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Abstract

Sensor network localization problem is to determine the position of the sensor
nodes in a network given pairwise distance measurements. Such problem can
be formulated as a polynomial minimization via the least squares method.
This paper presents a canonical duality theory for solving this challenging
problem. It is shown that the nonconvex minimization problem can be re-
formulated as a concave maximization dual problem over a convex set in
a symmetrical matrix space, and hence can be solved efficiently by com-
bining a general (linear or quadratic) perturbation technique with existing
optimization techniques. Applications are illustrated by solving some rela-
tively large-scale problems. Our results show that the general sensor network
localization problem is not NP-hard unless its canonical dual problem has
no solution. Fundamental ideas for solving general NP-hard problems are
discussed.

Keywords: Sensor network localization; Canonical duality theory;
Perturbation method; Global optimization; NP-Hard problems

1. Introduction

Sensor network localization is an important problem in communication
and information theory, and has attracted an increasing attention [3, 8, 26,
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35, 45]. The information collected through a sensor network can be inter-
preted and relayed far more effectively if it is known where the information is
coming from and where it needs to be sent. Therefore, it is often very useful
to know the positions of the sensor nodes in a network. Wireless sensor net-
work consists of a large number of wireless sensors located in a geographical
area with the ability to communicate with their neighbors within a limited
radio range. Sensors collect the local environmental information, such as
temperature or humidity, and can communicate with each other. Wireless
sensor network is applicable to a range of monitoring applications in civil and
military scenarios, such as geographical monitoring, smart homes, industrial
control and traffic monitoring. There is an urgent need to develop robust and
efficient algorithms that can identify sensor positions in a network by using
only the measurements of the mutual distances of the wireless sensors from
their neighbors, which is called neighboring distance measurements. The ad-
vance of wireless communication technology has made the sensor network a
low-cost and highly efficient method for environmental observations.

Sensor network localization can also be formulated as an optimization
problem by least squares method. However, this problem is nonconvex with
many local minimizers. To find global optimal solutions by traditional the-
ories and local-search methods is fundamentally difficult. It turns out that
the general sensor localization problem has been considered to be NP-hard
[2, 32]. Several approximation methods have been developed for solving
this difficult optimization problem (see [33] and references cited therein).
The semi-definite programming (SDP) and second-order cone programming
(SOCP) relaxations are two of the most popular methods studied recently
[4, 34, 41, 43]. The basic idea of SDP relaxation is to think of the quadratic
terms as new variables subject to a linear matrix inequality. The SOCP
relaxation is developed in a similar way. For both SDP and SOCP relax-
ation, computed sensor locations are not accurate when the solution of the
localization problem is not unique. This is because many numerical schemes,
such as primal-dual and interior point methods, for SDP or SOCP relaxation
often return to the analytic centre of the solution set. These solutions are,
in general, not global optimal solutions.

Mathematically speaking, the localization problem in R
d can be stated

as follows [1, 7]: Consider a sensor network in R
d with m anchors and n

sensors. An anchor is a node whose location ak ∈ R
d, where k = 1, · · · , m,

is known, and a sensor is a node whose location xi ∈ R
d, where i = 1, · · · , n,

is yet to be determined. For a pair of sensors xi and xj , their Euclidean
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distance is denoted as dij. Similarly, for a pair of sensor xi and anchor ak,
their Euclidean distance is denoted as eik. In general, not all pairs of sensor
/sensor and sensor/anchor are known, so the known pair-wise distances of
sensor/sensor and sensor/anchor are denoted as (i, j) ∈ Ad and (i, k) ∈ Ae,
respectively. However, if we directly apply the general least squares method,
the computation is very expensive and not practical for large problems [25].

Canonical duality theory developed from nonconvex analysis and global
optimization (see [13, 23]) is a powerful methodology, which has been used
successfully for solving a large class of challenging problems in various disci-
plines. See, for example, [17, 20, 21, 28, 44]. This paper presents an effective
perturbation method based on the canonical duality theory to solve the gen-
eral sensor network localization problem. Our main contribution is to show
that this nonconvex optimization problem is not NP-hard unless its canonical
dual problem has no solution. The rest of this paper is organized as follows.
In the next section, we first reformulate the original problem as an optimiza-
tion problem, where the decision variable is expressed in tensor (matrix)
forms. In Section 3, the canonical duality theory is discussed in matrix space
and a general analytical solution form is obtained by a complementary-dual
principle. In section 4, the general sensor localization problem is first refor-
mulated in vector space and then transformed as a concave maximization
dual problem over a convex feasible space S+

a . Based on the triality theory,
a quadratic perturbation method is proposed, which shows that the noncon-
vex sensor network optimization problem is not NP-hard unless its canonical
dual problem has no solution in S+

a . Section 5 presents some concrete nu-
merical experiments for sensor localization problems with two, 18, 20 and
200 sensors. The cases with noise are also considered. Results are compared
with standard semi-definite programming method. Concluding remarks are
given in the last section.

The notations used in this paper are: R denotes the set of real numbers;
ATdenotes the transpose of matrix A. For a finite set S, |S| denotes its
cardinality and the bilinear form 〈u, u∗〉 is simply the scalar product of two
vectors or tensors.

2. Problem Statement

Let us consider a general sensor network localization problem, where the
sensor locations are to be determined by solving the system of nonlinear
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equations

(P0) : ‖xi − xj‖ = dij, (i, j) ∈ Ad, (1)

‖xi − ak‖ = eik, (i, k) ∈ Ae. (2)

Here, the vectors ak, k = 1, · · · , m, are specified anchors, where

‖xi − xj‖ =

√

√

√

√

d
∑

α=1

(xα
i − xα

j )
2

denotes the Euclidian distance between locations xi and xj ∈ R
d, i =

1, · · · , n; j = 1, · · · , n, and

Ad = {(i, j) ∈ [n]× [n] | ‖xi − xj‖ = dij, i < j, dij are given distances},
Ae = {(i, k) ∈ [n]× [m] | ‖xi − ak‖ = eik, eik are given distances},

where [N ] = {1, · · · , N} for any integer N .
For a small number of sensors, it might be possible to compute sensor lo-
cations by solving equations (1)-(2). However, solving this algebraic system
can be very expensive computationally when the number of sensors is large.

By the least squares method [37], the sensor network localization problem
(P0) can be reformulated as a fourth-order polynomial optimization problem
stated below.

(P1) : min







Π(X) =
∑

(i,j)∈Ad

1

2
wij(‖xi − xj‖2 − d2ij)

2

+
∑

(i,k)∈Ae

1

2
qik(‖xi − ak‖2 − e2ik)

2







, (3)

where X = [x1, x2, · · · , xn] = {xα
i } ∈ R

d×n is a matrix with each column xi

being a position in R
d, wij , qik > 0 are given weights. Obviously, X are true

sensor locations if and only if the optimal value is zero. This nonconvex op-
timization problem appears extensively in mathematical physics [24], chaotic
dynamics [36], numerical algebra [37], computational biology [44], as well as
finite element analysis of structural mechanics [5, 38]. Due to the noncon-
vexity, this problem could have many local minimizers. It is fundamentally
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difficult, or even impossible, to find global optimal solutions by traditional
direct methods. In the following, we shall see that by using the canonical
duality theory, this nonconvex minimization problem can be reformulated as
a concave maximization dual problem over a convex set under certain condi-
tions, which can be solved efficiently by a proposed perturbation method.

3. Canonical duality theory: A brief review

The canonical duality theory is composed mainly of 1) a canonical trans-
formation; 2) a complementary-dual principle; 3) a triality theory. This the-
ory can be demonstrated by solving the following general nonconvex problem
(the primal problem (P) in short)

(P) : min
x∈Xa

{

Π(x) =
1

2
〈x,Ax〉 − 〈x, f〉+W (Bx)

}

, (4)

where Xa ⊂ R
d×n is a given feasible space, 〈x,x∗〉 denotes the bilinear form

between x and its dual variable x∗, f ∈ X ∗
a ⊂ R

n×d is a given matrix,
A : Xa → X ∗

a is a given self-adjoint linear operator, B is a linear operator
which assign each x ∈ Xa to a (deformation gradient-like) variable in a
linear space Wa, on which, W (w) : Wa → R is a well-defined differentiable
nonconvex function.

The canonical transformation is to choose a “geometrically admissible”
nonlinear operator (see [13])

ξ = Λ(x) : Xa → Ea, (5)

which maps the convex set Xa into a convex set Ea, and a canonical function
V : Ea → R such that the nonconvex functional W (w) can be recast in a
canonical form W (Bx) = V (Λ(x)). Thus, the primal problem (P) can be
written in the following canonical form:

(P) : min
x∈Xa

{Π(x) = V (Λ(x))− U(x)} , (6)

where U(x) = 〈x, f〉 − 1
2
〈x,Ax〉. By the definitions introduced in [13], a

nonlinear operator Λ(x) : Xa → Ea is said to be geometrically admissible if it
can be used as a (deformation) measure such that the canonical transforma-
tionW (Bx) = V (Λ(x)) satisfies certain necessary (geometrical and physical)
conditions, for examples, the objectivity and isotropy. Let

R = {R ∈ R
m×m| RT = R−1, detR = 1}
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be a proper orthogonal rotation group in R
m.

Definition 1 (Objectivity and Isotropy [13] ). A subset Wa is said to
be objective if

Rw ∈ Wa ∀w ∈ Wa and ∀R ∈ R. (7)

A real-valued function W : Wa → R is said to be objective if its domain is
objective and

W (Rw) = W (w) ∀w ∈ Wa and ∀R ∈ R. (8)

A subset Wa is said to be isotropic if

wR ∈ Wa ∀w ∈ Wa and ∀R ∈ R. (9)

A real-valued function W : Wa → R is said to be isotropic if its domain is
isotropic and

W (wR) = W (w) ∀w ∈ Wa and ∀R ∈ R. (10)

Geometrically speaking, the objectivity means that the function W (w)
does not depend on rotation, but only on certain objective measure of its
variablew. Therefore, the most simple objective function is the right Cauchy-
Green deformation tensor C = wTw since

C(Rw) = wTRTRw = wTw = C(w) � 0 ∀R ∈ R.

While the isotropy implies that the function W (w) possesses a certain sym-
metry. Clearly, the left Cauchy-Green deformation tensorwwT is an isotropic
measure due to the fact

(wRT )(wRT )T = wwT � 0 ∀R ∈ R.

The concepts of objectivity and isotropy play important role in Semi-Definite
Programming (SDP) and integer programming [16, 19]. Particularly, if w is
a vector, the objectivity is identical to isotropy. Furthermore, if the objec-
tive function W (w) is considered as a kinetic energy and U(x) is viewed as
the potential energy, then the function Π(x) is the original Lagrangian in
mathematical physics [13].

The objectivity in science is also refereed as frame invariance, which
lays a foundation for mathematical physics and systems theory. In fact,
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the canonical duality theory was originally developed from this concept [13],
which is the reason why this theory can be applied not only for modeling
and analysis of complex systems, but also for solving a large class of noncon-
vex/nonsmooth/discrete problems in both mathematical physics and global
optimization (see review article [21]).

A differentiable function V (ξ) is said to be a canonical function on its
domain Ea if the duality mapping ς = ∇V (ξ) from Ea to its range E∗

a is
invertible. Let 〈ξ; ς〉 denote the bilinear form on Ea × E∗

a . Thus, for the
given canonical function V (ξ), its Legendre conjugate V ∗(ς) can be defined
uniquely by the Legendre transformation

V ∗(ς) = sta{〈ξ; ς〉 − V (ξ) | ξ ∈ Ea}, (11)

where the notation sta{g(ξ)| ξ ∈ Ea} stands for finding stationary point of
g(ξ) on Ea. It is easy to prove that the following canonical duality relations
hold on Ea × E∗

a :

ς = ∇V (ξ) ⇔ ξ = ∇V ∗(ς) ⇔ V (ξ) + V ∗(ς) = 〈ξ; ς〉. (12)

By this one-to-one canonical duality, the nonconvex term W (Dx) = V (Λ(x))
in the problem (P) can be replaced by 〈Λ(x); ς〉 − V ∗(ς) such that the non-
convex function Π(x) is reformulated as the so-called Gao and Strang total
complementary function [13]:

Ξ(x, ς) = 〈Λ(x); ς〉 − V ∗(ς)− U(x). (13)

By using this total complementary function, the canonical dual function
Πd(ς) can be obtained as

Πd(ς) = sta{Ξ(x, ς) | x ∈ Xa}
= UΛ(ς)− V ∗(ς), (14)

where UΛ(ς) is defined by

UΛ(ς) = sta{〈Λ(x); ς〉 − U(x) | x ∈ Xa}. (15)

In many applications, the geometrically nonlinear operator Λ(x) is usually a
tensor-valued quadratic function

Λ(x) =

{

1

2
〈x,Hklx〉

}

: Rd×n → R
n×n, (16)
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where Hkl : Xa → X ∗
a ∀k, l = 1, . . . , n is a symmetrical linear operator. In

this case, the canonical dual variable ς ∈ E∗
a ⊂ R

n×n is a symmetrical tensor
and the total complementary function Ξ can be written in the following form

Ξ(x, ς) =
1

2
〈x,G(ς)x〉 − V ∗(ς)− 〈x, f〉, (17)

where
G(ς) = A+

∑

k,l

ςklHkl. (18)

For any given ς ∈ E∗
a , the criticality condition ∇xΞ(x, ς) = 0 leads to the

canonical equilibrium equation G(ς)x = f . Let

Sa = {ς ∈ E∗

a | detG(ς) 6= 0}. (19)

Then on Sa, the solution to canonical equilibrium equation can be written as
x = G−1(ς)f . Therefore, replacing the primal variable x by this generalized
solution in Ξ, the canonical dual function (14) can be explicitly formulated
in the form of

Πd(ς) = −1

2
〈f ,G−1(ς)f〉 − V ∗(ς). (20)

Theorem 1 (Complementary-Dual Principle [13]). The function Πd(ς)
is canonically dual to Π(x) in the sense that if ς̄ is a critical point of Πd(ς),
then

x̄ = G−1(ς̄)f (21)

is a critical point of Π(x) and

Π(x̄) = Ξ(x̄, ς̄) = Πd(ς̄). (22)

Conversely, if x̄ is a solution to (P), it must be in the form of (21) for critical
solution ς̄ of Πd(ς).

This theorem has extensive applications in nonconvex analysis and global
optimization [17]. In finite deformation theory, this complementary-dual
principle solved a 50-years open problem [29]. Note that the feasible set Sa

is not convex, in order to identity the extremality property of the critical
solutions, we need to introduce the following subsets of Sa:

S+
a = {ς ∈ Sa| G(ς) ≻ 0}, S−

a = {ς ∈ Sa| G(ς) ≺ 0}.
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Theorem 2 (Triality Theory). Suppose the (x̄, ς̄) is a critical point of
Ξ(x, ς). The critical solution x̄ is a unique global minimizer of (P) if and
only if ς̄ ∈ S+

a is a global maximizer of Πd(ς) on S+
a , i.e.

Π(x̄) = min
x∈Xa

Π(x) ⇔ max
ς∈S+

a

Πd(ς) = Πd(ς̄). (23)

If ς̄ ∈ S−
a , then ς̄ is a local maximizer of Πd(ς) on its neighborhood So ⊂ S−

a

if and only if x̄ is a local maximizer of (P) on its neighborhood Xo ⊂ Xa, i.e.

Π(x̄) = max
x∈Xo

Π(x) ⇔ max
ς∈So

Πd(ς) = Πd(ς̄). (24)

If ς̄ ∈ S−
a and dimXa = dimSa, then ς̄ is a local minimizer of Πd(ς) on

its neighborhood So ⊂ S−
a if and only if x̄ is a local minimizer of (P) on its

neighborhood Xo ⊂ Xa, i.e.

Π(x̄) = min
x∈Xo

Π(x) ⇔ min
ς∈So

Πd(ς) = Πd(ς̄). (25)

Remark 1. The saddle min-max duality theorem (23) was first proved by
Gao and Strang in finite deformation theory [22], while the double-min and
double-max duality statements were discovered in 1996.

The double-max duality statement (24) can be proved easily by the fact
that

max
x∈Xo

max
ς∈So

Ξ(x, ς) = max
ς∈So

max
x∈Xo

Ξ(x, ς) ∀(x, ς) ∈ Xo × So ⊂ Xa × S−

a .

The double-min duality statement (25) holds only under the condition
dimXa = dimSa, which was an open problem discovered in 2003 [14, 15]
and solved recently in [23]. If dimXa 6= dimSa, this double-min duality holds
in a weak form (see [23]).

Based on the triality theory, the nonconvex minimization problem (P) is
equivalent (only if S+

a 6= ∅) to a concave maximization dual problem

(Pd) : max
{

Πd(ς) | ς ∈ S+
a

}

. (26)

Although Πd(ς) contains an inverse matrix of G(ς), this canonical dual prob-
lem can be solved easily by some well-developed nonlinear optimization tech-
niques (see [10, 42]) as long as S+

a contains at least one critical point of
Πd(σ). Otherwise, a perturbation method will be discussed in the next sec-
tion.
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Example 1 (Fundamental idea of linear perturbation).
To explain the theory, let us consider a very simple nonconvex optimiza-

tion in R
n:

min

{

Π(x) =
1

2
α

(

1

2
‖x‖2 − λ

)2

− xT f ∀x ∈ R
n

}

, (27)

where α, λ > 0 are given parameters. The criticality condition ∇P (x) = 0
leads to a nonlinear algebraic equation system in R

n

α(
1

2
‖x‖2 − λ)x = f . (28)

Clearly, to solve this nonlinear algebraic equation directly is difficult. Also
traditional convex optimization theory can not be used to identify global min-
imizer. However, by the canonical dual transformation, this problem can be
solved completely and easily. To do so, we let ξ = Λ(x) = 1

2
‖x‖2 ∈ R,

which is an objective measure. Then, the nonconvex function W (x) =
1
2
α(1

2
‖x‖2 − λ)2 can be written in canonical form V (ξ) = 1

2
α(ξ − λ)2. Its

Legendre conjugate is given by V ∗(ς) = 1
2
α−1ς2 + λς, which is strictly con-

vex. Thus, the total complementary function for this nonconvex optimization
problem is

Ξ(x, ς) =
1

2
‖x‖2ς − 1

2
α−1ς2 − λς − xT f . (29)

For a fixed ς ∈ R, the criticality condition ∇xΞ(x) = 0 leads to

ςx− f = 0. (30)

For each ς 6= 0, the equation (30) gives x = f/ς in vector form. Substituting
this into the total complementary function Ξ, the canonical dual function
can be easily obtained as

Πd(ς) = {Ξ(x, ς)|∇xΞ(x, ς) = 0}

= −fT f

2ς
− 1

2
α−1ς2 − λς, ∀ς 6= 0. (31)

The critical point of this canonical function is obtained by solving the fol-
lowing dual algebraic equation

(α−1ς + λ)ς2 =
1

2
fT f . (32)
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For any given parameters α, λ and the vector f ∈ R
n, this cubic algebraic

equation has at most three real roots satisfying ς1 ≥ 0 ≥ ς2 ≥ ς3, and each
of these roots leads to a critical point of the nonconvex function P (x), i.e.,
xi = f/ςi, i = 1, 2, 3. By the fact that ς1 ∈ S+

a = {ς ∈ R | ς > 0}, ς2,3 ∈
S−
a = {ς ∈ R | ς < 0}, then Theorem 2 tells us that x1 is a global minimizer

of Π(x), x3 is a local maximizer of Π(x), while x2 is a local minimizer if
n = 1 (see Fig. 1). If we choose n = 1, α = 1, λ = 2, and f = 1

2
, the

primal function and canonical dual function are shown in Fig. 1 (a), where,
x1 = 2.11491 is global minimizer of Π(x), ς1 = 0.236417 is global maximizer
of Πd(ς), and Π(x1) = −1.02951 = Πd(ς1) (see the two black dots). Also it
is easy to verify that x2 is a local minimizer, while x3 is a local maximizer.

-4 -2 2 4

-6

-4

-2

2

4

6

-4 -2 2 4

-6

-4

-2

2

4

6

(a) f = 0.5 (b) f = 0

Figure 1: Graphs of the primal function Π(x) (solid) and its canonical dual Πd(ς) (dashed).

If we let f = 0, the graph of Π(x) is symmetric (i.e. the so-called double-
well potential or the Mexican hat for n = 2 [15]) with infinite number of
global minimizers satisfying ‖x‖2 = 2λ. In this case, the canonical dual
Πd(ς) = −1

2
α−1ς2 − λς is strictly concave with only one critical point (local

maximizer) ς3 = −αλ ∈ S−
a (for α, λ > 0). The corresponding solution

x3 = f/ς3 = 0 is a local maximizer. By the canonical dual equation (32) we
have ς1 = ς2 = 0 located on the boundary of S+

a , which corresponding to the
two global minimizers x1,2 = ±

√
2λ for n = 1, see Fig. 1 (b). This is exactly

the example of one sensor x = (x, 0) ∈ R
2 and two anchors a1,2 = (0,±a)

with e1 = e2 = b. Due to symmetry (f = 0), the problem (P) has two
possible solutions x1,2 = (x1,2, 0) with λ = 1

2
(b2 − a2).
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This simple example shows a fundament issue in global optimization,
i.e., the optimal solutions of a nonconvex problem depends sensitively on
the linear term (input) f . Geometrically speaking, the objective function
W (Bx) in Π(x) possesses certain symmetry. If there is no linear term (sub-
jective function) in Π(x), the nonconvex problem usually has more than one
global minimizer due to the symmetry. Traditional direct approaches and the
popular SDP method are usually failed to deal with this situation. By the
canonical duality theory, we understand that in this case the canonical dual
function has no critical point in S+

a . Therefore, by adding a linear perturba-
tion f to destroy this symmetry, the canonical duality theory can be used to
solve the nonconvex problems to obtain one of global optimal solutions. This
idea was originally from Gao’s work (1996) on post-buckling analysis of large
deformed beam [11], where the triality theorem was first proposed [12]. The
potential energy of this beam model is a double-well function, similar to this
sensor example, without lateral force or imperfection, the beam could have
two buckling states (corresponding to two minimizers) and one un-buckled
state (local maximizer). Later on (2008) in the Gao and Ogden work on an-
alytical solutions in phase transformation [18], they further discovered that
the nonconvex system has no phase transition unless the force distribution
f(x) vanished at certain points. They also discovered that if force field f(x)
changes dramatically, all the Newton type direct approaches failed even to
find any local minimizer. The linear perturbation method has been used
successfully for solving global optimization problems [6, 37, 39, 43].

4. Application to Sensor Network Localization Problem

Now let us tern our attention for solving the general sensor network op-
timization problem (P1). For convenience, we transfer variables from matrix

12



to vectors, and let

y = [x1
1 · · ·xd

1 · · ·x1
n · · ·xd

n]
T ∈ R

nd : Locations of sensors (variables),

W = [w11 · · ·w1n · · ·wn1 · · ·wnn]
T ∈ R

nn :

Weights for the optimization problem (P1),

Q = [q11 · · · q1m · · · qn1 · · · qnm]T ∈ R
nm :

Weights for the optimization problem (P1),

a = [

d
∑

α=1

(aα1 )
2, · · · ,

d
∑

α=1

(aαm)
2]T :

Sums of squares of anchors,

d = [d211 · · · d21n · · ·d2n1 · · · d2nn]T ∈ R
nn : Squares of distances between sensors,

e = [e211 · · · e21m · · · e2n1 · · · e2nm]T ∈ R
nm :

Squares of distances between sensors and anchors.

Then, Problem (P1) can be written in a vector form given below.

(P) : min







Π(y) =
∑

(i,j)∈Ad

1

2
wij

(

yTDijy − d2ij
)2

+
∑

(i,k)∈Ae

1

2
qik

(

yTEiky − 2AT
iky +

d
∑

α=1

(aαik)
2 − e2ik

)2






,

where Aik and aαik are components of the anchors ak obtained from the ex-
pansion of ‖xi − ak‖2 in equation (3), Eik ∈ R

nd×nd is a diagonal matrix
defined by

Eik =





0 0 0
0 Iik 0
0 0 0



 ,

with Iik ∈ R
d×d being the identity matrix corresponding to sensor i and

anchor k, so that the (1,1) entry of Iik coincides with the (i, k) entry of Eik.
Similarly, Dij is an nd× nd matrix defined by

Dij =













0 0 0 0 0
0 Iii 0 −Iij 0
0 0 0 0 0
0 −Iji 0 Ijj 0
0 0 0 0 0













,
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with Iii,Ijj, Iij,Iji ∈ R
d×d being the identity matrices, so that the (1,1) entry

of Iii coincides with the (i, i) entry of the matrix Dij. For Ijj, Iij, Iji, they
are defined similarly. Let

ξij = Λij(y) = yTDijy, (33)

ǫik = Λik(y) = yTEiky − 2AT
iky, (34)

where Λij and Λik are, respectively, geometrical operators from R
nd into

Ed = {ξ ∈ R
nn| ξij ≥ 0, ξij = 0 if i = j}

and

Ee = {ǫ ∈ R
mn| ǫik ≥ 0}.

By introducing quadratic functions Vξ : Ed → R and Vǫ : Ee → R such that

Vξ(ξij) =
1

2

∑

(i,j)∈Ad

wij(ξij − d2ij)
2 (35)

and

Vǫ(ǫik) =
1

2

∑

(i,k)∈Ae

qik

(

ǫik +
d
∑

α=1

(aαik)
2 − e2ik

)2

(36)

Problem (P) can then be reformulated in the canonical form given below:

(P) : min
{

Π(y) = Vξ(Λij(y)) + Vǫ(Λik(y))| y ∈ R
nd
}

.

Note that the function Vξ(ξij) and Vǫ(ǫik) are both convex. Then the following
duality relations are invertible

ςij = ∇Vξ(ξij) = wij(ξij − d2ij), (i, j) ∈ Ad, (37)

and

σik = ∇Vǫ(ǫik) = qik

(

ǫik +

d
∑

α=1

(aαik)
2 − e2ik

)

, (i, k) ∈ Ae, (38)

where ςij and σik are dual variables. Let Sd be the range of the duality
mapping ςij = ∇Vξ(ξij), and let Se be the range of the duality mapping

14



σik = ∇Vǫ(ǫik). Then, for any given ς ∈ Sd and σ ∈ Se, the Legendre
conjugate V ∗

ξ and V ∗
ǫ can be uniquely defined by

V ∗

ξ (ςij) = sta







∑

(i,j)∈Ad

ξijςij − Vξ(ξij) | ξij ∈ Vd







=
∑

(i,j)∈Ad

(

1

2
w−1

ij ς2ij + d2ijςij

)

(39)

and

V ∗

ǫ (σik) = sta







∑

(i,k)∈Ae

ǫikσik − Vǫ(ǫik) | ǫik ∈ Ve







=
∑

(i,k)∈Ae

[

1

2
q−1
ik σ2

ik +

(

e2ik −
d
∑

α=1

(aαik)
2

)

σik

]

. (40)

Clearly, (ξ, ς) and (ǫ,σ) form a canonical duality pair (see [13]). The follow-
ing canonical duality relations hold on both Ed × Sd and Ee × Se

ς = ∇Vξ(ξ) ⇔ ξ = ∇V ∗

ξ (ς) ⇔ 〈ξ; ς〉 = Vξ(ξ) + V ∗

ξ (ς),

σ = ∇Vǫ(ǫ) ⇔ ǫ = ∇V ∗
ǫ (σ) ⇔ 〈ǫ;σ〉 = Vǫ(ǫ) + V ∗

ǫ (σ),

respectively. So the generalized complementary function ([13]) is given by

Ξ(y, ς,σ) =
∑

(i,j)∈Ad

Λij(y)ςij − V ∗

ξ (ς) +
∑

(i,k)∈Ae

Λik(y)σik − V ∗

ǫ (σ)

=
1

2
yTG(ς,σ)y− FT (σ)y − 1

2
(W−1)T (ς ◦ ς)

−1

2
(Q−1)T (σ ◦ σ)− dT ς + aTσ − eTσ, (41)

where s ◦ t := [s1t1, s2t2, · · · , sntn]T denotes the Hadamard product of any
two vectors s, t ∈ R

n,

F(σ) =

[

m
∑

k=1

2a1kσ1k · · ·
m
∑

k=1

2adkσ1k · · ·
m
∑

k=1

2a1kσnk · · ·
m
∑

k=1

2adkσnk

]T

, (42)
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G(ς,σ) = 2(Diag (F1(ς)) + Diag (F2(σ)) +G3(ς)), (43)

with

F1(ς) =

























∑n
i=1 ς1i
...

∑n

i=1 ς1i
...

∑n
i=1 ςni
...

∑n

i=1 ςni

























, F2(σ) =

























∑m
k=1 σ1k
...

∑m

k=1 σ1k
...

∑m
k=1 σnk

...
∑m

k=1 σnk

























,

G3(ς) =







−ς11I11 · · · −ς1nI1n
...

...
...

−ςn1In1 · · · −ςnnInn






.

where the notation Diag (F1) represents a diagonal matrix with F1i, i =
1, · · · , n being its diagonal elements. For a fixed ς ∈ Sd and σ ∈ Se, the
criticality condition ∇yΞ(y, ς,σ) = 0 leads to the following canonical equi-
librium equation:

G(ς,σ)y− F(σ) = 0. (44)

Substitute the solution of this equation into (41), the canonical dual function
can be formulated as:

Πd(ς,σ) = −1

2
F(σ)TG−1(ς,σ)F(σ)− 1

2
(W−1)T (ς ◦ ς)

−1

2
(Q−1)T (σ ◦ σ)− dT ς + aTσ − eTσ,

where

F(σ) =

[

m
∑

k=1

2a1kσ1k · · ·
m
∑

k=1

2adkσ1k · · ·
m
∑

k=1

2a1kσnk · · ·
m
∑

k=1

2adkσnk

]T

, (45)

and

W−1 =

[

1

w11
· · · 1

w1n
· · · 1

wn1
· · · 1

wnn

]T

,

Q−1 =

[

1

q11
· · · 1

q1m
· · · 1

qn1
· · · 1

qnm

]T

.
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Therefore, the canonical dual problem can be written in the form given below.

(Pd) : sta
{

Πd(ς,σ)| ς ∈ Sd,σ ∈ Se

}

.

By Theorem 1, we have following results:

Theorem 3. Problem (Pd) is a canonical dual of the primal problem (P) in
the sense that if (ς̄, σ̄) is a critical point of (Pd), then

ȳ = G−1(ς̄, σ̄)F(σ̄) (46)

is a critical point of (P) and

Π(ȳ) = Πd(ς̄, σ̄). (47)

Theorem 3 shows that the nonconvex primal problem (P) is equivalent
to its canonical dual problem (Pd) with zero duality gap, and the solution
of (P) can be analytically expressed by (46) in terms of the canonical dual
variables. The global minimizer can be identified by the saddle min-max
duality theorem (23). In this case, the feasible space S+

a should be

S+
a = {(ς,σ) ∈ Sd × Se | G(ς ,σ) ≻ 0}. (48)

Based on the triality theory, the nonconvex primal problem (P) is equivalent
to the following canonical dual problem:

(Pd
max) : max{Πd(ς,σ)| (ς,σ) ∈ S+

a }. (49)

Theorem 4. If (ς̄, σ̄) ∈ S+
a is a critical point of the canonical dual function

Πd(ς̄, σ̄), then it is a unique solution of (Pd
max), the vector ȳ = G−1(ς̄, σ̄)F (σ̄)

is a unique global optimal solution to the nonconvex sensor network optimiza-
tion problem (P), and

Π(ȳ) = min
y∈Rnd

Π(y) = max
(ς ,σ)∈S+

a

Πd(ς,σ) = Πd(ς̄, σ̄). (50)

Proof. First, we need to prove the convexity of S+
a . We let ξ∗ = (ς,σ).

For any given ξ∗1, ξ
∗

2 ∈ S+
a , we should have

θG(ξ∗1) ≻ 0, (1− θ)G(ξ∗

2) ≻ 0 ∀θ ∈ [0, 1].
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Therefore,

θG(ξ∗

1) + (1− θ)G(ξ∗2) = G(θξ∗

1 + (1− θ)ξ∗

2) ≻ 0 ∀θ ∈ [0, 1].

This shows that S+
a is convex.

By the fact that the total complementary function Ξ(y, ξ∗) is a saddle
function on R

nd × S+
a , the classical saddle min-max duality theory (cf. [9],

page 57, or [13], page 39) leads to

minΠ(y) = min
y∈Rnd

max
ξ

∗

∈S
+
a

Ξ(y, ξ∗) = max
ξ

∗

∈S
+
a

min
y∈Rnd

Ξ(y, ξ∗) = max
ξ

∗

∈S
+
a

Πd(ξ∗).

Therefore, by the complementary-dual principle, the critical point ȳ ∈ R
nd

of Ξ is a global min of Π(y) if and only if the associated critical point ξ̄∗

is a global max of Πd(ξ∗) on S+
a . Since Ξ(y, ξ∗) is strictly convex in y and

concave in ξ∗ on R
nd × S+

a , its saddle point is unique. �

Remark 2 (NP-Hard Problems and Perturbations). It is known that
the sensor localization problem is NP-hard only in the worst case (see [2]).
However, what is the worst case is not clear to general problems. By the
canonical duality theory we know that for a large class of nonconvex and
integer optimization problems, as long as their canonical dual problems or
perturbed forms have critical points in the dual feasible domain S+

a , these
challenging problems can be solved easily by convex optimization techniques
(see [17]). Otherwise, these problems could be NP-hard, which is a conjecture
proposed by Gao in 2007 [16].

By the fact that Πd(ς) is concave on the open set S+
a , the canonical dual

problem (Pd) may have no critical point in S+
a . It is our understanding that

a NP-hard optimization problem usually possesses certain symmetry in its
modeling if the primal problem has more than one global minimal solution.
The main idea of the linear perturbation is to destroy this symmetry such that
the associated perturbed problem has a unique solution. This method is well-
known in engineering mechanics and was introduced to global optimization by
the authors in 2008 for solving quadratic equations via least squares method
[37]. Recently, this method has been used successfully to solve a NP-complete
max-cut problem [42] as well as some challenging problems in global opti-
mization (see [6, 31]). For complex systems, how to correctly chose the linear
perturbation vector δ is still an open problem. Therefore, some high-order
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perturbation methods proposed in 2010 for solving certain NP-hard noncon-
vex/integer optimization problems [19]. Particularly, a quadratic perturba-
tion method can be suggested as the following:

min
y

max
(ς ,σ)∈S+

µk

{

Ξk(y, ς,σ) = Ξ(y, ς,σ) +
1

2
ρk‖y− yk‖2 − 〈y, δ〉

}

(51)

where ρk > 0 is a given parameter, yk ∈ R
nd is a given vector (previous

solution in iteration process), δ ∈ R
nd is a given linear perturbation vector,

S+
µk

is a relaxed canonical dual feasible space defined by

S+
µk

= {(ς,σ) ∈ Sd × Se| G(ς,σ) + µkI � 0}, (52)

where 0 < µk < ρk is given relaxation parameter.
By the fact that the perturbed total complementary function Ξk(y, ς,σ)

is strictly convex in y ∈ R
nd and strictly concave in (ς,σ) on the closed

convex set S+
µk
, an effective canonical primal-dual algorithm can be developed

for solving the saddle min-max problem (51).

5. Numerical Simulations

In this section, we will first look at a simple case of a network with four
anchors and two sensors. The locations of the anchors are known while
the locations of the sensors are to be determined. The linear perturbation
method will be used to show how the symmetry can be destroyed such that
this small scale network localization problem can be solved nicely. We then
move on to formulate more general sensor networks by randomly generated
test problems. The so-called root mean square distance (RMSD) will be used
to measure the accuracy of the estimated positions.

5.1. A four-anchor sensor network localization problem

Consider the sensor network problem with two sensors and four anchors,
as shown in Fig 2. Let x1 = [x1

1, x
2
1]
T , x2 = [x1

2, x
2
2]
T ∈ R

2 denote the
locations of the unknown sensors and let ai, i = 3, 4, 5, 6, denote the locations
of the four known anchors. The sensor network location problem is to solve
the following system of nonlinear equations:

(P0) ‖x1 − x2‖ = d12, ‖x1 − a3‖ = e13, ‖x1 − a4‖ = e14,

‖x2 − a5‖ = e25, ‖x2 − a6‖ = e26,
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Figure 2: Sensor network with two sensors and four anchors.

where

d12 = e13 = e14 = e25 = e26 = 2,

a3 = [−2,
√
3 = 1.7321]T , a4 = [−2,−

√
3 = −1.7321]T ,

a5 = [2,
√
3 = 1.7321]T , a6 = [2,−

√
3 = −1.7321]T .

Let y = [x1
1 x

2
1 x

1
2 x

2
2]

T ∈ R
4.

Then, the fourth-order polynomial Π(y) is given by

Π(y) =
1

2

(

(x1
1 − x1

2)
2 + (x2

1 − x2
2)

2 − 22
)2

+
1

2
((x1

1 + 2)2 + (x2
1 −

√
3)2 − 22)2

+
1

2
((x1

1 + 2)2 + (x2
1 +

√
3)2 − 22)2 +

1

2
((x1

2 − 2)2 + (x2
2 −

√
3)2 − 22)2

+
1

2
((x1

2 − 2)2 + (x2
2 +

√
3)2 − 22)2.

To solve this symmetrical sensor network problem (P0), we use a linear per-
turbation method (see [37])

(Pδ) : min
{

Πδ(y) = Π(y)− δTy | y ∈ R
4
}

, (53)

where δ = [δ11 δ21 δ12 δ22 ]
T ≥ 0 is a given perturbation vector. On the canonical

dual feasible space Sa defined by

Sa = {(ς12, σ13, σ14, σ25, σ26)
T | ς12 + σ13 + σ14 6= 0, ς12 + σ25 + σ26 6= 0}, (54)

the canonical dual problem to the δ-perturbed problem (Pδ) is

(Pd
δ ) : max

{

Πd
δ(ς,σ)| (ς,σ) ∈ Sa

}

, (55)
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where

Πd
δ(ς,σ) = −1

2
Fδ(σ)

TG−1(ς,σ)Fδ(σ)− (d12)
2ς12 + (aT

3 a3 − (d13)
2)σ13

+(aT
4 a4 − (d14)

2)σ14 + (aT
5 a5 − (d25)

2)σ25

+(aT
6 a6 − (d26)

2)σ26 −
1

2
ς212 −

1

2
σ2
13 −

1

2
σ2
14 −

1

2
σ2
25 −

1

2
σ2
26,

Fδ(σ) = (δ11 + 2a13σ13 + 2a14σ14, δ
2
1 + 2a23σ13 + 2a24σ14,

δ12 + 2a15σ25 + 2a16σ26, δ
2
2 + 2a25σ25 + 2a26σ26)

T , (56)

G(ς,σ) =






2(ς12 + σ13 + σ14) 0 −2ς12 0
0 2(ς12 + σ13 + σ14) 0 −2ς12

−2ς12 0 2(ς12 + σ25 + σ26) 0
0 −2ς12 0 2(ς12 + σ25 + σ26)






.

Set δ = [0.005, 0.005, 0.005, 0.005]T . Then, the canonical dual problem has a
unique solution [19]

(ς̄, σ̄) = [ς12, σ13, σ14, σ25, σ26]
T

= [−0.0000, 0.0005, 0.0020,−0.0020,−0.0005]T .

By Theorem 4, it follows that

ȳ = [x̄1
1, x̄

2
1, x̄

1
2, x̄

2
2]

T = G−1(ς̄, σ̄)Fδ(σ̄)

= [−0.9994, 0.0002, 1.0006, 0.0002]T

is a global minimizer of Πδ(y).
It is easy to verify that

Πδ(ȳ) = −4.1667× 10−6 = Πd
δ(ς̄, σ̄).

By the fact that

Π(ȳ) = 4.1667× 10−6,

the δ-perturbed solutions ȳ can be considered as the global minimizer to the
original problem (P0) and we have

‖x1 − x2‖ = 2.0000, ‖x1 − a3‖ = 2.0001, ‖x1 − a4‖ = 2.0005,

‖x2 − a5‖ = 1.9995, ‖x2 − a6‖ = 1.9999.
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5.2. 18 sensors network localization problem with four anchors

We now consider sensor network localization problem with 18 sensors. In
this case, we have Problem (P1) with d = 2. Define y = [x1

1, x
2
1, · · · , x1

n, x
2
n]

T ∈
R

2n, and let wij = qik = 1 in Problem (P1). Here, we do not consider noise.
The 18 sensors {x̂i = [x̂1

i , x̂
2
i ] : i = 1, · · · , 18} are randomly generated

in the unit square [-0.5, 0.5] × [-0.5, 0.5]. The four anchors (a1, a2, a3, a4)
are placed at the positions (±0.45,±0.45). The distances d = {dij}, i =
1, · · · , 18; j = 1, · · · , 18, and e = {eik}, i = 1, · · · , 18; k = 1, · · · , 4, are
computed as follows:

dij = ‖x∗

i − x∗

j‖, eik = ‖x∗

i − ak‖

We now assume that the locations of the 18 sensors are unknown. They
are to be determined by the approach proposed in the paper. The sequen-
tial quadratic programming approximation with active set strategy in the
optimization toolbox within the Matlab environment is used to solve the
canonical dual problem.

By Theorem 4, we obtain ȳ = [x̄1, · · · , x̄18]
T with x̄i = [x̄1

i , x̄
2
i ]

T , i =
1, · · · , 18, which is a global minimizer of Π(y).

Furthermore, we have

Π(ȳ) = 1.30× 10−8 ≃ 3.03× 10−8 = Πd(ς̄, σ̄).

This problem is also solved by the standard semi-definite programming (SDP)
method. The RMSD obtained using the canonical dual method is 4.61×10−7,
while the RMSD obtained using the standard SDP method is 4.45 × 10−5,
where RMSD is the Root Mean Square Distance defined by

RMSD = (
1

n

n
∑

i=1

‖x̂i − x̄i‖2)
1

2 ,

which is to measure the accuracy of the computed locations.
The computed results by the canonical dual method and the standard SDP
method are plotted in Fig. 3 and Fig. 4, respectively. The true sensor
locations (denoted by circles) and the computed locations (denoted by stars)
are connected by solid lines. Our program is implemented in the MATLAB
environment, where SEDUMI [30] is used as the SDP solver. From the
results obtained, we see that, when there is no noise and the sensor size is not
too large, both the canonical dual method and SDP method are very effective
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Figure 3: Sensor network with 18 sensors by the canonical dual method.
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Figure 4: Sensor network with 18 sensors by the standard SDP method.

method for finding sensor locations. In particular, for the canonical dual
method, all the stars are exactly located inside circles. The computational
time for canonical dual method and SDP method are 0.61 seconds and 21.53
seconds, respectively.
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5.3. A 20-sensor-network localization problem with distance errors

A network of 20 uniform randomly distributed unknown points is gener-
ated in the square area [0, 1]× [0, 1]. We assume:

if ‖xi − xj‖ ≤ radio range, a distance (with noise) is given between

xi and xj ;

if ‖xi − xj‖ > radio range, no distance is given between xi and xj .

Also, there are four anchors are located in [0,0], [0,1], [1,0] and [1,1]. The
distances between the nodes are calculated. If the distance between two
nodes is within the specified radio range of 0.4, the distance is included in
the edge set for solving the problem after adding a random error to it in the
following manner:

dij = d̂ij|1 +N(0, 0.001)|

where d̂ij is the actual distance between the 2 nodes, and N(0, 0.001) is a
random variable.

The computed results obtained by the canonical dual method and the
standard SDP method [27] are plotted in Fig. 5 and Fig. 6, respectively.
The true sensor locations (denoted by circles) and the computed locations
(denoted by stars) are connected by solid lines. The computational time for
canonical dual method and SDP method are 0.65 seconds and 27.71 seconds.

5.4. A 200-sensor-network localization problem with distance errors

A network of 200 uniform randomly distributed unknown points is gener-
ated in the square area [0, 1]× [0, 1]. Four anchors are located in [0,0], [0,1],
[1,0] and [1,1]. For all sensors, the radio range = 0.3. The distance, including
a random error, is generated in the following manner:

dij = d̂ij|1 +N(0, 0.001)|

The computed results obtained by the quadratic perturbed canonical dual
method and the standard SDP method are plotted in Fig. 6 and Fig. 8,
respectively. Careful examination of the results obtained for the cases in-
volving 20 sensors and 200 sensors, we observe that when noise is taken into
consideration, the canonical dual method gives rise to much better solutions.
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Figure 5: Sensor network with 20 sensors solved by the canonical dual method.
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Figure 6: Sensor network with 20 sensors solved by the standard SDP method.

In particular, if the level of noise or the sensor size is large, the standard SDP
is usually having difficulty to finding the exact sensor positions, see Figure 6
and Figure 8. The computational time for canonical dual method and SDP
method are 127.10 seconds and 1088.70 seconds, respectively.

25



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: Sensor network with 200 sensors solved by the canonical dual method.
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Figure 8: Sensor network with 200 sensors solved by the standard SDP method.

6. Conclusion Remarks

We have presented a solid application of the canonical duality theory
for solving a general sensor network localization problem. By using the
complementary-dual principle, a general form of analytical solution form is
obtained in terms of the canonical dual variables. Based on a perturba-
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tion method, an effective canonical saddle min-max approach is proposed for
solving this challenging problem. Our results show that the general sensor
localization problem is not NP-hard if its canonical dual or perturbed prob-
lem has a solution in S+

a . Applications are illustrated by detailed analysis
of a small size problem as well as some relatively large scale sensor network
localization problems.

From mechanics point of view, a sensor network is similar to a structure,
for the given boundary conditions (anchors) and external force f (linear per-
turbation), as long as the problem is statically determinate, i.e. the canonical
equilibrium equation (44) has a solution (see page 199 [13]), the canonical
dual problem has a critical point in S+

a and the sensor location problem can
be solved efficiently regardless of its size. By the definition (18) of G(ς) we
know that S+

a 6= ∅ as long as there exists at least one Hkl ≻ 0 (this condition
satisfied naturally for any objective measure Λ(x)). The necessary condition
has been studied in [17] (Theorem 8) and [19] (Section 4) for S+

a has a critical
point of Πd(ς). However, the sufficient condition is still open, which is fun-
damentally important for using linear perturbation method to solve NP-hard
problems. Nevertheless, the quadratic perturbation methods introduced in
[19] as well as in this paper (51) provide more robust approach for solving
this type of challenging problems. Finally, the performance of the method
proposed on problems with noisy distance data needs further investigation.
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