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Abstract

The analysis of priority queues where both the arrival and the service processes
are correlated does not have a long literature. Only a few results are known,
that attack the problem with the matrix geometric machinery. Unfortunately,
these results have some restrictions that limit their usability significantly, for
example they require the calculation of infinite series of matrices and infinite
summations, that can be implemented only by truncation.

The method presented in this paper calculates only the queue length mo-
ments, but without relying on infinite series of matrices and provides procedures
to calculate the arising infinite sums accurately in an efficient way by means of
linear equations, matrix-quadratic equations and a coupled matrix-quadratic
equation.

The numerical examples demonstrate that the presented method is several
orders of magnitudes faster than the existing ones. From the large number of
queue length moments it is possible to obtain lower and upper bounds for the
queue length distribution by using existing moment based distribution estima-
tion results.

Keywords: preemptive priority queue, marked MAP, queue length moments,
matrix geometric methods

1. Introduction

Queueing models are widely used for modeling the behavior of various sys-
tems in many application fields like logistics, manufacturing processes, computer
and telecommunications systems. In particular, the success of queueing theory
in the planning and dimensioning of telecommunication networks has a long
history.
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The problem of the presence of different kinds of jobs in the system requiring
different treatment is often solved by job classification, i.e. the server can take
the class of the jobs into consideration when serving them. Several multi-class
queueing models have been developed in the past to model different kinds of
service disciplines like strict priority service, weighted fair queueing, etc.

One way to model complex traffic behavior is to apply Markovian arrival
process (MAPs), and its multi-class extension marked Markovian arrival process
(MMAPs). MAPs are capable of describing correlated arrivals, and MMAPs
are able to capture cross-correlations between the arrivals belonging to different
classes as well.

It is not only the complex traffic characteristics that makes modeling telecom-
munication systems challenging. More and more complex scheduling algorithms
are used in the devices to support the differentiation of traffic belonging to dif-
ferent applications and customers of different importance.

The development of analytical results turned out to be much slower than
the development of the technology that requires these results. For example,
the results available for MMAP driven multi-class queues are restricted to some
simple service policy only, like FCFS, LCFS and priority service.

In this paper we will focus on the two-class single-server preemptive priority
queue with infinite waiting room and MMAP arrivals. The discrete time ver-
sion of this queue is solved by Alfa following a matrix geometric approach in
[1] and [2]. The extension of these results with batch arrivals are presented in
[3]. The non-preemptive priority case with general service time and no correla-
tion between the classes is considered in [4] and [5], where generator functions
are derived for the queue length and the waiting time distributions in Laplace
transform domain.

In our former paper [6], an approximate analysis method is presented for
queueing networks consisting of continuous time MMAP/MAP/1 preemptive
priority queues. For the analysis of the continuous time queues, we basically
followed the same steps given in [1] for the discrete time queues. The starting
point of the present paper is where [6] stops: our goal here is to cure the weak-
nesses of the queue length analysis procedure in [6] (that are also the weaknesses
of [1] in discrete time). Our aim is to eliminate all infinite summations, and to
reduce the computational complexity of the solution of the matrix equations
needed to analyze the system.

This paper is organized as follows. Section 2 introduces the model, gives
an overview on how MMAP/MAP/1 preemptive priority queues have been an-
alyzed in the former literature and identifies the related numerical difficulties.
Section 3 presents the contribution of the paper, the efficient method for the
queue length moments of the low priority class. A numerical example is dis-
cussed in Section 4 to demonstrate the behavior of the procedure. Finally,
Section 5 concludes the paper.
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2. The MMAP/MAP/1 preemptive priority queue as a QBD process

The arrival process of the MMAP/MAP/1 preemptive priority queue is a
marked MAP [7, 8]. Similar to MAPs, MMAPs have a background continuous
time Markov chain (CTMC) modulating the arrivals. The transition rates of the
background CTMC accompanied by an arrival of a high (low) priority customer
are given by matrix DH (DL), rates of the transitions without arrivals are given
by matrix D0. Thus, the generator of the background CTMC of the MMAP is
D = D0 + DH + DL. The size of the MMAP is n. Let τ denote the unique
solution of τD = 0, τ1 = 1. The arrival rate of high (low) priority customers
is given by λ(H) = τDH1 (λ(L) = τDL1).

The matrices of the MAP describing the service process of the high (low)

priority class are S
(H)
0 ,S

(H)
1 (S

(L)
0 ,S

(L)
1 ). The size of the MAPs corresponding

to the high and the low priority class are denoted by m and `. The stationary
distribution of the background process of the MAP generating the service times

is denoted by ω(H), it satisfies ω(H)(S
(H)
0 + S

(H)
1 ) = 0, ω(H)

1 = 1. The mean

service rate of the high priority class is µ(H) = ω(H)S
(H)
1 1. The mean service

rate of the low priority customers µ(L) (ignoring the presence of the high priority
class) is obtained similarly.

According to the preemptive priority service policy, the ongoing service of a
low priority customer is interrupted when a high priority customer arrives. The
interrupted service continues in the phase where it has been interrupted as soon
as the high priority queue becomes idle. In our model both queues are infinite.
In the rest of the paper we assume that the stability condition holds; thus

λ(H)/µ(H) + λ(L)/µ(L) < 1. (1)

2.1. The QBD process modeling the high priority queue

The queue length of the MMAP/MAP/1 preemptive priority queue can be
modeled by a four dimensional CTMC: the first dimension represents the length
of the high priority queue, the second one the length of the low priority queue,
while the third and the fourth dimension keeps track of the phases of the arrival
and service processes, respectively. The arrival and service processes together
are referred to as background process in the sequel.

With proper numbering of the states, the generator matrix of the four-
dimensional CTMC (Q) exhibits the following block-tri-diagonal (QBD) struc-
ture:

Q =


Ā0 A+

A− A0 A+

A− A0 A+

. . .
. . .

. . .

 (2)

The levels of the QBD correspond to the length of the high priority queue,
while the phase of the QBD represents the length of the low priority queue and
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the phase of the arrival and service processes. Thus, the blocks of the generator
matrix are infinite matrices as well, defined as follows:

A+ = diag〈FH〉, (3)

A− = diag〈B(H)
1 〉, (4)

A0 =


F0 + B

(H)
0 FL

F0 + B
(H)
0 FL

F0 + B
(H)
0 FL

. . .
. . .

 , (5)

Ā0 =


F0 FL

B
(L)
1 F0 + B

(L)
0 FL

B
(L)
1 F0 + B

(L)
0 FL

. . .
. . .

 (6)

where the matrices of size n × m × ` describing the transitions of the phase
process are

F0 = D0 ⊗ Im ⊗ I`, FH = DH ⊗ Im ⊗ I`, FL = DL ⊗ Im ⊗ I`,

B
(H)
0 = In ⊗ S

(H)
0 ⊗ I`, B

(H)
1 = In ⊗ S

(H)
1 ⊗ I`,

B
(L)
0 = In ⊗ Im ⊗ S

(L)
0 , B

(L)
1 = In ⊗ Im ⊗ S

(L)
1 ,

(7)

where In denotes the identity matrix of size n× n.
The stationary distribution of (2) is matrix-geometric [9],

πk = π0R
k, k ≥ 0, (8)

where πk can be partitioned according to the length of the low priority queue:
vector πk,j of size n ·m · ` denotes the probability of having k jobs in the high,
j jobs in the low priority queue and different phases of the background process.
Entry (a, b) of matrix R is the expected time spent in phase b of the QBD at
level n before the first visit to level n− 1 starting in phase a at level n− 1.

2.2. R and G matrices of the QBD

As the number of phases in this QBD is infinite, the corresponding fun-
damental matrices R and G are infinite as well. However, due to the special
structure of the blocks of the generator, both matrix R and matrix G exhibit
an upper-block-Toeplitz structure, since the number of low priority arrivals and
the number of jobs in the system are independent given the phase of the arrival
and service processes (shown in [1]). Thus we have:

G =


G

(L)
0 G

(L)
1 G

(L)
2 . . .

G
(L)
0 G

(L)
1 . . .

G
(L)
0 . . .

. . .

 , R =


R

(L)
0 R

(L)
1 R

(L)
2 . . .

R
(L)
0 R

(L)
1 . . .

R
(L)
0 . . .

. . .

 . (9)
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These matrices are known to satisfy the following matrix quadratic equa-
tions:

0 = A− + A0G + A+G2. (10)

0 = A+ + RA0 + R2A−, (11)

By substituting (9) into (11) and (10), it is possible to derive recursive

expressions for matrices G
(L)
i and R

(L)
i (see [1] and [6]).

The equations for matrices G
(L)
i are as follows:

for i = 0 : 0 = B
(H)
1 + (F0 + B

(H)
0 )G

(L)
0 + FHG

(L)
0

2
, (12)

for i > 0 : 0 = FLG
(L)
i−1 + (F0 + B

(H)
0 )G

(L)
i + FH

i∑
k=0

G
(L)
k G

(L)
i−k. (13)

Matrices G
(L)
i have important probabilistic interpretations. Entry (a, b) of

matrix G
(L)
i is the conditional probability that starting from level n with the

background process being in phase a, (1) the first visit to level n− 1 occurs in
phase b, (2) i low probability customers arrive during the first passage time.

The following expressions can be obtained for matrices R
(L)
i :

for i = 0 : 0 = FH + R
(L)
0 (F0 + B

(H)
0 ) + R

(L)
0

2
B

(H)
1 ,

for i > 0 : 0 = R
(L)
i−1FL + R

(L)
i (F0 + B

(H)
0 ) +

i∑
k=0

R
(L)
k R

(L)
i−k.B

(H)
1

(14)

The generating function of matrix series G
(L)
i defined by G(L)(z) =

∑∞
k=0 z

kG
(L)
k

will be used several times in the sequel. From (13) and (12) we have that G(L)(z)
is the solution of the following matrix-quadratic equation:

0 = B
(H)
1 + (F0 + zFL + B

(H)
0 )G(L)(z) + FHG(L)(z)

2
. (15)

Similarly, the generating function of matrix series R
(L)
i defined by R(L)(z) =∑∞

k=0 z
kR

(L)
k is the solution of the following matrix-quadratic equation:

0 = FH + R(L)(z)(F0 + zFL + B
(H)
0 ) + R(L)(z)

2
B

(H)
1 . (16)

2.3. Analysis of the zero level

Having shown the structure of matrix R, the second ingredient necessary to
obtain the stationary distribution (8) is vector π0. Relations for vector π0 can
be derived from the boundary equations of πQ = 0 as:

π0Ā0 + π0RA− = 0, π0,01 = 1− λ(H)/µ(H) − λ(L)/µ(L), (17)

where 1 denotes the column vector of ones.
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Due to the structure of matrices Ā0, A− and R, (17) is equivalent to the
solution of an M/G/1 type CTMC (see [3] and [6]). However, by using the
relation RA− = A+G (see e.g. [9], page 144) we can re-formulate (17) and the
corresponding M/G/1 type CTMC to a more appropriate form.

The equations for π0 by using G instead of R are then:

π0Ā0 + π0A+G = 0, π0,01 = 1− λ(H)/µ(H) − λ(L)/µ(L), (18)

and the generator of the related M/G/1 type CTMC is as follows:

Q0 = Ā0 + A+G =
F0 + FHG

(L)
0 FL + FHG

(L)
1 FHG

(L)
2 FHG

(L)
3 . . .

B
(L)
1 F0 + B

(L)
0 + FHG

(L)
0 FL + FHG

(L)
1 FHG

(L)
2 . . .

B
(L)
1 F0 + B

(L)
0 + FHG

(L)
0 FL + FHG

(L)
1 . . .

. . .
. . .

. . . . . .


(19)

The stationary probability vectors π0,i can be calculated recursively using
the Ramaswami formula [10]. Tailoring it to this particular system gives:

π0,i =

(
i−1∑
k=0

π0,kTi−k

)
(−T0)−1, i ≥ 1, (20)

where matrices Ti are defined by

Ti =

∞∑
k=i

FHG
(L)
k GH0

k−i, i ≥ 2,

T1 = FL +

∞∑
k=1

FHG
(L)
k GH0

k−1,

T0 = F0 + B
(L)
0 + FHG

(L)
0 + T1GH0 ,

(21)

and, vector π0,0 is the solution of the following set of linear equations:

π0,0

(
F0 + FHG

(L)
0 + T1(−T0)−1B

(L)
1

)
= 0,

π0,01 = 1− λ(H)/µ(H) − λ(L)/µ(L).
(22)

In order to compute π0, we need to obtain matrix GH0 . Matrix GH0 is the
minimal non-negative solution of the following matrix equation ([11]):

0 = B
(L)
1 + (F0 + B

(L)
0 )GH0 + FLGH0

2 + FH

∞∑
i=0

G
(L)
i GH0

i ·GH0 . (23)

6



2.4. Performance measures

Having matrix R and vector π0 determined, the steady state probabilities
of the QBD are given by (8). Utilizing the block structure of R (9), the steady
state joint probability vectors of the lengths of the high and the low priority
queues can be expressed by the following recursive formula:

πi,j =

j∑
k=0

πi−1,kR
(L)
j−k. (24)

The marginal steady-state probability vectors of the classes are calculated
by the appropriate summation of (24). For the high priority class we have

π
(H)
i =

∞∑
j=0

πi,j =
∞∑
j=0

j∑
k=0

πi−1,kR
(L)
j−k =

∞∑
k=0

πi−1,k︸ ︷︷ ︸
π
(H)
i−1

∞∑
j=0

R
(L)
j . (25)

Note that the queue length distribution of the high priority class is matrix-

geometric. Furthermore,
∑∞
j=0 R

(L)
j can be obtained efficiently as the minimal

non-negative solution of a matrix quadratic equation (see [6] or Section 3.2), so
the corresponding performance measures can be obtained efficiently. Actually,
the high priority queue can even be analyzed in isolation, since the service policy
is preemptive.

For the queue length distribution of the low priority class we have

π
(L)
j =

∞∑
i=0

πi,j = π0,j +

∞∑
i=1

j∑
k=0

πi−1,kR
(L)
j−k

= π0,j +

j∑
k=0

( ∞∑
i=1

πi−1,k

)
R

(L)
j−k = π0,j +

j∑
k=0

π
(L)
k R

(L)
j−k.

(26)

For the low priority class the calculation of the performance measures is more
difficult. For the first term of (26) an M/G/1 type system has to be analyzed,
which dominates the complexity of the solution. Since the analysis of the high
priority queue is straightforward, we will exclusively focus on the low priority
class in the rest of the paper.

2.5. Methods and challenges to compute the queue length moments

In [1] the stationary distribution of the number of customers, the mean queue
lengths and the waiting time distributions are considered, but even for the mean
queue length of the low priority class the inverse of a matrix of infinite dimension
I−R is calculated. It is noted both in [1] (page 45) and [2] (page 675) that they
used a truncation at an appropriate point to calculate performance measures.
[6] uses a more advanced procedure by expressing the generating functions of

vectors π
(L)
j and matrices Ti, and deriving the queue length moments by taking

the derivatives of these generating functions.
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To obtain even the mean queue length of the low priority queue, both pro-
cedures suffer from the following drawbacks:

• the calculation of the infinite series of R
(L)
i and/or G

(L)
i that requires a

considerable computational effort and storage,

• the computation of the GH0 matrix of an M/G/1 type Markov chain,

• to obtain π0,0 an infinite sum is computed,

• in [1] the inversion of an infinite matrix is required to calculate the mean
queue length,

• in [6] an infinite summation over a quarter-plane is required to calculate
the mean queue length.

In the rest of the paper we propose a solution to these problems.

3. Efficient queue length analysis of the MMAP/MAP/1 preemptive
priority queue

The proposed analysis method is based on the following observations, making
it more efficient than former methods.

• The M/G/1 type Markov chain (19) describing the system at level zero is
a special one, since its matrix blocks are defined recursively according to
(12) and (13). This special structure makes it possible to develop solution
methods that are more efficient than general M/G/1 type Markov chain
solvers. Namely,

– the commutativity of two involved matrices allows calculating the
invariant matrix of the M/G/1 type Markov chain without generating

and storing matrix series G
(L)
i ;

– the ETAQA approach [12] allows us to obtain the queue length mo-
ments via systems of linear equations. The way the blocks of our
M/G/1 type system are defined makes it possible to derive closed-
form coefficient matrices for these systems of linear equations.

• Furthermore, we show that the moment-like summations of G
(L)
i and R

(L)
i

matrices, required to calculate the queue length moments, can be obtained
by solving matrix-quadratic equations and systems of linear equations.

These key elements are detailed in the subsequent subsections.
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3.1. Two fundamental matrices and their relations

There are two matrices that play key roles in the efficient analysis of the
system. One of them is GH0 , that is the solution of (23), and the other one is
matrix S, defined by

S =

∞∑
i=0

G
(L)
i GH0

i. (27)

Theorem 1. If the algebraic multiplicities of the eigenvalues of matrices GH0

and S are one, GH0S = SGH0 holds.

To prove this theorem we first need the following Lemma:

Lemma 1. If the algebraic multiplicities of the eigenvalues of matrix G(L)(z)
and matrix F0 + zFL + FHG(L)(z) are one, the eigenvectors of G(L)(z) and
F0 + zFL + FHG(L)(z) are the same.

Proof. The proof uses the same techniques as in [13].
Let νi and ui be the eigenvalue and the corresponding right eigenvector of

G(L)(z) (for simplicity we assume that G(L)(z) has distinct eigenvalues). As
G(L)(z) satisfies the matrix-quadratic equation of (15), νi satisfies

det
[
B

(H)
1 + (F0 + zFL + B

(H)
0 )νi + FHν

2
i

]
= 0, (28)

and the associated right eigenvector ui is the solution of[
B

(H)
1 + (F0 + zFL + B

(H)
0 )νi + FHν

2
i

]
· ui = 0. (29)

Note that both νi and vectors ui are functions of z.
By substituting (7) into (28) and by some basic manipulations we get

det

[( (
νiD0 + νizDL + ν2iDH

)︸ ︷︷ ︸
M1

⊕
(
S

(H)
1 + νiS

(H)
0

)︸ ︷︷ ︸
M2

)
⊗ I`

]
= 0, (30)

from which it follows that M1 ⊕M2 has a zero eigenvalue. Let δj ,j = 1, . . . , n
and σk,k = 1, . . . ,m denote the eigenvalues of M1 and M2, respectively. Since
the eigenvalues of M1 ⊕M2 are δj + σk, to have a zero eigenvalue there must
exist j′ and k′ such that δj′ = −σk′ . The eigenvector of M1 belonging to δj′

is denoted by θj′ , the one of M2 belonging to σk′ is denoted by ψk′ . Let us
introduce φi = θj′ ⊗ ψk′ ⊗ 1`.

Now we show that φi is an eigenvector of G(L)(z) associated with νi, thus
it satisfies (29):[

B
(H)
1 + (F0 + zFL + B

(H)
0 )νi + FHν

2
i

]
· φi

= [In ⊗M2 ⊗ I` + M1 ⊗ Im ⊗ I`] · (θj′ ⊗ ψk′ ⊗ 1`)
= θj′ ⊗ (σk′ψk′)⊗ 1` + (δj′θj′)⊗ ψk′ ⊗ 1` = 0.

(31)
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Next, we show that φi is an eigenvector of F0 + zFL + FHG(L)(z):[
F0 + zFL + FHG(L)(z)

]
· φi = [F0 + zFL + FHνi] · φi

= [D0 ⊗ Im ⊗ I` + zDL ⊗ Im ⊗ I` + DHνi ⊗ Im ⊗ I`] · (θj′ ⊗ ψk′ ⊗ 1`)
= (M1/νi ⊗ Im ⊗ I`) · (θj′ ⊗ ψk′ ⊗ 1`) = δj′/νi · φi.

(32)

�

Proof of Theorem 1. First observe that matrices G
(L)
i can be written as

G
(L)
i = G̃

(L)
i ⊗ I` since the service process of the low priority class is stopped

during the busy period of the high priority class.
The proof will be similar to the one of Lemma 1, using the same techniques

as in [13] again.
Let λk and vk be the eigenvalue and the corresponding right eigenvector of

GH0 (for simplicity we assume that GH0 has distinct eigenvalues). As GH0

satisfies the matrix equation of (23), λk satisfies

det

[
B

(L)
1 + (F0 + B

(L)
0 )λk + FLλ

2
k + FH

∞∑
i=0

(G̃
(L)
i ⊗ I`)λ

i
k · λk

]
= 0, (33)

and the associated right eigenvector vk is the solution of[
B

(L)
1 + (F0 + B

(L)
0 )λk + FLλ

2
k + FH

∞∑
i=0

(G̃
(L)
i ⊗ I`)λ

i
k · λk

]
· vk = 0. (34)

By substituting (7) into (33) and by some basic manipulation we get

det

[(
λkD0⊗Im + λ2kDL⊗Im +

∞∑
i=0

λi+1
k (DH⊗Im)G̃

(L)
i

)
︸ ︷︷ ︸

N1

⊕
(
S

(L)
1 + λkS

(L)
0

)
︸ ︷︷ ︸

N2

]

= 0,

from which it follows that N1⊕N2 has a zero eigenvalue. Let αj , j = 1, . . . , n·m
and βh, h = 1, . . . , ` denote the eigenvalues of N1 and N2, respectively. Since
the eigenvalues of N1 ⊕N2 are αj + βh, to have a zero eigenvalue there must
exist j′ and h′ such that αj′ = −βh′ . The eigenvector of N1 belonging to αj′

is denoted by ζj′ , the one of N2 belonging to βh′ is denoted by ξh′ . Let us
introduce µk = ζj′ ⊗ ξh′ .

Now we show that µk is an eigenvector of GH0 , thus it satisfies (34):

(N1 ⊕N2) · µk = (N1 ⊗ I` + In+m ⊗N2) · (ζj′ ⊗ ξh′) =

= αj′ζj′ ⊗ ξh′ + ζj′ ⊗ (βh′ξh′) = 0.
(35)
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Next, we show that µk is an eigenvector of S. Observe that µk is an eigen-
vector of S if and only if it is an eigenvector of G(L)(z)|z=λk

since

S · µk =

∞∑
i=0

G
(L)
i GH0

i · µk =

∞∑
i=0

G
(L)
i λikµk = G(L)(z)|z=λk

· µk. (36)

As Lemma 1 states that the eigenvectors of matrix G(L)(z) and matrix F0 +
zFL +FHG(L)(z) are the same, it is enough to prove that µk is an eigenvector
of (F0 + zFL + FHG(L)(z))|z=λk

:

(F0 + λkFL + FHG(L)(λk)) · µk

=

[
(D0 ⊗ Im ⊗ I` + λkDL ⊗ Im ⊗ I` +

∞∑
i=0

λik(DH ⊗ Im ⊗ I`)(G̃
(L)
i ⊗ I`)

]
· (ζj′ ⊗ ξh′)

= [N1/λk ⊗ I`] · (ζj′ ⊗ ξh′) = αj′/λk(ζj′ ⊗ ξh′).
(37)

As GH0 and S have the same eigenvectors, the same matrix diagonalizes them,
consequently they commute. �

Note that the theorem can be generalized to the case when the eigenvalues
are not distinct, but it requires the detailed discussion of the combination of the
multiplicities of the eigenvalues of M1 and M2 (or, in case of the lemma, N1

and N2) that we neglect here.
Based on this commutative property, the next theorem makes the efficient

computation of GH0 and S possible.

Theorem 2. Matrices GH0 and S satisfy the following coupled matrix-quadratic
equations:

0 = B
(H)
1 + (F0 + B

(H)
0 )S + FLGH0S + FHS2,

0 = B
(L)
1 + (F0 + B

(L)
0 )GH0 + FHSGH0 + FLGH0

2.
(38)

Proof. To obtain equations for S, we multiply (13) by GH0

i from the right,
sum it from i = 1 to ∞, and add (12) to it. By using (27) we get

0 = B
(H)
1 + FLSGH0 + (F0 + B

(H)
0 )S + FH

∞∑
i=0

i∑
k=0

G
(L)
k G

(L)
i−kGH0

i. (39)

The last term becomes FHS2 by swapping the sums and exploiting that GH0

and S commute, providing the first matrix quadratic equation. The second
matrix quadratic equation can be obtained from (23), when the definition of S
is applied. �
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Interestingly, the two matrix equations show perfect symmetry. While the
solution of coupled Sylvester equations has an extensive literature (e.g. [14,
15, 16] are recent methods), there are no methods available for coupled matrix
quadratic equations (according to our best knowledge). A very simple method
is given by Algorithm 1. (We are sure that more efficient solution methods can
be developed as well, but even this simple method performs very well in our
numerical examples.)

Algorithm 1 Solving the coupled matrix quadratic equations of (38)

GH0 ,S = SolveCoupled
(
F0,FH ,FL,B

(H)
0 ,B

(H)
1 ,B

(L)
0 ,B

(L)
1

)
begin
k := 0
GH0

(0) := I
repeat

Solve 0 = B
(H)
1 + (F0 + B

(H)
0 + FLGH0

(k))S(k+1) + FHS(k+1)2 for S(k+1)

Solve 0 = B
(L)
1 +(F0+B

(L)
0 +FHS(k+1))GH0

(k+1)+FLGH0
(k+1)2 for GH0

(k+1)

k := k + 1
until ‖GH0

(k) −GH0
(k−1)‖ < ε and ‖S(k) − S(k−1)‖ < ε

return GH0
(k), S(k)

end

Note that Algorithm 1 needs only successive solution of matrix quadratic
equations, that is much more efficient than the direct application of the results
of Section 2 both in time and in space requirement, since the infinite series of

G
(L)
i matrices and the solution of (23) are not needed.

Although the results above have been derived in an algebraic way (and we
will keep using algebraic arguments in the rest of the paper as well), matri-
ces GH0 and S have important probabilistic interpretations. Let us denote
by (nH , nL) the set of states in which there are nH high and nL low priority
customers in the queue. Then, entry (a, b) of matrix GH0 is the conditional
probability that starting from state a in (0, 1) the first visit to (0, 0) occurs in
state b. Similarly, the entry (a, b) of matrix S is the conditional probability that
starting from state a in (1, 0) the first visit to (0, 0) occurs in state b. Using these
probabilistic interpretations it is easy to see that S and GH0 commute: let us
investigate the busy period generated by a high and a low priority customer,
thus the system is in (1, 1) initially. Since the probability that the first passage
to (0, 0) occurs in state b is not affected by the order of service, we immediately
have that GH0S = SGH0 .

3.2. Some properties of matrix series G
(L)
i and R

(L)
i

Let us define the following sums on matrix series G
(L)
i and R

(L)
i :

E(Gk) =

∞∑
i=0

ikG
(L)
i , E(Rk) =

∞∑
i=0

ikR
(L)
i , k ≥ 0. (40)

12



According to the following theorem, E(Gk) and E(Rk) can be obtained
efficiently as the solution of linear and matrix quadratic equations:

Theorem 3. Matrix E(G0) satisfies the following matrix-quadratic equation:

0 = B
(H)
1 + (F0 + FL + B

(H)
0 )E(G0) + FHE(G0)

2
. (41)

Furthermore, matrix E(Gk), k > 0 is the solution of the following set of linear
equations:

0 = (F0 + B
(H)
0 )E(Gk) +

k∑
a=0

(
k

a

)[
FL + FHE(Gk−a)

]
E(Ga). (42)

Similarly, matrix E(R0) satisfies the following matrix-quadratic equation:

0 = E(R0)
2
B

(H)
1 + E(R0)(F0 + FL + B

(H)
0 ) + FH . (43)

Furthermore, matrix E(Rk), k > 0 is the solution of the following set of linear
equations:

0 = E(Rk)(F0 + B
(H)
0 ) +

k∑
a=0

(
k

a

)
E(Ra)

[
FL + E(Rk−a)FH

]
. (44)

Proof. (41) can be easily obtained by summing up equations (12) and (13)
from i = 0 to ∞.

To prove (42), let us multiply the ith equation of (13) by ik and sum from
i = 1 to ∞. We get

0 = FL

∞∑
i=1

(i− 1 + 1)kG
(L)
i−1︸ ︷︷ ︸

FL
∑k

a=0 (k
a)E(Ga)

+ (F0 + B
(H)
0 )

∞∑
i=1

ikG
(L)
i︸ ︷︷ ︸

(F0+B
(H)
0 )E(Gk)

+ FH

∞∑
i=1

i∑
j=0

(i− j + j)kG
(L)
j G

(L)
i−j︸ ︷︷ ︸

FH
∑k

a=0 (k
a)E(Gk−a)E(Ga)

.

(45)

(43) and (44) can be proven similarly. �

Notice that E(Gk) and E(Rk), k > 0, can be obtained by recursive sub-
stitution by rearranging the terms of (42) and (44) appropriately.

3.3. Analysis of the zero level using the ETAQA method

A crucial step in the efficient analysis of the low priority queue is the efficient
analysis of the M/G/1 type system providing π0,i. As we address only the
solution of the queue length moments, we do not need the whole distribution

13



itself. It will be shown later that to obtain the queue length moments of the low
priority queue it is enough to obtain the queue length moments of the M/G/1
type system corresponding to the zero level. The ETAQA method has been
developed exactly for such problems, thus it is able to calculate reward like
quantities in M/G/1 type systems efficiently [12].

Taking a closer look at our M/G/1 type system (19) we can see that it is
not a generic M/G/1 type system, as its matrix blocks are defined recursively
according to (12) and (13). Using the ETAQA framework it is possible to obtain
the queue length moments as the solution of linear systems of equations. In case
of our special M/G/1 type system, however, these linear systems turn out to
have closed form coefficient matrices.

The discussion on the construction of these systems and their transforma-
tions to closed form is divided into two parts:

• the present section describes how to obtain vectors π0,0 and π0,? =
∑∞
i=1 π0,i,

that play an important role in the ETAQA methodology;

• the next section describes all other details related to the queue length
moments.

Now we are going to follow the same steps as in [12], but since our M/G/1
type system has only one irregular block (the top left one, see (19)), the solution
will be simpler (the generator considered in [12] has three irregular blocks).

Theorem 4. Probability vectors π0,0 and π0,? =
∑∞
i=1 π0,i are the solutions of

the following set of linear equations:[
π0,0 π0,?

]
·

F0+FHG
(L)
0 −

∞∑
i=2

TiGH0 FL+FH

∞∑
i=1

G
(L)
i +

∞∑
i=2

TiGH0

B
(L)
1 −

∞∑
i=1

TiGH0 F0+B
(L)
0 +FL+FH

∞∑
i=0

G
(L)
i +

∞∑
i=1

TiGH0


=
[
0 0

]
,

(46)

π0,01 + π0,?1 = 1. (47)

Proof. The first block of equations in π0Q0 = 0 (see (19)) are

0 = π0,0(F0 + FHG
(L)
0 ) + π0,1B

(L)
1 . (48)

To express π0,1 in terms of π0,0 and π0,? we apply the same steps as in [12], thus
we have

π0,1B
(L)
1 = π0,?B

(L)
1 −

∞∑
i=2

π0,iB
(L)
1 . (49)

14



By exploiting that (23) gives B
(L)
1 = −T0GH0 and by applying (20), the second

term can be expressed as

∞∑
i=2

π0,iB
(L)
1 =

∞∑
i=2

i−1∑
k=0

π0,kTi−kGH0

= π0,0

∞∑
i=2

TiGH0 +

∞∑
k=1

π0,k

∞∑
i=k+1

Ti−kGH0

= π0,0

∞∑
i=2

TiGH0 + π0,?

∞∑
i=1

TiGH0 ,

(50)

that, combining with (49) and (48) gives the first set of equations in (46).
The second set of equations in (46) is obtained by summing the block of

equations of π0Q0 = 0 from the second one to infinity. This gives

0 = π0,0

(
FL + FH

∞∑
i=1

G
(L)
i

)
+

∞∑
k=2

π0,kB
(L)
1

+

∞∑
k=1

π0,k

(
F0 + FL + B

(L)
0 + FH

∞∑
i=0

G
(L)
i

)
,

(51)

that, by expressing the second term according to (50) provides the second set
of equations in (46).

Finally, (47) is the normalization condition corresponding to (17). �

Note that
∑∞
i=0 G

(L)
i = E(G0) and

∑∞
i=1 G

(L)
i = E(G0) − G

(L)
0 . The

next theorem provides closed form expressions for the remaining infinite sums
in (46).

Theorem 5. Matrices
∑∞
i=1 TiGH0 and

∑∞
i=2 TiGH0 satisfy

∞∑
i=1

TiGH0 =

FLGH0 +FH

[
(E(G0)−SGH0 + 1α)(I−GH0 +1α)−1 + E(G1)1α−S

]
GH0 ,

(52)

and

∞∑
i=2

TiGH0 =

∞∑
i=1

TiGH0 − FLGH0 − FH(S −G
(L)
0 ), (53)

where vector α is the solution of αGH0 = α, α1 = 1.
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Proof. Applying the definition of Ti (21) and S (27) we have

∞∑
i=1

TiGH0 = FLGH0 + FH

∞∑
i=1

∞∑
k=i

G
(L)
k GH0

k−iGH0

= FLGH0 + FH

( ∞∑
i=0

∞∑
k=i

G
(L)
k GH0

k−i − S

)
GH0

= FLGH0 + FH

( ∞∑
k=0

G
(L)
k

k∑
i=0

GH0

i − S

)
GH0 .

(54)

It is easy to check by induction that GH0

i = (GH0 −1α)i +1α holds for i > 0:

GH0

i =
(
(GH0 − 1α)i−1 + 1α

)
(GH0 − 1α+ 1α)

= (GH0 − 1α)i + (GH0 − 1α)i−11α︸ ︷︷ ︸
(GH0

i−1−1α)1α=0

+1α(GH0 − 1α)︸ ︷︷ ︸
1α−1α=0

+1α1α︸ ︷︷ ︸
1α

. (55)

Furthermore, by following the same arguments as in [9], page 64, we have that
the inverse of matrix I−GH0 +1α exists as it does not have zero eigenvalue.

Thus, we can express
∑k
i=0 GH0

i in a closed form as

k∑
i=0

GH0

i =

k∑
i=0

(GH0 − 1α)i + k1α

= (I −GH0

k+1 + 1α)(I −GH0 + 1α)−1 + k1α.

(56)

Combining (54) and (56) gives

∞∑
i=1

TiGH0 = FLGH0

+ FH

( ∞∑
k=0

G
(L)
k (I −GH0

k+1 + 1α)︸ ︷︷ ︸
E(G0)−SGH0+E(G0)1α

(I −GH0 + 1α)−1 + E(G1)1α− S

)
GH0 ,

which equals to (52). We expoited the fact that E(G0) is a stochastic matrix
thus E(G0)1 = 1.

Now we prove (53). Applying the definition of T1 (21) we get

∞∑
i=2

TiGH0 =

∞∑
i=1

TiGH0 − T1GH0

=

∞∑
i=1

TiGH0 − FLGH0 − FH

∞∑
k=1

G
(L)
k GH0

k

︸ ︷︷ ︸
S−G

(L)
0

. (57)

�
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At this point we are able to obtain π0,0 and π0,? as the solution of a linear
system, with the coefficient matrix expressed in a closed form.

3.4. Efficient computation of the queue length moments

Instead of expressing the queue length moments directly, it is more useful to
introduce the following vectors:

E(Nk
L) =

∞∑
j=0

jkπ
(L)
j . (58)

The kth moment of the queue length of the low priority class is given by the
sum of the elements of E(Nk

L)

Theorem 6. Vectors E(Nk
L), k ≥ 0 are the solutions of the following set of

linear equations:

E(Nk
L) =

k∑
d=0

(
k

d

)
E(Nd

L)E(Rk−d) + r
(k)
0 , (59)

where matrices E(Rk−d) are given by (44) and vectors r
(k)
0 , k ≥ 0 are defined

by

r
(k)
0 =

∞∑
j=0

jkπ0,j . (60)

Proof. By plugging (26) into (58), we have

E(Nk
L) =

∞∑
j=0

j∑
a=0

(j − a+ a)kπ(L)
a R

(L)
j−a + r

(k)
0

=

k∑
d=0

(
k

d

) ∞∑
a=0

∞∑
j=a

adπ(L)
a (j − a)k−dR

(L)
j−a + r

(k)
0 ,

(61)

that gives (59). �

The real difficulty is obtaining vectors r
(k)
0 . Note that r

(k)
0 is similar to the

kth moment of the queue length of an M/G/1 type queue (see (19)) where
the probabilities are not normalized to one but to a different constant. This
little difference in the normalization does not withhold us to apply the ETAQA
method, that has been developed exactly for such problems, thus to calculate
reward like quantities like queue length moments efficiently. Just like in Section
3.3, our special M/G/1 type system leads to a solution that is simpler than the
one presented in [12] for the general case.
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Vector r
(0)
0 is obtained easily since

r
(0)
0 =

∞∑
j=0

π0,j = π0,0 + π0,?. (62)

Vectors r
(k)
0 , k > 0 are given by the next theorem, which is the customiza-

tion of ETAQA to our specific problem.

Theorem 7. Vector r
(k)
0 , k > 0 is the solution of the following system of linear

equations:

r
(k)
0 ·

(
B

(L)
0 + B

(L)
1 + FHE(G0) + F0 + FL

)
= −π0,0

(
F0 + 2kFL + FH

k∑
d=0

(
k

d

)
E(Gd)

)

−
k∑
a=1

(
k

a

)
r
(k−a)
0

(
B

(L)
0 + F0 + 2aFL + FH

a∑
d=0

(
a

d

)
E(Gd)

)
,

(63)

r
(k)
0 ·

(
B

(L)
1 1− FL1− FHg

(0)
)

= π0,0

(
FL1 + FHg

(k)
)

+

k∑
j=1

(
k

j

)
r
(k−j)
0

(
FL1 + FHg

(j)
)
,

(64)

where vector g(k), k ≥ 0 is defined by

g(k) =

∞∑
i=1

∞∑
a=i

ikG(L)
a 1. (65)

Proof. Multiplying the ith equilibrium equation in (19) by ik, we get

1kπ0,0(F0 + FHG
(L)
0 ) + 1kπ0,1B

(L)
1 = 0,

2kπ0,0(FL + FHG
(L)
1 ) + 2kπ0,1(F0 + FHG

(L)
0 + B

(L)
0 ) + 2kπ0,2B

(L)
1 = 0,

3kπ0,0(FHG
(L)
2 ) + 3kπ0,1(FL + FHG

(L)
1 ) + 3kπ0,2(F0 + FHG

(L)
0 + B

(L)
0 )

+ 3kπ0,3B
(L)
1 = 0,

. . . .

(66)
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Summing up these equations from i = 1 to ∞ gives:

0 = π0,0

(
F0 + 2kFL + FH

∞∑
i=0

(i+ 1)kG
(L)
i

)
+

∞∑
i=1

ikπ0,iB
(L)
1︸ ︷︷ ︸

r
(k)
0 B

(L)
1

+

∞∑
h=1

π0,h

( ∞∑
i=0

(i+ h+ 1)kFHG
(L)
i + (h+ 1)k(F0 + B

(L)
0 ) + (h+ 2)kFL

)
.

(67)

The last term can be simplified further as

∞∑
h=1

π0,h

( ∞∑
i=0

(i+ h+ 1)kFHG
(L)
i + (h+ 1)k(F0 + B

(L)
0 ) + (h+ 2)kFL

)

=

k∑
a=0

(
k

a

) ∞∑
h=1

π0,h

( ∞∑
i=0

(i+ 1)ahk−aFHG
(L)
i + hk−a(F0 + B

(L)
0 ) + hk−a2aFL

)

=

k∑
a=0

(
k

a

)
r
(k−a)
0

(
FH

∞∑
i=0

(i+ 1)aG
(L)
i + F0 + B

(L)
0 + 2aFL

)
,

(68)

which, plugging into (67) and applying
∑∞
i=0(i + 1)aG

(L)
i =

∑a
d=0

(
a
d

)
E(Gd)

provides (63).
Note that the coefficient matrix of this set of linear equations is a generator,

thus it is under-determined. An additional linear equation is obtained from the
flow balance equations between the neighboring levels multiplied by ik:

1kπ0,1B
(L)
1 1 = 1kπ0,0

(
FL1 + FH

∞∑
a=1

G(L)
a 1

)

2kπ0,2B
(L)
1 1 = 2kπ0,0FH

∞∑
a=2

G(L)
a 1 + 2kπ0,1

(
FL1 + FH

∞∑
a=1

G(L)
a 1

)

3kπ0,3B
(L)
1 1 = 3kπ0,0FH

∞∑
a=3

G(L)
a 1 + 3kπ0,1FH

∞∑
a=2

G(L)
a 1

+ 3kπ0,2

(
FL1 + FH

∞∑
a=1

G(L)
a 1

)
. . .

(69)
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Summing up these equations gives

∞∑
i=1

ikπ0,iB
(L)
1 1︸ ︷︷ ︸

r
(k)
0 B

(L)
1 1

= π0,0

(
FL1 + FH

∞∑
i=1

∞∑
a=i

ikG(L)
a 1︸ ︷︷ ︸

g(k)

)

+

∞∑
i=1

π0,i

(i+ 1)kFL1 +

∞∑
a=1

(a+ i)k
∞∑
j=a

FHG
(L)
j 1

 .

(70)

With some algebra the last term simplifies to

∞∑
i=1

π0,i

(i+ 1)kFL1 +
∞∑
a=1

(a+ i)k
∞∑
j=a

FHG
(L)
j 1


=

k∑
d=0

(
k

d

)( ∞∑
i=1

ik−dπ0,i︸ ︷︷ ︸
r(k−d)

FL1 +

∞∑
i=1

ik−dπ0,i︸ ︷︷ ︸
r(k−d)

FH

∞∑
a=1

∞∑
j=a

adG
(L)
j 1︸ ︷︷ ︸

g(d)

)
.

(71)

Finally, (70) and (71) provide (64). �

The next theorem gives an efficient way to obtain vectors g(k).

Theorem 8. Vector g(0) is given by

g(0) = E(G1)1, (72)

and vectors g(k), k > 0 are the solutions of the following set of linear equations:

0 =
(
FL + F0 + FH + B

(H)
0

)
g(k) + FH

∞∑
d=0

(
k

d

)
E(Gk−d)g(d)

+ FL

k∑
d=0

(
k

d

)
E(Gd)1.

(73)

Proof. (72) can be proven by simple algebraic manipulations:

g(0) =

∞∑
i=1

∞∑
a=i

G(L)
a 1 =

∞∑
a=1

a∑
i=1

G(L)
a 1 =

∞∑
a=1

aG(L)
a 1 = E(G1)1. (74)

To prove (73) let us multiply equations (13) by
∑i
a=0 a

k
1 from the right and

sum them from i = 1 to ∞. We get

0 = FL

∞∑
i=1

G
(L)
i−1

i∑
a=0

ak1 + (F0 + B
(H)
0 )

∞∑
i=1

G
(L)
i

i∑
a=0

ak1

+ FH

∞∑
i=1

i∑
j=0

G
(L)
j G

(L)
i−j

i∑
a=0

ak1.

(75)
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The first term at the right hand side of (75) simplifies to

FL

∞∑
i=1

G
(L)
i−1

i∑
a=0

ak1 = FL

∞∑
i=1

G
(L)
i−1

i−1∑
a=0

ak1 + FL

∞∑
i=1

G
(L)
i−1(i− 1 + 1)k1

= FLg
(k) + FL

k∑
d=0

(
k

d

)
E(Gd)1.

(76)

The second term of (75) equals to (F0 +B
(H)
0 )g(k). The third term needs a bit

more complex treatment. Using (40) and (65) we have

FH

∞∑
i=1

i∑
j=0

G
(L)
j G

(L)
i−j

i∑
a=0

ak1 = FH

∞∑
j=0

G
(L)
j

∞∑
i=j

G
(L)
i−j

 j∑
a=0

ak1 +

i∑
a=j+1

ak1


= FH

∞∑
j=0

G
(L)
j

j∑
a=0

ak
∞∑
i=j

G
(L)
i−j1︸ ︷︷ ︸

=E(G0)1 = 1

+FH

∞∑
j=0

G
(L)
j

∞∑
i=j

G
(L)
i−j

i−j∑
a=1

(a+ j)k1

= FHg
(k) + FH

k∑
d=0

(
k

d

) ∞∑
j=0

G
(L)
j jk−d︸ ︷︷ ︸

E(Gk−d)

∞∑
i=0

i∑
a=1

G
(L)
i ad1︸ ︷︷ ︸

g(d)

.

(77)

Substituting (76) and (77) into (75) provides (73). �

As an overview of the presented results, Algorithm 2 enumerates the steps
needed to calculate the first K moments of the low priority queue with the
proper references to the corresponding formulas.

Algorithm 2 Calculating the first K moments of the low priority queue

E(N0
L), . . . , E(NK

L ) = LowQLMoms
(
D0,DH ,DL,S

(H)
0 ,S

(H)
1 ,S

(L)
0 ,S

(L)
1 ,K

)
begin

Calculate matrices F0,FH ,FL,B
(H)
0 ,B

(H)
1 ,B

(L)
0 ,B

(L)
1 based on (7)

Obtain matrices GH0 and S using Algorithm 1

Obtain matrix G
(L)
0 by solving (12)

Obtain matrices E(Gk) and E(Rk), k = 0 . . .K applying Theorem 3
Calculate matrices

∑∞
i=1 TiGH0 and

∑∞
i=2 TiGH0 applying Theorem 5

Obtain matrices π0,0 and π0,? applying Theorem 4
Calculate vectors g(k), k = 0 . . .K applying Theorem 8
Calculate vectors r

(k)
0 , k = 0 . . .K applying Theorem 7

Calculate vectors E(Nk
L), k = 0 . . .K applying Theorem 6

return E(N0
L), . . . , E(NK

L )
end
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4. Numerical example

In this section we demonstrate the features of the presented method. All
algorithms have been implemented in MATLAB. The execution environment is
an average PC with an Intel Core i7 processor running at 3.4 GHz and 4 GB
of RAM. The matrix-quadratic equations arising at several steps are solved by
logarithmic reduction, while we used the SMCSolver package ([17]) for obtaining
the fundamental matrix of the M/G/1 queue corresponding to the zero level
(note that it is used only by the other methods involved in the comparison as
our method does not need it).

4.1. Comparison of three solution methods

In the first numerical experiment three methods are compared to solve a
particular MMAP/MAP/1 preemptive priority queue. The methods involved
in the comparison are:

• The method of [1]. We transformed this method for the continuous time
system we have.

• The method of [6].

• The method presented in this paper.

The MAPs describing the arrival and service processes have been generated
by the inverse characterization method of [18] based on the first three marginal
moments and the lag-1 autocorrelations given by Table 1 (there is no dependence
between the high and low priority arrivals now).

The matrices of the MAPs generating the arrivals are as follows:

D
(H)
0 =

[
−0.40571 0.039699

0 −2.433

]
, D

(H)
1 =

[
0.36601 0
0.037527 2.3955

]
,

D
(L)
0 =

[
−0.52822 0.071871

0 −2.2718

]
, D

(L)
1 =

[
0.45635 0
0.16813 2.1037

]
,

from which the MMAP input of the queue is obtained as D0 = D
(H)
0 ⊕D

(L)
0 ,

DH = D
(H)
1 ⊗ I2, DL = I2 ⊗D

(L)
1 , thus it has 4 phases.

The MAPs corresponding to the service processes are

S
(H)
0 =

[
−0.12905 0.10141

0 −6.6834

]
, S

(H)
1 =

[
0.027642 0
0.17159 6.5119

]
,

S
(L)
0 =

[
−0.2699 0.20688

0 −4.7857

]
, S

(L)
1 =

[
0.063027 0
0.091873 4.6938

]
.

With these parameters the utilization of the system was 0.87143.
The queue length moments of the low priority queue obtained by the pre-

sented method are depicted in Table 2.
The execution times belonging to the three methods involved in the com-

parison are summarized by Table 3. Both [1] and [6] require the generation
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1st moment 2nd moment 3rd moment lag-1 ac.
High pr. arrival 0.7 2 13 0.3
Low pr. arrival 1 3 16 0.2

High pr. service 0.4 4 92 0.1
Low pr. service 0.3 0.8 8 0.1

Table 1: Parameters of the MAPs for the numerical example

k kth moment of the queue length
0 1
1 115.78912
2 40074.713
3 21967427
4 1.6419872×1010

5 1.5518066×1013

6 1.7714857×1016

7 2.3689384×1019

8 3.630129×1022

Table 2: Queue length moments of the low priority queue

of matrix series R
(L)
k . In this particular example 1513 elements of this matrix

series were calculated to achieve the stopping criteria that the largest element of

the last R
(L)
k matrix is less then 10−9. This alone is a significant computational

effort, it took 54 seconds on our PC. Next, the solution of the M/G/1 system
corresponding to the zero level is required for calculating matrix GH0 and the
π0,i probabilities. Our simple iterative algorithm to solve the coupled matrix
quadratic equations turned out to be more efficient to calculate GH0 than the
Newton iteration based M/G/1 type solver. Regarding the π0,i probabilities,
the method in [1] requires the whole π0,i, i ≥ 0 distribution, while the other
two methods require only some elements of it. To be precise, the method in
[6] needs π0,0 and π′0 =

∑∞
i=0 iπ0,i, that are calculated by a system of linear

equations (with coefficient matrix containing infinite sums), while the presented
method needs π0,0 and π0,? given by the ETAQA method with all infinite sums
eliminated. Finally, the last row in the Table shows the time between the anal-
ysis of the zero level and the completion of the queue length moments. Again,
[1] is the slowest, since it operates with the huge matrix R. [6] is much better,
because it needs to solve only a couple of much smaller systems of linear equa-
tions. Finally, the new method is the fastest here as well, since the coefficient
matrices of the arising linear systems of equations have no infinite summations.

The speed advantage of the presented method becomes more pronounced
when the size of the MAPs increases. The small example we studied so far has
only 16 phases (as the arrival process has 4 phases, and the service processes
of both the high and low priority class have 2 phases). Table 4 shows the
analysis times with more phases. To get 32 phases we increased the MAP of
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[1] [6] new method

generating R
(L)
k matrices: 54.3s 54.3s -

obtaining GH0 : 0.3s 0.3s 0.1s
analysis of level zero: 2.6s 0.05s 0.004s

queue length moments: 87.7s 0.2s 0.005s
Total execution time: 145s 54.8s 0.11s

Table 3: Execution time analysis

the low priority arrivals by two as D
(L)×2
0 = D

(L)
0 ⊕D

(L)
0 /2 and D

(L)×2
1 =

D
(L)
1 ⊕D(L)

1 /2 (the D0,DH and DL matrices of the MMAP input of the queue
are computed as before). To get 64 phases the MAPs of arrivals of both classes
have been increased in the same way. The method of [1] was not able to handle
more than 16 phases, because matrix R in [1], page 30, did not fit into the 4
GB of memory we had. As it can be seen on Table 4, our method is clearly

faster, mainly by avoiding the calculation of the R
(L)
k matrices.

16 phases 32 phases 64 phases
method of [1] 145s - -
method of [6] 54.8s 132s 2612s

new method 0.11s 0.33s 6s

Table 4: Execution times vs. the number of phases

(Note that in all examples in this paper, except for this one, the small input
has been used with 16 phases.)

4.2. Estimation of the queue length distribution based on moments

The execution times studied above correspond to the first moment only. Our
method turned out to be very robust and is able to calculate a large number of
moments without any difficulties. As depicted on Figure 1, the execution time
does increase only slightly with the number of moments.

Although only the first few moments have intuitive meaning, it is still rea-
sonable to calculate a large number of moments. According to [19] it is possible
to give upper and lower bounds for the queue length distribution based on the
moments. Figure 2 depicts the bounds with increasing number of moments in-
volved into the estimation. We were not able to utilize more than 21 moments
due to numerical reasons: [19] needs to solve two linear systems, one of them
has a Hankel, the other has a Vandermonde coefficient matrix. With a large
number of moments both are ill-conditioned due to the limited accuracy of the
machine representation of floating point numbers.

5. Conclusion

The method presented in this paper calculates queue length moments of
the MMAP/MAP/1 preemptive priority queue in a faster and more accurate
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way than former methods. To achieve these results this paper reveals some yet
unknown relations between fundamental matrices of preemptive priority queues.
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