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Utility Optimal Scheduling in Processing Networks
Longbo Huang, Michael J. Neely

Abstract—We consider the problem of utility optimal schedul-
ing in general processing networkswith random arrivals and
network conditions. These are generalizations of traditional data
networks where commodities in one or more queues can be
combined to produce new commodities that are delivered to other
parts of the network. This can be used to model problems such as
in-network data fusion, stream processing, and grid computing.
Scheduling actions are complicated by theunderflow problemthat
arises when some queues with required components go empty.
In this paper, we develop the Perturbed Max-Weight algorithm
(PMW) to achieve optimal utility. The idea of PMW is to pertur b
the weights used by the usual Max-Weight algorithm to “push”
queue levels towards non-zero values (avoiding underflows). We
show that when the perturbations are carefully chosen, PMW is
able to achieve a utility that is within O(1/V ) of the optimal
value for any V ≥ 1, while ensuring an average network backlog
of O(V ).

Index Terms—Dynamic Control, Processing Networks, Data
Fusion, Lyapunov Analysis, Stochastic Optimization

I. I NTRODUCTION

Recently, there has been much attention on developing opti-
mal scheduling algorithms for the class ofprocessing networks
e.g., [1], [2], [3], [4], [5]. These networks are generalizations
of traditional data networks. Contents in these networks can
represent information, data packets, or certain raw materials,
that need to go through multiple processing stages in the
network before they can be utilized. One example of such
processing networks is the Fork and Join network considered
in [4], which models, e.g., stream processing [6] [7] and grid
computing [8]. In the stream processing case, the contents
in the network represent different types of data, say voice
and video, that need to be combined or jointly compressed,
and the network topology represents a particular sequence
of operations that needs to be conducted during processing.
Another example of a processing network is a sensor network
that performs data fusion [9], in which case sensor data must
first be fused before it is delivered. Finally, these processing
networks also contain the class of manufacturing networks,
where raw materials are assembled into products [3], [5].

In this paper, we develop optimal scheduling algorithms
for the following general utility maximization problem in
processing networks. We are given a discrete time stochastic
processing network. The network state, which describes the
network randomness (such as random channel conditions or
commodity arrivals), is time varying according to some prob-
ability law. A network controller performs some action at every

Longbo Huang (web: http://www-scf.usc.edu/∼longbohu) and Michael J.
Neely (web: http://www-rcf.usc.edu/∼mjneely) are with the Dept. of Electri-
cal Eng., University of Southern California, Los Angeles, CA 90089, USA.

This material is supported in part by one or more of the following: the
DARPA IT-MANET program grant W911NF-07-0028, the NSF grantOCE
0520324, the NSF Career grant CCF-0747525.

time slot, based on the observed network state, and subject
to the constraint thatthe network queues must have enough
contents to support the action. The chosen action generates
some utility, but also consumes some amount of contents from
some queues, and possibly generates new contents for some
other queues. These contents cause congestion, and thus lead
to backlogs at queues in the network. The goal of the controller
is to maximize its time average utility subject to the constraint
that the time average total backlog in the network is finite.

Many of the utility maximization problems in data networks
fall into this general framework. For instance, [10], [11],
[12] [13], [14], can be viewed as special cases of the above
framework which allow scheduling actions to be independent
of the content level in the queues (see [15] for a survey of
problems in data networks). By comparing the processing
networks with the data networks, we note that the main
difficulty in performing utility optimal scheduling in these
processing networks is thatwe need to build an optimal
scheduling algorithm on top of a mechanism that prevents
queue underflows. Such scheduling problems with underflow
constraints are usually formulated as dynamic programs, e.g.,
[16], which require substantial statistical knowledge of the
network randomness, and are usually very difficult to solve.

In this paper, we develop the Perturbed Max-Weight al-
gorithm (PMW) for achieving optimal utility in processing
networks. PMW is a greedy algorithm that makes decisions
every time slot,without requiring any statistical knowledge of
the network randomness. PMW is based on the Max-Weight
algorithm developed in the data network context [17] [18].
There, Max-Weight has been shown to be able to achieve
a time average utility that is withinO(1/V ) of the optimal
network utility for anyV ≥ 1, while ensuring that the average
network delay isO(V ), when the network dynamics are i.i.d.
[18]. The idea of PMW is to perturb the weights used in the
Max-Weight algorithm so as to “push” the queue sizes towards
some nonzero values. Doing so properly, we can ensure that
the queues always have enough contents for the scheduling
actions. Once this is accomplished, we then do scheduling as
in the usual Max-Weight algorithm with the perturbed weights.
In this way, we simultaneously avoid queue underflows and
achieve good utility performance, and also eliminate the need
to solve complex dynamic programs.

The PMW algorithm is quite different from the approaches
used in the processing network literature. [1] analyzes manu-
facturing networks using Brownian approximations. [2] applies
the Max-Weight algorithm to do scheduling in manufacturing
networks, assuming all the queues always have enough con-
tents. [3] develops the Deficit Max-Weight algorithm (DMW),
by using Max-Weight based on an alternative control pro-
cess for decision making. [4] formulates the problem as a
convex optimization problem to match the input and output
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rates of the queues, without considering the queueing level
dynamics. PMW instead provides a way to explicitly avoid
queue underflows, and allow us to compute explicit backlog
bounds. Our algorithm is perhaps most similar to the DMW
algorithm in [3]. DMW achieves the desired performance by
bounding the “deficit” incurred by the algorithm and applies
to both stability and utility maximization problems. Whereas
PMW uses perturbations to avoid deficits entirely and allows
for more general time varying system dynamics, e.g., random
arrivals and random costs.

The paper is organized as follows: In Section II we set up
our notations. In Section III, we present a study on a data
fusion example to demonstrate the main idea of the paper.
In Section IV we state the general network model and the
scheduling problem. In Section V we characterize optimality,
and in Sections VI we develop the PMW algorithm and show
its utility can approach the optimum. Section VII constructs
a PMW algorithm for a more specific yet general network.
Simulation results are presented in Section VIII.

II. N OTATIONS

Here we first set up the notations used in this paper:R

represents the set of real numbers.R+ (or R−) denotes the
set of nonnegative (or non-positive) real numbers.Rn (or Rn

+)
is the set ofn dimensionalcolumnvectors, with each element
being in R (or R+). Bold symbolsa and aT represent a
column vector and its transpose.a � b means vectora is
entrywise no less than vectorb. ||a − b|| is the Euclidean
distance ofa andb. 0 and1 denote column vectors with all
elements being0 and1. For any two vectorsa = (a1, ..., an)

T

and b = (b1, ..., bn)
T , the vectora ⊗ b = (a1b1, ..., anbn)

T .
Finally [a]+ = max[a, 0].

III. A DATA PROCESSING EXAMPLE

In this section, we study a data fusion example and develop
the Perturbed Max-Weight algorithm (PMW) in this case. This
example demonstrates the main idea of this paper. We will later
present our general model in Section IV.

A. Network Settings

We consider a network shown in Fig. 1, where the network
performs a2-stage data processing for the data entering into
the network.

q1 P1 P2q3

q2

OutputR1(t)

R2(t)

!1(t)

!3(t)

!2(t)

Fig. 1. An example network consisting of three queuesq1, q2, q3 and two
processorsP1, P2.

In this network, there are two random data streams
R1(t), R2(t), which represent, e.g., sensed data that come into
sensors, or video and voice data that need to be mixed. We
assume thatRi(t) = 1 or 0, equally likely, for i = 1, 2. At

every time slot, the network controller first decides whether
or not to admit the new arrivals, given that accepting any one
new arrival unit incurs a cost of1. The controller then has
to decide how to activate the two processorsP1, P2 for data
processing. We assume that both processors can be activated
simultaneously. When activated,P1 consumes one unit of data
from both q1 and q2, and generates one unit of fused data
into q3. This data needs further processing that is done by
P2. WhenP2 is activated, it consumes one unit of data from
q3, and generates one unit of processed data. We assume that
each unit of successfully fused and processed data generates
a profit of p(t), wherep(t) is i.i.d. and takes value3 or 1
with equal probabilities. The network controller’s objective is
to maximize the average utility, i.e., profit minus cost, subject
to queue stability.

For the ease of presenting the general model later, we define
a network stateS(t) = (R1(t), R2(t)), 1 which describes the
current network randomness. We also denote the controller’s
action at time t to be x(t) = (D1(t), D2(t), I1(t), I2(t)),
whereDj(t) = 1 (Dj(t) = 0) means to admit (reject) the
new arrivals into queuej, and Ii(t) = 1 (Ii(t) = 0) means
processorPi is activated (turned off). We note the following
no-underflow constraintsmust be met for all time when we
activate processorsP1, P2:

I1(t) ≤ q1(t), I1(t) ≤ q2(t), I2(t) ≤ q3(t). (1)

That is, I1(t) = 1 only whenq1 and q2 are both nonempty,
andI2(t) = 1 only if q3 is nonempty. Note that [3] is the first
to identify such no-underflow constraints and propose explicit
solution to the queue underflow problems for the context of
a processing network. Subject to (1), we can then write the
amount of arrivals intoq1, q2, q3, and the service rates of the
queues at timet as functions of the network stateS(t) and
the actionx(t), i.e.,

Aj(t) = Aj(S(t), x(t)) = Dj(t)Rj(t), j = 1, 2,

A3(t) = A3(S(t), x(t)) = I1(t). (2)

µj(t) = µj(S(t), x(t)) = I1(t), j = 1, 2,

µ3(t) = µ3(S(t), x(t)) = I2(t). (3)

Then we see that the queues evolve according to the following:

qj(t+ 1) = qj(t)− µj(t) +Aj(t), j = 1, 2, 3, ∀ t. (4)

The instantaneous utilityis given by:

f(t) = f(S(t), x(t))

= p(t)I2(t)−D1(t)R1(t)−D2(t)R2(t). (5)

The goal is to maximize the time average value off(t) subject
to network stability.

Note that the constraint (1) greatly complicates the designof
an optimal scheduling algorithm. This is because the decision
made at timet may affect the queue states in future time slots,
which can in turn affect the set of possible actions in the future.

1The network state here contains justR1(t) andR2(t). More complicated
settings, where the amount consumed from queues may also depend on the
random link conditions between queues and processors can also be modeled
by incorporating the link components into the network state, e.g., [19].
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In the following, we will develop the Perturbed Max-Weight
algorithm (PMW) for this example. The idea of PMW is use
the usual Max-Weight algorithm, but to perturb the weights
so as to push the queue sizes towards certain nonzero values.
By carefully designing the perturbation, we can simultaneously
ensure that the queues always have enough data for processing
and the achieved utility is close to optimal.

B. The Perturbed Max-Weight algorithm (PMW)

We now present the construction of the PMW algorithm
for this simple example (this is extended to general network
models in Section VI). To start, we first define aperturbation
vector θ = (θ1, θ2, θ3)

T and the Lyapunov functionL(t) =
1
2

∑3
j=1[qj(t)− θj ]

2. We then define the one-slot conditional
drift as:

∆(t) = E
{

L(t+ 1)− L(t) | q(t)
}

, (6)

where the expectation is taken over the random network state
S(t) and the randomness over the actions. Using the queueing
dynamics (4), it is easy to obtain that:

∆(t) ≤ B −

3
∑

j=1

E
{

(qj(t)− θj)[µj(t)−Aj(t)] | q(t)
}

,

whereB = 3. Now we use the “drift-plus-penalty” approach
in [18] to design our algorithm for this problem. To do so,
we define a control parameterV ≥ 1, which will affect
our utility-backlog tradeoff, and add to both sides the term
−V E

{

f(t) | q(t)
}

to get:

∆(t)− V E
{

f(t) | q(t)
}

(7)

≤ B − V E
{

f(t) | q(t)
}

−

3
∑

j=1

E
{

(qj(t)− θj)[µj(t)−Aj(t)] | q(t)
}

.

Denote∆V (t) = ∆(t) − V E
{

f(t) | q(t)
}

, and plug (2), (3)
and (5) into the above, to get:

∆V (t) ≤ B + E
{

D1(t)R1(t)[q1(t)− θ1 + V ] | q(t)
}

(8)

+E
{

D2(t)R2(t)[q2(t)− θ2 + V ] | q(t)
}

−E
{

I2(t)[q3(t)− θ3 + p(t)V ] | q(t)
}

−E
{

I1(t)[q1(t)− θ1 + q2(t)− θ2 − (q3(t)− θ3)] | q(t)
}

.

We now develop our PMW algorithm by choosing an action
at every time slot tominimize the right-hand side (RHS) of
(8) subject to (1). The algorithm then works as follows:

PMW: At every time slot, observeS(t) and q(t), and do
the following:

1) Data Admission:ChooseDj(t) = 1, i.e., admit the new
arrivals toqj if:

qj(t)− θj + V < 0, j = 1, 2, (9)

else setDj(t) = 0 and reject the arrivals.
2) Processor Activation:ChooseI1(t) = 1, i.e., activate

processorP1, if q1(t) ≥ 1, q2(t) ≥ 1, and that:

q1(t)− θ1 + q2(t)− θ2 − (q3(t)− θ3) > 0, (10)

else chooseI1(t) = 0. Similarly, chooseI2(t) = 1, i.e.,
activate processorP2, if q3(t) ≥ 1, and that:

q3(t)− θ3 + p(t)V > 0, (11)

else chooseI2(t) = 0.
3) Queueing update:Updateqj(t), ∀ j, according to (4).

C. Performance of PMW

Here we analyze the performance of PMW. We will first
prove the following important claim:under a properθ vector,
PMW minimizes the RHS of (8) over all possible policies of
arrival admission and processor activation, including those
that choose actions regardless of the constraint (1). We
then use this claim to prove the performance of PMW, by
comparing the value of the RHS of (8) under PMW versus
that under an alternate policy.

To prove the claim, we first see that the policy that
minimizes the RHS of (8) without the constraint (1) differs
from PMW only in the processor activation part, where PMW
also considers the constraintsq1(t) ≥ 1, q2(t) ≥ 1 and
q3(t) ≥ 1. Thus if one can show that these constraints are
indeed redundant in the PMW algorithm under a properθ

vector, i.e., one can activate the processors without considering
them but still ensure them, then PMW minimizes the RHS of
(8) over all possible policies. In the following, we will usethe
following θj values:

θ1 = 2V, θ2 = 2V, θ3 = 3V. (12)

Let us now look at the queue sizesqj(t), j = 1, 2, 3. From
(11), we see thatP2 is activated if and only if:

q3(t) ≥ θ3 − p(t)V + 1, and q3(t) ≥ 1. (13)

HenceI2(t) = 1 wheneverq3(t) ≥ θ3 − V +1, but I2(t) = 0
unlessq3(t) ≥ θ3 − 3V + 1. Sinceq3 can receive and deliver
at most one unit of data at a time, we get:

θ3 − V + 1 ≥ q3(t) ≥ θ3 − 3V, ∀ t. (14)

Using θ3 = 3V , this implies:

2V + 1 ≥ q3(t) ≥ 0, ∀ t. (15)

This shows that withθ3 = 3V , the activations ofP2 are always
feasible even if we do not consider the constraintq3(t) ≥ 1.

We now look atq1(t) and q2(t). We see from (9) that for
θ1, θ2 ≥ V , we have:

qj(t) ≤ θj − V, j = 1, 2. (16)

Also, using (10) and (14), it is easy to see that whenI1(t) = 1,
i.e., whenP1 is turned on, we have:

q1(t)− θ1 + q2(t)− θ2 > q3(t)− θ3 ≥ −3V. (17)

Combining (17) with (16), we see that ifI1(t) = 1, we have:

qj(t) ≥ 1, j = 1, 2. (18)

This is so because, e.g., ifq1(t) = 0, thenq1(t)−θ1 = −θ1 =
−2V . Sinceq2(t)− θ2 ≤ −V by (16), we thus have:

q1(t)− θ1 + q2(t)− θ2 ≤ −2V − V = −3V,
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which cannot be greater than−3V in (17). Thus by (15) and
(18), we have:

qj(t) ≥ 0, j = 1, 2, 3, ∀ t. (19)

This shows that by using theθj values in (12), PMW auto-
matically ensures that no queue underflow happens, and hence
PMW minimizes the RHS of (8) over all possible policies.

Given the above observation, the utility performance of
PMW can now be analyzed as the usual Max-Weight algo-
rithm. Specifically, using a similar argument as in [5], we can
compare the drift under PMW with a stationary randomized
algorithm which chooses scheduling actions purely as a func-
tion of S(t), and achievesE

{

µj(t) − Aj(t) | q(t)
}

= 0 for
all j andE

{

f(t) | q(t)
}

= f∗
av = 1

2 , wheref∗
av is the optimal

average utility. Note thatthis comparison will not have been
possible here without using the perturbation to ensure (19).
Now plugging this policy into (7), we obtain:

∆(t)− V E
{

f(t) | q(t)
}

≤ B − V f∗
av. (20)

Taking expectations overq(t) on both sides and summing it
over t = 0, 1, ..., T − 1, we get:

E
{

L(T )− L(0)
}

− V

T−1
∑

t=0

E
{

f(t)
}

≤ TB − V Tf∗
av. (21)

Now rearranging the terms, dividing both sides byV T , and
using the fact thatL(t) ≥ 0, we get:

1

T

T−1
∑

t=0

E
{

f(t)
}

≥ f∗
av −

B

V
−

E
{

L(0)
}

TV
. (22)

Taking a liminf asT → ∞, and usingE
{

L(0)
}

< ∞, we
get:

fPMW
av = lim inf

T→∞

1

T

T−1
∑

t=0

E
{

f(t)
}

≥ f∗
av −

B

V
, (23)

where fPMW
av denotes the time average utility achieved by

PMW. This thus shows that PMW is able to achieve a time
average utility that is withinO(1/V ) of the optimal value,
and guaranteesqj(t) ≤ O(V ) for all time. Note that PMW
is similar to the DMW algorithm developed in [3]. However,
DMW allows the queues to be empty when activating proces-
sors, which may lead to “deficit,” whereas PMW effectively
avoids this by using a perturbation vector.

In the following, we will present the general processing net-
work utility optimization model, and analyze the performance
of the general PMW algorithm under this general model. Our
analysis uses a duality argument, and will be different from
that in [5]. As we will see, our approach allows one to analyze
the algorithm performance without proving the existence ofan
optimal stationary and randomized algorithm.

IV. GENERAL SYSTEM MODEL

In this section, we present the general network model. We
consider a network controller that operates a general network
with the goal of maximizing the time average utility, subject
to the network stability. The network is assumed to operate in
slotted time, i.e.,t ∈ {0, 1, 2, ...}. We assume there arer ≥ 1
queues in the network.

A. Network State

In every slott, we useS(t) to denote the current network
state, which indicates the current network parameters, such as
a vector of channel conditions for each link, or a collection
of other relevant information about the current network links
and arrivals. We assume thatS(t) is i.i.d. every time slot,
with a total ofM different random network states denoted by
S = {s1, s2, . . . , sM}. 2 We let πsi = Pr{S(t) = si}. The
network controller can observeS(t) at the beginning of every
slot t, but theπsi probabilities are not necessarily known.

B. The Utility, Traffic, and Service

At each timet, after observingS(t) = si and the network
backlog vector, the controller will perform an actionx(t).
This action represents the aggregate decisions made by the
controller at timet, which can include, e.g., in the previous
example, the set of processors to turn on, or the amount of
arriving contents to accept, or both, etc.

We denoteX (si) the set of all feasible actions for network
statesi, assuming all the queues contain enough contents to
meet the scheduling requirements. Note that we always have
x(t) = x(si) for somex(si) ∈ X (si) wheneverS(t) = si. The
setX (si) is assumed to be time-invariant and compact for all
si ∈ S. If the chosen actionx(t) = x(si) at time t can be
performed, i.e., it is feasible and all the queues have enough
contents, then the utility, traffic, and service generated by x(t)
are as follows:

(a) The chosen action has an associated utility given by the
utility function f(t) = f(si, x

(si)) : X (si) 7→ R;
(b) The amount of contents generated by the action to

queuej is determined by the traffic functionAj(t) =
Aj(si, x

(si)) : X (si) 7→ R+, in units of contents;
(c) The amount of contents consumed from queuej by

the action is given by the rate functionµj(t) =
µj(si, x

(si)) : X (si) 7→ R+, in units of contents;
Note thatAj(t) includes both the exogenous arrivals from out-
side the network to queuej, and the endogenous arrivals from
other queues, i.e., the newly generated contents by processing
contents in some other queues, to queuej. We assume the
functionsf(si, ·), µj(si, ·) andAj(si, ·) are continuous, time-
invariant, their magnitudes are uniformly upper bounded by
some constantδmax ∈ (0,∞) for all si, j, and they are known
to the network operator.

In any actual algorithm implementation, however, we see
that not all actions in the setX (si) can be performed when
S(t) = si, due to the fact that some queues may not have
enough contents for the action. We say that an actionx(si) ∈
X (si) is feasible at timet with S(t) = si only when the
following generalno-underflow constraintis satisfied:

qj(t) ≥ µj(si, x
(si)), ∀ j. (24)

That is, all the queues must have contents greater than or
equal to what will be consumed. In the following, we assume
there exists a set of actions{x(si)

k }k=1,2,...,r+2
i=1,...,M with x

(si)
k ∈

2Note that all our results can easily be extended to the case when S(t)
evolves according to a finite state aperiodic and irreducible Markov chain, by
using the results developed in [20].
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X (si) and some variablesϑ(si)
k ≥ 0 for all si and k with

∑r+2
k=1 ϑ

(si)
k = 1 for all si, such that:

∑

si

πsi

{

r+2
∑

k=1

ϑ
(si)
k [Aj(si, x

(si)
k )− µj(si, x

(si)
k )]

}

≤ −η, (25)

for someη > 0 for all j. That is, the “stability constraints”
are feasible withη-slackness.3 In the following, we use:

A(t) = (A1(t), ..., Ar(t))
T , µ(t) = (µ1(t), ..., µr(t))

T , (26)

to denote the arrival and service vectors at timet.

C. Queueing, Average Cost, and the Objective

Let q(t) = (q1(t), ..., qr(t))
T ∈ Rr

+, t = 0, 1, 2, ... be
the queue backlog vector process of the network, in units of
contents. Due to the feasibility condition (24) of the actions,
we see that the queues evolve according to the following
dynamics:

qj(t+ 1) = qj(t)− µj(t) +Aj(t), ∀j, t ≥ 0, (27)

with some ||q(0)|| < ∞. Note that using a nonzeroqj(0)
can be viewed as placing an “initial stock” in the queues to
facilitate algorithm implementation. In this paper, we adopt
the following notion of queue stability:

q , lim sup
t→∞

1

t

t−1
∑

τ=0

r
∑

j=1

E
{

qj(τ)
}

< ∞. (28)

We also usefΠ
av to denote the time average utility induced by

an action-choosing policyΠ, defined as:

fΠ
av , lim inf

t→∞

1

t

t−1
∑

τ=0

E
{

fΠ(τ)
}

, (29)

wherefΠ(τ) is the utility incurred at timeτ by policyΠ. We
call an action-choosing policyfeasibleif at every time slott it
only chooses actions from the feasible action setX (S(t)) that
satisfy (24). We then call a feasible action-choosing policy
under which (28) holds astablepolicy, and usef∗

av to denote
the optimal time average utility over all stable policies.

In every slot, the network controller observes the current
network state and the queue backlog vector, and chooses a
feasible control action that ensures (24), with the objective
of maximizing the time average utility subject to network
stability. Note that if condition (24) can be ignored, and ifany
processor only requires contents from a single queue, then this
problem falls into the general stochastic network optimization
framework considered in [18], in which case it can be solved
by using the usual Max-Weight algorithm to achieve a utility
that is withinO(1/V ) of the optimal while ensuring that the
average network backlog isO(V ).

3The use ofr+2 actions here is due to the use of Caratheodory’s theorem
[21] in the proof of Theorem 1.

V. UPPER BOUNDING THE OPTIMAL UTILITY

In this section, we first obtain an upper bound of the optimal
utility that the network controller can achieve. This upper
bound will later be used to analyze the performance of our
algorithm. The result is summarized in the following theorem.

Theorem1: Suppose the initial queue backlogq(t) satisfies
E
{

qj(0)
}

< ∞ for all j = 1, ..., r. Then we have:

V f∗
av ≤ φ∗, (30)

whereφ∗ is the optimal value of the following problem:

max : φ =
∑

si

πsiV
r+2
∑

k=1

a
(si)
k f(si, x

(si)
k ) (31)

s.t.
∑

si

πsi

r+2
∑

k=1

a
(si)
k Aj(si, x

(si)
k ) (32)

=
∑

si

πsi

r+2
∑

k=1

a
(si)
k µj(si, x

(si)
k )

x
(si)
k ∈ X (si), ∀ si, k (33)

a
(si)
k ≥ 0, ∀ si, k,

∑

k

a
(si)
k = 1, ∀ si. (34)

Proof: See Appendix A.
Note that the problem (31) only requires that the time average
input rate into a queue is equal to its time average output rate.
This requirement ignores the action feasibility constraint (24),
and makes (31) easier to solve than the scheduling problem.
We now look at the dual problem of the problem (31). The
following lemma shows that the dual problem of (31) does not
have to include the variables{a(si)k }k=1,...,r+2

i=1,...,M . This lemma
will also be useful for our later analysis.

Lemma1: The dual problem of (31) is given by:

min : g(γ), s.t. γ ∈ Rr, (35)

where the functiong(γ) is defined:

g(γ) = sup
x(si)∈X (si)

∑

si

πsi

{

V f(si, x
(si)) (36)

−
∑

j

γj
[

Aj(si, x
(si))− µj(si, x

(si))
]

}

.

Moreover, letγ∗ be any optimal solution of (35), we have:

g(γ∗) ≥ φ∗. (37)

Proof: (Lemma 1) It is easy to see from (31) that the dual
function is given by:

ĝ(γ) = sup
x
(si)

k
,a

(si)

k

∑

si

πsi

{ r+2
∑

k=1

a
(si)
k V f(si, x

(si)
k ) (38)

−
∑

j

γj

r+2
∑

k=1

a
(si)
k

[

Aj(si, x
(si)
k )− µj(si, x

(si)
k )

]

}

.

Due to the use of the{a(si)k }k=1,...,r+2
i=1,...,M variables, it is

easy to see that̂g(γ) ≥ g(γ). However, if {x(si)}Mi=1

is a set of maximizers ofg(γ), then the set of variables
{x

(si)
k , a

(si)
k }k=1,...,r+2

i=1,...,M where for eachsi, x
(si)
k = x(si) for
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all k, anda
(si)
1 = 1 with a

(si)
k = 0 for all k ≥ 2, will also

be maximizers of̂g(γ). Thusg(γ) ≥ ĝ(γ). This shows that
g(γ) = ĝ(γ), and henceg(γ) is the dual function of (31).
(37) follows from weak duality [21].

In the following, it is useful to define the following function:

gsi(γ) = sup
x(si)∈X (si)

{

V f(si, x
(si)) (39)

−
∑

j

γj
[

Aj(si, x
(si))− µj(si, x

(si))
]

}

.

That is, gsi(γ) is the dual function of (31) when there is a
single network statesi. We can see from (36) and (39) that:

g(γ) =
∑

si

πsigsi(γ). (40)

In the following, we will useγ∗ = (γ∗
1 , ..., γ

∗
r )

T to denote an
optimal solution of the problem (35).

VI. T HE PERTURBED MAX-WEIGHT ALGORITHM AND ITS

PERFORMANCE

In this section, we develop the general Perturbed Max-
Weight algorithm (PMW) to solve our scheduling problem. To
start, we first choose aperturbation vectorθ = (θ1, ..., θr)

T .
Then we define the following weighted perturbed Lyapunov
function with some positive constants{wj}

r
j=1:

L(t) =
1

2

r
∑

j=1

wj

(

qj(t)− θj
)2
. (41)

We then define the one-slot conditional drift as in (7), i.e.,
∆(t) = E

{

L(t + 1) − L(t) | q(t)
}

. We will similarly use
the “drift-plus-penalty” approach in Section III to construct
the algorithm. Specifically, we first use the queueing dynamic
equation (27), and have the following lemma:

Lemma2: Under any feasible control policy that can be
implemented at timet, we have:

∆(t)− V E
{

f(t) | q(t)
}

≤ B − V E
{

f(t) | q(t)
}

(42)

−

r
∑

j=1

wj

(

qj(t)− θj
)

E
{

[µj(t)−Aj(t)] | q(t)
}

,

whereB = δ2max

∑r
j=1 wj .

Proof: See Appendix B.
The general Perturbed Max-Weight algorithm (PMW) is

then obtained by choosing an actionx(t) from X (S(t)) at time
t to minimize the right-hand side (RHS) of (42)subject to (24).
Specifically, define the functionD(si)

θ,q(t)(x) as:

D
(si)
θ,q(t)(x) (43)

, V f(si, x) +
r

∑

j=1

wj

(

qj(t)− θj
)[

µj(si, x)−Aj(si, x)
]

.

We see that the functionD(si)
θ,q(t)(x) is indeed the term inside

the conditional expectation on the RHS of (42). We now
also defineD(si)∗

θ,q(t) to be the optimal value of the following
problem:

max : D
(si)
θ,q(t)(x), s.t., x(si) ∈ X (si). (44)

Hence D
(si)∗
θ,q(t) is the maximum value ofD(si)

θ,q(t) over all
possible policies, including those that may not consider the no-
underflow constraint (24). The general Perturbed Max-Weight
algorithm (PMW) then works as follows:

PMW: Initialize the perturbation vectorθ. At every time
slot t, observe the current network stateS(t) and the backlog
q(t). If S(t) = si, choosex(si) ∈ X (si) subject to (24) that
makes the value ofD(si)

θ,q(t)(x) close toD(si)∗
θ,q(t).

Note that depending on the problem structure, the PMW
algorithm can usually be implemented easily, e.g., [5], [11].
Now we analyze the performance of the PMW algorithm. We
will prove our result under the following condition:

Condition 1: There exists some finite constantC ≥ 0, such
that at every time slott with a network stateS(t), the value
of D(S(t))

θ,q(t)(x) under PMW is at leastD(S(t))∗
θ,q(t) − C.

The immediate consequence of Condition 1 is that PMW
also minimizes the RHS of (42), i.e., the conditional expec-
tation, to within C of its minimum value over all possible
policies. IfC = 0, then PMW simultaneously ensures (24) and
minimizes the RHS of (42), e.g., as in the example in Section
III. However, we note that Condition 1 does not require the
value ofD(S(t))

θ,q(t)(x) to be exactly the same asD(S(t))∗
θ,q(t) . This

allows for more flexibility in constructing the PMW algorithm
(See Section VII for an example). We also note that Condition
1 can be ensured, e.g., by carefully choosing theθj values
to ensureqj(t) ≥ δmax for all time [5]. We will show that,
under Condition 1, PMW achieves a time average utility that
is within O(1/V ) of f∗

av, while guaranteeing that the time
average network queue size isO(V ) +

∑

j wjθj , which is
O(V ) if θ = Θ(V ) and wj = O(1), ∀ j. The following
theorem summarizes PMW’s performance results.

Theorem2: Suppose that (25) holds, that Condition 1
holds, and thatE

{

qj(0)
}

< ∞ for all j = 1, ..., r. Then
under PMW, we have:4

fPMW
av ≥ f∗

av −
B + C

V
, (45)

qPMW ≤
B + C + 2V δmax

η
+

r
∑

j=1

wjθj . (46)

Here B = δ2max

∑r
j=1 wj , η is the slackness parameter in

Section IV-B,fPMW
av is defined in (29) to be the time average

expected utility of PMW, andqPMW is the time average
expected weighted network backlog under PMW, defined:

qPMW , lim sup
t→∞

1

t

t−1
∑

τ=0

r
∑

j=1

wjE
{

qj(τ)
}

.

Proof: See Appendix C.
Theorem 2 shows that if Condition 1 holds, then PMW can be
used as in previous networking problems, e.g., [11], [12], to
obtain explicit utility-backlog tradeoffs. We note that a condi-
tion similar to Condition 1 was assumed in [2]. However, [2]
only considers the usual Max-Weight algorithm, under which
case (24) may not be satisfied for all time. Whereas PMW
resolves this problem by carefully choosing the perturbation
vector. One such example of PMW is the recent work [5],

4Easy to see that (46) ensures (28), hence the network is stable under PMW.
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which applies PMW to an assembly line scheduling problem
and achieves an[O(1/V ), O(V )] utility-backlog tradeoff.

VII. C ONSTRUCTINGPMW FOR NETWORKS WITH

OUTPUT REWARD

In this section, we look at a specific yet general processing
network model, and explicitly construct a PMW algorithm,
including finding the properθ vector and choosing actions at
each time slot.

A. Network Model

We assume that the network is modeled by an acyclic
directed graphG = (Q,P ,L). Here Q = Qs ∪ Qin is
the set of queues, consisting of the set ofsource queues
Qs where arrivals enter the network, and the set ofinternal
queuesQin where contents are stored for further processing.
P = P in ∪ Po is the set of processors, consisting of a set of
internal processorsP in, which generate partially processed
contents for further processing at other processors, andoutput
processorsPo, which generate fully processed contents and
deliver them to the output.L is the set of directed links that
connectsQ and P . Note that a link only exists between a
queue inQ and a processor inP . We denoteN in

p = |P in|,
No

p = |Po| andNp = N in
p +No

p . We also denoteNs
q = |Qs|,

N in
q = |Qin| andNq = Ns

q +N in
q .

Each processorPn, when activated, consumes a certain
amount of contents from a set ofsupplyqueues, denoted by
QS

n , and generates some amount of new contents. These new
contents either go to a set ofdemandqueues, denoted byQD

n ,
if Pn ∈ P in, or are delivered to the output ifPn ∈ Po. For
any queueqj ∈ Q, we usePS

j to denote the set of processors
thatqj serves as a supply queue, and usePD

j to denote the set
of processors thatqj serves as a demand queue. An example
of such a network is shown in Fig. 2. In the following, we
assume that for each processorPi ∈ P in, |QD

i | = 1, i.e., each
processor only generates contents for a single demand queue.

We useβnj to denote the amount processorPn consumes
from a queueqj in QS

n when it is activated. For eachPi ∈ P in,
we also useαih to denote the amountPi generates into the
queueqh if qh = QD

i , when it is activated. For a processor
Pk ∈ Po, we useαko to denote the amount of output generated
by it when it is turned on.5 We denoteβmax = maxi,j βij ,
βmin = mini,j βij andαmax = maxi,j,[αij , αio]. We assume
that βmin, βmax, αmax > 0. We also defineMp to be the
maximum number of supply queues that any processor can
have, defineMd

q to be the maximum number of processors
that any queue can serve as a demand queue, and defineM s

q

to be the maximum number of processors that any queue can
serve as a supply queue. We useRj(t) to denote the amount
of contents arriving to a source queueqj ∈ Qs at time t. We
assumeRj(t) is i.i.d. every slot, and thatRj(t) ≤ Rmax for
all qj ∈ Qs and allt. We assume that there are no exogenous
arrivals into the queues inQin.

5Note that here we only consider binary actions of processors. Our results
can also be generalized into the case when there are multipleoperation levels
under which different amount of contents will be consumed and generated.

R1

R2

R4

R3

Output 1

q1

q2

q3

q4

q5

q6

P2

P1 P3

P4

P5

Output 2

Fig. 2. A general processing network.

We assume that in every slott, admitting any unit amount
of Rj(t) arrival incurs a cost ofcj(t), and that activating any
internal processorPi ∈ P in incurs a cost ofCi(t), whereas
activating any output processorPk ∈ Po generates a profit of
pk(t) per unit output content.6 We assumecj(t), Ci(t), pk(t)
are all i.i.d. every time slot. In the following, we also assume
that pmin ≤ pk(t) ≤ pmax, and thatcmin ≤ cj(t) ≤ cmax

andCmin ≤ Ci(t) ≤ Cmax for all k, j, i and for all time.
Below, we useIn(t) = 1 to denote the activation decision

of Pn, i.e., In(t) = 1 (In(t) = 0) means thatPn is activated
(turned off). We also useDj(t) ∈ [0, 1] to denote the portion
of arrivals fromRj(t) that are admitted intoqj . We assume
there exist some general constraint on how the processors
can be activated, which can be due to, e.g., resource sharing
among processors. We model this constraint by defining an
activation vectorI(t) = (I1(t), ..., INp

(t)), and then assume
that I(t) ∈ I for all time, whereI denotes the set of all
feasible processor activation decision vectors, assumingall the
queues have enough contents for processing. We assume that
if a vectorI ∈ I, then by changing one element ofI from one
to zero, the newly obtained vectorI ′ satisfiesI ′ ∈ I. Note
that the chosen vectorI(t) must always ensure the constraint
(24), which in this case implies thatI(t) has to satisfy the
following constraint:

qj(t) ≥
∑

n∈PS
j

In(t)βnj , ∀ j = 1, ..., r. (47)

Under this constraint, we see that the queues evolve according
to the following queueing dynamics:

qj(t+ 1) = qj(t)−
∑

n∈PS
j

In(t)βnj +Dj(t)Rj(t), ∀j ∈ Qs,

qj(t+ 1) = qj(t)−
∑

n∈PS
j

In(t)βnj +
∑

n∈PD
j

In(t)αnj , ∀j ∈ Qin.

Note that we have usedj ∈ Q to representqj ∈ Q, and
usen ∈ P to representPn ∈ P in the above for notation
simplicity. The objective is to maximize the time average of
the following utility function:

f(t) ,
∑

k∈Po

Ik(t)pk(t)αko −
∑

j∈Qs

Dj(t)Rj(t)cj(t) (48)

−
∑

i∈Pin

Ii(t)Ci(t).

6This can be viewed as the difference between profit and cost associated
with these processors.
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(48) can be used to model applications where generating
completely processed contents is the primary target, e.g.,[5].

B. Relation to the general model

We see that in this network model, the network state, the
action, and the traffic and service functions are given by:

• The network state is given by:

S(t) = (cj(t), j ∈ Qs, Ci(t), i ∈ P in, pk(t), k ∈ Po).

• The actionx(t) = (Dj(t), j ∈ Qs, In(t), n ∈ P).
• The arrival functions are given by:

Aj(t) = Aj(S(t), x(t)) = Dj(t)Rj(t), ∀ qj ∈ Qs,

Aj(t) = Aj(S(t), x(t)) =
∑

n∈PD
j

In(t)αnj , ∀ qj ∈ Qin.

• The service functions are given by:

µj(t) = µj(S(t), x(t)) =
∑

n∈PS
j

In(t)βnj , ∀ j.

Thus, we see that this network model falls into the general
processing network framework in Section IV, and Theorem 2
will apply in this case. Therefore, in the following, we will
construct our PMW algorithm to ensure that Condition 1 holds.

C. The PMW algorithm

We now obtain the PMW algorithm for this general network
in the following. We will look for a perturbation vector that
is the same in all entries, i.e.,θ = θ1. We first compute the
“drift-plus-penalty” expression using the weighted perturbed
Lyapunov function defined in (41) under some given positive
constants{wj}

r
j=1 and some nonzero constantθ:

∆(t)− V E
{

f(t) | q(t)
}

≤ B (49)

−
∑

j∈Qs

E
{

wj

[

qj(t)− θ
][

∑

n∈PS
j

In(t)βnj −Rj(t)Dj(t)
]

| q(t)
}

−
∑

j∈Qin

E
{

wj

[

qj(t)− θ
][

∑

n∈PS
j

In(t)βnj

−
∑

n∈PD
j

In(t)αnj

]

| q(t)
}

−V E
{

∑

k∈Po

Ik(t)pk(t)αko −
∑

j∈Qs

Dj(t)Rj(t)cj(t)

−
∑

i∈Pin

Ii(t)Ci(t) | q(t)
}

.

Here B = wmax

[Nq(M
s
qβmax)

2+Ns
qR

2
max+Nin

q (Md
q αmax)

2

2

]

,
wherewmax = maxj wj . We also denotewmin = minj wj .
Rearranging the terms, we get the following:

∆(t)− V E
{

f(t) | q(t)
}

≤ B (50)

+
∑

j∈Qs

E
{[

V cj(t) + wj(qj(t)− θ)
]

Dj(t)Rj(t) | q(t)
}

−
∑

k∈Po

E
{

Ik(t)
[

∑

j∈QS
k

wj(qj(t)− θ)βkj + V pk(t)αko

]

| q(t)
}

−
∑

i∈Pin

E
{

Ii(t)
[

∑

j∈QS
i

wj(qj(t)− θ)βij − wh(qh(t)− θ)αih

−V Ci(t)
]

| q(t)
}

.

Here in the last termqh = QD
i . We now present the PMW

algorithm. We see that in this case theD(S(t))
θ,q(t)(x) function is

given by:

D
(S(t))
θ,q(t)(x) = −

∑

j∈Qs

[

V cj(t) + wj(qj(t)− θ)
]

Dj(t)Rj(t)

+
∑

k∈Po

Ik(t)
[

∑

j∈QS
k

wj(qj(t)− θ)βkj + V pk(t)αko

]

+
∑

i∈Pin

Ii(t)
[

∑

j∈QS
i

wj(qj(t)− θ)βij (51)

−wh(qh(t)− θ)αih − V Ci(t)
]

.

Our goal is to design PMW in a way such that under
any network stateS(t), the value ofD(S(t))

θ,q(t)(x) is close

to D
(S(t))∗
θ,q(t) (x), which is the maximum value ofD(S(t))

θ,q(t)(x)
without the underflow constraint (47), i.e.,

D
(S(t))∗
θ,q(t) (x) = max

Dj(t)∈[0,1],I(t)∈I
D

(S(t))
θ,q(t)(x).

Specifically, PMW works as follows:
PMW: Initialize θ. At every time slott, observeS(t) and

q(t), and do the following:

1) Content Admission:ChooseDj(t) = 1, i.e., admit all
new arrivals toqj ∈ Qs if:

V cj(t) + wj(qj(t)− θ) < 0, (52)

else setDj(t) = 0.
2) Processor Activation:For eachPi ∈ P in, define its

weightW (in)
i (t) as:

W
(in)
i (t) =

[

∑

qj∈QS
i

wj [qj(t)− θ]βij (53)

−wh[qh(t)− θ]αih − V Ci(t)
]+

,

whereqh = QD
i . Similarly, for eachPk ∈ Po, define its

weightW (o)
k (t) as:

W
(o)
k (t) =

[

∑

qj∈QS
k

wj [qj(t)− θ]βkj + V pk(t)αko

]+
. (54)

Then, choose an activation vectorI(t) from I to max-
imize:

∑

i∈Pin

Ii(t)W
(in)
i (t) +

∑

k∈Po

Ik(t)W
(o)
k (t), (55)

subject to the followingqueue edge constraints:

a) For eachPi ∈ P in, set Ii(t) = 1, i.e., activate
processorPi, only if:

• qj(t) ≥ M s
qβmax for all qj ∈ QS

i ,
• qh(t) ≤ θ, whereqh = QD

i .

b) For eachPk ∈ Po, chooseIk(t) = 1 only if:

• qj(t) ≥ M s
qβmax for all qj ∈ QS

k .

The approach of imposing the queue edge constraints was
inspired by the work [22], where similar constraints are
imposed for routing problems. Note that if without these queue
edge constraints, then PMW will be the same as the action that
maximizesD(si)

θ,q(t)(x) without the underflow constraint (47).
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D. Performance

Here we show that PMW indeed ensures that the value of
D

(S(t))
θ,q(t)(x) is within some additive constant ofD(S(t))∗

θ,q(t) (x). In
the following, we assume that:

θ ≥ max
[V αmaxpmax

wminβmin
,
V cmin

wmin
+M s

qβmax

]

. (56)

We also assume that the{wj}
r
j=1 values are chosen such that

for any processorPi ∈ P in with the demand queueqh, we
have for any supply queueqj ∈ QS

i that:

wjβij ≥ whαih. (57)

We note that (56) can easily be satisfied and only requires
θ = Θ(V ). A way of choosing the{wj}

r
j=1 values to satisfy

(57) is given in Section VII-E. Note that in the special case
when βij = αij = 1 for all i, j, simply usingwj = 1, ∀ j
meets the condition (57).

We first look at the queueing bounds. By (52),qj admits
new arrivals only whenqj(t) < θ − V cmin/wj . Thus:

qj(t) ≤ θ − V cmin/wj +Rmax, ∀ qj ∈ Qs, t. (58)

Now by the processor activation rule, we also see that:

0 ≤ qj(t) ≤ θ +Md
q αmax, ∀ qj ∈ Qin, t. (59)

This is because under the PMW algorithm, a processor is
activated only when all its supply queues have at least
M s

qβmax units of contents, and when its demand queue has
at mostθ units of contents. The first requirement ensures that
qj(t) ≥ 0 for all time, while the second requirement ensures
that qj(t) ≤ θ +Md

q αmax. Below, by defining:

νmax , max
[

Md
q αmax, Rmax,M

s
qβmax

]

, (60)

we can compactly write (58) and (59) as:

0 ≤ qj(t) ≤ θ + νmax, ∀ qj ∈ Q, t. (61)

To prove the performance of the PMW algorithm, it suffices
to prove the following lemma, which shows that Condition 1
holds for some finite constantC under the PMW algorithm.

Lemma3: Suppose (56) and (57) hold. Then under
PMW, D

(S(t))
θ,q(t)(x) ≥ D

(S(t))∗
θ,q(t) (x) − C, where C =

NpwmaxMpνmaxβmax.
Proof: See Appendix D.

We can now directly use Theorem 2 to have the following
corollary concerning the performance of PMW in this case:

Corollary 1: Suppose (25), (56) and (57) hold. Then PMW
achieves the following:

fPMW
av ≥ f∗

av −
B + C

V
, (62)

qPMW ≤
B + C + 2V δmax

η
+ θ

r
∑

j=1

wj , (63)

whereC = NpwmaxMpνmaxβmax, fPMW
av and qPMW are

the time average expected utility and time average expected
weighted backlog under PMW, respectively.�

Note that hereδmax can be chosen to be:

δmax = max
[

νmax, N
o
ppmaxαmax,

Ns
qRmaxcmax +N in

p Cmax

]

.

Also, since (56) only requiresθ = Θ(V ), andwj = Θ(1) for
all j, we see that PMW indeed achieves an[O(1/V ), O(V )]
utility-backlog tradeoff in this case.

E. Choosing the{wj}
r
j=1 values

Here we describe how to choose the{wj}
r
j=1 values to

satisfy (57). We first letK be the maximum number of
processors that any path going from a queue to an output
processor can have. It is easy to see thatK ≤ |Np| since there
is no cycle in the network. The following algorithm terminates
in K iterations. We usewj(k) to denote the value ofwj at
the kth iteration. In the following, we useqhn

to denote the
demand queue of a processorPn.

1) At Iteration 1, denote the set of queues that serve as
supply queues for any output processor asQl

1, i.e.,

Ql
1 = {qj : P

S
j ∩ Po 6= φ}.

Then setwj(1) = 1 for eachqj ∈ Ql
1. Also, setwj(1) =

0 for all otherqj /∈ Ql
1.

2) At Iteration k = 2, ...,K, denoteQl
k to be the set of

queues that serve as supply queues for any processor
whose demand queue is inQl

k−1, i.e.,

Ql
k = {qj : ∃Pn ∈ PS

j s.t. QD
n ∈ Ql

k−1}.

Then set:

wj(k) = max
[

wj(k − 1),max
n∈PS

j

whn
(k − 1)αnhn

βnj

]

, (64)

whereαnhn
is the amountPn generates intoqhn

, which
is the demand queue ofPn. Also, setwj(k) = wj(k−1)
for all qj /∈ Ql

k.
3) Output the{wj}

r
j=1 values.

The following lemma shows that the above algorithm outputs
a set of{wj}

r
j=1 values that satisfy (57).

Lemma4: The {wj}
r
j=1 values generated by the above

algorithm satisfy (57).
Proof: See Appendix E.

As a concrete example, we consider the example in Fig.
2, with the assumption that each processor, when activated,
consumes one unit of content from each of its supply queues
and generates two units of contents into its demand queue. In
this example, we see thatK = 3. Thus the algorithm works
as follows:

1) Iteration 1, denoteQl
1 = {q4, q5, q6}, set w4(1) =

w5(1) = w6(1) = 1. For all other queues, setwj(1) = 0.
2) Iteration2, denoteQl

2 = {q1, q2, q3, q4, q5}, setw1(2) =
w2(2) = w3(2) = w4(2) = w5(2) = 2. Setw6(2) = 1.

3) Iteration3, denoteQl
3 = {q2, q3}, setw2(3) = w3(3) =

4. Setw1(3) = w4(3) = w5(3) = 2, w6(3) = 1.
4) Terminate and outputw1 = w4 = w5 = 2, w2 = w3 =

4, w6 = 1.

VIII. S IMULATION

In this section, we simulate the example given in Fig. 2. In
this example, we assume eachRj(t) is Bernoulli being0 or 2
with equal probabilities. For eachPi ∈ P in, i.e., P1, P2, P3,
Ci(t) is assumed to be1 or 10 with probabilities0.3 and
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0.7, respectively. For the output processorsPk ∈ Po, i.e., P4

andP5, we assume thatpk(t) = 1 or 3 with probabilities0.6
and 0.4, respectively. We assume that each processor, when
activated, takes one unit of content from each of its supply
queues and generates two units of contents into its demand
queue (or to the output if it is an output processor). We further
assume that all processors can be turned on without affecting
others. Note that in this case, we havecj(t) = 0 for all source
queuesqj .

It is easy to see that in this caseMp = M s
q = Md

q = 2,
βmax = βmin = 1, andαmax = 2. Using the results in the
above, we choosew6 = 1, w1 = w4 = w5 = 2, w2 = w3 = 4.
We also useθ = 6V according to (56). We simulate the PMW
algorithm forV ∈ {5, 7, 10, 15, 20, 50, 100}. Each simulation
is run over5× 106 slots.

Fig. 3 shows the utility and backlog performance of the
PMW algorithm. We see that asV increases, the average
utility performance quickly converges to the optimal value.
The average backlog size also only grows linear inV .
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Fig. 3. Utility and backlog performance of PMW.

Fig. 4 also shows three sample path queue processes in the
first 104 slots underV = 100. We see that no queue has an
underflow. This shows that all the activation decisions of PMW
are feasible. It is also easy to verify that the queueing bounds
(58) and (59) hold for all time.
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Fig. 4. Sample path backlog processes withV = 100.

We observe in Fig. 4 that the queue sizes usually fluctuate
around certain fixed values. Similar “exponential attraction”
phenomenon has been observed in prior work [19]. Hence our
results can also be extended, using the results developed in
[19], to achieve an average utility that is withinO(1/V ) of
the optimal with onlyΘ([log(V )]2) average backlog size. In

this case, we can also implement the PMW algorithm with
finite buffers using the idea offloating queuesin [23], which
works as follows: For eachqj , we associate with it an actual
buffer of sizeΘ([log(V )]2) and a counter. When contents are
sent into the queue and the buffer is not full, we store the
contents in the actual buffer. However, when the buffer is full
and contents are sent toqj , these contents are dropped but
the counter is incremented. Whereas if contents are consumed
from qj but qj does not have enough contents, then the counter
is decremented, and the action in that slot is assumed to be
null. Under this method, it can be shown that the dropping and
underflow events happen only with a very small probability.
Hence almost all actions are valid. Thus we lose a tiny fraction
in the utility performance, but reduce the average backlog size
from O(V ) to O([log(V )]2).

IX. CONCLUSION

In this paper, we develop the Perturbed Max-Weight al-
gorithm (PMW) for utility optimization problems in general
processing networks. PMW is based on the usual Max-
Weight algorithm for data networks. It has two main func-
tionalities: queue underflow prevention and utility optimal
scheduling. PMW simultaneously achieves both objectives
by carefully perturbing the weights used in the usual Max-
Weight algorithm. We show that PMW is able to achieve an
[O(1/V ), O(V )] utility-backlog tradeoff. The PMW algorithm
developed here can be applied to problems in the areas of data
fusion, stream processing and cloud computing.

APPENDIX A – PROOF OFTHEOREM 1

We prove Theorem 1 in this section, using an argument
similar to the one used in [12].

Proof: (Theorem 1) Consider any stable scheduling policy
Π, i.e., the conditions (24) and (28) are satisfied underΠ. We
let {(f(0),A(0),µ(0)), (f(1),A(1),µ(1)), ...} be a sequence
of (utility, arrival, service) triple generated byΠ. Then there
exists a subsequence of times{Ti}i=1,2,... such thatTi →
∞ and that the limiting time average utility over timesTi is
equal to the liminf average utility underΠ (defined by (29)).
Now define the conditional average of utility, and arrival minus
service overT slots to be:

(φ(si)(T ); ǫ
(si)
1 (T ); ...; ǫ(si)r (T )) , (65)

1

T

T−1
∑

t=0

E
{

f(t); ǫ1(t); ...; ǫr(t) | S(t) = si
}

,

whereǫj(t) = Aj(t)− µj(t). Using Caratheodory’s theorem,
it can be shown, as in [12] that, there exists a set of variables
{a

(si)
k (T )}r+2

k=1 and a set of actions{x(si)
k (T )}r+2

k=1 such that:

φ(si)(T ) =

r+2
∑

k=1

a
(si)
k (T )f(si, x

(si)
k (T )),

and for allj = 1, ..., r that:

ǫ
(si)
j (T ) =

r+2
∑

k=1

a
(si)
k (T )[Aj(si, x

(si)
k (T ))− µj(si, x

(si)
k (T ))].
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Now using the continuity off(si, ·), Aj(si, ·), µj(si, ·), and
the compactness of all the actions setsX (si), we can thus find
a sub-subsequencẽTi → ∞ of {Ti}i=1,2,... that:

a
(si)
k (T̃i) → a

(si)
k , x

(si)
k (T̃i)) → x

(si)
k , (66)

φ(si)(T̃i) → φ(si), ǫ
(si)
j (T̃i) → ǫ

(si)
j , ∀ j = 1, ..., r. (67)

Therefore the time average utility under the policyΠ can be
expressed as:

fΠ
av =

∑

si

πsiφ
(si) =

∑

si

πsi

r+2
∑

k=1

a
(si)
k f(si, x

(si)
k ). (68)

Similarly, the average arrival rate minus the average service
rate underΠ can be written as:

ǫj =
∑

si

πsiǫ
(si)
j (69)

=
∑

si

πsi

r+2
∑

k=1

a
(si)
k [Aj(si, x

(si)
k )− µj(si, x

(si)
k )]

≤ 0.

The last inequality is due to the fact thatΠ is a stable policy
and thatE

{

qj(0)
}

< ∞, hence the average arrival rate to any
qj must be no more than the average service rate of the queue
[24]. However, by (24) we see that what is consumed from
a queue is always no more that what is generated into the
queue. This implies that the input rate into a queue is always
no less than its output rate. Thus,ǫj ≥ 0 for all j. Therefore
we conclude thatǫj = 0 for all j. Using this fact and (68), we
see thatV fΠ

av ≤ φ∗, whereφ∗ is given in (31). This proves
Theorem 1.

APPENDIX B – PROOF OFLEMMA 2

Here we prove Lemma 2.
Proof: Using the queueing equation (27), we have:

[qj(t+ 1)− θj ]
2

= [(qj(t)− µj(t) +Aj(t))− θj ]
2

= [qj(t)− θj ]
2 + (µj(t)−Aj(t))

2

−2
(

qj(t)− θj
)

[µj(t)−Aj(t)]

≤ [qj(t)− θj ]
2 + 2δ2max − 2

(

qj(t)− θj
)

[µj(t)−Aj(t)].

Multiplying both sides withwj

2 and summing the above over
j = 1, ..., r, we see that:

L(t+ 1)− L(t) ≤ B −

r
∑

j=1

wj

(

qj(t)− θj
)

[µj(t)−Aj(t)],

whereB = δ2max

∑r
j=1 wj . Now add to both sides the term

−V f(t), we get:

L(t+ 1)− L(t)− V f(t) ≤ B − V f(t) (70)

−

r
∑

j=1

wj

(

qj(t)− θj
)

[µj(t)−Aj(t)].

Taking expectations over the random network stateS(t) on
both sides conditioning onq(t) proves the lemma.

APPENDIX C – PROOF OFTHEOREM 2

Here we prove Theorem 2. We first have the following
simple lemma.

Lemma5: For any network statesi, we have:

D
(si)∗
θ,q(t) = gsi((q(t)− θ)⊗w), (71)

wherew = (w1, ..., wr)
T .

Proof: By comparing (44) with (39), we see that the
lemma follows.

Proof: (Theorem 2) We first recall the equation (70) as
follows:

L(t+ 1)− L(t)− V f(t) ≤ B − V f(t) (72)

−

r
∑

j=1

wj

(

qj(t)− θj
)

[µj(t)−Aj(t)].

UsingD
(si)
θ,q(t)(x) defined in (43), this can be written as:

L(t+ 1)− L(t)− V f(t) ≤ B −D
(S(t))
θ,q(t)(x(t)).

Herex(t) is PMW’s action at timet. According to Condition
1, we see that for any network stateS(t) = si, PMW ensures
(24), and that:

D
(si)
θ,q(t)(x) ≥ D

(si)∗
θ,q(t) − C.

Using (71), this implies that under PMW,

L(t+ 1)− L(t)− V f(t) ≤ B − gsi((q(t)− θ)⊗w) + C.

Taking expectations over the random network state on both
sides conditioning onq(t), and using (40), i.e.,g(γ) =
∑

si
πsigsi(γ), we get:

∆(t) − V E
{

f(t) | q(t)
}

≤ B + C − g((q(t)− θ)⊗w). (73)

Now using Theorem 1 and Lemma 1, we have:

V f∗
av ≤ φ∗ ≤ g(γ∗) ≤ g((q(t)− θ)⊗w).

Therefore,

∆(t)− V E
{

f(t) | q(t)
}

≤ B + C − V f∗
av. (74)

Taking expectations overq(t) on both sides and summing the
above overt = 0, ..., T − 1, we get:

E
{

L(T )− L(0)
}

−

T−1
∑

t=0

V E
{

f(t)
}

≤ T (B + C)− TV f∗
av.

Rearranging terms, dividing both sides byV T , using the facts
that L(t) ≥ 0 andE

{

L(0)
}

< ∞, and taking the liminf as
T → ∞, we get:

fPMW
av ≥ f∗

av − (B + C)/V. (75)

This proves (45). Now we prove (46). First, by us-
ing the definition of ĝ(γ) in (38), and plugging in the
{x

(si)
k , ϑ

(si)
k }k=1,...,r+2

i=1,...,M variables in theη-slackness assump-
tion (25) in Section IV-B, we see that:

ĝ((q(t)− θ)⊗w) ≥ η

r
∑

j=1

wj [qj(t)− θj ]− V δmax. (76)
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This by Lemma 1 implies that:

g((q(t)− θ)⊗w) ≥ η

r
∑

j=1

wj [qj(t)− θj ]− V δmax.

Using this in (73), we get:

∆(t)− V E
{

f(t) | q(t)
}

≤ B + C + V δmax

−η
r

∑

j=1

wj [qj(t)− θj ].

We can now use a similar argument as above to get:

η

T−1
∑

t=0

r
∑

j=1

wjE
{

[qj(t)− θj ]
}

≤ T (B + C) + 2TV δmax + E
{

L(0)
}

.

Dividing both sides byηT and taking the limsup asT → ∞,
we get:

qPMW ≤
B + C + 2V δmax

η
+

r
∑

j=1

wjθj.

This completes the proof the theorem.

APPENDIX D – PROOF OFLEMMA 3

Here we prove Lemma 3 by comparing the values of the
three terms inD(S(t))

θ,q(t)(x) in (51) under PMW versus their

values under the action that maximizesD(S(t))
θ,q(t)(x) in (51)

subject to only the constraintsDj(t) ∈ [0, 1], ∀ j ∈ Qs and
I(t) ∈ I, called the max-action. That is, under the max-action,
D

(S(t))
θ,q(t)(x) = D

(S(t))∗
θ,q(t) (x). Note that the max-action differs

from PMW only in that it does not consider the queue edge
constraint.

Proof: (A) We see that the first term, i.e.,
−
∑

j∈Qs

[

V cj(t) + wj(qj(t)− θ)
]

Dj(t)Rj(t) is maximized
under PMW. Thus its value is the same as that under the
max-action.

(B) We now show that for any processorPn ∈ P , if it
violates the queue edge constraint, then its weight is bounded
by Mpwmaxνmaxβmax. This will then be used in Part (C)
below to show that the value ofD(S(t))

θ,q(t)(x) under PMW is

within a constant ofD(S(t))∗
θ,q(t) (x) under the max-action.

(B-I) For any Pi ∈ P in, the following are the only two
cases under whichPi violates the queue edge constraint.

1) Its demand queueqh(t) ≥ θ. In this case, it is easy to
see from (53) and (61) that:

W
(in)
i (t) ≤

∑

j∈QS
i

wjνmaxβij ≤ Mpwmaxνmaxβmax. (77)

2) One ofPi’s supply queue has a queue size less than
M s

qβmax. In this case, we denotêQS
i = {qj ∈ QS

i :

qj(t) ≥ M s
qβmax}. Then we see that:

W
(in)
i (t) =

∑

j∈Q̂S
i

wj(qj(t)− θ)βij − wh(qh(t)− θ)αih

+
∑

j∈QS
i /Q̂S

i

wj(qj(t)− θ)βij − V Ci(t)

≤
∑

j∈Q̂S
i

wjνmaxβij + whθαih

+
∑

j∈QS
i
/Q̂S

i

wj(M
s
qβmax − θ)βij .

Here qh = QD
i . Now by our selection of{wj}

r
j=1,

wjβij ≥ whαih for any qj ∈ QS
i . Also usingνmax ≥

M s
qβmax, we have:

W
(in)
i (t) ≤ Mpwmaxνmaxβmax. (78)

(B - II) For anyPk ∈ Po, we see that it violates the queue
edge constraint only when one of its supply queues has size
less thanM s

qβmax. In this case, we see that:

W
(o)
k (t) ≤

∑

j∈Q̂S
k

wj(qj(t)− θ)βkj + V pk(t)αko

+
∑

j∈QS
k
/Q̂S

k

wj(M
s
q βmax − θ)βij

≤ Mpwmaxνmaxβmax + V αmaxpmax − wminθβmin.

This by (56) implies that:

W
(o)
k (t) ≤ Mpwmaxνmaxβmax. (79)

Using (77), (78) and (79), we see that whenever a processor
violates the queue edge constraint, its weight is at most
Mpwmaxνmaxβmax.

(C) We now show that the value ofD(S(t))
θ,q(t)(x) under

PMW satisfiesD(S(t))
θ,q(t)(x) ≥ D

(S(t))∗
θ,q(t) (x) − C, whereC =

NpMpwmaxνmaxβmax.
To see this, letI∗(t) be the activation vector obtained by the

max-action, and letW ∗(t) be the value of (55) underI∗(t).
We also useIPMW (t) andWPMW (t) to denote the activation
vector chosen by the PMW algorithm and the value of (55)
under IPMW (t). We now construct an alternate activation
vectorÎ(t) by changing all elements inI∗(t) corresponding to
the processors that violate the queue edge constraints to zero.
Note thenÎ(t) ∈ I is a feasible activation vector at timet,
under which no processor violates the queue edge constraint.
By Part (B) above, we see that the value of (55) underÎ(t),
denoted byŴ (t), satisfies:

Ŵ (t) ≥ W ∗(t)−NpMpwmaxνmaxβmax.

Now sinceIPMW (t) maximizes the value of (55) under the
queue edge constraints, we have:

WPMW (t) ≥ Ŵ (t)

≥ W ∗(t)−NpwmaxMpνmaxβmax.

Thus, by combining the above and Part (A), we see
that PMW maximizes theD(S(t))

θ,q(t)(x) to within C =
NpMpwmaxνmaxβmax of the maximum.
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APPENDIX E – PROOF OFLEMMA 4

Proof: (Proof of Lemma 4) The proof consists of two
main steps. In the first step, we show that the algorithm updates
eachwj value at least once. This shows that all thewj values
for all the queues that serve as demand queues are updated
at least once. In the second step, we show that ifqh is the
demand queue of a processorPi ∈ P in, then every time after
wh is updated, the algorithm will also updatewj for any qj ∈
QS

i before it terminates. This ensures that (57) holds for any
Pi ∈ P in and hence proves the lemma.

First we see that afterK iterations, we must haveQ ⊂
∪K
τ=1Q

l
τ . This is because at Iterationk, we include in∪k

τ=1Q
l
τ

all the queues starting from which there exists a path to an
output processor that containsk processors. Thus all thewj

values are updated at least once.
Now consider a queueqh. Supposeqh is the demand queue

of a processorPi ∈ P in. We see that there exists a time
k̂ ≤ K at which wh is last modified. Supposewh is last
modified at Iteration̂k < K, in which caseqh ∈ Ql

k̂
. Then

all the queuesqj ∈ QS
i will be in Ql

k̂+1
. Thus theirwj values

will be modified at Iteration̂k + 1 ≤ K. This implies that
at Iterationk̂ + 1, we will havewj(k̂ + 1)βij ≥ wh(k̂)αih.
Sinceqh /∈ Ql

k for k ≥ k̂+1, we havewh(k) = wh(k̂) for all
k ≥ k̂+1. Thereforewj(k)βij ≥ wh(k)αih ∀ k̂+1 ≤ k ≤ K,
becausewj(k) is not decreasing.

Therefore the only case when the algorithm can fail is when
wh is updated at Iterationk = K, in which casewh may
increase but thewj values for qj ∈ QS

i are not modified
accordingly. However, sincewh is updated at Iterationk = K,
this implies that there exists a path fromqh to an output
processor that hasK processors. This in turn implies that
starting from anyqj ∈ QS

i , there exists a path to an output
processor that containsK+1 processors. This contradicts the
definition ofK. Thus the lemma follows.
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