performance of PMW, by
drift as: comparing the value of the RHS dfl(8) under PMW versus
B that under an alternate policy.
At) _E{L(t+1)_L(t) | Q(t)}’ ©6) To prove the claim, we first see that the policy that

where the expectation is taken over the random network stééimizes the RHS of{8) without the constraif (1) differs
S(t) and the randomness over the actions. Using the queueffn PMW only in the processor activation part, where PMW

dynamics[(%), it is easy to obtain that: also considers the constraings(t) > 1, ¢2(¢t) > 1 and
5 gs(t) > 1. Thus if one can show that these constraints are
indeed redundant in the PMW algorithm under a pro@er
< _) — 0.) _ A
Al) = B ;E{(qj (1) = 07)lus (1) = A5 ()] | a(B)} vector, i.e., one can activate the processors without derisig

them but still ensure them, then PMW minimizes the RHS of

where B = 3. Now we use the “drift-plus-penalty” approach(g) over all possible policies. In the following, we will utiee
in [18] to design our algorithm for this problem. To do SOfollowing 6; values:

we define a control parametér > 1, which will affect

our utility-backlog tradeoff, and add to both sides the term 01 =2V, 0, =2V, 03 =3V. (12)

—VE{f(t) | q(t)} to get: Let us now look at the queue sizeg(t),j = 1,2, 3. From

A(t) — VE{f(t) | q(t)} @) (11), we see thaP, is activated if and only if:
<B-VE{f(t)|q(t)} q3(t) > 63 —p(t)V +1, and gs(t) > 1. (13)

3
‘ N ‘ Hencel>(t) = 1 whenevergs(t) > 03—V + 1, butIx(¢t) =0
N ZE{(% (8) = 03)ls (1) = A;(0)] | q(t) }- unlessgs(t) > 63 — 3V + 1. Sinceqs can receive and deliver
=t at most one unit of data at a time, we get:
DenoteAy (t) = A(t) — VE{f(t) | q(t)}, and plug [2), [(B)
and [B) into the above, to get: Os =V +1 2 g5(t) 2 05 =3V, V1. (14)

Av(t) < B+E{Di(t)Ri(t)lar(t) =61 + V] [a(t)} (8)
+E{Ds(t)Ra(t)[q2(t) — 62 + V] | q(t)} 2V+12=g3(t) 20, Vi (15)
—E{L(t)[g3(t) — 05 + p(t)V] | q(t)} This shows that witl#; = 3V, the activations of>, are always

~E{Li(t)[q1(t) — 01 + ga(t) — 02 — (q5(t) — 05)] | q(t)}. feasible even if we do not consider the constrait) > 1.
We now look atg; (t) and ¢z (t). We see from[(9) that for
We now develop our PMW algorithm by choosing an actiop, 9, > v, we have:

at every time slot taminimize the right-hand side (RHS) of

Using 63 = 3V, this implies:

@) subject to[[1L). The algorithm then works as follows: q(t) <6; =V, j=1,2. (16)
PMW: At every time slot, observé(t) and g(t), and do ajso, using [ID) and{14), it is easy to see that wiigft) = 1,
the following: i.e., whenP; is turned on, we have:

1) Data AdmissionChooseD,(t) =1, i.e., admit the new

arrivals toqj if: q1 (t) - 91 + q2 (t) - 92 > q3 (t) - 93 Z —-3V. (17)
() =0, +V <0, j=1,2, ©) Combining [A7) with [(I6), we see thatif (¢) = 1, we have:

else setD;(t) = 0 and reject the arrivals.
2) Processor ActivationChoosel; (t) = 1, i.e., activate This is so because, e.g.,gf(t) = 0, theng, (t) —0; = —6; =
processorPy, if ¢1(t) > 1, ¢2(t) > 1, and that: —2V. Sinceqa(t) — 02 < —V by (18), we thus have:

q1(t) — 01+ q2(t) — 02 — (g3(t) — 03) >0, (10) q(t) =61 4+ q2(t) — 02 < =2V =V = =3V,

which cannot be greater than3V in (I1). Thus by[(Ib) and A. Network State

(18), we have: In every slott, we useS(t) to denote the current network
q;(t) >0, j=1,2,3,Vt (19) state, which indicates the current network parameters asc
.) . a vector of channel conditions for each link, or a collection
This shows that by using the; values in [(IP), PMW auto- of other relevant information about the current networkkdin
matically ensures that no queue underflow happens, and heggg arrivals. We assume that(t) is ii.d. every time slot,
PMW minimizes the RHS of{8) over all possible policies. with a total of M different random network states denoted by
Given the above observation, the utility performance of _ {s1,50,...,su}. B We letr,, = Pr{S(t) = s;}. The
PMW can now be analyzed as the usual Max-Weight algfetwork controller can obser(t) at the beginning of every

rithm. Specifically, using a similar argument aslin [5], we cag|ot ¢, put ther,, probabilities are not necessarily known.
compare the drift under PMW with a stationary randomized

algorithm which chooses scheduling actions purely as a-furg. The Utility, Traffic, and Service

tion of S(t), and achieve® {y; (tl) — A;(t) | ‘l(t)} = o.for At each timet, after observingS(t) = s; and the network

all j andE{ f(t) | q(t)} = [z, = 3, wheref;, is the optimal backlog vector, the controller will perform an actiar(t).

average utility. Note thathis comparison will not have beenryig action represents the aggregate decisions made by the

possible here without using the perturbation to ensld (1Q)yntrojier at timet, which can include, e.g., in the previous

Now plugging this policy into[(7), we obtain: example, the set of processors to turn on, or the amount of
A(t) — VIE{f(t) | q(t)} <B-Vfr,. (20) arriving contents to accept, or both, etc.

_ _ _ ~ We denoteX®) the set of all feasible actions for network
Taking expectations ovey(t) on both sides and summing itgiate s, assuming all the queues contain enough contents to
overt=0,1,..,T -1, we get: meet the scheduling requiremenidote that we always have

T-1 x(t) = (%) for somex(*9) € X(=) wheneverS(t) = s;. The
E{L(T) - L(0)} =V Z E{f(t)} <TB—-VTfs,. (21) setx() is assumed to be time-invariant and compact for all

t=0 s; € S. If the chosen action:(t) = z(*) at timet can be
Now rearranging the terms, dividing both sides BY", and performed, i.e., it is feasible and all the queues have dmoug
using the fact thaf(¢) > 0, we get: contents, then the utility, traffic, and service generated ()
T_1 are as follows:
1 . B E{L0)} , , I
— Z E{f(t)} > fr - = - L (22) (&) The chosen action has an associated utility given by the
T = 4 v utility function f(t) = f(s:,2(9) : X6 s R;

(b) The amount of contents generated by the action to
queuej is determined by the traffic functiod,(t) =
Aj(si,z=)) : X6 5 R, in units of contents;

PMW 1o . (c) The amount of contents consumed from queuby

av —1§£g%ffZ]E{f(t>} Zfav_?’ (23) the action is given by the rate functiop;(t) =
t=0 : _ j

- - N _ i (si, 2(5) : XG4 s R, in units of contents;

where f,," " denotes the time average utility achieved by,te thatA; () includes both the exogenous arrivals from out-

PMW. This thus shows that PMW is able to achieve a tim§qe the network to queug and the endogenous arrivals from

average utility that is withinO(1/V') of the optimal value, giher queues, i.e., the newly generated contents by piagess

and guaranteeg;(t) < O(V) for all time. Note that PMW qnients in some other queues, to quguaVe assume the

is similar to the DMW algorithm developed |tI|[3]. .Howeverfunctionsf(si, 9, pi(si,+) and A;(s;, -) are continuous, time-

DMW allows the queues to be empty when activating procegyariant, their magnitudes are uniformly upper bounded by

sors, which may lead to “deficit,” whereas PMW effectlvel)éome constant,,.q, € (0, 00) for all s;, j, and they are known

avoids this by using a perturbation vector. 10 the network operato’r. Y

In the following, we will present the general processing net |, gny actual algorithm implementation, however, we see
work utility optimization model, and analyze the performean hat not all actions in the set*:) can be performed when
of the general PMW algorithm under this general model. Ouyy, #) = s;, due to the fact that some queues may not have

analysis uses a duality argument, and will be different fro'?—fhough cc’)ntents for the action. We say that an actién e

that in [S]. As we will see, our approach allows one to analyzg(s:) is feasible at timet with S(t) = s; only when the

the algorithm performance without proving the existencarof following generalno-underflow constrainis satisfied:
optimal stationary and randomized algorithm. _
gj(t) > pj(si, 2°7), V4. (24)

IV. GENERAL SYSTEM MODEL)

In thi . t th | network model That is, all the queues must have contents greater than or

n this section, we present Ih€ general network model. Vg(aual to what will be consumeth the following, we assume
consider a network controller that operates a general mktw . : (s k=1,2,...,74+2 |, (s5)

; - . o _There exists a set of actiofs,, '}, ="y~ with ;7" €
with the goal of maximizing the time average utility, sulijec =L
to the n?twor.k stability. The network is assumed to operate i 2Note that all our results can easily be extended to the casm Wiit)
slotted time, i.e.f € {0,1,2,...}. We assume there are> 1 evolves according to a finite state aperiodic and irredacirkov chain, by
queues in the network. using the results developed in_[20].

Taking a liminf asT — oo, and usingE{L(0)} < oo, we
get:
T-1

X)) and some variableégf” > 0 for all s; and k£ with V. UPPER BOUNDING THE OPTIMAL UTILITY
729" =1 for all s;, such that: In this section, we first obtain an upper bound of the optimal
utility that the network controller can achieve. This upper
(Sl s1) bound will later be used to analyze the performance of our
Z%{Zﬁ j(s02") = (i, 2} < —n. (25) algorithm. The result is summarized in the following theore

Theorem1: Suppose the initial queue backlg¢y) satisfies
for somen > 0 for all j. That is, the “stability constraints” E{¢;(0)} < oo for all j =1,...,r. Then we have:

r+2

are feasible with;-slackneséa In the following, we use: Ve <6 (30)
A(t) = (A1 (1), oy A ()T, p(t) = (1 (t), ..., e (1))T, (26) whereg* is the optimal value of the following problem:
r+2
to denote the arrival and service vectors at time max: ¢=» m, V> ag’ f(si,x") (31)
r+2
C. Queueing, Average Cost, and the Objective S T Z af) Aj(si, 2)) (32)
Let q(t) = (qu(t),...qr(t)T € R, t = 0,1,2, ... be 1 2

the queue backlog vector process of the network, in units of = ZWST Za wi(si, >)
contents. Due to the feasibility condition {24) of the actip 1
we see that the queues evolve according to the following 209 ¢ x6) v & (33)
dynamics: é) o (o)

,) > 0,Vsi, k> e =1, (34)

q(t+1) = q;(t) = p;(t) + A;(t), Vi, t=>0, (27) B
Proof: See Appendix A. |

with some||g(0)|| < oo. Note that using a nonzerg;(0) . .
can be viewed as placing an “initial stock” in the queues %ote that the probleni{B1) only requires that the time averag

facilitate algorithm implementation. In this paper, we pto iNput rate into a queue is equal to its time average outpat rat

. X o This requirement ignores the action feasibility constrgad),
the following notion of queue stability: and makes[{31) easier to solve than the scheduling problem.

et We now look at the dual problem of the problem](31). The
721 1m nsup 5 Z > E{g()} < 0. (28) following lemma shows that the dual problem of1(31) does not
=0 j=1 have to include the variableéa(” } """ 2. This lemma

.....

will also be useful for our later analy3|s
We also usef!! to denote the time average utility induced by Lemma1: The dual problem of[(31) is given by:
an action-choosing policyl, defined as:

min: g(v), st. y€R", (35)
S N where the functio is defined:
52 mint 5 3 E((0), (29) YY)
g(v)= sup Z Ts; {Vf(si, 2(5)) (36)
where f1(7) is the utility incurred at time- by policy IT. We elilex (s =y,
call an action-chqosing polidyeasible_if at every time slott it _ Z’V) 1 (s (Si))]
only chooses actions from the feasible action ét(*) that J AN '

satisfy [24). We then call a feasible action-choosing polic
under which[[ZB) holds atablepolicy, and usef, to denote Moreover, lety* be any optimal solution of(35), we have:
the optimal time average utility over all stable policies. 9(v) > ¢, 37)

In every slot, the network controller observes the current
network state and the queue backlog vector, and chooses a Proof: (Lemmél) Itis easy to see froiin {31) that the dual
feasible control action that ensurds](24), with the objecti function is given by:

of maximizing the time average utility subject to network r+2

stability. Note that if condition((24) can be ignored, anaify §(v) = sup Zﬂsi{ Z al(CSi)Vf(Si7IE€Si)) (38)
processor only requires contents from a single queue, tlign t k=1

problem falls into the general stochastic network optiriizra r+2

framework considered in_[18], in which case it can be solved - Z% Zak A, S“xk)) _ uj(sivx;slﬂ))} }
by using the usual Max-Weight algorithm to achieve a utility J

that is withinO(1/V') of the optimal while ensuring that the o) o
average network backlog i9(V)). Due to the use of the{a }]’[4 variables, it is
easy to see thag(y) > g(v). However, if {1 M,

3The use ofr + 2 actions here is due to the use of Caratheodory’s theorelfi &)SeE of kmla.XlT_IéerS ofj(), then the set of variables

[21] in the proof of Theorerfil1. {xkl ,ay)}l 1 where for eachs;, x (Si) = (1) for

all &, andagsi) = 1 with agfi) =0 for all £ > 2, will also Hence Défi)*;) is the maximum value ofo;;)(t) over all

be maximizers ofj(v). Thusg(~) > g(v). This shows that possible policies, including those that may not conside mib-
g(v) = g(v), and hencegy(y) is the dual function of[(31). underflow constrainf{24). The general Perturbed Max-Weigh
(32) follows from weak duality[[21]. m algorithm (PMW) then works as follows:

In the following, it is useful to define the following functio PMW: Initialize the perturbation vectof. At every time

slot ¢, observe the current network stef¢t) and the backlog
gs,(y) = sup {Vf(Si,I(Si)) (39) q(t). If S(t) = s;, choosex(®?) ¢ X(*:) subject to [2K) that
wleoex (e makes the value oD$’) (z) close toDéS_;)*;).
_Z% [4; (51, 20) = (s, 20)] } Note that depending on the problem structure, the PMW
; algorithm can usually be implemented easily, eldl., [5]][11

That is, g,.(v) is the dual function of[@L) when there is aNow we analyze the performance of the PMW algorithm. We

: “will prove our result under the following condition:
single network state;. We can see fronf(36) anfL{39) that: Condition 1: There exists some finite constarit> 0, such

gv) = Zﬂ.sigsi (¥)- (40) that at every time slot with a network stateS(¢), the value
Py of Dé_sé’éz;(x) under PMW is at Ieawé_sézi)* - C.
In the following, we will usey* = (7%, ...,v*)T to denote an The _in.\m.ediate consequence of Cond)itn 1.i_s that PMW
optimal solution of the problenf(B5). also minimizes the RHS of (#2), i.e., the conditional expec-

tation, to within C' of its minimum value over all possible
VI. THE PERTURBED MAX-WEIGHT ALGORITHM AND ITs Policies. IfC" = 0, then PMW simultaneously ensurésl(24) and
PERFORMANCE minimizes the RHS of(42), e.g., as in the example in Section

In this section, we develop the general Perturbed Ma@:I Howeveé[, we note that Conditiofi 1 does nSot require the
’ yalue ofDé q(g; (z) to be exactly the same déé (tz)*. This

\S/\t/::gh\;tvzlgf]i(r)srlttf(l:rﬁo(;l\él\;\géﬁrsb(zllggno:;(szfohrzd:ull(r;?’P.fi)gie)z:rrr? ' Tallows for _rﬁore flexibility in constructing the PMW algor'rth_ .
Then we define the following weighted perturbed Lyapuncé}see Sectiol V! for an example). We also nqte that Condition
function with some positive constantss; }7_,: can be ensured, e.g., by cgrefully ch003|_ng Ghevalues
to ensureg;(t) > dmq, for all time [5]. We will show that,
1 2 under Conditiori]1, PMW achieves a time average utility that
L(t) =) ij (q;(8) = 6;)" (41) s within O(1/V) of f¥,, while guaranteeing that the time
=t average network queue size @&(V) + Y w;6;, which is
We then define the one-slot conditional drift as i (7), i.eQ(V) if & = ©(V) and w; = O(1), V4. The following
A(t) = E{L(t + 1) — L(t) | q(t)}. We will similarly use theorem summarizes PMW’s performance results.
the “drift-plus-penalty” approach in Secti¢n]lll to constt ~ Theorem2: Suppose that[{25) holds, that Conditich 1
the algorithm. Specifically, we first use the queueing dymamholds, and thaﬁE{qj(())} < oo forall j = 1,..,r. Then

equation[(2l7), and have the following lemma: under PMW, we hav
Lemma?2: Under any feasible control policy that can be BiC
implemented at time, we have: PR 0 (45)
A(t) = VE{ f(¢ t)} <B-VE{f(t t 42 -
() {f() |Tq()} — {f() | Q()} () qPMW < B+O";72V5mam +ijej (46)
= wila;(t) — 0;)E{ [(1) — A;()] | a(1)}, =1
g=1 Here B = 62,,,>."_, w;, n is the slackness parameter in
whereB =62, 5" w;. Sectiol1V-B, lﬁf‘”‘; is defined in[(2P) to be the time average
P] max Jj=1"7 d ili f PMW h .
roof: See Appendix B. m expected utility of PMW, andj is the time average
The general Perturbed Max-Weight algorithm (PMW) iexpected weighted network backlog under PMW, defined:
then obtained by choosing an actio(t) from X(5(®) at time =
t to minimize the right-hand ;ide((st)HS) bf(42)bject to[ZH). "MW 2 i aup - 3> wiE{g;(r)}.
Specifically, define the functio®, ¢) (x) as: t=oo b T m1
pisi) (x) (43) Proof: See Appendix C. |
0.a(t) Theoreni® shows that if Conditiéh 1 holds, then PMW can be

a _ —~ AT e N A e used as in previous networking problems, elg.] [11]] [12], t
= Vi) + ;wﬂ (05 (®) = 03) [y (i, 2) = Aj i, 2)]. obtain explicit utility-backlog tradeoffs. We note that encli-
- tion similar to Conditior Il was assumed If [2]. HoweVEtl, [2]
We see that the functioDéf;)t (z) is indeed the term inside only considers the usual Max-Weight algorithm, under which
the conditional expectation on the RHS @f(42). We nowase [[ZU) may not be satisfied for all time. Whereas PMW
also defineD*”* to be the optimal value of the following resolves this problem by carefully choosing the pertudrati

6.q(t) .
problem: at vector. One such example of PMW is the recent wark [5],

max : Déf;)(t) (x), s.t., x3) e x0), (44) “4Easy to see tha {16) ensurEs](28), hence the network i stabler PMW.

which applies PMW to an assembly line scheduling problem e
and achieves afO(1/V"), O(V)] utility-backlog tradeoff.

Rz
e a5 Output 1
VIl. CONSTRUCTINGPMW FOR NETWORKS WITH Rs \
OUTPUT REWARD "" _>
In this section, we look at a specific yet general processing e .,in Output 2
.. . 4

network model, and explicitly construct a PMW algorithm, ¢ > Ps h—>
including finding the propeé vector and choosing actions at
each time slot. Fig. 2. A general processing network.

A. Network Model We assume that in every slot admitting any unit amount
We assume that the network is modeled by an acyclg R;(t) arrival incurs a cost of;(t), and that activating any
directed graphg = (Q,P,L). Here @ = Q* U Q™ is internal processoP; € P incurs a cost ofC;(t), whereas
the set of queues, consisting of the setsafurce queues activating any output processé}, € P° generates a profit of
Q° where arrivals enter the network, and the seintérnal p, (1) per unit output contenfl We assume; (t), C;(t), pr(t)
queuesQm where contents are stored for further processingre all i.i.d. every time slot. In the following, we also asg
P = P" U P° is the set of processors, consisting of a set gfat Pmin < Pk(t) < Pmaz, and thate,i, < ¢;(t) < Cmax
internal processorsP™, which generate partially processednd Conin < Ci(t) < Cpnax for all k, j,i and for all time.
contents for further processing at other processorspatigit ~ Below, we usel,, (t) = 1 to denote the activation decision
processorsP?, which generate fully processed contents angk p,, i.e., I,(t) = 1 (I,(t) = 0) means thaiP, is activated
deliver them to the outputC is the set of directed links that (turned off). We also us®;(t) € [0, 1] to denote the portion
connectsQ and P. Note that a link only exists between aof arrivals from R;(t) that are admitted intg;. We assume
queue inQ and a processor iP. We denoteN," = |P™|, there exist some general constraint on how the processors
5 =|P°| andN, = N;" + Np. We also denoté\fs =1Q°, can be activated, which can be due to, e.g., resource sharing
N;” =|Q"| and N, = NqS + N;"- among processors. We model this constraint by defining an
Each processor’,, when activated, consumes a certaiactivation vectorI(t) = (I1(t),...,In,(t)), and then assume
amount of contents from a set stipplyqueues, denoted bythat I(t) € Z for all time, whereZ denotes the set of all
5, and generates some amount of new contents. These Heusible processor activation decision vectors, assuallrije
contents either go to a set démandqueues, denoted b9;”, queues have enough contents for processing. We assume that
if P, € P, or are delivered to the output I, € P°. For ifavectorI € Z, then by changing one elementbfrom one
any queuey; € Q, we useP; to denote the set of processorso zero, the newly obtained vectdt satisfiesI’ € Z. Note
thatg; serves as a supply queue, and B$eto denote the set that the chosen vectdf(t) must always ensure the constraint
of processors thaj; serves as a demand queue. An examp§g4), which in this case implies that(t) has to satisfy the
of such a network is shown in Fig] 2. In the following, wefollowing constraint:
assume that for each processore P, |QP| =1, i.e., each _
processor only generates contents for a single demand queue Z In(t)Bnj, YV j=1,..r (47)
We usef,; to denote the amount processBy consumes nepPy
from a queuey; in Q7 when itis activated. For eadh € P™, ynder this constraint, we see that the queues evolve acprdi
we also usev;, to denote the amount; generates into the tg the following queueing dynamics:
queuegqy, if g, = Ql , when it is activated. For a processor

P, € P°, we useny, to denote the amount of output generatet (t + 1) = ¢;(t Z L,(t)Bnj + Dj(t)R;(t), Vj € Q°,
by it when it is turned ond We denoteB, e, = max; ; Bij, nep?
Bmin = min, ; Bi; and ey = max; ; [a;j, aio). We assume (t+1) =gt Z L (t)Bnj + Z t)ang, ¥j € Q™.

that Bin, Bmaz: @maz > 0. We also definel,, to be the
maximum number of supply queues that any processor can
have, defineMg to be the maximum number of processorblote that we have used € Q to represeniy; € Q, and
that any queue can serve as a demand queue, and défineusen € P to represent’, € P in the above for notation
to be the maximum number of processors that any queue mplicity. The objective is to maximize the time average of
serve as a supply queue. We uBg(t) to denote the amount the following utility function:

s D
nGIP’J nGIP’J

of contents arriving to a source quegec Q° at timet. We

assumeR;(t) is i.i.d. every slot, and thaR;(t) < R4, for Z L (t)pr(t) ko — Z Dj(t)ej(t) (48)

all g; € Q° and allt. We assume that there are no exogenous hepe jeQ’

arrivals into the queues i@'". — Z L;(t)Ci(t
iepin

5Note that here we only consider binary actions of processdus results
can also be generalized into the case when there are mufieleation levels 6This can be viewed as the difference between profit and cesicaged
under which different amount of contents will be consumed generated. with these processors.

(48) can be used to model applications where generati
completely processed contents is the primary target, [&.,

B. Relation to the general model

We see that in this network model, the network state, ttﬁ (1))

action, and the traffic and service functions are given by:
o The network state is given by:

S(t) = (¢j(t),5 € Q*, Ci(t), i € P™, pi(t), k € P°).

o The actionz(t) = (D,(t),j € Q°, I,(t),n € P).
o The arrival functions are given by:

A;(t) = A;(S(8), 2(1)) = D;(t)R;(1), Vg € Q°,
Aj() = Aj(S@), () = Y In(t)an;, Va5 € Q™

D
neP;

o The service functions are given by:

= > It

nEPS

p (t) = 15 (S)Bnjs V¥ J.

Thus, we see that this network model falls into the general

processing network framework in Sectionl IV, and Theofém
will apply in this case. Therefore, in the following, we will
construct our PMW algorithm to ensure that Condifibn 1 hold

C. The PMW algorithm

We now obtain the PMW algorithm for this general networ
in the following. We will look for a perturbation vector that
is the same in all entries, i.e8, = 1. We first compute the
“drift-plus-penalty” expression using the weighted peoed

Lyapunov function defined if(4#1) under some given positive

constants{@u]-}g:1 and some nonzero constaht

A(t) — VIE{f(} <B (49)
_ Z]E{'(Uj [qj —9 Z L.(ﬁna () j(tﬂ |q(t)}
jEQS TIE]PS
= > E{w;[g;(t) = 0][Y In(t)Bn;
76Q1" ne]PS
= > Ta(t)ows] | a(0)}
nEPD
~VE{ Y L(t)prt)aro — Y Dj((1)
kePpe jeQs
=Y LG [q(t)}.
iepin
Here B = wmam[(]W Bmaz) +N;R$naI+Nin(]\f Otmar) },

where wy,q; = max; w;. We also denoteumm = min; wj.
Rearranging the terms, we get the following:

Here in the last termy, = QF. We now present the PMW
algorithm. We see that in this case tﬁégs 0) (x) function is
given by:

0.qt) (%) = XQ: [Viej(t) +w;(g(t) —)] D; () R; (t)
+ 0 L[D w;lg;(t) = 0)Brs + Vi (t)ako)
kePe JjEQy
+ Y L[wilei (1) - 0)8y (51)
iepin JjEQ?

—wh(qh(t) — O)aih — VCZ-(t)].

Our goal is to design PMW in a way such that under
any network stateS(t), the value ofD(S(t))(:v) is close

0,q(t)
t))(x)

to D(S(t))*(:z:), which is the maximum value oD

0,q(t)
without t?1e underflow constraint (#7), i.e., q
DOy _ DEW) (1)
0a) () =) ryer V0000)

Specifically, PMW works as follows:
PMW: Initialize 6. At every time slott, observeS(t) and
§(t), and do the following:
1) Content AdmissionChooseD;(t) = 1, i.e., admit all
new arrivals tog; € Q° if:

k
Ve (t) +wj(g;(t) —0) <0, (52)
else setD;(t) = 0.
2) Processor ActivationFor eachP; < P, define its
weight W™ (¢) as:
W) = [3 wila(t) - 6185 (53)
q; €QF

—wp|gn(t) — Olain — VCi(t)] "

whereg, = QP. Similarly, for eachP;, € P°, define its
weight W% (t) as:

W) = > wylg(t) -

a;€Q;

0)Bk; + Vir(t)aw,] . (54)

Then, choose an activation vectbft) from Z to max-
imize:

> LW) +

i€Pin

S W),

kePo

(55)

subject to the followingqjueue edge constraints:
a) For eachP; € P", set[;(t) = 1, i.e., activate
processotP;, only if:

At) - VE{f(t) |qt)} < B (50) e qj(t) > Mg Bynag for all 4 € Q7
e qn(t) <0, whereg, = Q.
E{[V 0)|D;(t)R;(t t l
+7§s Vet +w7 (a(t) =)] Di (O R5(0) [a(t)} b) For eachP, € P°, choosely(t) =1 only if:
o qi(t) > M?B,,4. forall ¢, € Q3.
- Z E{Ik Z w;(q;(t) — 0)Br; + Vpk(t)ako} | q(t)} 4;(1) = qﬂ_ q; € Qp _
hepo s The approach of imposing the queue edge constraints was
J€Qy
inspired by the work [[22], where similar constraints are
= > B{L®)[> wilq;(t) — 0)Bi; — walan(t) — O)ain imposed for routing problems. Note that if without theseugie
icPpin jeQ? edge constraints, then PMW will be the same as the action that

maX|m|zesD()(() without the underflow constraint (17).

—VCit)] | q(t)}-

D. Performance Also, since [[5b) only require$ = ©(V), andw; = ©(1) for

Here we show that PMW indeed ensures that the value ¥ 7, We see that PMW indeed achieves [ar(1/V'), O(V)]
Déﬁiz)(:c) is within some additive constant (bfﬁfé’(ﬁ;*(m). In utility-backlog tradeoff in this case.
the foflowing, we assume that:

E. Choosing the{w; }_, values

Here we describe how to choose the;}’_, values to
§atisfy [5Y). We first letK be the maximum number of
processors that any path going from a queue to an output
processor can have. It is easy to see fifat | V,| since there
is no cycle in the network. The following algorithm termiaat
w;Bij > Whip. (57) in K iterations. We usev; (k) to denote the value ofy; at

th tarati i ;
We note that[{56) can easily be satisfied and only requirkl ¥ iteration. In the following, we uses, to denote the
6 = ©(V). A way of choosing the{w;}7_, values to satisfy demand queue of a processey.
(G7) is given in Sectiof VIE. Note that in the special case 1) At Iteration 1, denote the set of queues that serve as

V maxFmax V min
CmacPmar Zomin L A28, 0.]. (56)

92max[

We also assume that tHev; };_, values are chosen such tha
for any processoP; € P with the demand queug,, we
have for any supply queug € Q7 that:

when 8;; = a;; = 1 for all 4,, simply usingw; = 1, Vj supply queues for any output processors i.e.,
meets the conditiod (7). L (g PS A P°

We first look at the queueing bounds. By(52), admits Q=14 7 ¢}
new arrivals only whemy;(t) < 6 — Vepin/w;. Thus: Then setw; (1) = 1 for eachq; € Q). Also, setw;(1) =

s 0 for all otherg; ¢ Q.
6j(t) < 0 = Vemin/w; + Bmaz, V0, € Q% (58) 5y At jterationk — 2,..., K, denoteQL to be the set of
Now by the processor activation rule, we also see that: gueues that serve as supply queues for any processor

0 < g(t) < 04 Mlamas, ¥y € Q" 1. (59) whose demand queue is @, ., i.e.,

Iy . S D 1
This is because under the PMW algorithm, a processor is Qk ={gj: 3P € PF st Q € Qpn}-
activated only when all its supply queues have at least Then set:

M Bimaz units of contents, and when its demand queue has w, (k= Dapp,

at mosté units of contents. The first requirement ensures that ~ w; (k) = max [w; (k — 1), max B |, (64)
q;(t) > 0 for all time, while the second requirement ensures e "
thatq;(t) < 6 + Mjamm. Below, by defining: wherea,,;,, is the amount’,, generates intq;,, , which
N d s is the demand queue &%,. Also, setw; (k) = w;(k—1)
Vmag = MMax [Mq Omaz Rmawa Mq ﬁmam]a (60) for all q; ¢ Qgg
we can compactly writd ($8) anfl (59) as: 3) Output the{w;}7_, values.

_ _ The following lemma shows that the above algorithm outputs
0=6;(t) <0+ vimar, Vg5 € Q1 (61) a set of{w;}_, values that satisfy[(7).
To prove the performance of the PMW algorithm, it suffices Lemma4: The {w;}%_, values generated by the above
to prove the following lemma, which shows that Conditidn &igorithm satisfy[(5l7).
holds for some finite constaidt under the PMW algorithm. Proof: See Appendix E. []
Lemma3: Suppose [(86) and[(b7) hold. Then under As a concrete example, we consider the example in Fig.
PMW, D\ (z) > DGih*(z) — C, where C = 2, with the assumption that each processor, when activated,
Npwmaz MpVimaz Bmaz- consumes one unit of content from each of its supply queues
Proof: See Appendix D. B and generates two units of contents into its demand queue. In
We can now directly use Theordmh 2 to have the followinthis example, we see thdf = 3. Thus the algorithm works
corollary concerning the performance of PMW in this case:as follows:

Corollary 1: Supposel(25)[(56) and (57) hold. Then PMW 1) Iteration 1, denote @, = {qu,qs. g6}, Setwy(1)

achieves the following: ws(1) = we(1) = 1. For all other queues, set;(1) = 0.
PMW 5 e B+C (62) 2) lteration2, denoteQb = {q1,q2, g3, qa, g5 }, S€tw:(2) =
av = Vo w2(2) = w3(2) = wa(2) = w5(2) = 2. Setwg(2) = 1.

B+C+2Vs " 3) lteration3, denoteQ} = {qo, g3}, S€twa(3) = w3(3) =
_PMW mazx
q < ; +0 E wj, (63) 4. Setw; (3) = wy(3) = ws(3) = 2, we(3) = 1.
J=1 4) Terminate and outpub; = wy = ws = 2, wy = w3 =
where C = Npwmas MpVmazBmaz, LMY andg™™W are 4, we = 1.

the time average expected utility and time average expected

weighted backlog under PMW, respectively. VI SIMULATION

Note that hereS,,,., can be chosen to be: In this section, we simulate the example given in Eig. 2. In
. this example, we assume eaBh(t) is Bernoulli being0 or 2
Omae = Max [VmarvapmarO‘mamv with equal probabilities. For eacR;, € P™", i.e., Py, P, Ps,

N; RimazCmaz +N;;"me] C;(t) is assumed to bé or 10 with probabilities0.3 and

10

0.7, respectively. For the output processéisc P, i.e., P, this case, we can also implement the PMW algorithm with
and P5, we assume thaiy(t) = 1 or 3 with probabilities0.6 finite buffers using the idea dfoating queuesn [23], which
and 0.4, respectively. We assume that each processor, whearks as follows: For each;, we associate with it an actual
activated, takes one unit of content from each of its suppbyffer of size©([log(V')]?) and a counter. When contents are
gueues and generates two units of contents into its demaaaht into the queue and the buffer is not full, we store the
gueue (or to the output if it is an output processor). We frthcontents in the actual buffer. However, when the buffer Ik fu
assume that all processors can be turned on without affectand contents are sent tg, these contents are dropped but
others. Note that in this case, we hayét) = 0 for all source the counter is incremented. Whereas if contents are corssume
queuesy;. from ¢; butg; does not have enough contents, then the counter
It is easy to see that in this case, = M; = MZ =2, is decremented, and the action in that slot is assumed to be
Bmaz = Bmin = 1, and aue: = 2. Using the results in the null. Under this method, it can be shown that the dropping and
above, we choosegs = 1, w; = wy = ws = 2, wy = w3 = 4. underflow events happen only with a very small probability.
We also us# = 6V according to[(56). We simulate the PMWHence almost all actions are valid. Thus we lose a tiny foacti
algorithm forV € {5, 7,10, 15, 20, 50,100}. Each simulation in the utility performance, but reduce the average backipg s

is run over5 x 10° slots. from O(V) to O([log(V)]?).
Fig. [d shows the utility and backlog performance of the
PMW algorithm. We see that a¥ increases, the average IX. CONCLUSION

utility performance quickly converges to the optimal value

The average backlog size also only grows linea¥/in In this paper, we develop the Perturbed Max-Weight al-

gorithm (PMW) for utility optimization problems in general

S e— , processing networks. PMW is based on the usual Max-

Weight algorithm for data networks. It has two main func-
tionalities: queue underflow prevention and utility optima
scheduling. PMW simultaneously achieves both objectives
by carefully perturbing the weights used in the usual Max-
Weight algorithm. We show that PMW is able to achieve an
[O(1/V),0(V)] utility-backlog tradeoff. The PMW algorithm
developed here can be applied to problems in the areas of data
fusion, stream processing and cloud computing.

3000

2500

1000

500

o 20 40 VvV 60 80 100 o 20 40 vy 60 80 100

Fig. 3. Utility and backlog performance of PMW. APPENDIX A — PROOF OF THEOREMII

We prove Theoreni]l in this section, using an argument
Fig.[d also shows three sample path queue processes ingtf@ilar to the one used in [12].

first 10* slots underl’ = 100. We see that no queue has an Proof: (Theorenill) Consider any stable scheduling policy
underflow. This shows that all the activation decisions oM II, i.e., the conditiond(24) an@ (28) are satisfied uridevVe
are feasible. It is also easy to verify that the queueing Heurlet {(f(0), A(0), 1£(0)), (f(1), A(1), (1)), ...} be a sequence
(G8) and [[5D) hold for all time. of (utility, arrival, service) triple generated Hy. Then there
exists a subsequence of tim¢s;},—, > .. such thatT; —
oo and that the limiting time average utility over timé&s is
equal to the liminf average utility undéf (defined by[(2D)).
/ Now define the conditional average of utility, and arrivahos
S e o s vt service ovelT slots to be:

i (@G(T); °)(T); s (1)) £ (65)

L -1
o A T Z E{f(t);e1(t); . €n(t) | S(t) = s:},
t=0

Queue Size

| | | | | | | | | wheree;(t) = A;(t) — p;(t). Using Caratheodory’s theorem,
o wew mm ww e s oo 7w wen swo oo it can be shown, as i [12] that, there exists a set of vargable
{a,(f?‘)(T)}Zi? and a set of action$xési)(T)}};ﬁ such that:

r+2

Fig. 4. Sample path backlog processes with= 100.

si _ (si) - (s4)
We observe in Fig.4 that the queue sizes usually fluctuate oeU(T) = Zak (1) f (s (T)),
around certain fixed values. Similar “exponential atti@cti k=1
phenomenon has been observed in prior work [19]. Hence and for allj = 1, ..., r that:
results can also be extended, using the results developed in 42
[19], to achieve an average utility that is withia(1/V) of (si)py — o (TV A, (55, 2 (T — i (ss 250 ()
the optimal with only©([log(V)]?) average backlog size. In ’ @) kz_:l e (Dl e 2 () = g s 2 (T

11

Now using the continuity off (s;,-), 4;(s:,), ;(ss,), and APPENDIXC — PROOF OFTHEOREM[2
the compactness of all the actions s&t$:), we can thus find

- Here we prove Theorerl 2. We first have the followin
a sub-subsequen@ — oo of {T;};=1 2, .. that: we prov i ! v wing

simple lemma.

a;gsl-)(jﬂ_) (57) (57)(7)) — x;ﬂ i) (66) Lemma5: For any network state;, we have:
S (E) > o (D) =) Wi =1,.m (67) DG = g ((a(t) — 0) @ w), (71)
Therefore the time average utility under the polidycan be wherew = (wy, ..., w,)”.
expressed as: Proof: By comparing [44) with [(39), we see that the
r42 lemma follows.]
= m ol =>"n, Za) fs,a"). (68) Proof: (Theoren(2) We first recall the equatidn(70) as
; P follows:
Similarly, the average arrival rate minus the average servi L(t+1) — L(t) — Vf() < B-V[(t) (72)
rate undedI can be written as:
(a0 —ng 45(8) = 0;) 15 () = A;():
€ = ZTFST ’ (69)
42 Using Df;? (+)(z) defined in [(4B), this can be written as:
_)) (si) a
= Zﬁszza wak) — pi(si,)] (S(6))
si L(t+1) = L(t) = Vf(t) < B = Dy (x(t))-
< 0.

Herex(t) is PMW'’s action at timet. According to Condition
The last inequality is due to the fact thidtis a stable policy [1, we see that for any network staé¢t) = s;, PMW ensures
and thatf{¢;(0)} < oo, hence the average arrival rate to anf2g), and that:
¢; must be no more than the average service rate of the queue (1) (s)
[24]. However, by [[24) we see that what is consumed from Dy gity(@) = Dy gy — C.
a queue i_s glwa_ys no more that What_ is generateq into t{}ging [72), this implies that under PMW,
gueue. This implies that the input rate into a queue is always
no less than its output rate. Thus,> 0 for all j. Therefore L(t +1) = L(t) = Vf(t) < B — g5,((q(t) — 0) ©@ w) + C.
we conclude that; = 0 for all j. Using this fact and (88), we
see thatV fII < qs*, where¢* is given in [31). This proves

av —

Taking expectations over the random network state on both
sides conditioning ong(¢), and using [(40), i.e.g(v) =

TheorentL. >, Tsi9s: (), we get:
APPENDIX B — PROOF OFLEMMA 2] A(t) = VE{f(t) | q(t)} <B+C—g((q(t) — 6) ® w).(73)
Here we prove Lemmi 2. Now using Theorerll1 and Lemriia 1, we have:

Proof: Using the queueing equation {27), we have:
Ve < 0" <g9(v") < g((at) - 0) @ w).

[q;(t +1) — 6,]? Theref
= (1) = (1) + 4;(1) — ;] erezfe’ . o v o
= g (t) — 012 + (1 (t) — A;(1))? (t) = VE{f(t) | q(t)} < B+C -V fi,. (74)
—2(q;(t) — 0;) (s (£) — A;(1)] Taking expectations ovey(t) on both sides and summing the
< g () — 0,2 + 262, —2 (g;(t) — 0;) [(t) — A ()] above over =0, ...,7 — 1, we get:
T-1
Mult|ply|ng both sides with=* and summing the above OVerE{ (T) — L(0)} — Z VE{f(t)} <T(B+C)-TVf,
j=1,...,r, we see that: =0
Rearranging terms, dividing both sides BY", using the facts
L(t+1) - L(t) < B - Zwa‘ (a() = 0;) s () = 4D, that () > 0 and E{L(0)} < oo, and taking the liminf as
T — oo, we get:
where B = 67, >, w;. Now add to both sides the term fEMW > (B +C)/V. (75)
—V£(t), we get:
This proves [(45). Now we prove[_(46). First, by us-
L{t+1)— L(t) - Vf()< B-V[() (70) |ng the definition of j() in (38), and plugging in the
A {z) (s:) 19(57 }fj ~r+2 variables in ther-slackness assump-
—ij 45(1) = 05) [(6) = A; (D) ion m) in SectlorEIIB we see that:

Taking expectations over the random network stéi{e) on ((q(t) — 0) ® w) > nzwj [q;(t) — 0;] = Vémaz. (76)
both sides conditioning og(t) proves the lemma. | i=1

This by Lemmd1L implies that:

g((q(t) = 0) @ w) > 1Y wlg;(t) — 0] = Vimas-

Jj=1
Using this in [Z8), we get:

At)=VE{f(t) |qt)} < B+ C+ Vénas

-1 Z w;[q;(t)

We can now use a similar argument as above to get:

T—1 r

1YY wiE{[g;(t) — 6,1}

t=0 j=1
<T(B+C)+2TVmar +E{L(0)}.

Dividing both sides byyT" and taking the limsup a& — oo,

we get:
B+ C+ 2V
gruw o PO +) wib;.
K =1
J
This completes the proof the theorem. |

APPENDIXD — PROOF OFLEMMA [3

Here we prove Lemm@l 3 by comparing the values of the

12

q;(t) > M;ﬁmam}. Then we see that:

W (1) = 3" wig(t) —)8y — wn(an(t) — Oovn
jeQf
+ Z w;(q;(t) — 0)Bi; — VCi(t)
jEQF /@3
< E: WjVmazBij + whban
je@?
+ Z wy (M;ﬂmaac - 9)51]
j€Qf /QF
Here g, = QP. Now by our selection of{wj}J 1

w;Bij > whauy for any ¢; € QF. Also usingve. >
M Bmaz, We have:

W (t) < MywmasVmaz Bmaz- (78)

(B - II) For any P, € P°, we see that it violates the queue
edge constraint only when one of its supply queues has size
less thanM;ﬁmax. In this case, we see that:

W) <3 wig;(t) —
jeQs
+ Z w (quﬂmaac -
JjEQF/QF
S Mpwmazumazﬂmaz + Vamazpmax -

This by [56) implies that:
Wk(;O) (t) S Mpwmaxymaxﬂmax-

0)Br; + Vpr(t)ako

(79)

three terms |nD((E)g(:c) in &) under PMW versus their Using [77), [78) and[{79), we see that whenever a processor
values under the action that maX|m|zé“cf,S t)g (z) in (G) violates the queue edge constraint, its weight is at most

subject to only the constraint®;(t) € [0,

]VJEQS and

pwmaw Vmam Bmaw

S(t
I(t) € 7, called the max-action. That is, under the max- -action, (C) We now show that the value ab;)3(50) under

D! ﬁ)() D(S(E)g (x). Note that the max-action differsPMW satisfiesD}; (‘é)g() > Désq(zg*() — O, whereC' =

fro I%MW only in that it does not consider the queue edg¥, M, wmameamBmax-

constraint. To see this, lef* (¢) be the activation vector obtained by the
Proof: (A) We see that the first term, i.e.,max-action, and leiV*(t) be the value of[{35) undeF*(t).

—Yjeo: [Vei(t) +wj(g;(t) — 0)] D;(t)R;(¢) is maximized We also useIPMW(t) andW MW (1) to denote the activation
under PMW. Thus its value is the same as that under tiector chosen by the PMW algorithm and the value[ofl (55)

max-action.

(B) We now show that for any processét, € P, if it

under I"*" (t). We now construct an alternate activation
vectorI (t) by changing all elements ifi*(¢) corresponding to

violates the queue edge constraint, then its weight is bedindhe processors that violate the queue edge constraintsdo ze
by M,wmazVmazBmaz- This will then be used in Part (C) Note thenI(t) € 7 is a feasible activation vector at tinte

below to show that the value dD)

within a constant o’rDésézz) (x) under the max-action.

(B-I) For any P, € P, the following are the only two

cases under whicl®; violates the queue edge constraint.

t))(x) under PMW is Under which no processor violates the queue edge constraint

By Part (B) above, we see that the value [of] (55) unkig,
denoted byiV/(¢), satisfies:

W() > W*(t) - NpMpwmameamﬁmam-

1) Its demand queug,(f) > 6. In this case, it is easy to Now sinceI” """ (t) maximizes the value of(55) under the

see from[(GB) and(61) that:

W(zn)
FISOH

Z w] Vmazﬂzg < M wmazymamﬂmaz (77)

gueue edge constraints, we have:
WPMW(t) > W(t)
> W) —

prmax Mmeaz ﬂmaz .

Thus, by combining the above and Part (A), we see

2) One of P;’s supply queue has a queue size less thdinat PMW maximizes theD! (t))(x) to within ¢ =

M; Brmaz- In this case, we denot®’ = {¢; € Q7 :

0.q(t)
NpMpWimazVmazBmaz Of the maximum. [|

13

APPENDIX E — PROOF OFLEMMA [4 [10] A.Eryilmaz and R. Srikant. Fair resource allocatioriineless networks
] using queue-length-based scheduling and congestionotoitEE/ACM
Proof: (Proof of Lemma4) The proof consists of two Trans. Netw. 15(6):1333-1344, 2007.

; ; ; 11] M. J. Neely. Energy optimal control for time-varying neiess networks.
main steps. In the first step, we .Show that the algorithm qujal IEEE Transactions on Information Theory 52(7): 2915-2934ly 2006.
eachw; value at least once. This shows that all thgvalues [12] L. Huang and M. J. Neely. The optimality of two prices: %itaizing

for all the queues that serve as demand queues are updatedrevenue in a stochastic networRroc. of 45th Annual Allerton Confer-

at least once. In the second step, we show thaj, ifs the ence on Communication, Control, and Computing (invitedepgiSept.
: i 2007.

demand queue of a processare P, then every time after (13] R Urgaonkar and M. J. Neely. Opportunistic schedulivith reliability
wy, is updated, the algorithm will also updaig for anyg; € guarantees in cognitive radio networkEEE INFOCOM Proceedings

s i ; ; Hatl ' April 2008.
@Z bei-?lre it terminates. This ensures t (57) holds for ar[]]Xl] M. J. Neely. Super-fast delay tradeoffs for utility opéal fair scheduling
P; € P and hence proves the lemma. in wireless networkslEEE Journal on Selected Areas in Communica-

First we see that afteK iterations, we must hav® C tions (JSAC), Special Issue on Nonlinear Optimization ofm@minica-

K 1 o ; ; i ik 1 tion Systems24(8), Aug. 2006.
UT:lQT' This is because at lteratidn we include mUT:lQT 15] Y. Yi and M. Chiang. Stochastic network utility maxinaizon: A tribute

all the queues starting from which there exists a path to an’ o kelly's paper published in this journal a decade agBuropean
output processor that contaiksprocessors. Thus all the; Transactions on Telecommunicationsl. 19, no. 4, pp. 421-442, June

2008.
values are u_pdated at least once. . [16] D. I. Shuman and M. Liu. Energy-efficient transmissiameduling for
Now consider a queug,. Supposey, is the demand queue wireless media streaming with strict underflow constraidOpt 2008.

of a processorP; € Pin \We see that there exists a timdl7] L. Tassiulas and A. Ephremides. Stability propertidsconstrained

~ . . e . queueing systems and scheduling policies for maximum giput in
k < K at whichwy, is last modified. Suppose, is last multihop radio networks.IEEE Trans. on Automatic Control, vol. 37,

modified at Iterationk < K, in which caseg, € Qﬁ;. Then no. 12, pp. 1936-194Dec. 1992.

all the queuesg, Q-S will be in Qg . Thus theirw. values [18] L. Georgiadis, M. J. Neely, and L. TassiuleResource Allocation and
J v k+1 J Cross-Layer Control in Wireless NetworkEoundations and Trends in

will be modified at Iterationk + 1 < K. This implies that Networking Vol. 1, no. 1, pp. 1-144, 2006.

at lterationk + 1, we will havew;(k + 1)8;; > e . [19] L. Huang and M. J. Neely. Delay reduction via lagrangeltipliers in
. l+ N w-7(+)B” = wﬁ()am stochastic network optimizatiorProc. of WiOpt, SeoulJune 2009.

Sincegy, ¢ Qj, for k > k+1, we havewy, (k) = wy (k) for all 2] L. Huang and M. J. Neely. Max-weight achieves the eXatt/v), o(v)]

k > k+1. Thereforew;(k)Bi; > wn(k)oin V k+1 <k < K, utility-delay tradeoff under markov dynamicaXiv:1008.0200v,12010.
becauseu-(k) is not decreasing [21] D. P. Bertsekas, A. Nedic, and A. E. Ozdagl&@onvex Analysis and
J ! . . Optimization Boston: Athena Scientific, 2003.

Therefore the only case when the algorithm can fail is whesp) m. J. Neely. Universal scheduling for networks with iarry traffic,
wy, IS updated at Iteratior = K, in which casew; may 23] ghéli\;lmellls, a/r_l\d Sm%téilityarxgli%(09150960v;t13a_n 20306 et Rout
; S i . Moeller, A. Sridharan, B. Krishnamachari, and O. ®ala Routing
Increas_e but theuj Valqes fo_r 9 € Ql are nOt_ modified without routes: The backpressure collection protocéth ACM/IEEE
accordingly. However, since;, is updated at Iteratioh = K, International Conference on Information Processing inserNetworks
this implies that there exists a path frogy to an output (IPSN) 2010.

e i ; ; 24] M. J. Neely. Dynamic Power Allocation and Routing for Satellite
processor that ha& processors. This in turn implies that[and Wireless Networks with Time Varying Channel$*hD thesis,

starting from anyg; € sty there exists a path to an output Massachusetts Institute of Technology, Laboratory foorimfation and
processor that contairn’s + 1 processors. This contradicts the Decision Systems (LIDS), 2003.

definition of K. Thus the lemma follows. []

REFERENCES

[1] J. M. Harison. A broader view of brownian networksAnn. Appl.
Probab, 2003.

[2] J. G. Dai and W. Lin. Maximum pressure policies in stotltas
processing networksOperations Research, Vol 53, 197-22805.

[3] L. Jiang and J. Walrand. Stable and utility-maximizincheduling for
stochastic processing networl@llerton Conference on Communication,
Control, and Computing2009.

[4] H. Zhao, C. H. Xia, Z. Liu, and D. Towsley. A unified modejin
framework for distributed resource allocation of genemkfand join
processing networksProc. of ACM Sigmetrigs2010.

[5] M. J. Neely and L. Huang. Dynamic product assembly anckriory
control for maximum profitIEEE Conference on Decision and Control
(CDCQ), Atlanta, GeorgiaDec. 2010.

[6] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheukedaptive con-
trol of extreme-scale stream processing systeltec. of International
Conference on Distributed Computing Systems (ICDQ8)6.

[7] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riab@, Ver-
scheure, H. Koutsopoulos, and C. Moran. Ibm infosphereastsefor
scalable, real-time, intelligent transportation sersic&roceedings of
the international conference on Management of d&@10.

[8] J. Cao, S. A. Jarvis, S.Saini, and G. R. Nudd. Gridflow: kflomw
management for grid computingntl. Symposium on Cluster Computing
and the Grid (CCGrid) 2003.

[9] S. Eswaran, M. P. Johnson, A. Misra, and T. La Porta. Auapt
in-network processing for bandwidth and energy constchimgssion-
oriented multi-hop wireless network®&roc. of DCOSS2009.

	I Introduction
	II Notations
	III A data processing example
	III-A Network Settings
	III-B The Perturbed Max-Weight algorithm (PMW)
	III-C Performance of PMW

	IV General System Model
	IV-A Network State
	IV-B The Utility, Traffic, and Service
	IV-C Queueing, Average Cost, and the Objective

	V Upper bounding the optimal utility
	VI The perturbed max-weight algorithm and its performance
	VII Constructing PMW for networks with output reward
	VII-A Network Model
	VII-B Relation to the general model
	VII-C The PMW algorithm
	VII-D Performance
	VII-E Choosing the {wj}j=1r values

	VIII Simulation
	IX Conclusion
	References

