
Markov chains with discontinuous drifts have differential inclusion
limits

Nicolas Gasta,b, Bruno Gaujalc
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Abstract

In this paper, we study deterministic limits of Markov processes having discontinuous drifts. While
most results assume that the limiting dynamics is continuous, we show that these conditions are not
necessary to prove convergence to a deterministic system. More precisely, we show that under mild
assumptions, the stochastic system is a stochastic approximation algorithm with constant step size
that converges to a differential inclusion. This differential inclusion is obtained by convexifying
the rescaled drift of the Markov chain.

This generic convergence result is used to compute stability conditions of stochastic systems, via
their fluid limits. It is also used to analyze systems where discontinuous dynamics arise naturally,
such as queueing systems with boundary conditions or with threshold control policies, via mean
field approximations.

Keywords: Mean field, fluid limit, stability, differential inclusion, non-smooth dynamics,
queueing systems.

1. Introduction

The use of ordinary differential equations has proved useful for performance evaluation of
computing systems and communication networks. Here are a few striking examples: Fluid limits
have been used to prove stability of a large class of queuing systems [12, 11]; The performance
of the wifi protocol 802.11b has been analyzed using a mean field approximation in [6, 7] and
distributed algorithms such as work stealing [27, 18] have also been studied using the famed
population dynamics approach introduced by Kurtz [23].

In this paper, we show that both scalings (fluid limit and mean field) can be studied within a
common framework, by seeing a Markovian stochastic system as a stochastic approximation of a
deterministic differential system driven by the rescaled drift of the initial system. Under classical
smoothness assumptions on the drift, there exist general results that show that the limiting system
(when the scaling parameter goes to infinity) can be described by a system of deterministic ordinary
differential equations

ẏ(t) = f(y(t)). (1)

See [23, 4] and the references therein for examples of such convergence results. In most cases,
the limiting drift function f in (1) is assumed to have a Lipschitz property. This strong condi-
tion restricts the applicability of these results in many practical cases, in particular, for systems
exhibiting threshold dynamics or with boundary conditions.

The purpose of this paper is to study the limiting behavior of such a system when the drift
f is not continuous. Let us consider a simple queuing system with one buffer and N processors
that can serve two packets each, per unit of time, on average. If packets arrive at rate N , and if y
denotes the number of packets in the queue, then the average decrease of y is one packet per unit
of time under a proper rescaling of time if the queue is non-empty (i.e. y > 0) and the average
increase is one if the queue is empty. This leads to a deterministic limit behavior:

ẏ(t) = −1 if y(t) > 0 and ẏ(t) = 1 if y(t) = 0. (2)
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The right-hand side of (2) is not continuous, and this differential equation is not well-defined since
there exists no function y that satisfies (2). The proper way to define solutions of (1) with non-
continuous right-hand side is to use differential inclusions (DI) instead. Equation (1) is replaced
by the following equation

ẏ(t) ∈ F (y(t)), (3)

where F is a set-valued mapping, defined as the convex hull of the accumulation points of the drift.
In the above example, if y 6= 0 then F (y) = {−1} and F (0) = [−1, 1]. Of course a differential
inclusion problem may (or may not) have multiple solutions. The main result of the paper is
that over any finite time interval, the trajectory of the initial system converges to one element
in the set of the solutions of the differential inclusion, when the scaling parameter N goes to
infinity, (Theorem 1). This result is rather general and does not require any Lipschitz property
on the function F . In particular, it implies that when (3) has a unique solution, the behavior of
the system converges to it. Moreover, we also show that when F satisfies a one-sided Lipschitz
condition (7), we can bound the difference with the limiting dynamics explicitly. (Theorem 4).

This generic result is put to practice in several applications. First (in Section 3), we show
how it can be used to compute the fluid limit of a system and to provide sufficient conditions
for the stability of the system. Many papers have established that the stability of the fluid limit
implies the stability of the initial stochastic system, e.g. [12, 11, 17]. Our approach has two
advantages: It provides a generic way to construct the limit even with non-continuous drifts, and
this construction is explicit enough so that it can be used to give stability conditions in closed
form. We illustrate this by establishing the stability condition of opportunistic scheduling policies
whose original proofs are rather involved.

The second application concerns mean field limits (in Section 4). We show that a stochastic
system composed of N indistinguishable objects with a non-continuous drift can be seen as a
stochastic approximation of a differential inclusion. This result is used to compute the mean
field approximation of several systems that could not be studied this way before. We illustrate
this by two examples where discontinuities arise naturally: A parallel server system in which
a centralized controller tries to improve load balancing and a volunteer computing system with
boundary constraints.

2. Stochastic approximations and differential inclusions

This section presents a generic result that will be used as the methodological basis for the rest
of the paper. We first show that a family of Markov chains with a vanishing drift can be seen as
a stochastic approximation with a constant step size of a differential inclusion and we state the
main convergence result (§2.1). A more precise convergence result is established when the limit
differential inclusion has the one-sided Lipschitz property (§2.2). The result is also extended to
the important case of continuous time Markov chains (§2.3).

2.1. Construction of the stochastic approximation algorithm and main result

Let us consider a discrete time Markov chain Y N (k) with values in Rd. The index N is used
to denote a scaling parameter of the chain and will have a clear meaning in applications (for
example N could be the number of objects forming the system). The expected difference between
Y N (k + 1) and Y N (k) is called the drift of the chain and is denoted gN :

gN (y)
def
= E

(
Y N (k + 1)− Y N (k)|Y N (k) = y

)
The main feature of the chains studied here, concerns their scaling with N . This translates as

one essential assumption on the drift: we assume that the drift vanishes at speed γN as N goes
to infinity. More precisely, this means that we assume that there exists a sequence γN , called the
intensity of the chain, such that limN→∞ γN = 0 and such that for all y:

∥∥gN (y)
∥∥ ≤ c(1+‖y‖)·γN ,

for some constant c. We also denote by fN (y) the drift rescaled by γN :

fN (y)
def
=

gN (y)

γN
.
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Using these definitions, one can write the evolution of the Markov chain Y N (k) as a stochastic
approximation algorithm with constant step size γN :

Y N (k + 1) = Y N (k) + γN
(
fN (Y N (k)) + UN (k + 1)

)
, (4)

where UN (k+1) :=
(
Y N (k+1)−Y N (k))

)
/γN−fN (Y N (k)) is a zero mean process that captures

the random innovation of the chain between steps k and k+1. UN is a martingale difference
sequence with respect to the filtration Fk associated with the process Y N . In particular, it has
zero mean conditionally to Y N (k): by the Markov property, E(UN (k+1) | Y N (k)) = E(UN (k+1) |
Fk) = 0.

Under mild conditions on UN , when fN converges uniformly to a Lipschitz continuous function
f , the behavior of Y N (t/γN ) is known to converge to the solution of an ODE dy/dt = f(y) as N
goes to infinity. However, when f is not continuous, this result does not hold and this differential
system cannot be defined properly. To deal with the general case, we introduce a set-valued
function F to replace f and the ODE is replaced by the differential inclusion dy/dt ∈ F (y)
(see Appendix A for a brief introduction on differential inclusions). The set-valued function F
associated with the rescaled drift fN , at point y, is defined as the convex closure of the set of the
accumulation points of fN (yN ) as N goes to infinity, for all sequences yN converging to y:

F (y)
def
= conv

({
acc
N→∞

fN (yN ) for all sequences yN such that lim
N→∞

yN = y
})

. (5)

where accN→∞x
N denotes the set of accumulation points of the sequence xN as N goes to infinity

and conv(A) is the convex hull of set A. The construction of F from fN is illustrated in Figure 1
in an example in R2.
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(a) Drift of the system of size N : fN
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(b) Corresponding set-valued drift F

Figure 1: Example of construction of the set-valued function F from the non-continuous drift fN . This example
is taken from the fluid limit of two queues with priority, developed in Section 3.2 with parameters λ1 = λ2 = 0.1
and µ1 = µ2 = .3. For all N , fN (y1, y2) = (−0.2,+0.1) if y1 > 0 and f(0, y2) = (+0.1, 0.2) if y2 > 0. Therefore,
fN (y) is independent of N and is discontinuous in y1 = 0. Since fN is continuous for y1 > 0, one has F (y1, y2) =
{(−0.2,+0.1)} for y1 > 0. When y1 = 0, F (0, y2) is the convex closure of (−0.2,+0.1) and (+0.1,−0.2).

We are now ready to state the main theorem of this section. Let us define the continuous func-
tion Ȳ N (t) as the piecewise linear interpolation of {Y N (k)}k∈N whose time has been accelerated
by 1/γN : for all k ∈ N, Ȳ N (k · γN ) = Y N (k) and Ȳ N is linear on [kγN , (k+ 1)γN ]. Let us denote
by ST (y0) the set of the solutions of the differential inclusion (DI)

ẏ(t) ∈ F (y(t)), y(0) = y0, (6)

where a solution of the DI (6) is an absolutely continuous function y such that ẏ(t) ∈ F (y(t))
almost everywhere.

Theorem 1. Let Y N (·) be a Markov process on Rd satisfying (4). Assume that

• The drift gN vanishes with speed γN : there exists a sequence γN and a constant c such that

lim
N→∞

γN = 0 and ∀y ∈ Rd :
∥∥fN (y)

∥∥ def
=

∥∥∥∥gN (y)

γN

∥∥∥∥ ≤ c(1 + ‖y‖).
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• UN is a martingale difference sequence which is uniformly integrable1:

E
(
UN (k + 1) | Y N (k)

)
= 0 and lim

R→∞
sup
k

E
(∥∥UN (k + 1)

∥∥1‖UN (k+1)≥R‖ | Y N (k)
)

= 0.

If Y N (0)
P−→ y0 (convergence in probability), then for all T > 0:

inf
y∈ST (y0)

sup
0≤t≤T

∥∥Ȳ N (t)− y(t)
∥∥ P−→ 0.

where ST (y0) is the set of solutions of the DI (6) and F is defined by (5).

Proof. The proof is given in Appendix B.1.

This theorem shows that if N is large enough, the trajectory of the stochastic system Ȳ N on
T/γN steps is close to a solution of the differential inclusion (6) over [0, T ]. This theorem does not
assume any regularity condition on the drift function fN and only requires that the drift vanishes
as N grows. In particular, it does not assume that fN converges uniformly to a function f . It
also provides a constructive definition of the set-valued drift F .

The price to be paid for this generality is that a differential inclusion may have multiple
solutions. In that case, Ȳ N may converge to any solution of the DI, depending on its random
innovations, making this result rather inefficient for performance evaluation. This result is of
greater interest if the DI starting from y0 has a unique solution: ST (y0) = {y}. In that case, as
a direct corollary of the preceding result, Ȳ N converges in probability to y.

Corollary 2. Under the conditions of Theorem 1 and if the DI (6) has a unique solution y on
[0;T ]:

sup
0≤t≤T

∥∥Ȳ N (t)− y(t)
∥∥ P−→ 0.

In all the examples presented in this paper except for the example §3.4, the limiting differential
inclusion has a unique solution which makes the preceding corollary directly applicable.

2.2. Speed of convergence under the OSL condition

The main drawback of the previous theorem is that it does not give any insight in the speed
of convergence of the stochastic system toward its limit. In fact, without further conditions, the
convergence may be arbitrarily slow. This limitation can be overcome when the function F satisfies
the one-sided Lipschitz (OSL) condition.

2.2.1. The one-sided Lipschitz (OSL) condition

A set-valued function F is said to be OSL if there exists a constant L such that for all points
y, y′ ∈ Rd and z ∈ F (y), z′ ∈ F (y′):

〈y − y′, z − z′〉 ≤ L ‖y − y′‖2 , (7)

where 〈x, y〉 denotes the classical inner product on Rd. OSL conditions are commonly assumed
in the non-smooth system literature [10, 24]. It ensures the uniqueness of the solution. The term

one-sided Lipschitz comes from the fact that a Lipschitz function F would satisfy −L ‖y − y′‖2 ≤
〈y − y′, z − z′〉 ≤ L ‖y − y′‖2.

It should be clear that if F is a single-valued Lipschitz function of constant L, F is also OSL
with constant L. A simple example of OSL function is F (y) = −1 if y > 0 and F (0) = [−1; 0].
In that case, F is OSL of constant zero. Moreover, if f : Rd → Rd is a single-valued function
and F is the convex set-valued function associated with f , defined by F (y) = conv(accz→yf(z)),

1The uniform integrability can be obtained by assuming that the second moment is bounded: if there exists b

such that E(
∥∥UN (k + 1)

∥∥2 | Y N (k)) ≤ b <∞ for all k, then UN is uniformly integrable.
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then F is OSL with constant L iff f is OSL with constant L. Finally, the sum of two OSL
functions with constant L1 and L2, is OSL with constant L1 + L2, where F1 + F2 is defined by:
(F1 + F2)(y) = {u1 + u2 : u1 ∈ F1(y), u2 ∈ F2(y)}.

Although OSL can be seen as a natural condition that extends Lipschitz continuity to set-
valued dynamics, several examples presented in this paper will not satisfy the OSL conditions,
while others will. In the fluid case, the DI derived in the examples of Sections 3.2 and 3.3 do
not satisfy the OSL condition but can be transformed into DI with the OSL property by using a
change of variables. However, in Section 3.4, the DI cannot be made OSL because it has several
solutions. As for the mean field examples, the DI of Section 4.3 is not OSL but has a unique
solution. For a range of parameter, we were able to find a change of variable that makes the
dynamics OSL but not in the general case. Similarly, the example in §4.4 is not OSL and we could
not find any transformation into an OSL DI even though it has a unique solution.

2.2.2. Explicit bound on the stochastic approximation

The set-valued function F , defined by (5) represents a limit of the functions fN as N goes to
infinity. To be able to bound the quality of the approximation of the DI ẏ ∈ F (y), we need a
bound on the speed of convergence of fN to F . For that purpose, we define the distance d(f, F )
between a function fN and a set-valued function F by:

d(fN , F ) = sup
x∈Rd

inf
y∈Rd

max

(
‖x− y‖ , inf

z∈F (y)

∥∥fN (x)− z
∥∥) . (8)

The next lemma shows that, by construction of F , d(fN , F ) converges to 0.

Lemma 3. Let F be defined by Equation (5). Then, there exists a sequence δN such that
limN→∞ δN = 0 and d(fN , F ) ≤ δN .

Proof. This result is a direct consequence of Lemma 15, given in Appendix B.1.

Although δN is not explicit in the lemma, it can be computed very easily in many cases. In
particular, if fN converges uniformly to a function f at speed δN , the same sequence δN satisfies
d(fN , F ) ≤ δN . This is the case in the examples of Section 4 where the drifts are constant in N .

This lemma guarantees that even if fN does not converge uniformly to a function f , we
always have limN→∞ d(fN , F ) = 0. For example, this is the case for the drift of the model of
opportunistic scheduling developed in §3.3. When fN does not converge uniformly, the existence
of δN is guaranteed but its computation may depend on the example considered.

Theorem 4. Let Y N (k) be a Markov chain on Rd satisfying (4). Assume that the assumptions
of Theorem 1 hold and that

• UN (k + 1) is bounded in second moment: E
(∥∥UN (k + 1)

∥∥2 | Y N (k)
)
≤ b.

• F is OSL of constant L and d(fN , F ) ≤ δN .

then the DI (6) has a unique solution y and there exist constants AT , BT , CT depending only on
T, L and c such that for all ε:

P
(

sup
0≤t≤T

∥∥Y N (t)− y(t)
∥∥ ≥ ∥∥Y N (0)−y(0)

∥∥ eLT+ min

{
T,

eLT√
2L

}√
γNAT+δNBT+εCT

)
≤ γNbT

ε2
.

Proof. The proof is given in Appendix B.2.

The constants AT , BT , CT and the sequence δN are given in Appendix B.2. These constants
are of a similar order as bounds that can be obtained in the case where f is Lipschitz (see [19]).

However, the convergence speed with respect to N is O(
√
γN ) (compared with O(γN ) in the

Lipschitz case).
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2.3. Density Dependent Population Processes
In this section, we show that our results can be adapted to the case of continuous time Markov

chains using the well-known model of density dependent population processes of Kurtz [23].
Let DN be a continuous time Markov chain on Zd/N (d ≥ 1) for N ≥ 1. DN is called a

density dependent population process if there exists a set L ⊂ Zd (with 0 6∈ L), such that for each
` ∈ L and y ∈ Zd/N , the rate of transition from y to y + `/N is Nβ`(y) ≥ 0, where β`(.) does
not depend on N . The ith component of DN (t), DN

i (t) can be seen as the density of individuals
of a population that are in state i, hence the name, and a transition ` changes the number of
individuals in state i by the quantity `i.

The expectation of the change of the system during a small interval dt is f(y)dt where f(y)
is the drift of the system, defined by f(y) =

∑
`∈L β`(y)`. If f is Lipschitz, it is well-known that

DN (.) goes to the solution of the ODE ẏ = f(y) as N grows [23]. Using Theorems 1 and 4, we
show that this convergence still holds for general drifts, replacing f by its set-valued counterpart
F , defined in (5).

Theorem 5. Assume that supy∈Zd

∑
`∈L β`(y) <∞ and that

∑
`∈L ‖`‖ supy β`(y) <∞. Let f be

defined by f(y) =
∑
` `β`(y). For all T > 0:

inf
d∈ST (y0)

sup
0≤t≤T

∥∥DN (t)− d(t)
∥∥ P−→ 0,

where ST (y0) is the set of solutions of the DI (6) starting in y0.

Moreover, if F is OSL of constant L and supy
∑
`∈L ‖`‖

2
supy β`(y) ≤ b then the differential

inclusion (6) has a unique solution d and there exist constants AT , BT , CT depending only on T, L
and c such that for all ε:

P

(
sup

0≤t≤T

∥∥DN (t)−d(t)
∥∥ ≥ ∥∥DN (0)−d(0)

∥∥ eLT + min

{
T,

eLT√
2L

}√
AT
N

+εC ′T

)
≤ b+ 1/τ

Nε2
T.

Proof. We construct a discrete time Markov chain Y N that satisfies the assumptions of Theorem 1.
By assumption, the transition rate from a state y is bounded: τ := supy∈Zd

∑
`∈L β`(y) < ∞.

Thus, the continuous time Markov chain DN (t) can be seen as a composition of a Poisson counting
process ΛN (t) whose rate is Nτ with a discrete time Markov chain Y N : DN (t) = Y N (ΛN (t)). This
is called the uniformization of the Markov chain. A detailed proof is given in Appendix B.3.

The constant AT is the same as in Theorem 4. The constant C ′T is given in Appendix B.3.

3. Application 1: Fluid limits and stability issues

Fluid limits have become an important tool for studying stochastic stability of queuing net-
works. For a large class of queuing networks, when the initial state of the system is rescaled by a
factor N →∞ and the time is accelerated by the same factor N , the system is shown to satisfy a
system of deterministic equations, called the fluid limit model. The results on fluid limits can be
mainly categorized in two types. On the one hand, specific queuing networks with general arrival
process and service distributions have been studied by an explicit construction of the fluid model
equations, e.g. [12, 11] and the references therein. More recently, structural properties have been
studied but only for continuous drifts [17]. Theorem 7 makes the link between the two approaches
by showing that generic results can be obtained even for non-continuous dynamics.

3.1. Definition of fluid limits and stability
Let X be a discrete time2 Markov chain in Rd. For any y0∈Rd and N>0, we consider the

rescaled process Ȳ N for which the state is scaled by a factor 1/N and the time accelerated by N :

Ȳ N (t) =
1

N
X (bN · tc) Ȳ N (0) =

1

N
X(0) = y0.

2For readability, we restrict our presentation to discrete time models. However, these results can be extended
directly to continuous time Markov chains using uniformization as in §2.3.
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We say that a set E of functions from R+ to Rd contains the fluid limits of Y N if for all T > 0:

inf
y∈E

sup
0≤t≤T

∥∥Ȳ N (t)− y(t)
∥∥ P−→ 0. (9)

The following theorem shows that the differential inclusion corresponding to (10) describes a
superset of the limiting behavior of Ȳ N .

Proposition 6. Assume that the drift f(x) = E (X(t+ 1)−X(t) | X(t) = x) is bounded and that
limR→∞ E(‖X(t + 1) − X(t)‖1‖X(t+1)−X(t)‖≥R | X(t) = x) = 0. Let F be a set-valued function
defined as

F (y) := conv
(

acc
N→∞

f(N · yN ) with lim
N→∞

yN = y
)
. (10)

Then, the set of solutions ST (y0) of the differential inclusion ẏ ∈ F (y) starting in x contains the
fluid limits of Y N (in the sense of (9)).

Proof. This result is a direct consequence of Theorem 1. To fit into the framework, let us call
fN (y) := f(Ny). For all t ∈ 1

N ·N, Ȳ N (t+ 1
N ) satisfies Ȳ N (t+ 1

N ) = Ȳ (t)+ 1
N

(
fN (Ȳ N (t)) + U(t+ 1

N )
)

with E
(
U(t+ 1

N ) | X(t)
)

= 0. The function F defined by Equation (10) is the same as in Equa-
tion (5). As f is bounded, fN is bounded. Moreover, the assumption implies that X(t+ 1)−X(t)
is uniformly integrable. This shows that Y N satisfies assumptions of Theorem 1.

This theorem does not require any continuity assumption on f and provides a characteriza-
tion of the fluid limit in term of differential inclusions. It can be viewed as a generalization of
Proposition 1.5 of [17] that assumes that fN converges to a continuous function. If the differential
inclusion has a unique solution y on [0;T ], then y is called the fluid limit of Y N and Proposition 6
implies that Ȳ N converges to y in probability.

There are several ways to define the stability of a fluid limit. We follow the definition of [30, 17]
and say that the differential inclusion ẏ ∈ F (y) is stable if there exists T > 0 and ρ < 1 such that:

For any y solution of ẏ ∈ F (y) with ‖y(0)‖ = 1 : inf
0≤t≤T

‖y(t)‖ ≤ ρ < 1. (11)

As expressed by the next proposition, stability of the fluid limit in the sense of (11) implies
the stability of the stochastic model.

Before stating the main theorem, we recall the definitions of ϕ-irreducibility and petite set
that are useful to show stability of a Markovian process on a non-countable set. We refer to
[26] for a more detailed presentation of these notions. A discrete time Markov chain X on Rd
is said to be ϕ-irreducible if there exists a σ-finite measure ϕ such that for any set A ⊂ Rd,
ϕ(A) > 0 implies

∑
k≥0 P(X(k) ∈ A | X(0) = x) > 0. Moreover, a set A ⊂ Rd is said to

be petite if for some fixed probability measure a on Z+ and some nontrivial measure ν on Rd,
ν(B) ≤

∑
k≥0 P(X(k) ∈ B | X(0) = x)a(k) for all x ∈ A and B ⊂ Rd. Finally, X is said to

be positive Harris recurrent if X has a unique stationary probability distribution π and P k(x, .)
converges to π. In particular, if the state space of X is included in Zd and if X is irreducible and
aperiodic, then X is ϕ-irreducible and all compact sets are petite.

Theorem 7. Assume that X is an aperiodic, ϕ-irreducible Markov chain such that all compact
sets are petite. Assume that the drift f(x) = E (X(t+ 1)−X(t) | X(t) = x) is bounded and that
limR→∞ E(‖X(t + 1) − X(t)‖1X(t+1)−X(t)≥R | X(t) = x) = 0 and let F be defined as in Equa-
tion (10):

F (y)
def
= conv

(
acc
N→∞

f(N · yN ) for all {yN}N∈N s.t. lim
N→∞

yN = y
)
.

If the differential inclusion ẏ ∈ F (y) is stable in the sense of Equation (11), then X is positive
Harris recurrent.
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Proof. Theorem 1.4 of [17] shows that if all functions y of a set containing the fluid limits of Ȳ N

are stable in the sense inf0≤t≤T ‖y(t)‖ ≤ ρ, then the process X is Harris recurrent. Proposition 6
shows that the solutions of the differential inclusion ẏ ∈ F (y) contains the fluid limits. Therefore,
the stability of the DI given by Equation (11) implies the Harris recurrence of X.

This theorem provide sufficient condition for the stability of the process X. When the DI has a
unique solution, these conditions are generally also necessary. However, when the DI has multiple
solutions, stability of the DI may be a too strong condition, as in the example of §3.4.

3.2. Fluid limit of a system of parallel queues with static priority

We first start by a simple example to illustrate the construction of the drift. We consider a
time-slotted model of a queuing system composed of one server serving multiple classes of users.
There are K classes of customers. At time step t, Ak(t) customers of class k arrive. Ak are i.i.d.
with E (Ak) = λk. Let Xk(t) be the number of customers of class k in the system at time t. For
k < k′, customers of class k have preemptive priority over customers of class k′. When the system
serves a customer of class k, it leaves the system in the same time slot with probability µk.

This means that if there are no customer of class 1 . . . k−1 and one or more customers of class
k, a customer of class k departs with probability µk. Thus, the drift of the system is:

f(x) =

{
(λ1 − µ1, λ2, . . . , λK) if x1 > 0
(λ1, . . . , λk−1, λk − µk, λk+1, . . . , λK) if x1 = · · · = xk−1 = 0 and xk > 0.

(12)

The drift is illustrated in Figure 1 for a system with two classes of customers. It is constant for
all x1 > 0 but is discontinuous for x1 = 0. Because of this discontinuity, there is no function
x differentiable almost everywhere such that ẋ(t) = f(x): the axis x1 = 0 both attracts the
trajectories from x1 > 0 and repulses the trajectories starting from x1 = 0.

Let us compute the set-valued function F corresponding to the drift f defined as in Equa-
tion (10). For all k, let us define uk := (λ1, . . . , λk−1, λk − µk, λk+1, . . . , λK). When x1 > 0, all
points x′ in a small neighborhood of x are such that x′1 > 0. Thus, f is locally constant and
F (x) is single-valued: F (x) = {u1}. Because of the discontinuity at x1 = 0, when x2 > 0, in a
neighborhood of (0, x2, x3 . . . ), there are points x′ with x′1 > 0 and points x′ with x′1 = 0 (and
x′2 > 0). Thus, F (0, x2, x3 . . . ) is the convex hull of the vectors {u1, u2}. Therefore, F is:

F (x) =

{
u1 if x1 > 0
conv(u1, . . . , uk) if x1 = · · · = xk−1 = 0, and xk > 0.

(13)

In the two class case, this convex hull corresponds to the dashed line of Figure 2(a).
Let us show that the differential inclusion associated with F has a unique solution when starting

from x = (x1 . . . xK). The function F is not OSL3. However, a change of variable makes F an

OSL function. Let yk =
∑k
i=1 xi/µi and let gk(y) =

∑k
i=1 fi(x)/µi(x) be the associated drift.

A straightforward computation shows that gk(y) =
∑k
i=1 λk/µk − 1yk>0 which implies that g is

an OSL function. Thus, its associated set-valued function G is OSL. Therefore, the differential
inclusion ẏ ∈ G(y) has a unique solution, given by:

ẏk =

{ ∑k
i=1

λk

µk
− 1 if yk > 0

0 otherwise.
(14)

Since the change of variable from x to y is a bijection, the differential inclusion ẋ ∈ F (x) also
has a unique solution. Assuming that

∑
k λk/µk < 1, Equation (14) implies that there exists a

sequence 0 ≤ T1 ≤ · · · ≤ TK <∞ such that for all t ∈ [Tk−1, Tk], the derivative of x satisfies

ẋ(t) =

(
0, . . . , 0, λk −

(
1−

∑
i<k

λi
µi

)
µk, λk+1, . . . , λK

)
.

3To show that, let x = (ε/µ1, 3ε/µ2, 0 . . . 0) and x′ = (0, ε/µ2, 0 . . . 0), then: 〈x−x′, f(x)−f(x′)〉 =∑
i xi(f(xi)−f(x′i)) = ε

µ1
(−µ1)+ 2ε

µ2
µ2 = ε. Thus, there is no L s.t. ∀ε, 〈x−x′, f(x)−f(x′)〉 ≤ L ‖x−x′‖2 = O(ε2).
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If the condition
∑
k λk/µk < 1 were not satisfied, then let k be the minimal k such that

∑
i≤k λi/µi >

1. In that case, the fluid limit would diverge to an infinite number of customers of type k . . .K
while the number of customers of type 1 . . . k − 1 would remain zero for the fluid limit.

queue 1 is empty

(a) The set-valued drift for x1 = 0 is the
set of vectors displayed by the dashed line.

size of queue 1: x1

x
2

(b) Unique solution of the differential inclusion.

Figure 2: Convex hull of the drift at C2 = 0 and unique solution of the fluid limit.

This trajectory is depicted in Figure 2(b). Moreover, the solution of the differential inclusion
goes to 0 in finite time and this system satisfies the assumptions of Theorem 7. This shows that
the system is stable. Although this result can be shown directly, our framework provides an easy
way to construct the fluid limit and prove the convergence of the original process.

3.3. Stability of opportunistic scheduling policies in wireless networks

In this section, we show how Proposition 6 and Theorem 7 can be used to characterize the
stability of opportunistic scheduling policies in a wireless setting with flow-level dynamics [2, 34].
Because of the discontinuity of the dynamics, generic approaches, like [17], fail and ad hoc methods
have been developed. Our framework shows that a systematic generic approach can also be used
in that case to compute easily the limiting dynamics and show stability.

We consider the model studied in [2]. Transmissions occur in a time-slotted channel. There are
K classes of users. At time slot t, Ak(t) new users of type k arrive in the system. The Ak(t) are
i.i.d. with E(Ak(t)) = λk, E(A2

k(t)) < ∞. The condition of the channel is varying over time and
at time slot t, a user of type k has condition i ∈ {1 . . . Ik} with probability qk,i 6= 0. The channel
condition of a user is independent of other users and of the channel history. At each time slot, a
server observes the channel condition of all users and chooses to serve one user. If this user is of
type k and has a channel condition i, this user leaves the system with probability µk,i. Without
loss of generality, we may assume µk,1 > µk,2 . . . The quantity µk,i represents the rate at which
at user k with condition i is served. At best, a user of type k is served at rate µmax

k := µk,1.
When building efficient scheduling policies, a first requirement is that it stabilizes the system,

i.e. such that the number of users in the system does not go to infinity. We next show how our
framework can be used to prove the following result (originally proved in [2] by ad hoc arguments).

Proposition 8 (Theorem 5.2 of [2]). There exists a scheduling policy that stabilizes the system if
and only if

K∑
k=1

λk
µmax
k

< 1. (15)

Proof. It should be clear that (15) is a necessary condition for stability. Therefore, we only show
that (15) is a sufficient condition and we assume that (15) holds. Let us consider the following
policy (called “Best Rate” policy in [2]):

• if there are n users u1 . . . un of classes k1 ≤ · · · ≤ kn that are in their best channel condition,
serve the user with the smallest class (i.e. user u1). Otherwise, serve a user at random.

For all k, let Xk(t) be the number of users in class k at time t when applying this policy. Since
the channel conditions are independent, the process X(.) is a Markov chain.
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Let us compute the set-valued function F at point y = (0, . . . 0, y`, . . . yK), with y` > 0. Let

pNi = (1 − qi,1)Ny
N
i be the probability that there are no user of class i in its best state when the

number of users in each class is NyN . If the server is serving a user of type i which is in its best
state, the drift of the system is ui = (λ1, . . . , λi−1, λi − µmax

i , λi+1, . . . , λK). This occurs if there
is a user of class i in its best state but no user of class 1 . . . i − 1 in its best state, which occurs
with probability pN1 . . . pNi−1(1− pNi ). Therefore, the value of the drift at NyN is equal to

f(NyN ) = (1− pN1 )u1 + · · ·+ pN1 . . . pN`−1(1− pN` )u` + o(1).

This shows that limN→∞ d(f(NyN ), F (y)) = 0 where d(·, ·) is the distance defined by Eq.(8) and
F is the same set-valued function as in the previous example, defined by Equation (13). However,
notice that when yNi goes to zero as N goes to infinity, the sequence pNi does not necessarily
converge as N goes to infinity. This implies that the rescaled drift fN does not converge to any
single-valued function (continuous or not) in that case.

As F is the same as (13), the differential inclusion has a unique solution that goes to 0 in finite
time under condition (15). This shows that (15) implies the stability of the stochastic system.

3.4. Limitations of the differential inclusion approach

Let us consider a discrete-time model of the three weakly coupled queues, presented in §5.1 of
[9]. Customers arrive in queue i with probability λi. If xi, xj , xk are the numbers of customers
present in queues i 6= j 6= k ∈ {1, 2, 3}, a customer of queue i is served with probability ψi(x):

ψi(x) =

 ai if xj = xk = 0
aij if xj > 0, xk = 0
1 if xj > 0, xk > 0,

where ai ≤ aij ≤ 1.
The drift of the system is f(x) = (λ1 − ψ1(x), λ2 − ψ2(x), λ3 − ψ3(x)). Let us compute

the solutions of the corresponding differential inclusion starting from a point (x1, x2, x3) with
x1, x2, x3 > 0. Let x(.) be a solution of the differential inclusion. For t small enough, the derivative
of x is ẋ(t) = (λ1 − 1, λ2 − 1, λ3 − 1). Let us assume (w.l.o.g.) that

λ1 < 1, (16)

and that x1(t) reaches 0 before x2(t) and x3(t).
Let T1 be the time when x1(t) reaches 0. For t > T1 and as long as x2(t) > 0 and x3(t) > 0,

using the convex closure of the drift of the system implies that there exists 0 ≤ θ ≤ 1 such that
ẋ(t) = (λ1− θ, λ2− θ− (1− θ)a23, λ3− θ− (1− θ)a32). Since ẋ1(t) = 0 for t > T1 then θ = λ1 and:

ẋ(t) = (0, λ2 − λ1 − a23(1− λ1), λ3 − λ1 − a32(1− λ1)) .

One of the two components of this drift has to be negative for the system to be stable. Thus, we
may assume w.l.o.g. that

λ2 < λ1 + a23(1− λ1), (17)

and that x2(t) reaches 0 before x3(t).
When x2(t) reaches 0, F is the convex closure of 4 vectors u0, u1, u2, u12 corresponding respec-

tively to the drift when (x1 > 0, x2 > 0), (x1 = 0, x2 > 0), (x1 > 0, x2 = 0), and (x1 = x2 = 0).
Using the fact that the actual drift is in F and that ẋ1 = ẋ2 = 0, there exist θ0, θ1, θ2 ∈ [0; 1] with
θ1 + θ2 + θ0 ≤ 1 such that:

0 = λ1 − θ0 − a13θ2 (18)

0 = λ2 − θ0 − a23θ1 (19)

ẋ3(t) = λ3 − θ0 − a31θ2 − a32θ1 − (1− θ0 − θ1 − θ2)a3. (20)
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In general, there are multiple triplets (θ0, θ1, θ2) such that (18–19) are satisfied4. If for all
(θ0, θ1, θ2) such that (18–19) are verified, (20) is negative, then the system is stable. Conversely,
if for all (θ0, θ1, θ2) satisfying (18–19), (20) is positive, then the fluid limit is unstable. However,
in general, one cannot compute the stability condition of the fluid system only using Equations
(18–19–20) since the sign of (20) may depend on (θ0, θ1, θ2).

In [9], the exact stability conditions are given. Equations (16–17) are similar while the condi-
tions on θ (18–19) are expressed as a function of the stationary distribution of X1, X2 conditioned
by the fact that X3 > 0. However, the proof of this result is much more involved and these equa-
tions cannot be solved in closed form whereas the present approach gives upper bounds in closed
form. In [21], a simpler approximation method is also applied to the same problem. However, this
leads to looser bounds than ours.

4. Application 2: Mean field limits

In this section, we show how our framework allows one to extend the expressive power of
mean field limits to study models with discontinuous dynamics. Although there is no commonly
admitted definition of what is exactly a mean field model, they all share the same principle. The
main idea is to study the behavior of a system composed by a large number N of objects evolving in
a common environment. When N is finite, the behavior of each object depends on its interactions
with others. However, as N goes to infinity, one can show that in many cases, objects become
independent and interact only through aggregate quantities.

Convergence results for mean field models have received considerable attention in the past.
Many results concern the convergence of the occupancy measure (see Eq.(21) for a more formal
definition). This is often done by showing that it asymptotically satisfies a deterministic differential
equation as N goes to infinity [23, 13, 4]. This can be used to obtain both transient and steady
state dynamics of the proportion of objects in a given state [4] or to prove propagation of chaos
[31]: under some conditions, the steady state distribution of objects has asymptotically a product
form (e.g. Corollary 2 of [4]).

A powerful extension of these results is to study the trajectories of the objects [20, 7]. These re-
sults are stronger than convergence of the occupancy measure and they imply the latter. However,
they are usually quite challenging to prove, and even if there exist generic convergence results,
the assumptions are not easy to verify [8]. In the rest of this section, we will only focus on the
convergence of the occupancy measure since it suffices for our results. An extension of our results
to study the individual trajectories of objects would be useful but is left for future work.

The stochastic approximation framework presented in Section 2 is a powerful tool to show
these types of convergence results: Except for particular cases where ad hoc proofs are presented,
convergence results for mean field models in the literature [23, 4, 13] always assume the Lipschitz
continuity of the drift. Our framework shows that these results can be extended to characterize
the limiting behavior of systems with discontinuous dynamics and therefore simplify their study.

4.1. Mean field model and its convergence

We consider of system composed of N objects evolving in a finite state space S = {1 . . . d}.
Time is discrete and the state of object n at time step k is denoted by XN

n (k). The state of
the global system at time k is (XN

1 (k) . . . XN
N (k)). We denote by Y N (k) the empirical measure

associated with the N objects. Since an object has d possible states, Y N (k) can be represented
by a vector with d components, its ith component being the proportion of objects in state i:

Y Ni (k)
def
=

1

N

N∑
n=1

1XN
n (k)=i. (21)

4Remark that no change of variable can make this dynamics OSL since it has multiple solutions.
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The system (Y N (k))k is assumed to be a Markov chain. In particular, this is true if the system of
objects has a Markovian dynamics whose transition law is invariant by any permutation of the N
objects. The state space of Y N is included in Rd. To match the notation introduced in Section 2,
we denote by fN the rescaled drift of Y N and by F the convex hull of its accumulation points.

There are multiple situations in which assumptions of Theorem 1 are satisfied, for example, if
the number of objects that perform a transition at each time slot is bounded by a deterministic
constant c, the intensity is γN = 1/N . If Y N (0) → m0, then Y N can be approximated by the
solutions of the differential inclusion as N grows. for all T > 0:

inf
y∈ST

sup
0≤t≤T

∥∥Ȳ N (t)− y(t)
∥∥ P−→ 0,

where ST denotes the set of solutions of the DI ẏ ∈ F (y) with y(0) = y0.
This model can be modified to study continuous time dynamics, following §2.3. It can also

be easily extended if objects evolve in a common environment C(t) ∈ Rd′ . An example will be
provided in §4.4 where C(t) represents a shared buffer in which packets are stored. In that case, the
quantity of interest is (Y N (t), C(t)) ∈ Rd+d′ . If the number of objects that perform a transition
during one time slot is bounded and if the evolution of the context is deterministic and there exists
a constant k1 such that for all y, c, fN (y, c) ≤ k1, then the assumptions of Theorem 1 still hold.

4.2. Stationary regime and steady state distribution

Mean field limits also provide a way to compute an approximation of the stationary distribu-
tion. When the drift f is continuous, it can be shown that if all trajectories of the differential
equation ẏ = f(y) converge to a point y∗, then the stationary distribution of the system of size N
concentrates on y∗ as N grows. In this section, we show the analog of this results for discontinuous
dynamics, under the condition that the differential inclusion has a unique solution.

Let us assume that for any starting point y(0), the differential inclusion y ∈ F (y) has a unique
solution on [0;∞). We denote this solution t 7→ φt(y). We define the Birkhoff center of φ by:

R = {x ∈ Rd : lim inf
t≥0

‖x− φt(x)‖ = 0}.

The next theorem shows that the support of the stationary measures of the stochastic system Y N

concentrates on the Birkhoff center of the differential inclusion.

Theorem 9. Under the conditions of Theorem 1, if the DI (6) has a unique solution y on [0;T ]
and if for each N , Y N has a stationary measure ΠN , then, any limit point of ΠN (for the weak
convergence topology) has support in R.

Computing the set R is often a hard problem, even for a differential equation. R contains all
fixed points {y : 0 ∈ F (y)} but may also contain limit cycles or chaotic behaviors. This result is
of particular interest when the DI has a unique point to which all trajectories converge:

Corollary 10. If moreover ΠN is tight and there is a unique point y∗ to which all trajectory
converge, then R = {y∗} and ΠN converges weakly to the Dirac measure in y∗ : limN→∞ΠN = δy∗ .

Proof. Let us assume that from any starting point y ∈ Rd, the differential inclusion ẏ ∈ F (y) has
a unique solution on [0;∞), denoted by t 7→ φt(y). φ is clearly a semi-flow. Moreover, because of
the first assumption of Theorem 1, F (y(t)) is bounded for t ∈ [0;T ], hence, φt is continuous in t.
Moreover, let yn be a sequence that converges to some y ∈ Rd and z(t) be a limit point of φt(yn)
for t ∈ [0 : T ]. Then, similarly to the end of the proof of Theorem 1, it can be shown that z is the
solution of a differential inclusion which shows that limn→∞ φt(yn) = φt(y). This shows that the
deterministic process φ is a semi-flow continuous in t and y. Theorem 1 of [5] shows that any limit
point of ΠN is an invariant probability for φ. Since φ is a continuous semi-flow, the Poincaré’s
recurrence theorem [25] shows that the invariant probabilities of φ have support in R.

This result is the exact analog of Theorem 3 in [4] for continuous dynamics. It is similar to
the decreasing step size case (when the step size γN depends on t instead of N), although in the
latter, the stochastic system converges with probability one to R [16, 3].
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4.3. Comparison of push and pull strategies in server farms

The goal of our first example is to show how our framework can help to study discontinuities
due to centralized decisions. We consider a model of a server farm depicted in Figure 3. The
system is composed of N identical servers. Jobs arrive in a system according to a Poisson process
of rate Nλ ∈ [0; 1) and have a size exponentially distributed with mean 1. Each server can buffer
up to B jobs5. If all processors process jobs at rate 1 and jobs are routed uniformly at random,
the average waiting time would be 1/(1−λ), independently of N . To reduce the waiting time, we
consider two strategies that improve load balancing:

(a) pull strategy – we add a centralized server that serves jobs at rate Np. It chooses to serve
jobs from the longest queue first (LQF). To provide a fair comparison, we consider that the
total computing capacity remains N , i.e. the new speed of the N servers is set to 1 − p.
This model is depicted in Figure 3(a). It is similar to the model studied in [32].

(b) push strategy – with probability q, a job is pushed to the server with the shortest queue
(JSQ). With probability 1− q, it is routed to a server at random (uniformly). This model is
depicted in Figure 3(b).

Since these two strategies require costly synchronizations, our goal is to compare them when p
and q are small. We will consider three cases: case (a): p = 5%, q = 0% case (b): p = 0%, q = 5%
and a mix of both strategies (c) with p = q = 2%.

Nλ

1−p

1−p

...
Np

LQF

(a) Adding a centralized pulling server

JSQ

Nλ
1− q
q

1

1

...

(b) Pushing a fraction of jobs to the shortest queue

Figure 3: The system on the left has an additional centralized server that serves jobs from the longest queue, 3(a).
In the system on the right, a small fraction (q) of the jobs is routed to the server with the shortest queue, 3(b).

The system is composed of N queues with a state in {0 . . . B}. We denote by Y Ni (t) the
proportion of queues having i jobs. Y N is a Markov chain and its transitions are described in
Table 1 (ei denotes the vector with only the ith component equal to 1 and the others equal to 0).

Transition Rate Modification of Y N

arrival (if i < B) Nλ(1− q)Y Ni − 1

N
ei +

1

N
ei+1due to JSQ qN if no server with < i jobs and Y Ni > 0.

departure (if i > 0) (1− p)Y Ni − 1

N
ei +

1

N
ei−1due to LQF pN if no server with > i jobs and Y Ni > 0.

Table 1: Transition and rate of the Markov chain associated with the model of server farm depicted in Figure 3.

Let si be the proportion of servers having i jobs or more. By definition, s0 = 1, si is decreasing
and sB+1 = 0. Let s be a state and i ∈ {1 . . . B−1}. The drift of the system of size N can be
computed using Table 1. It is independent of N and its projection on the ith coordinate is:

fi(s) = λ(1− q)(si−1 − si) + (1− p)(si+1 − si)− gpulli (s) + gpushi (s), (22)

where gpull and gpush are defined by:

gpulli (s) =

{
0 if si+1 > 0 or si = 0
p otherwise.

and gpushi (s) =

{
0 if si−1 < 1 or si = 1
λq otherwise.

5To avoid the dependence in B, in all our numerical examples, the computation are done with B = 105 which
in practice is equivalent to B =∞.
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The drift when i = B is similar except that the term λsi should be removed. The drift for i = 0
is zero. The first two terms of Eq. (22) are due to randomly routed arrivals and non-centralized
departures of jobs. The two terms gpush and gpull are due to the centralized actions and are
the only discontinuous terms in f . Let us compute Gpull, the set-valued function corresponding
to gpull, defined by Eq. (5). We distinguish two cases. If si+1 > 0, then the function gpulli is

locally continuous in s and is equal to 0 and we have Gpulli (s) = {0}. If si+1 = 0, then for all
neighborhoods of s, there exist points s′ such that s′i+1 > 0 and other points such that s′i+1 = 0

and s′i > 0. In that case the drift gpulli can be either 0 or p. This shows that the set-valued Gpull is
the convex hull of the vectors {pei | i s.t. si+1 > 0}. The computation of the set-valued function
Gpush corresponding to gpush is similar.

Combined with Eq. (22), this shows that the set-valued drift F is defined by:

Fi(s) =

λ(1− q)(si−1 − si)− (1− p)(si − si+1) + uiq − vip

∣∣∣∣∣∣
ui = 0 if si−1 < 1;
vi = 0 if si+1 > 0;∑
i≥0 ui =

∑
i≥0 vi = 1

 (23)

Again, the term for i = B is not written but is similar except that the term λsi should be removed
and the term for i = 0 is zero.

The function F is not OSL. If p = 0, a change of variable wi =
∑
j≤i sj makes the dynamics

OSL. If q = 0, the change of variable vi =
∑
j≤i sj makes the dynamics OSL. If both p and q are

positive, then none of these changes of variable makes the dynamics OSL. Nevertheless, one can
show that the DI has a unique solution. Let i < B is such that si−1 > 0 and si = 0. Combining
Eq. (22) and Eq.(23), we get:∑
k≥i

ṡk = max(0, λ(1− q)si−1− p) = λ(1− q)si−1− (1−ui−1)p and
∑
k≥i+1

ṡk = 0 = −p
∑
k≥i+1

ui.

In particular, this shows that pui = p(1− ui−1) = min(p, λ(1− q)si−1). Similarly, if j > 0 is such
that sj = 1 and sj+1 < 1, then puj = p(1 − uj+1) = min(λq, (1 − p)(si − 1)). Therefore, the
differential inclusion ṡ ∈ F (s) has a unique solution. Moreover, a direct computation shows that
if λ > p, the Eq. (23) has a unique fixed point s, given by, for i ∈ {1, . . . , B}:

si =

 max

(
0, α

(
λ 1−q

1−p

)i
+ β

)
if λ 1−q

1−p 6= 1

max (0, αi+ β) if λ 1−q
1−p = 1

(24)

where α and β are constants that can be computed using that λ(1 − sB) = s1(1 − p) + p and
s2 = s1(1 + λ 1−q

1−p ) − λ
1−p . If λ ≤ p, the fixed point is si = 0 for i ≥ 1. Moreover, this point is a

global attractor of all trajectories. This fact is technical and can be shown by a careful examination
of the differential inclusion corresponding to Eq. (23), using similar techniques as in Section 7.3
of [33]. Therefore, Theorem 9 shows that the stationary measure of the system concentrates on
the fixed point given by Equation (24).

These results allow us to easily compare the gain obtained by using a centralized pulling
system versus a centralized pushing system. A numerical evaluation of the fixed point is reported
on Figure 4 on which we compare four situations: a scenario with no centralization at all, the
scenario with a centralized server at speed pN = .05N , a scenario in which q = 5% of the jobs are
routed to the shortest queue and a scenario with p = q = 2%. To avoid the dependence on B, the
computations are done with B = 105 which is equivalent to B =∞ in practice.

Figure 4(a) shows the average number of jobs per server as a function of the load λ. As pointed
out in [32], when q = 0, the average number of jobs goes from λ/(1−λ) to O(log(1/(1−λ)) which
provides a large gain in term of waiting time, even for p = 5%. When p = 0 and B = ∞,
Equation (24) shows that for i ≥ 1, si = (λ(1 − q))i−1. Thus, the average number of jobs is
λ/(1−λ(1− q)) which is bounded by 1/q regardless of the load. This shows that when the load is
high, a judicious routing of the packets decreases the average response time more efficiently than
adding a centralized server.
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(a) Average response time as a function of λ.
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(b) Probability si for a server to have i jobs or more.

Figure 4: Average response time and steady state distribution of occupancy for the model of parallel servers of
Figure 3. The four curves corresponds to different parameters: in blue, p = q = q (N independent M/M/1 queues);
in black: p = 0.05, q = 0 (model of Figure 3(a)); in green: p = 0, q = 0.05 (model of Figure 3(b)); in red: p = q = .02.

In Figure 4(b) the distribution si is reported as a function of i for a highly loaded system
λ = .99. When p > 0 and B = ∞, the constant β of Eq.(24) is negative and there exists
i∗ = blogλ 1−q

1−p
(−β/α)c such that the probability for a server to have more than i∗ jobs goes to

zero as N goes to infinity. For example, Figure 4(b) shows that when λ = .99 and (p, q) = (.05, 0)
(or p = q = 2%), then i∗ = 40 (or i∗ = 41): there are almost no queues with more than i∗ jobs.
However, when p = 0, β ≥ 0 and si > 0 for all i. This shows that to avoid big queues, adding
a centralized server helps more. Both figures show that adding both a centralized server and a
judicious routing, even for the very small values p = q = 2% allows one to get the better of the
two worlds: a low response time and a tail distribution equal to zero.

4.4. Volunteer computing and boundary constraints

We consider a model of a volunteer computing system, such as BOINC http://boinc.berkeley.

edu/. This model is less schematic than the previous one and shows how our framework can also
be used to accelerate numerical simulations of such systems: at the limit, we only have to integrate
numerically a differential inclusion, which can be done very efficiently [1].

The system is composed of a single buffer and N desktop machines, offered by their owners
(volunteers), that serve the packets of this buffer. However, as soon as the owner of a processor
wants to use it, she preempts it and the processor becomes unavailable for the computing system.
As for the incoming packets, they are assumed to arrive in the buffer according to a Poisson process
at rate λ. Such systems are often called push/pull models: The distributed applications push jobs
to a central server that stores them in a buffer and whenever a processor becomes available, it
pulls a job from the buffer and executes it.

Such systems fit into our density dependent population process framework. The context C(t)
represents the size of the buffer while the N objects represent both the applications sending jobs
and the hosts executing them. The state of a host is its availability and its idleness (whether it is
executing a job or not). The non-smooth part of the dynamics comes from the buffer size. When
C(t) > 0, if a host asks for a job, it gets it with probability one while when C(t) = 0, a host asking
for a job will get nothing. This dynamics satisfies the conditions of Theorem 5 that can be used
to study the limiting behavior of the system when the number of hosts and applications grows.

In the simplest case, the intensity of the system is γN = 1/N and an application sends a
job to the system at rate λ while jobs are completed at rate µ by each server. To represent the
communication delays, every host gets jobs at rate γ. It becomes unavailable with rate pu, and
available with rate pa if C(t) > 0 and 0 otherwise. If b, a, u denote respectively the proportion of
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busy, available and unavailable hosts, the limiting system is described by a DI:

ḃ(t) = −µb(t) + γa(t)1C(t)>0

ȧ(t) = µ(t)b(t) + pau(t)− paa(t)− γa(t)1C(t)>0

u̇(t) = −pau(t) + pua(t)

Ċ(t) = −γa(t)1C(t)>0 + λ1C(t)<Cmax
.

The formal DI is obtained by replacing a(t)1C(t)>0 by the singleton {γa(t)} if C(t) > 0 and the
interval [0; γa(t)] when C(t) = 0.
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Figure 5: Limit dynamics of a volunteer computing system. A non-differentiable point occurs when the buffer
becomes empty.

The behavior of the system is represented in Figure 5(a). At time t = 0, we consider that the
size of the buffer is C(0) = .2 and that all processors are available and are serving a job. One
can see that there is a point of non-differentiability in the behavior of the system when the size of
the buffer reaches 0. For this example, we used a forward Euler discretization of the differential
inclusion for numerical integration , which is very simple but also very accurate in this case. In
more complex examples, other solutions exist to improve the accuracy of numercial integration of
differential inclusions [1]. One of the main limitations of our method is that it cannot be applied
to study the behavior of one resource over time. For example, the proportion of time when a
server is busy can be easily derived from b(t) but our analysis does not allow us to compute the
length of a busy period. This limitation could be overcome by studying limiting properties of the
individual behavior of objects, (e.g. following Sec 4.4 of [13]).

Figure 5(b) depicts a simulation of a model with two identical time-homogeneous volunteer
systems. Each time a packet arrives, it is routed to the system with the smallest number of packets.
Here, the scheduling of packets introduces a new cause of non-smoothness: there is a threshold in
the dynamics of the system when both backlogs are equal. Figure 5(b) shows the behavior of the
limit differential inclusion. Once again, the limit behavior is unique once the initial condition is
given. As expected, new non-differential points appear when both buffers are equal.

4.4.1. Remark on the OSL condition

Let y = (b, a, u, C) and ȳ = (b̄, a, u, 0), then
〈
y − ȳ, f(y)− f((̄y))

〉
= −µ|b− b̄|2+γa(b− b̄)−γa.

If f were OSL, this would be less than L ‖y − ȳ‖2. However, when b−b̄ is small enough and positive,
this expression is of order γa(b − b̄) which is greater than L‖y − ȳ‖2 = L(|b − b̄|2 + C2). In fact,
there are two types of non-smoothness in these equations. The first one is that the dynamics of C
depends on C in a discontinuous manner but in a OSL way. The second type of discontinuity is
that the dynamics of b depends on C in a discontinuous manner. This latter discontinuity leads

to a term of order (b − b̄) which is greater than L
∥∥b− b̄∥∥2 whenever b − b̄ is small enough. This

destroys the OSL property.
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5. Conclusion and future work

In this paper, we studied the asymptotic properties of a family of Markov processes Y N evolving
on subset of Rd. We showed that if their drift fN vanishes as N goes to infinity, then the behavior
of Y N converges to the set of solutions of a deterministic differential inclusion ẏ ∈ F (y). In
particular, this result holds even if fN does not converge to a single-valued function f as N grows.
Using this result, we developed two applications. We first show how to prove stability results
using a fluid approximation described by a differential inclusion. Then, we show how to handle
discontinuities that arise in mean field models due to centralized actions or boundary conditions.
The examples provided illustrate that one can easily recover results from the literature (§3.3 or
§3.4), but also extend existing models (§4.3) or develop new examples (§4.4).

Several perspectives remain open. First, a natural extension of the mean field model would
be to obtain properties on the individual behavior of objects. We believe similar results as the
ones of Sec 4.4 of [13] could be adapted to our case to show that if differential inclusion has
a unique solution y, the behavior of a collection k objects is asymptotically a continuous time-
inhomogeneous Markov chain with k independent components with kernel at time t depending
on y(t). A second important question concerns the quality of the approximation of the steady
state distribution. Theorem 9 shows that if the differential inclusion has unique attractor, then
the stationary distribution concentrates on this point, it does not provide a bound on the speed
of convergence. Simulations on our examples indicates that this convergence occurs at rate 1/

√
N

but this remains a conjecture. Finally, checking the applicability of the OSL condition is an open
issue. In all our examples, the original drift is not OSL but for most of them, we were able to find
a change of variable in which the dynamics was OSL. It would be helpful to find a more direct
way to show if a dynamic can be transformed in an OSL dynamics or a simpler condition to check
to guarantee the speed of convergence.
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Appendix A. Differential inclusions

In this appendix, we recall the main concepts on differential inclusions. For a more complete
description, the reader is referred to [1]. In all that follows, 〈x, y〉 denotes the classical inner
product on Rd and ‖x‖ =

√
〈x, x〉 (L2 norm) and for a set A ⊂ Rd, ‖A‖ = supx∈A ‖x‖.

Definition 11. Consider a differential inclusion problem:

ẏ(t) ∈ F (y(t)), y(0) = y0,

where F is a set-valued function mapping each point y ∈ Rd to a set F (y) ⊂ Rd. Let I ⊂ R be an
interval with 0 ∈ I. A function y : I → Rd is a solution of the DI ẏ ∈ F (y) with initial condition
y(0) = y0 if there exists a function ϕ : I → Rd such that:

(i) for all t ∈ I: y(t) = y0 +
∫ t
0
ϕ(s)ds;

(ii) for almost every (a.e.) t ∈ I: ϕ(t) ∈ F (y(t)).

In particular, (i) is equivalent to saying that y is absolutely continuous. (i) and (ii) imply that
y is differentiable at almost every t ∈ I with ẏ(t) ∈ F (y(t)).

Definition 12 (Upper Semi-Continuous (USC)). The function F is upper semi-continuous (USC)
if for any y ∈ Rd, F (y) is a non-empty closed, convex and bounded set and if for any open set O
containing F (y), there exists a neighborhood V of y such that F (V ) ⊂ O.

Definition 13 (One-Sided Lipschitz (OSL)). A set-valued function F is one-sided Lipschitz (OSL)
with constant L if for all y, ȳ ∈ Rd and for all u ∈ F (y) ū ∈ F (ȳ):

〈y − ȳ, u− ū〉 ≤ L ‖y − ȳ‖2 .
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These two definitions give sufficient conditions for the existence (resp. uniqueness) of solutions
for the differential inclusion. We recall the following results.

Proposition 14 (Theorems 2.2.1 and 2.2.2 of [22]).

• If F is USC and if there exists c such that ‖F (x)‖ ≤ c(1+‖x‖) then for any initial condition
y0, ẏ ∈ F (y) has at least one solution on [0;∞) with y(0) = y0.

• If F is OSL, then for all T > 0, there exists at most one solution of ẏ ∈ F (y) on [0;T ].

Of course (USC) and (OSL) combined ensure that the DI has a unique solution.

Appendix B. Proofs of Theorem 1 and Theorem 4

This section is devoted to the proof of Theorems 1 and 4. We first recall some notation of
Section 2 before jumping into the proofs.

Let us recall that Y N is defined by

Y N (k+1) = Y N (k) + γN
(
fN (Y N (k)) + UN (k + 1)

)
. (B.1)

This equation can be seen as an Euler discretization of the DI ẏ ∈ F (y) plus two error terms:

• A random error term caused by UN (k + 1) which is such that E
(
UN (k + 1)

∣∣Y N (k)
)

= 0
and is either uniformly integrable (Theorem 1) or bounded in second moment (Theorem 4).

• A “deterministic” error term coming from the fact that fN (y) is not necessarily in F (y) but
converges to F in the sense of Equation (5) (see also Lemma 15):

F (y)
def
= conv

(
acc
N→∞

fN (yN ) with lim
N→∞

yN = y
)
.

Equation (B.1) is called a stochastic approximation algorithm with constant step size associated
with the DI (6). The term constant step size comes from the fact that γN does not vary with
time. Both proofs of Theorem 1 and Theorem 4 are based on the convergence of such stochastic
approximation (B.1) as N goes to infinity. However, the two proofs are radically different. The
first one is based on compactness argument while the second one focuses on computing explicit
error terms.

Appendix B.1. Proof of Theorem 1

The classical approach to prove convergence of a stochastic approximation to the solution of the
associated differential system uses Gronwall’s lemma [14]. Here, we use a different approach, based
on compactness properties of the trajectories of the stochastic system. This proof is inspired by
several results on differential inclusions, in particular the proof of Theorem 2.2.1 of [22]. However,
it is different from Theorem 4.2 of [3] since we need to deal with constant step sizes instead of
vanishing step sizes (often easier) and we are interested in the convergence over a finite time-
horizon. Also, we do not need any a priori assumption on the boundedness of the stochastic
process.

The idea of the proof is to show that for any subsequence of Ȳ N , there exists a subsequence
Ȳ σ(N) (of this subsequence) such that the distance between Ȳ σ(N) and the set of solutions of the
differential inclusion ST (y0)) goes to 0 almost surely. In all that follows, let Ȳ σ(N) be a subse-
quence of Ȳ N . In order to simplify the notations and because we will take several subsequences
of subsequences, we omit the σ in the notation and we denote all subsequences by Ȳ N . In the
first part of the proof, we consider the problem from a probabilistic point of view to make sure
that the random part of the process goes almost surely to 0. Then we consider the problem from
a trajectorial point of view using analytic arguments.

We first start with two technical lemmas that show that fN converges to F uniformly on all
compact:
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Lemma 15. Let fN be such that
∥∥fN (y)

∥∥ ≤ c(1 + ‖y‖). Let F be defined by Equation (5) and
for all ε > 0, define F ε by:

F ε(y) =
{
z s.t ∃u ∈ Rd,∃v ∈ F (u) with ‖u− y‖ ≤ ε ∧ ‖v − z‖ ≤ ε

}
. (B.2)

Then:

(i) for all compact K ⊂ Rd, there exists a sequence δN → 0 such that, for all N ≥ N0 and for

all y ∈ K: fN (y) ∈ F δN0
(y).

(ii) F is USC, i.e., for all y:
⋂
ε>0 F

ε(y) ⊂ F (y).

Proof. We prove (i) by contradiction. Assume that (i) does not hold. Then, there exists a compact
K and ε > 0 such that for all N0, there exists N > N0 with yN ∈ K and yN 6∈ F ε(yN ). Since
K is compact, there exists a subsequence of yN that converges to some y. This implies that for
N large enough, ‖yN − y‖ ≤ ε. Since we assumed that fN (yN ) 6∈ F ε(yN ) and by definition of
F ε(yN ), this implies that for all v ∈ F (y),

∥∥fN (yN )− v
∥∥ ≥ ε. This contradicts the definition of

F (y) which contains the set of limit points of fN (yN ).
Proof of (ii). Let v ∈

⋂
ε>0 F

ε(y). This implies that there exists a sequence yk → y with
vk ∈ F (yk) and vk → v. By definition of F , vk is a convex combination of points {wk,`}` with
fN (yNk,`)→ wk,` and yNk,` → yk. By setting zN,` = yNN,`, we have zN,` → y and fN (zN,`) converges
to w` = limk→∞ wk,`. This shows that w` ∈ F (y). Therefore, any convex combination of w` also
belongs to F (y).

Lemma 16. Let (UN (.))k≥0 be a uniformly integrable martingale difference sequence with respect
to a filtration {Fk} and let γN be a sequence with γN → 0. Then for all T > 0,

sup
0≤t≤T

∥∥∥∥∥∥γN
T/γN∑
k=0

UN (k)

∥∥∥∥∥∥ P−→ 0.

Proof. Let ε, ν > 0 and let V N (i) =
∑i
k=0 U

N (k). We prove that for N large enough, we have
P(sup0≤i≤T/γN

∥∥V N (i)
∥∥ ≥ ε) ≤ ν.

Let δ = νε/8. As UN is uniformly integrable, there exists R such that E(UN (k)1UN (k)≥R) ≤ δ.
Define V N+ (k) and V N− (k) as:

V N+ (k) = UN (k)1UN (k)≥R − E
(
U(k)1UN (k)≥R | Fk−1

)
V N− (k) = UN (k)1UN (k)<R − E

(
U(k)1UN (k)<R | Fk−1

)
= UN (k)− UN+ (k)

Applying Kolmogorov’s inequality for martingales, we get:

P
(

sup
0≤i≤T

∥∥V N (i)
∥∥ ≥ ε) ≤ P ( sup

0≤i≤T

∥∥∥∥∥γN
i∑

k=0

UN− (k)

∥∥∥∥∥ ≥ ε

2

)
+ P

(
sup

0≤i≤T

∥∥∥∥∥γN
i∑

k=0

UN+ (k)

∥∥∥∥∥ ≥ ε

2

)

≤ 4

ε2
E


∥∥∥∥∥∥γN

T/γN∑
k=0

UN− (k)

∥∥∥∥∥∥
2
+

2

ε
E

∥∥∥∥∥∥γN
T/γN∑
k=0

UN+ (k)

∥∥∥∥∥∥


≤ 16
R2

Nε2
+

4δ

ε
≤ 16

R2

Nε2
+
ν

2
.

Therefore, for all N ≥ 32R2/(ε2ν), this quantity is less than ν.

Developing the recurrence (4), the value of Y N (k + 1) is equal to:

Y N (k + 1) = Y N (0) +

k∑
i=0

γNfN (Y N (i)) + γN
k∑
i=0

UN (i+ 1). (B.3)

19



We define two functions ZN (t), and V N (t) to be piecewise linear functions such that for all

t = kγN , ZN (t) = Y N (0) +
∑k−1
i=0 γ

NfN (Y N (i)) and V N (t) =
∑k−1
i=0 γ

NUN (i+ 1).
By Lemma 16, since UN is a martingale difference sequence uniformly integrable, sup0≤t≤T

∥∥V N (t)
∥∥

converges in probability to 0. Therefore, there exists a subsequence of V N such that supt≤T
∥∥V N (t)

∥∥
converges almost surely to 0.

We now reason from a trajectorial point of view. Let us now consider a trajectory ω ∈ Ω of
the system such that supt≤T

∥∥V N (t)
∥∥ converges to 0. In particular, this implies that

∥∥V N (t)
∥∥

is bounded for all N and t: supN,0≤t≤T
∥∥V N (t)

∥∥ ≤ d < ∞. Using (B.3) and since
∥∥fN (y)

∥∥ ≤
c(1 + ‖y‖), for all k ≤ T/γN ,

∥∥Y N (k + 1)
∥∥ can be bounded by:∥∥Y N (k + 1)

∥∥ ≤
∥∥Y N (0)

∥∥+
∑
i=0

γNc(1 +
∥∥Y N (i)

∥∥) + sup
N,t

∥∥V N (t)
∥∥

≤
∥∥Y N (0)

∥∥+ ckγN + d+

k∑
i=0

γN
∥∥Y N (i)

∥∥
≤

(∥∥Y N (0)
∥∥+ cT + d

)
exp (cT ) /c, (B.4)

where we used the discrete Gronwall’s lemma and the fact that kγN ≤ T .
Once we know that supN,0≤t≤T

∥∥Y N (t)
∥∥ is bounded, the rest of the proof can be adapted from

classical results on the convergence of the Euler approximation for differential inclusions, see [22]
for example. There exists e > 0 such that supN,0≤t≤T

∥∥Y N (t)
∥∥ ≤ e. Thus

∥∥f(Y N (k))
∥∥ < c(1+e) <

∞. This shows that the functions ZN are Lipschitz with constant c(1 + e). Thus the sequence of
functions (ZN )N are equicontinuous and bounded. Therefore by the Arzéla-Ascoli theorem, for
all subsequences of (ZN )N , there exists a subsequence that converges to some z : [0;T ]→ Rd. In
the following, we will show that z is a solution of (3) which shows that the distance between ZN

and the set of solutions ST (y0)) goes to 0 as N goes to infinity. As
∥∥ZN − Y N∥∥ =

∥∥V N∥∥ → 0,
this implies that the distance between Y N and ST (y0) goes to 0. To prove this, we will construct
a function ϕ such that:

(i) for all t: z(t) = z(0) +
∫ t
0
ϕ(s)ds;

(ii) for almost every t: ϕ(t) ∈ F (z(t)).

Let ϕN (t) be a step function, constant on the intervals [kγN , (k + 1)γN ) and such that for
t = kγN , ϕN (t) = f(Y N (k)). Therefore, the sequence ϕN is bounded in L2([0;T ],Rd). Thus,
there exists a subsequence of ϕN converging weakly in L2 to a function ϕ. Since L2 is a reflexive
space, if a sequence of functions ϕN converges to ϕ, this means that for all functions v, there exists
a subsequence of ϕN such that

〈
v, ϕN

〉
→ 〈v, ϕ〉. Let ξ ∈ Rd and t ∈ [0;T ]. Let the function v

be defined by v(s)
def
= ξ for s < t and v(s)

def
= 0 for t ≥ s. Since ϕN converges weakly to ϕ and

ZN (t)→ z(t), we have: 〈
ZN (t), ξ

〉
→ 〈z(t), ξ〉 ;〈

ZN (t), ξ
〉

=
〈
ZN (0), ξ

〉
+

〈∫ t

0

ϕN (s)ds, ξ

〉
=

〈
ZN (0), ξ

〉
+
〈
ϕN , v

〉
→ 〈z(0), ξ〉+ 〈ϕ, v〉

=

〈
z(0) +

∫ t

0

ϕ(s)ds, ξ

〉
.

As this is true for all ξ ∈ Rd, this shows that z is absolutely continuous: z(t) =
∫ t
0
ϕ(s)ds.

It remains to show that for a.e. t, ϕ(t) ∈ F (z(t)). Let tN denote the greater multiple of

γN less than t (tN
def
=
⌊
t/γN

⌋
γN ). Using that fN (Y N (k)) ≤ c(1 + e) and that zN converges

uniformly to y, for all δ > 0, there exists N0 such that N ≥ N0 implies
∥∥z(t)− Y N (tN )

∥∥ ≤ δ.
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By Lemma 15(i), this shows that for N large enough, ϕN (t) ∈ F 2δ(z(t)). Since F is convex and
z bounded, {α ∈ L2 : α(t) ∈ F δ(z(t))} is convex and closed. This shows that this set is weakly
closed (see [28], Theorem 3.12). Therefore, for all t, ϕ(t) ∈ F δ(t). As this is true for all δ and
because of Lemma 15(ii), this shows ϕ(t) ∈ ∩δ>0F

δ(t) = F (z(t)). Thus, z is a solution of the DI.

Appendix B.2. Proof of Theorem 4

The constants AT , BT and CT of Theorem 4 are given by:

AT = MT

(
M2
T +

14MT

3
+ 2KT

)
BT = 2M2

T + 4LδN + 12KT

CT = 2M2
T + 4Lε+ 8KT ,

with KT =
(
max

{∥∥Y N (0)
∥∥ , ‖y(0)‖

}
+ (cT + ε)

)
ecT /c and MT = sup0≤t≤T f

N (Y N (t)) ≤ c(1 +
KT ). If F (.) is bounded by some M , the constant MT is just M and is in particular independent
of T . This is true for example if Y N is constrained to stay in a compact space of Rd or if the drift
is bounded for all y ∈ Rd. The existence of the sequence δN is given by the definition of F in
Equation (5) (see Lemma 15(i)).

By definition, Y N (k + 1) can be written:

Y N (k + 1) = Y N (0) + γN
k∑
i=0

fN (Y N (i)) + γN
k∑
i=0

UN (i+ 1). (B.5)

Let us define two random sequences Z and V by:

Z(k)
def
= Y N (0) + γN

k∑
i=0

fN (Y N (i)) and V (k)
def
= γN

k∑
i=0

UN (i+ 1).

We first start with two lemmas. The first one shows that V (k) is small while the second one
computes bounds on the growth of Y N and the solution of the DI y.

Lemma 17. For all T and all ε > 0,

P

(
sup

i≤T/γN

∥∥V N (i)
∥∥ ≥ ε) ≤ γNT

ε2
.

Proof. Since E(UN (k+1) | Y N (k)) = 0 and E(
∥∥UN (k + 1)

∥∥2 | Y N (k)) ≤ b, we have E(‖V (k)‖2) ≤
kγN

2
b ≤ TbγN for all k ≤ T/γN . Applying Kolmogorov’s inequality for martingales to the

martingale V leads to the bound of the lemma.

Lemma 18. Let Y N be a sequence satisfying (B.5) with
∥∥fN (y)

∥∥ ≤ c ‖1 + ‖y‖‖. Let y denote the
solution of the differential equation associated with F .

Then, if supi≤k
∥∥V N (i)

∥∥ ≤ ε, there exists a constant KT such that

max

{
sup

0≤k≤T/γN

∥∥Y N (k)
∥∥ , sup

0≤t≤T
‖y(t)‖

}
≤ KT .

The constant KT is given by:

KT
def
=
(
max

{∥∥Y N (0)
∥∥ , ‖y(0)‖

}
+ (cT + ε)

)
ecT /c.
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Proof. By definition of Y N (k + 1), we have:

∥∥Y N (k + 1)
∥∥ ≤ ∥∥Y N (0)

∥∥+ γN
k∑
i=0

c(1 +
∥∥Y N (i)

∥∥) + ε

=
∥∥Y N (0)

∥∥+ kγNc+ ε+ γNc

k∑
i=0

∥∥Y N (i)
∥∥ .

Therefore, by the discrete Gronwall’s lemma, we have
∥∥Y N (k)

∥∥ ≤ (
∥∥Y N (0)

∥∥+ (cT + ε)ecT /c for
k ≤ T/γN .

The proof for y is similar, replacing the discrete Gronwall’s inequality by the continuous Gron-
wall’s inequality.

Let T > 0 and ε > 0. Assume that ‖V N (k)‖ ≤ ε for all k ≤ T/γN and let KT be defined as in
Lemma 18. Since F is OSL, there exists a unique solution y of the DI ẏ ∈ F (y) with y(0) = y0.

Therefore, y(t) = y(0) +
∫ t
0
f(s)ds with f(s) ∈ F (y(s)) a.e.

Let k ≤ T/γN and denote tN = kγN .

∥∥ZN (k + 1)− y(tN + γN )
∥∥2 =

∥∥∥∥∥ZN (k)− y(tN ) +

∫ γN

0

fN (Y N (k))− f(tN + s)ds

∥∥∥∥∥
2

=
∥∥ZN (k)− y(tN )

∥∥2 +

∥∥∥∥∥
∫ γN

0

fN (Y N (k))− f(tN + s)ds

∥∥∥∥∥
2

+

∫ γN

0

2
〈
ZN (k)− y(tN ), fN (Y N (k))− f(tN + s)

〉
ds

≤
∥∥ZN (k)− y(tN )

∥∥2 + γN
2
4M2

T + 2

∫ γN

0

w(s)ds,

where w(s)
def
=
〈
ZN (k)− y(tN ), fN (Y N (k))− f(tN + s)

〉
. To prove the last inequality, we used

Lemma 18 that shows that
∥∥Y N (k)

∥∥ and ‖y(k)‖ are bounded by KT . Therefore, there exists a

constant MT such that
∥∥fN∥∥ and ‖f‖ are bounded by MT .

Because of Lemma 15 that guarantees the speed of convergence of fN to F , there exists u ∈ Rd
and v ∈ F (v) with

∥∥u− Y N (k)
∥∥ ≤ δN and

∥∥v − fN (Y N (k))
∥∥ ≤ ε. Thus, w(s) is equal to:

w(s) =
〈
ZN (k)− u+ u− y(tN + s) + y(tN )− y(tN + s), fN (Y N (k))− v + v − f(tN + s)

〉
=
〈
ZN (k)− u+ y(tN )− y(tN + s), fN (Y N (k))− f(tN + s)

〉
+
〈
u− y(tN + s), fN (Y N (k))− v

〉
+ 〈u− y(tN + s), v − f(tN + s)〉 ,

where we expanded the inner product using 〈a+ b+ c, d+ e〉 = 〈a+ c, d+ e〉+ 〈b, d〉+ 〈b, e〉.
By assumption on u and V , one has ‖ZN (k)−u‖ ≤ ‖ZN (k)−Y N (k)‖+‖Y N (k)−u‖ ≤ ε+δN .

Moreover, since ‖f‖ ≤MT , one has ‖y(tN )− y(tN + s)‖ ≤ sMT . Combining with the fact that F
is OSL of constant L, this gives:

w(s) ≤ (ε+ δN + sMT )M2
T + 2KT δ

N + L ‖u− y(tN + s)‖2 .

Finally, ‖u− y(tN + s)‖2 can be bounded by:

‖u− y(tN + s)‖2 =
∥∥u− ZN (k)

∥∥2 +
∥∥ZN (k)− y(tN )

∥∥2 + ‖y(tN )− y(tN + s)‖2

+ 2
〈
u− ZN (k), ZN (k)− y(tN + s)

〉
+ 2

〈
ZN (k)− y(tN ), y(tN )− y(tN + s)

〉
≤
∥∥ZN (k)− y(tN )

∥∥2 + (δN + ε)2 + s2M2
T + 2(δN + ε)2KT + 2KT sMT .
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This shows that
∫ γN

0
w(s)ds can be bounded by γN times:

L
∥∥ZN (k)− y(tN )

∥∥2 + (ε+ δN +
γN

2
MT )M2

T + 2KT δ
N + L(δN + ε)2 +

γN
2
M2
T

3

+2(δN + ε)2KT +KT γ
NMT .

Therefore, γN
2
4M2

T + 2
∫ γN

0
w(s)ds is bounded by 2L

∥∥ZN (k)− y(tN )
∥∥2 plus γN times

γNMT

(
M2
T +

14MT

3
+ 2KT

)
+ δN

(
2M2

T + 4LδN + 12KT

)
+ ε

(
2M2

T + 4Lε+ 8KT

)
.

If a sequence ak satisfies ak+1 ≤ (1 + 2γNL)ak + b with L 6= 0, one has:

ak = (1 + 2γNL)ka0 +
(1 + 2γNL)k − 1

2γNL
b ≤ e2LγNka0 +

e2LγNk

2γNL
b.

If L = 0 and ak satisfies the recurrence, then ak ≤ a0 + kb. This concludes the proof of the
theorem.

Appendix B.3. Proof of Theorem 5

Since τ < ∞, the rate of transition of DN (.) is bounded by Nτ . Using uniformization of
continuous time Markov chain (see [29] for example), there exists a Poisson process ΛN of rate
Nτ and a discrete time Markov chain Y N (.) such that DN (t) = Y N (ΛN (t)) and Y N and ΛN are
independent. Moreover, for all y and ` ∈ L,

P
(
Y N (k + 1) = y +

`

N
|Y N (k) = y

)
=

1

τ
β`(y),

P
(
Y N (k + 1) = y|Y N (k) = y

)
= 1− 1

τ

∑
`∈L

β`(y).

For all y ∈ Rd, the drift of Y N (.) is E
(
Y N (k + 1)− Y N (k)|Y N (k) = y

)
= (Nτ)−1f(y) and

Y N (k + 1) can be written Y N (k + 1) = Y N (k) + (Nτ)−1(f(y) + UN (k + 1)). By assumption∑
`∈L ‖`‖ supy β`(y) < ∞, UN is uniformly integrable. Therefore, Y N (k) satisfies the conditions

of Theorem 1. This shows that infy∈ST (y0) supt≤T
∥∥Y N (tN)− y(t)

∥∥ = 0.

As ΛN is a Poisson process of rate Nτ , |ΛN (t) − tNτ |2 is a submartingale and by Doob’s
inequality ([15] p 250), P(supt≤T |ΛN (t) − tNτ | ≥ Nτε) ≤ E(|ΛN (T ) − TNτ |2)/(Nτε)2 =
(TNτ)/(Nτε)2 = T/(Nτε2). If y is a solution of the DI (6) on [0;T ], for all t, s ∈ [0, T ],
‖y(t)− y(s)‖ ≤ c(1 + KT ) |t− s| where KT is defined in Lemma 18. This shows that if y is a
solution of the differential inclusion, with probability greater than 1− T/(Nτε2), we have:∥∥DN (t)− y(t)

∥∥ =
∥∥Y N (ΛN (t))− y(t)

∥∥
≤

∥∥∥∥Y N (ΛN (t))− y
(

ΛN (t)

Nτ

)∥∥∥∥+

∥∥∥∥y(ΛN (t)

Nτ

)
− y(t)

∥∥∥∥
≤

∥∥∥∥Y N (ΛN (t))− y
(

ΛN (t)

Nτ

)∥∥∥∥+ c(1 +KT )ε.

By Theorem 1, for all ε > 0, for all N large enough, there exists a solution y of the DI such that
the first term of the last inequality is less than ε.

In the OSL case, since fN does not depend on N , we have d(fN , F ) = 0 and the sequence δN

is equal to 0. The constant C ′T is given by C ′T = CT + c(1 +KT )ε where CT is the same as in the
previous section (Appendix B.2): CT = 2M2

T + 4Lε+ 8KT .
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