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Abstract

We consider a call center model with a callback option, which allows to transform an inbound call

into an outbound one. A delayed call, with a long anticipated waiting time, receives the option to be

called back. We assume a probabilistic customer reaction to the callback offer (option). The objective of

the system manager is to characterize the optimal call scheduling that minimizes the expected waiting

and abandonment costs. For the single-server case, we prove that non-idling is optimal. Using a Markov

decision process approach, we prove for the two-server case that a threshold policy on the number of

queued outbound calls is optimal. For the multi-server case, we numerically characterize a switching

curve of the number of agents reserved for inbound calls. It is a function of the number of queued

outbound calls, the number of busy agents and the identity of jobs in service. We also develop a Markov

chain method to evaluate the system performance measures under the optimal policy.

We next conduct a numerical study to examine the impact of the policy parameters on the system

performance. We observe that the value of the callback offer is especially important for congested situ-

ations. It also appears that the benefits of a reservation policy are more apparent in large call centers,

while they almost disappear in the extreme situations of light or heavy workloads. We moreover observe

in most cases that the callback offer should be given upon arrival to any delayed call. However, if balking

and abandonment are very high (which helps to reduce the workload) or if the overall treatment time

spent to serve an outbound call is too large compared to that of an inbound one, there is a value in

delaying the proposition of the callback offer.

Keywords. Call centers, callback option, routing optimization, queueing systems, Markov chains,

Markov decision processes, switching curve, reservation policy, blending operations, performance mea-

sures.

1 Introduction

Context and Motivation. Call centers serve as the public face in various areas and industries: insurance

companies, emergency centers, banks, information centers, help-desks, tele-marketing, just to name a few.

The success of call centers is due to the technological advances in information and communication systems.

The most used form of communication is the telephone. However, in the context of highly congested call

centers, the use of alternative service channels can be proposed to customers so as to better match demand



and capacity. Alternative channels could be email, chat, blog, or postponed callback service. We focus on

this last alternative. The idea is that customers, who are expected to experience long waiting times, receive

the option to be called back later. This leads to a contact center with two channels, one for inbound calls

(inbounds), and another for outbound calls (outbounds). The recent study of ICMI (2013), based on the

analysis of 361 large contact centers, reports that 76% of them use the outbound channel.

The flexibility of the callback option comes from the willingness of some customers to accept future

processing. The call center can then make use of this opportunity to better manage arrival uncertainty,

which in turn would improve the system performance. An illustration of callback option benefits is provided

in Figure 1. The figure gives simulated performance measures of a call center example with various levels

for the use of the callback option. We consider a non-idling system where inbounds have a non-preemptive

higher priority over outbounds. We observe that the expected waiting times of inbound and outbound calls

are considerably improved by using the callback option. For instance, the expected waiting time of inbounds

could be divided by around 20 (it decreases from 8 minutes and 55 seconds to 23 seconds) while only 10%

of arriving calls choose to be called back.
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(b) Outbounds

Figure 1: Effect of the callback option on performance (arrival rate = 5.5, service rate = 0.2, number of
agents = 28)

The unpredicted and flexible call center environment offers the potential for a routing optimization that

would lead to a significant operational improvement. It is a non-expensive approach compared to staffing

optimization (Gans and Zhou, 2003; Akşin et al., 2007). One important question for managers in our context

is how should be the routing rule of jobs that would ensure non-excessive waiting times for both job types,

i.e., upon a service completion, should the agent handle an inbound or an outbound call? when should

be proposed the callback offer? We address these questions under a queueing modeling framework and a

probabilistic customer reaction to the callback option.

A call center where agents simultaneously handle inbound and outbound calls is commonly referred to as

call blending. The key distinction of call center problems with blending comes from the fact that outbound

tasks have less urgency relative to inbound calls. Blended operations problems have led to research on

performance evaluation (Bernett et al., 2002; Pichitlamken et al., 2003; Deslauriers et al., 2007), staffing

(Pang and Perry, 2014) and analysis of blending policies (Gans et al., 2003; Bhulai and Koole, 2003; Armony

and Maglaras, 2004a; Armony and Ward, 2010; Legros et al., 2013, 2015b). Because of the lack of service level
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requirement on outbounds, it is best to give higher priority to inbounds. Moreover, to reduce the number

of inbounds who may experience long waiting before service, one has to guarantee that there is sufficient

idleness in the system. In the patent of Dumas et al. (1996), based on extensive simulation experiments,

it is shown that blending inbound and outbound calls and employing a threshold policy, ensure that the

outbound throughput rate is met while waiting times of inbounds are very short. It is also shown that

blending the two types of calls in one pool requires less agents than employing two distinct pools. Bhulai

and Koole (2003) and Gans and Zhou (2003), prove this optimal control, which is of threshold type, when

the service rates of the two types of jobs are equal. More precisely, they show that it is optimal to schedule

outbound tasks only when no outbounds are in the queue and the number of idle agents exceeds a certain

threshold.

In the case of a callback option, this policy can not be directly applied. The reason is that the above

literature considers an infinite amount of non-priority jobs. In a call center with a callback option, the

number of customers waiting to be called back has to be finite in order to avoid infinite waiting. The routing

policy should then account for the length of the callback queue. Another difference, compared to cases with

classical infinite amount of outbound tasks, is that inbound and outbound arrivals are negatively correlated.

This requires further analysis, and may lead to different managerial recommendations.

Contributions. We consider a call center with a single customer type. A delayed call, with a long antici-

pated waiting time, receives the option to be called back. We develop a modeling that accounts for balking,

abandonment, probabilistic customer reaction to a state-dependent delay information, unequal service re-

quirements for job types, and the eventual non-availability of a called back customer. The objective of the

system manager is to find the optimal call scheduling policy that minimizes the expected operating costs of

inbounds and outbounds. The control actions concern the number of agents reserved for inbounds and the

system state situations at which the callback offer should be proposed.

We distinguish three main contributions. The first contribution is related to the agent reservation policy.

We prove for the single-server case that non-idling is optimal. Using a Markov decision process (MDP)

approach, we prove for the two-server case with equal service requirements that a threshold policy on the

number of queued outbounds is optimal. Based on the two-server result, we conjecture for the multi-server

case that the optimal policy is of switch type. The number of agents to reserve for inbounds depends on the

number of queued outbounds, the number of busy agents and the identity of jobs in service. Moreover, we

examine the impact of the system exogenous parameters on the agent reservation policy. We observe, for

example, that a reservation policy is not likely to be used under light or heavily loaded situations.

The second contribution is the performance analysis under the optimal reservation policy. The perfor-

mance measures of interest are related to the job type waiting times and abandonments. We develop a

controlled numerical approximation to obtain these performance measures for the general modeling. For

various particular cases, using a Markov chain method, we go further by providing either exact numerical

algorithms, or closed-form expressions for the performance analysis.

The third contribution is the analysis of the impact of the policy parameters on performance. We derive
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the first and second monotonicity results in the number of agents for the performance measures in the

non-idling case. These results support that the benefit of a reservation policy is more apparent in large

call centers. Moreover, in most cases, the callback offer should be given upon arrival to any delayed call.

We prove this result in the non-idling case using first order monotonicity results. However, if balking and

abandonment are very high (which helps to reduce the workload) or if the overall treatment time spent to

serve an outbound call is too large compared to that of an inbound one, there is a value in delaying the

callback offer to all customers.

Literature Review. There is a rich literature on the operations management in call centers. We refer the

reader to the two surveys by Gans et al. (2003) and Akşin et al. (2007). For a background on the specific

context of multi-channel call centers, we refer the reader to Chapter 7 in Koole (2013).

As mentioned above, there are only few papers dealing with routing strategies in the context of a finite

amount of callbacks. The first two papers directly addressing the problem of the callback option are by

Armony and Maglaras (2004a,b). The authors consider a model in which customers are given a choice of

whether to wait online for their call to be answered or to leave a number and be called back within a specified

time or to immediately balk. Upon arrival, customers are informed (or know from prior experience) of the

expected waiting time if they choose to wait and the delay guarantee for the callback option. Their decision

is probabilistic and based on this information.

Under the heavy-traffic regime, Armony and Maglaras (2004a) develop an estimation scheme for the

anticipated real-time delay. They also propose an asymptotically optimal routing policy that minimizes

real-time delay subject to a deadline on the postponed service mode. In Armony and Maglaras (2004b),

the authors develop an asymptotically optimal routing rule, characterize the unique equilibrium regime

of the system, and propose a staffing rule that picks the minimum number of agents that satisfies a set

of operational constraints on the performance of the system. To the contrary to Armony and Maglaras

(2004a,b), we account here for the feature of abandonment, unequal service requirements and the possible

non-availability of an outbound call. Yet, our modeling is restricted to policies with strict non-preemptive

priority for inbounds. Armony and Maglaras (2004a,b) consider instead a state-dependent priority policy.

Two recent papers are by Kim et al. (2012) and Dudin et al. (2013). Kim et al. (2012) consider a call

center model with a callback option where the queue capacity for inbounds is finite. As in our modeling,

customer balking and abandonment are allowed. The authors provide an efficient algorithm for calculating

the stationary probabilities of the system states. Moreover, they derive the Laplace-Stieltjes transform of

the sojourn time distribution of virtual customers. Dudin et al. (2013) consider a slightly different modeling,

where lost customers are called back. There are two agent teams, one that handles in priority inbounds, and

another one that handles in priority outbounds. They compute the stationary probabilities, and deduce the

system performance measures. They also numerically address the staffing issue for the two teams.

Our approach differs from those in Armony and Maglaras (2004a,b); Kim et al. (2012); Dudin et al. (2013)

since we allow for agent reservation strategies. We also allow to control the proposition of the callback offer,

whereas in all above references this option is proposed to all customers. Other papers considering finite
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amounts of outbound tasks are Armony and Ward (2010) and Gurvich et al. (2009). They study call centers

that exercise cross-selling. The cross-selling phase is initiated by the agent and can thus be considered as a

type of outbound work in finite number. However, these are less related to our specific context of callbacks.

Structure of the paper. The remainder of this paper is structured as follows. In Section 2, we describe

the call center model with a callback option. In Section 3, we address the optimal routing problem for

outbound calls. In Section 4, we evaluate the performance measures under the optimal reservation policy.

In Section 5, we use the optimization and performance measures results to examine the impact of the policy

parameters on performance. We then provide conclusions and highlight future research directions. Part of

the proofs of the results of the main paper are given in the appendices and the online supplement.

2 Model Description

We consider a call center modeled as a multi-server queueing system with s identical, parallel servers (agents).

The call center handles two types of jobs: inbound calls (type 1 jobs or inbounds) initiated by customers,

and outbound calls (type 2 jobs or outbounds) initiated by agents. Each agent can handle both types of

jobs. Type 1 jobs request for a real-time service, while type 2 jobs are customers with a postponed service.

A job 2 customer is originally a job 1 customer that has chosen to be called back. The real-time service

is more important in the sense that the waiting time of an inbound call should be in the order of seconds

or minutes, whereas the postponed service could be delayed for several hours. This is the attractive aspect

for using the callback option. It allows to create a flexibility by delaying some of the workload for future

processing, which would improve the system performance.

The arrival process of inbounds is assumed to be a homogeneous Poisson process with rate λ. Inbound

calls arrive at a dedicated first come, first served (FCFS) queue with infinite capacity, denoted by queue

1. We assume that the service times for inbounds are i.i.d. and exponentially distributed with rate µ1.

Customers in queue 1 can be impatient. After entering the queue, a customer will wait a random length of

time for service to begin. If service has not begun by this time, the customer will abandon. Times before

abandonment for inbounds are assumed to be i.i.d. and exponentially distributed with rate β. Because of

the flexibility of type 2 jobs, the system manager allocates more capacity to real-time service. Type 1 jobs

have therefore a strict non-preemptive priority over type 2 jobs, which means that if an agent is busy with a

job 2, the agent will finish first this job before turning to a newly arrived job 1. The non-preemption priority

rule is coherent with the common call center practice, where it is not appropriate to interrupt a conversation

with a low priority customer. In addition, we allow for agent reservation policies for inbounds. In other

words, we allow an agent to remain idle when queue 1 is empty and queue 2 is not. This may reduce the

waiting time of future inbound arrivals. For similar multi-channel call center situations, agent reservation

policies have been shown to be efficient (Bhulai and Koole, 2003; Legros et al., 2013).

If a customer accepts to be called back, she virtually joins a FCFS queue, denoted by queue 2. Due

to the nature of the outbound demand, we consider for this customer, the three possibilities as follows.

With probability r1, she has exactly the same need as the one she had when she first made her call. In

this case, the service time is assumed to be exponentially distributed with rate µ1 (similarly to an inbound
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customer). With probability r2 (r1 + r2 > 0), she has already resolved her problem or a part of it. Hence,

her service time may be shorter. We assume in this case that the service time is exponentially distributed

with rate µ2 (µ2 ≥ µ1). Finally, with the remaining probability 1− r1 − r2, the outbound customer is not

available, and an agent will try again to call her back later on. To handle such a situation, we assume that

the agent spends a random duration assumed to be exponentially distributed with rate µ3. This duration

corresponds to the required time to leave a message to the customer, and to place her back in the queue

at the last position (she will be called back when she will again reach the first position under the FCFS rule).

Description of the call back option. The state of the system at a given time t is defined by four variables:

x, y, s2, s3, where x is the number of inbounds in queue 1 or in service plus the number of outbounds in

service with the same service time requirement as inbounds (service rate µ1), y is the number of outbounds in

queue 2, s2 is the number of agents busy with outbounds that require a fast service (service rate µ2), and s3

is the number of agents handling non-available outbound situations (rate µ3), for x, y ≥ 0 and 0 ≤ s2, s3 ≤ s.

Consider a newly arriving inbound call. If at least one agent is available, the customer immediately

starts service. If all agents are busy and the number of waiting calls in queue 1 is strictly lower than a given

threshold, denoted by k ∈ N, a delay information is announced to the customer. The delay information

is based on the system state. We do not restrict the model to a specific type of information: it could be

the length of queue 1, the expected value or some quantiles of the waiting time, etc. The new inbound

customer then reacts to the delay information. She either balks (immediately leaves the system) with

probability αx,s2,s3 , or joins queue 1 with probability 1 − αx,s2,s3 where she may abandon or start service

after some time duration. We assume that the probability αx,s2,s3 increases in the announced delay, i.e.,

αx+1,s2,s3 ≥ αx,s2,s3 , for s ≤ x+ s2 + s3 < s+ k, 0 ≤ s2, s3 ≤ s. Note that the probability αx,s2,s3 could be

chosen constant for the case with no delay information.� ����,��,����� ����,��,��� ����, �������������������
Figure 2: The callback option model

If the number of waiting calls in queue 1 is higher than or equal to k, the system provides a delay infor-

mation as well as a callback option. Exceeding the threshold k captures the fact that customers are likely

to experience too long waiting times in case they would request for a real-time service. The delay informa-

tion is system state-dependent. Concretely, the new inbound customer have the following three possibilities
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upon her arrival: she balks (immediately leaves the system) with probability αx,s2,s3 , or she chooses the

callback option and virtually joins queue 2 with probability qx,s2,s3 , or she joins queue 1 with probability

1 − qx,s2,s3 − αx,s2,s3 , for x + s2 + s3 ≥ s + k, 0 ≤ s2, s3 ≤ s. Again, we assume that αx+1,s2,s3 ≥ αx,s2,s3

and qx+1,s2,s3 ≥ qx,s2,s3 for x+ s2 + s3 ≥ s+ k and 0 ≤ s2, s3 ≤ s. Also, the quantities αx,s2,s3 and qx,s2,s3

could be chosen constant for x + s2 + s3 ≥ s + k, 0 ≤ s2, s3 ≤ s. In such a case, we will then simply write

them as α or q to simplify the presentation. An illustration of the model is given in Figure 2.

Problem formulation. Let us first define the performance measures of interest. We denote by W1, W2

and W the random variables measuring the stationary waiting time of served inbounds in queue 1, the

stationary waiting time of outbounds in queue 2, and the unconditional stationary waiting time in the queue

of an arbitrary job (inbound or outbound), respectively. We also denote by Pa the stationary proportion of

inbounds that leave the system without service either by abandoning queue 1, or by balking upon arrival.

The stationary proportion of inbounds that balk upon arrival is defined as Pb. We finally denote by ψ the

stationary probability that a new inbound call becomes an outbound one.

We consider an economic framework based on the holding costs of jobs 1 and 2, and the cost of lost calls

(because of balking or abandonment). The objective of the system manager is to characterize the optimal

routing policy which minimizes the expected system cost, denoted by SC, and given by

SC = γ1E(W1) + γ2E(W2) + γ3Pa,

where γ1, γ2 and γ3 are the cost parameters, and where E(Z) is the expected value of a given random

variable Z. We assume that γ1 > γ2 to give more importance to the waiting time of inbounds than that

of outbounds. The control parameters for the call center manager are the threshold k for queue 1 which

characterizes the callback option, and the agent reservation policy for inbounds.

For a given state (x, y, s2, s3) (0 ≤ x + s2 + s3 < s and y > 0), there are two possible actions: the

first one is to serve an outbound call and move to state (x+ 1, y − 1, s2, s3) with probability r1, or to state

(x, y − 1, s2 + 1, s3) with probability r2, or to state (x, y − 1, s2, s3 + 1) with probability 1 − r1 − r2; the

second one is to keep the first outbound in line in queue 2 and stay at state (x, y, s2, s3). The knowledge

of the optimal actions at each state defines a function denoted by c(x, y, s2, s3). The curve of this function

separates the states where the optimal action is to serve an outbound call from those where it is optimal to

keep an outbound call in queue 2. The function c(x, y, s2, s3) defines therefore the agent reservation policy.

It will be characterized in Section 3. A summary of the model notations is given in Table 1.

The call center model described above is referred to asModel G (general model). Because of its complexity,

we define submodels that correspond to various special cases, for which it is easier to observe and prove

insights. We denote by Model A the submodel where outbounds have the same service rate as inbounds and

these are available when they are called back (r1 = 1 and r2 = 0), by Model B a submodel of Model A

where inbounds are infinitely patient (β = 0), by Model C a particular case of Model B where the balking

and callback parameters are assumed to be constant (for example when no information is given to arriving
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Table 1: Model notations

System state description

x Number of inbounds in queue 1 or in service plus number of outbounds (with the same service
requirement as inbounds) in service

y Number of outbounds in queue 2
s2 Number of agents handling fast-served outbounds
s3 Number of agents handling non-available outbound situations

Exogenous parameters

λ Arrival rate of inbounds
s Number of agents
r1 Probability that an outbound call has the same service requirement as an inbound one
r2 Probability that an outbound call has a shorter service requirement than an inbound one

1− r1 − r2 Probability that an outbound call in queue 2 is not available
µ1 Service rate of inbounds, and also a part of outbounds with the same service requirement
µ2 Service rate for fast-served outbounds
µ3 Service rate for handling non-available outbounds
β Abandonment rate for each inbound call in queue 1

αx,s2,s3 Probability that a new inbound call balks upon arrival
qx,s2,s3 Probability that an inbound call accepts the callback offer upon arrival

Control parameters

k Threshold on the length of queue 1, at which we start to propose the callback offer
c(x, y, s2, s3) Curve for the agent reservation policy

Performance Measures

Ψ Proportion of inbounds that accept the callback offer
Pa Proportion of inbounds that leave the system without service (after a balking or an abandonment)

E(W1), E(W2), E(W ) Expected waiting time for served inbounds in queue 1, expected waiting time for outbounds in
queue 2, and unconditional waiting time in the queue of an arbitrary job (inbound or outbound),
respectively

customers). We also define Model NI (non-idling model) a submodel of Model G where idling is not allowed

(i.e., the first outbound call in queue 2 starts service as soon as an agent becomes available and queue 1 is

empty). An illustration of the submodels is depicted in Figure 3.�

�������� �������	� ������
� �������� ��������
��,��,�� � �,���,��,�� � ��� � 0����������	�

�� � 1,��� � 0�

Figure 3: The submodels

Markov decision process approach. For Model G, we formulate the routing problem as a Markov

decision process (MDP). Since we are considering long-term average performance, it is optimal to schedule

jobs at arrival, service completion or abandonment times. If it is optimal to keep a server idle at a given

time, then the action remains optimal until the next event in the system. This result follows directly from
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the continuous-time Bellman equation (Puterman (1994), Chapter 11). Therefore, it suffices to consider the

system only at arrival, service completion or abandonment times. Due to the call abandonment in queue

1, the total event rate is not bounded. We therefore use the traditional approach where we assume that

queue 1 has a limited capacity N (N ≥ 0). The parameter N is chosen high enough to approximate the

real system. The total event rate is then uniformly bounded by λ + smax(µ1, µ2, µ3) + Nβ, and without

loss of generality, we assume that it is equal to one. We next use the well known uniformization technique

(Puterman (1994), Chapter 8), which allows to apply discrete-time dynamic programming to characterize

the optimal routing policy.

The possible actions for an agent just after a service completion (and queue 1 is empty) are either to

remain idle, or to serve an outbound call if queue 2 is not empty. We choose to formulate a 2-step value

function, in order to separate transitions and actions and simplify the involved expressions. We define the

sequences Un(x, y, s2, s3) and Vn(x, y, s2, s3) over n steps, for n, x, y ≥ 0 and 0 ≤ s2, s3 ≤ s. For n ≥ 0, we

have

Un+1(x, y, s2, s3) = γ1(x+ s2 + s3 − s)+ + γ2y (1)

+ λ
[
1(0≤x+s2+s3<s)Vn(x+ 1, y, s2, s3)

+1(s≤x+s2+s3<s+k) ((1− αx,s2,s3 )Vn(x+ 1, y, s2, s3) + αx,s2,s3 (Vn(x, y, s2, s3) + γ3))

+ 1(s+k≤x+s2+s3<s+N)(qx,s2,s3Vn(x, y + 1, s2, s3) + αx,s2,s3 (Vn(x, y, s2, s3) + γ3)

+ (1− qx,s2,s3 − αx,s2,s3 )Vn(x+ 1, y, s2, s3))

+1(x+s2+s3=s+N)(qN−1,s2,s3Vn(x, y + 1, s2, s3) + (1− qN−1,s2,s3 )(Vn(x, y, s2, s3) + γ3))
]

+ β(x+ s2 + s3 − s)+(Vn(x− 1, y, s2, s3) + γ3) + min(s− s2 − s3, x)µ1Vn(x− 1, y, s2, s3)

+ s2µ2Vn(x, y, s2 − 1, s3) + s3µ3Vn(x, y + 1, s2, s3 − 1)

+
(
1− λ− β(x+ s2 + s3 − s)+ −min(s− s2 − s3, x)µ1 − s2µ2 − s3µ3

)
Vn(x, y, s2, s3), for x, y ≥ 0, and 0 ≤ s2, s3 ≤ s,

where 1(x∈A) is the indicator function of a subset A, and

Vn+1(x, y, s2, s3)

= min(r1Un+1(x+ 1, y − 1, s2, s3) + r2Un+1(x, y − 1, s2 + 1, s3) + (1− r1 − r2)Un+1(x, y − 1, s2, s3 + 1), Un+1(x, y, s2, s3)),

for y > 0 and 0 ≤ x+s2+s3 < s and Vn+1(x, y, s2, s3) = Un+1(x, y, s2, s3) in the remaining cases. We choose

V0(x, y, s2, s3) = U0(x, y, s2, s3) = 0, for x, y ≥ 0, and 0 ≤ s2 + s3 ≤ s. The transitions at boundary states

x+s2+s3 = N are chosen such that the monotonicity properties of the value functions are maintained. The

value of this choice is proven in the proof of Theorem 1 in Section 3.2. Another possibility to maintain the

monotonicity properties is to use the smoothed rate truncation as proposed by Bhulai et al. (2014), however,

this would imply a more complicate expression of the value functions in our setting.

The long-term average optimal actions can be obtained through value iteration, by recursively evaluating

Vn using Equation (1), for n ≥ 0. As n tends to infinity, the minimizing actions converge to the optimal

ones (Puterman, 1994). For 0 ≤ x+ s2 + s3 < s and y > 0, the minimizing action is chosen between keeping

an outbound call in queue 2 or starting the service of this call. For x+ s2 + s3 ≥ s, we do not consider any

control action because of the priority for inbounds (i.e., no possibility of having an idle agent while a call is

9



waiting in queue 1).

3 Optimal Agent Reservation Policy

We consider the single, the two-server and the multi-server cases. For the multi-server case of Model G, we

first prove a preliminary result stating that when all agents are idling and queue 2 is not empty, then it is

optimal to serve at least the first outbound call in line. A corollary of this result is that non-idling is optimal

in the single-server case. In the two-server case, we prove in Theorem 1 the optimal reservation policy for

Model A. It is a threshold policy on the number of waiting outbounds in queue 2. For the multi-server cases

of Models A and G, we conjecture that the optimal routing follows a state-dependent threshold policy, i.e.,

a switching curve. For Model A, the switching curve is only based on the number of outbounds in queue 2

and the number of busy agents. In addition to that, for Model G, the optimal policy depends on the number

of each job type in service.

The result for the multi-server case is intuitive and a standard extension, in MDP problems, of the

proved result in the single and two-server cases. It is however very hard to obtain a proof because of the

growing dimensionality of the underlying state space and the problem set down by the departure term.

This proof is related to a well known fundamental queueing control problem, for which no rigorous proof

does exist yet. We believe that our proof for the two-server case should give some indications that would

motivate future research. This open question consists in showing the propagation of a monotonicity relation

through the minimizing operator. In Remark 1 inside the proof of Theorem 1 in Appendix A, we provide

the mathematical details of what should be proven to rigorously obtain the multi-server result. It reduces to

that for the well known routing problem in the heterogeneous multi-server queue, where the objective is to

find a non-preemptive routing policy that minimizes the long run average time in the system (Hajek, 1984;

Lin and Kumar, 1984; de Véricourt and Zhou, 2005). For a background on this question, we refer the reader

to Koole (2007).

3.1 Preliminary Result

Proposition 1 provides a preliminary result for Model G.

Proposition 1 In the multi-server case of Model G, if all agents are idling and queue 2 is not empty, then

it is optimal to serve at least an outbound call.

Proof. For γ2 > 0, it is clear that an outbound call in queue 2 has to be served at one point. Otherwise,

queue 2 would contain an infinite number of outbounds due to the FCFS rule. Therefore, a policy which

would not serve an outbound call can not be optimal. We next prove that the best situation for the service

of an outbound call is when all agents are idling. Serving an outbound call always improves the performance

of outbounds whether this outbound call is served when all agents are idling or in another situation. An

outbound taken in service would deteriorate the performance of inbounds if new inbounds arrive at a busy

system while this outbound call is still in service. The lowest value of the probability of such an event is

reached in the case this outbound call has been taken in service when all agents are idling. Moreover, an

outbound call service duration does not depend on the system state. Thus, serving an outbound call when

all agents are idling improves the performance of outbounds and has the smallest probability to deteriorate

10



the performance measures of inbounds. Since all outbounds has to be served at one point, an optimal

state-dependent policy forces the service of outbounds, if any, when all agents are idle. 2

We next deduce the optimal agent reservation policy for the single-server case of Model G.

Corollary 1 In the single-server case of Model G, the optimal agent reservation policy is the non-idling

policy.

The proof of Corollary 1 directly follows from Proposition 1. In Section 1 of the online supplement, we

propose another proof of this corollary for Model A using an MDP approach.

3.2 Two-server Result for Model A

In the two-server case, using Proposition 1, we never encounter situations for the optimal policy where the

two agents are idling and at least one outbound call is in queue 2. When one server is busy, we prove in

Theorem 1 that the optimal policy in Model A is of threshold type for the reservation of the other server.

Theorem 1 In the two-server case for Model A, when one agent is busy, there exists a threshold on the

number of outbounds in queue 2, at and beyond which it is optimal to serve the first waiting outbound in

line, and it is optimal to not serve outbounds in the remaining cases.

The proof is given in Appendix A. It is based on the propagation of monotonicity results of the value function

as defined in Section 2. This type of proofs is standard in MDP problems (Koole, 2007). Yet, our result

can not directly follow from Koole (2007) for the following reasons. The existing results concern mostly the

single-server-one-dimensional case. Less is doable in the multi-dimensional case for the propagation of the

results through the minimizing operator. Moreover, abandonment from queue 1 is allowed here, a feature

that often breaks the monotonicity properties when space truncation is required. We show in our proof that

the monotonicty properties are maintained. Finally, the complexity of the proof comes from the arrival term,

which is specific in our model and requires a special consideration, because the two queues are involved and

the customer reaction is state-dependent.

3.3 Multi-Server Conjecture

Let us now comeback to the multi-server case. Using the value functions defined in Section 2, we conjecture

that the optimal policy is of switch type. For both Models A and G, we conduct a numerical study from

which we deduce the switching curves which separate states where it is optimal to serve an outbound call

from those where it is not. We also examine the impact of the system parameters on the reservation policy.

3.3.1 Switching Curves for Model A

For Model A, we do not need to distinguish between inbounds and outbounds in service. Let us rewrite the

value functions for Model A (µ1 = µ2 = µ, r1 = 1). We have for n ≥ 0,

Un+1(x, y) = γ1(x− s)+ + γ2y + λ
[
1(0≤x<s)Vn(x+ 1, y) +1(s≤x<s+k) ((1− αx)Vn(x+ 1, y) + αx(Vn(x, y) + γ3))

+ 1(s+k≤x<s+N)(qxVn(x, y + 1) + αx(Vn(x, y) + γ3) + (1− qx − αx)Vn(x+ 1, y))

+1(x=s+N)(qN−1Vn(x, y + 1) + (1− qN−1)(Vn(x, y) + γ3))
]

+ β(x− s)+(Vn(x− 1, y) + γ3) + min(s, x)µVn(x− 1, y) +
(
1− λ− β(x− s)+ −min(s, x)µ1

)
Vn(x, y), for x, y ≥ 0,

11



with

Vn+1(x, y) = min(Un+1(x+ 1, y − 1), Un+1(x, y)),

for y > 0 and 0 ≤ x < s and Vn+1(x, y) = Un+1(x, y) in the remaining cases. We choose V0(x, y) =

U0(x, y) = 0, for x, y ≥ 0.

We conjecture that the optimal policy is a function of x (number of calls in service plus number of

inbounds in queue 1) and y (number of outbounds in queue 2). Figure 4 gives various optimal switching

curves to illustrate the impact of the system parameters on the optimal policy. The abscissa axis in each

figure represents the overall number of jobs in the system (number of outbounds in queue 2 plus number

of calls in service) and the ordinate axis represents the number of calls in service. We only consider states

where 0 ≤ x < s. For the remaining states, the only possible action is to keep outbounds in the queue. The

optimal actions can be read from the figures. Consider a given point (x + y, x) (0 ≤ x < s and y > 0). If

this point is strictly under the curve, then it is optimal to serve an outbound call and therefore move from

(x+y, x) to (x+1+y−1, x+1) = (x+y, x+1). If this new point is strictly under the curve then the optimal

action is to serve another outbound call. We continue to take the decision to serve by moving on a vertical

line until we reach the curve. On the switching curve or above, the optimal action is to keep outbounds in

the queue. The value to choose x+ y in abscissa instead of y is to observe the evolution from a non-optimal

point to the optimal one on a vertical line instead of a diagonal one. The curves in dashed lines represent

the non-idling policy.

We observe that when x = 0 and y > 0, the optimal action is always to serve an outbound call (this holds

from Proposition 1). Given that the switching curve is increasing in x+ y, it is an increasing step function.

It is given by

c(x+ y) = min(y0, x+ y) + 1(x+y≥y1) + 1(x+y≥y2) + · · ·+ 1(x+y≥ys−y0 )
, (2)

where 1 ≤ y0 < y1 < y2 < · · · < ys−y0 . The parameters y0, ..., ys−y0 are the levels that represent

the changing points of the switching curve. Using Proposition 1, we have y0 ̸= 0. Equation (2) can be

interpreted as follows. Assume we have x+ y jobs in the system (x busy agents and y outbounds in queue

2). If x + y < y1, then it is optimal to have at most y0 tasks in service, i.e., if x < y0 we move from

state (x, y) to state (min(y0, x + y), y − (min(y0, x + y) − x)), and if x ≥ y0 we stay in state (x, y). If

y1 ≤ x + y < y2, then at most y0 + 1 jobs should be in service, i.e., if x < y0 + 1 we move from state

(x, y) to state (min(y0 + 1, x + y), y − (min(y0 + 1, x + y) − x)), and if x ≥ y0 + 1 we stay in state (x, y),

and so on. Finally, if y ≥ ys−y0 , then at most y0 + s − y0 = s jobs should be in service. In other words,

when x + y ≥ ys−y0 , no agents are reserved for inbounds and it is optimal to move from state (x, y) to

state (min(s, x + y), y − (min(s, x + y) − x)). A qualitative interpretation of Equation (2) is that the more

numerous queued outbounds and the less busy are the agents, the more likely the optimal decision would be

to serve an outbound call.

This switch type policy in the multi-server case is a standard extension of the threshold policy in the

two-server case. The new element in the multi-server case is that the decision to serve an outbound call

should no longer only depend on the length of queue 2, since more than one agent might be involved. For
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(a) Impact of γ2 (λ = 4, q = 40%, α = β = 0)
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(b) Impact of q (γ2 = 0.05, λ = 4, α = β = 0)
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(c) Impact of qs+k+x (λ = 4, γ2 = 0.05, α = β = 0,
x ≥ 0)
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(d) Impact of λ (γ2 = 0.05, q = 40%, α = β = 0)
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(e) Impact of α (λ = 4, γ2 = 0.05, q = 40%, β = 0.1)
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(f) Impact of αs+x (λ = 4, γ2 = 0.05, q = 40%, β = 0,
x ≥ 0)

Figure 4: Optimal switching curve (µ1 = 0.2, r1 = 1, s = 28, γ1 = 1, k = 5, γ3 = 0.5)

a given situation with x busy agents and s − x idle agents, the optimal policy is a threshold policy on the

length of queue 2. This leads, as a consequence, to a switch type policy.

We next examine the impact of the parameters on the reservation policy. In Proposition 2, we prove that

the more importance is given to inbounds and the less customers are likely to accept the callback offer, the

higher should be the reservation for inbounds.

Proposition 2 Consider two situations with identical arrival and departure parameters (λ, αx for x ≥ s,

β, s and µ). The first situation has the cost parameters γ1, γ2 and γ3 and the second one has γ′1, γ
′
2 and

γ′3. The callback parameters are constant for both situations. They are q and q + q′ for the first and second

situations, respectively.
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If γ1 ≥ γ′1, γ2 ≤ γ′2, γ3 ≥ γ′3, q
′ ≥ 0, then the first situation requires more reservation than the second

one. In other words, the switching curve is lower for the first situation.

The proof of this proposition is given in Appendix B. The impact of the cost parameter γ2 is illustrated in

Figure 4(a), i.e., the switching curve increases (the reservation decreases) in γ2. The opposite is true when

γ1 or γ3 increases. Figure 4(b) illustrates the impact of a constant callback parameter (qx = q for x ≥ s+k).

It shows that the more customers are likely to accept the callback option, the higher is the switching curve

(less reservation for inbounds). The same observation holds when qx is not constant (Figure 4(c)). The key

factor, wether the callback parameter is constant or not, is the proportion of outbounds.

A less intuitive observation is that the switching curve is not monotone in the workload, defined as λ/µ

(Figure 4(d)). We observe that reservation does not happen in the extreme situations of light or heavy

workloads. For light workload situations, the system capacity is high enough, such that both call types

experience small waiting times. Then, the reservation for inbound calls does not need to be substantial.

For high workload situations, queue 1 is often long. Thus, a high proportion of customers would choose the

callback option and join queue 2. Given that queue 2 is also long, the system should not further deteriorate

the waiting of outbounds by reserving agents for jobs 1. However, for an intermediate situation, with a

moderate workload, jobs 2 are less numerous, and do not therefore need to have access to all agents. The

system may then consider agent reservation for jobs 1.

Figure 4(e) reveals that the impact of the balking parameters αx and the abandonment parameter β are

not similar to that of the workload. For high values of αx or β, the system capacity is high enough to achieve

small waiting times. However, the proportion of abandonment is high, so, the reservation for inbounds needs

to be important to avoid too much abandonment. For low values of αx or β, the reservation policy mainly

depends on the workload λ/µ (see Figures 4(e) and 4(f)).

3.3.2 Switching Curves for Model G

We now consider Model G. Figures 5 and 6 illustrate the switching curves for the optimal policy in Model

G. Again, the curves in dashed lines represent the non-idling policy.

As expected, we observe that the optimal decisions are not only based on the number of outbounds in

queue 2 and the number of busy agents as for Model A, but also the identity of the jobs in service. We

distinguish three different zones delimited by two switching curves. A first switching curve is defined for the

case where all busy agents are busy with rate µ1 (s2 = s3 = 0). This situation is the worst for the occupancy

of the agents, because µ3 ≥ µ2 ≥ µ1. Thus, under this first switching curve, for any state with less busy

agents or more outbounds in queue 2, the optimal decision is to serve an outbound call (if any), i.e., we move

from state (x+y+s2+s3, x+s2+s3) to state (x+1+y−1+s2+s3, x+1+s2+s3) = (x+y+s2+s3, x+1+s2+s3).

A second switching curve is defined for the cases were all busy agents are busy with rate µ3 (x = s2 = 0).

This situation is the best for the occupancy of the agents. On and above this second switching curve, for any

state with more busy agents and less outbounds in queue 2, the optimal decision is to keep all outbounds in

queue 2.

The ordering µ3 ≥ µ2 ≥ µ1 justifies that the first switching curve is below the second one. Even in the
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Figure 5: Optimal switching curves (λ = 3.8, q = 40%, α = β = 0, γ1 = 1, γ2 = 0.05, k = 5, µ1 = 0.2,
µ2 = 1, µ3 = 10, r1 = r2 = 1/3, s = 28)

case µ3 = µ2, the second switching curve (x = s2 = 0) is still higher than a switching curve where all busy

agents are busy with rate µ2 (x = s3 = 0). The reason is the high need of serving outbounds when all agents

are busy with rate µ3. If the agents are all handling a non-available outbound situation, they would not

reduce the number of outbounds in the system, so, the need for serving outbounds does not reduce.

Yet, for situations with small number of customers in the system or high number of customers in queue

2, the two extreme switching curves (corresponding to s2 = s3 = 0 and x = s2 = 0) coincide. Therefore,

there only exists a finite number of states where the optimal decisions depend on the identity of the jobs in

service. Figure 6(a) reveals that the two extreme switching curves get closer to one another as r1, µ2, or µ3

increases. The reason is the similarity between the service requirements of inbounds and outbounds. Figure

6(b) reveals that as r1+r2 decreases, the two extreme switching curves get higher, i.e., less agent reservation.

The reason is related to the difficulty of serving an outbound call. When agents are often handling non-

available outbound situation, it is difficult to reduce the length of queue 2, therefore, outbounds should

benefit from more availability of the agents.
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(a) Example with r1 = 80%, r2 = 5%, µ1 = 0.2, µ2 = 0.5
and µ3 = 10
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(b) Example with r1 = 10%, r2 = 10%, µ1 = 0.2, µ2 = 1
and µ3 = 10

Figure 6: Optimal switching curve (λ = 3.8, q = 40%, α = β = 0, γ1 = 1, γ2 = 0.05, k = 5, s = 28)

Similarly to Model A, since the switching curve is increasing in x + y + s2 + s3, it is an increasing step
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function. Given that agents handle 3 different types of jobs, we define the 3 variables increasing function

b(x, s2, s3) which gives the “busyness” of the agents team. Because the number of agents is finite, we assume

without loss of generality that 0 ≤ b(x, s2, s3) ≤ 1. This busyness function corrects the switching curve,

defined for Model A, into

c(x+ y + s2 + s3) = min(y0, x+ y + s2 + s3)1(b(x,s2,s3)≤b0) + 1(x+y+s2+s3≥y1)1(b(x,s2,s3)≤b1)

+ 1(x+y+s2+s3≥y2)1(b(x,s2,s3)≤b2) + · · ·+ 1(x+y+s2+s3≥ys−y0−1)1(b(x,s2,s3)≤bs−y0−1) + 1(x+y+s2+s3≥ys−y0 )
,

where 1 ≤ y0 < y1 < y2 < · · · < ys−y0 and 0 < b0 ≤ b1 ≤ · · · ≤ bs−y0−1 ≤ 1. The parameters yi,

0 ≤ i ≤ s − y0, have the same signification as those for Model A. The parameters bi, 0 ≤ i ≤ s − y0, are

the levels of change of the busyness of the agents team. The values of the bis can be determined using value

iteration.

From the numerical experiments, we observe that the values of the bis are different than one only for

small values of i. This implies that the busyness of the agents team affects the optimal decisions only when

the number of busy agents is low. The reason is related to the blocking risk for an inbound call. When most

of the agents are idling, the decision to serve an outbound call would most likely not block the agents team.

In such a situation, what affects the decision is then the identity of jobs in service. In the opposite case,

when most of the agents are busy, the service of an outbound call could easily lead to a blocking situation

(waiting time for inbound calls). In such a situation, what affects the decision is then the total number of

busy agents (x+ s2 + s3) and the length of queue 2 (y), more than the identity of the jobs in service.

4 Performance Analysis

We compute the stationary performance measures. In Section 4.1, we profit from the constant transition

rates and propose an exact algorithm for Model C. In Section 4.2, we provide a controlled approximation

based on value iterations for Models A and G. In Section 4.3, we consider special cases of agent reservation

for Model C (Section 4.3.1) and the non-idling case for Model A (Section 4.3.2). This allows to obtain

closed-form expressions for the bounds of the performance measures of Models A and C.

4.1 Model C

We compute here E(W1), E(W2), Pb and Ψ. Our approach is based on the analysis of the underlying Markov

chain. We compute the stationary probabilities of the system states by solving a system of linear difference

equations. We do so by solving the involved homogeneous equations defined on the set of complex numbers.

Although some quantities contain infinite summations, we provide a method that allows to do the exact

computation within a finite number of calculations.

Consider the stochastic process {(x(t), y(t)), t ≥ 0}, where x(t) denotes the number of calls in queue 1

(jobs 1) or in service (jobs 1 or 2); and y(t) denotes that in queue 2 (jobs 2) at a given time t ≥ 0. We

have x(t), y(t) ∈ {0, 1, 2, ...}, for t ≥ 0. As inter-arrival and service times are exponentially distributed,

{(x(t), y(t)), t ≥ 0} is a Markov chain. An illustration of this Markov chain in given in Figure 7.

We denote by px,y the stationary probability to be in state (x, y), for x, y ∈ N. In what follows, we
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Figure 7: Markov chain for Model C (q′ = q + α)

compute the stationary probabilities, from which we thereafter deduce the system performance measures of

interest. To simplify the presentation of the analysis, we divide it into the following 7 steps:

• Step 1. We provide the set of equilibrium equations relating the stationary probabilities.

• Step 2. We simplify the expressions of px,y, for x ≤ s+k and y ≥ 0, by expressing them as a function

of only two state probabilities from the row y in the Markov chain.

• Step 3. We show how px,y, for x ≥ s+k and y ≥ 0, can be computed as a function of ps+k,0, ps+k,1, · · · , ps+k,y.

• Step 4. We evaluate all stationary probabilities for x ≥ 0 and y = 0 as a function of p0,0.

• Step 5. For y ≥ 0, we develop a recurrence method to compute all stationary probabilities of row

y + 1 in the Markov chain as a function of the previous rows. Thus all stationary probabilities can be

derived as a function of p0,0.

• Step 6. Although p0,0 involves an infinite summation, we provide a method to compute it within a

finite number of calculations.

• Step 7. We finally derive the system performance measures as a function of the stationary probabilities.

The details for each step are given in Appendix C.
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4.2 Models A and G

We compute here E(W1), E(W2), Pa, and Ψ. We propose a numerical method based on the iterative

computation of the dynamic programming operators.

For Model A, assuming the switch policy as defined in Section 3.3.1, the value functions can be rewritten,

for n ≥ 0, as

Vn+1(x, y) = γ1(x− s)+ + γ2y + λ
[
1(0≤x<s)Vn(x+ 1, y) +1(s≤x<s+k) ((1− αx)Vn(x+ 1, y) + αx(Vn(x, y) + γ3))

+ 1(s+k≤x<s+N)(qx(Vn(x, y + 1) + γ4) + αx(Vn(x, y) + γ3) + (1− qx − αx)Vn(x+ 1, y))

+1(x=s+N)(qN−1(Vn(x, y + 1) + γ4) + (1− qN−1)(Vn(x, y) + γ3))
]

+ β(x− s)+(Vn(x− 1, y) + γ3)

+ min(s, x)µ
[
1(y>0)(1(x+y≤y1,x≤y0) + 1(y1<x+y≤y2,x≤y0+1) + 1(y2<x+y≤y3,x≤y0+2) + · · ·+ 1(ys−y0

<x+y,x≤s))Vn(x, y − 1)

+
(
1− 1(y>0)(1(x+y≤y1,x≤y0) + 1(y1<x+y≤y2,x≤y0+1) + 1(y2<x+y≤y3,x≤y0+2) + · · ·+ 1(ys−y0

<x+y,x≤s))
)
Vn(x− 1, y)

]
+
(
1− λ− β(x− s)+ −min(s, x)µ1

)
Vn(x, y), for x, y ≥ 0,

with V0(x, y) = 0, for x, y ≥ 0.

For Model G, assuming the switch policy as defined in Section 3.3.2, the value functions can be rewritten,

for n ≥ 0, as

Un+1(x, y, s2, s3) = γ1(x+ s2 + s3 − s)+ + γ2y

+ λ
[
1(0≤x+s2+s3<s)Vn(x+ 1, y, s2, s3)

+1(s≤x+s2+s3<s+k) ((1− αx,s2,s3 )Vn(x+ 1, y, s2, s3) + αx,s2,s3 (Vn(x, y, s2, s3) + γ3))

+ 1(s+k≤x+s2+s3<s+N)(qx,s2,s3 (Vn(x, y + 1, s2, s3) + γ4) + αx,s2,s3 (Vn(x, y, s2, s3) + γ3)

+ (1− qx,s2,s3 − αx,s2,s3 )Vn(x+ 1, y, s2, s3))

+1(x+s2+s3=s+N)(qN−1,s2,s3 (Vn(x, y + 1, s2, s3) + γ4) + (1− qN−1,s2,s3 )(Vn(x, y, s2, s3) + γ3))
]

+ β(x+ s2 + s3 − s)+(Vn(x− 1, y, s2, s3) + γ3)

+ min(s− s2 − s3, x)µ1
[
1(y>0)(1(x+y+s2+s3≤y1,x+s2+s3≤y0,b(x−1,s2,s3)≤b0) + 1(y1<x+y+s2+s3≤y2,x+s2+s3≤y0+1,b(x−1,s2,s3)≤b1)

+ · · ·+ 1(ys−y0
<x+y+s2+s3,x+s2+s3≤s))(r1Vn(x, y − 1, s2, s3) + r2Vn(x− 1, y − 1, s2 + 1, s3)

+ (1− r1 − r2)Vn(x− 1, y − 1, s2, s3 + 1))

+
(
1− 1(y>0)(1(x+y+s2+s3≤y1,x+s2+s3≤y0,b(x−1,s2,s3)≤b0) + 1(y1<x+y+s2+s3≤y2,x+s2+s3≤y0+1,b(x−1,s2,s3)≤b1)

+ · · ·+ 1(ys−y0
<x+y+s2+s3,x+s2+s3≤s))

)
Vn(x− 1, y, s2, s3)

]
+ s2µ2

[
1(y>0)(1(x+y+s2+s3≤y1,x+s2+s3≤y0,b(x,s2−1,s3)≤b0) + 1(y1<x+y+s2+s3≤y2,x+s2+s3≤y0+1,b(x,s2−1,s3)≤b1)

+ · · ·+ 1(ys−y0
<x+y+s2+s3,x+s2+s3≤s))(r1Vn(x+ 1, y − 1, s2 − 1, s3) + r2Vn(x, y − 1, s2, s3)

+ (1− r1 − r2)Vn(x, y − 1, s2 − 1, s3 + 1))

+
(
1− 1(y>0)(1(x+y+s2+s3≤y1,x+s2+s3≤y0,b(x,s2−1,s3)≤b0) + 1(y1<x+y+s2+s3≤y2,x+s2+s3≤y0+1,b(x,s2−1,s3)≤b1)

+ · · ·+ 1(ys−y0
<x+y+s2+s3,x+s2+s3≤s))

)
Vn(x, y, s2 − 1, s3)

]
+ s3µ3

[
1(y>0)(1(x+y+s2+s3≤y1,x+s2+s3≤y0,b(x,s2,s3−1)≤b0) + 1(y1<x+y+s2+s3≤y2,x+s2+s3≤y0+1,b(x,s2,s3−1)≤b1)

+ · · ·+ 1(ys−y0
<x+y+s2+s3,x+s2+s3≤s))(r1Vn(x+ 1, y − 1, s2, s3 − 1) + r2Vn(x, y − 1, s2 + 1, s3 − 1)

+ (1− r1 − r2)Vn(x, y − 1, s2, s3))

+
(
1− 1(y>0)(1(x+y+s2+s3≤y1,x+s2+s3≤y0,b(x,s2,s3−1)≤b0) + 1(y1<x+y+s2+s3≤y2,x+s2+s3≤y0+1,b(x,s2,s3−1)≤b1)

+ · · ·+ 1(ys−y0
<x+y+s2+s3,x+s2+s3≤s))

)
Vn(x, y, s2, s3 − 1)

]
+
(
1− λ− β(x+ s2 + s3 − s)+ −min(s− s2 − s3, x)µ1 − s2µ2 − s3µ3

)
Vn(x, y, s2, s3), for x, y ≥ 0, and 0 ≤ s2, s3 ≤ s,
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with V0(x, y, s2, s3) = 0, for x, y ≥ 0 and 0 ≤ s2, s3 ≤ s.

In both cases (Models A and G), the standard way of obtaining the long-term performance measures

is through value iteration, by recursively evaluating Vn, for n ≥ 0. As n tends to infinity, the difference

Vn+1(x, y, s2, s3) − Vn(x, y, s2, s3) converges to the desired metric. Thus, we stop the iteration until the

following criterion is met

max
x,y,s2,s3

{Vn+1(x, y, s2, s3)− Vn(x, y, s2, s3)} − min
x,y,s2,s3

{Vn+1(x, y, s2, s3)− Vn(x, y, s2, s3)} < ϵ,

for some given small ϵ.

In what follows we precise the parameters in the value functions which allow to compute the desired

performance measures. One can calculate the expected number of customers in queue 1, say E(N1), by

letting γ1 = 1, γ2 = 0, γ3 = 0, γ4 = 0 in the value function; the expected number of customers in queue

2, say E(N2), by letting γ1 = 0, γ2 = 1, γ3 = 0, γ4 = 0; the proportion of customers who abandon the

system, Pa, by letting γ1 = 0, γ2 = 0, γ3 = 1/λ, γ4 = 0; the proportion of customers who choose the callback

offer, Ψ, by letting γ1 = 0, γ2 = 0, γ3 = 0, γ4 = 1/λ. Using next the Little law, we obtain the expected

waiting time for served customers in queue 1, E(W1) =
E(N1)

λ(1−Pa−Ψ) ; and the expected waiting time in queue

2, E(W2) =
E(N2)
λΨ .

4.3 Special Cases

We consider here some special cases of agent reservation for Model C and the non-idling case for Model A.

4.3.1 Special Reservation Cases for Model C

We define for Model C the threshold y0 on the number of busy agents. If the number of busy agents is lower

than or equal to y0 (1 ≤ y0 ≤ s) and at least one outbound call is in queue 2, then we serve this outbound

call. In the remaining cases, we do not serve outbounds. Therefore, the switching curve of this policy is

c(x+ y) = min(x+ y, y0).

Since the optimal action is to serve an outbound call when all agents are idling (Proposition 1), the worst

policy for outbounds (the best case for inbounds) consists of serving an outbound call only when all agents

are idling. We refer to the latter as the highest reservation policy. It corresponds to the case y0 = 1. As for

the non-idling policy, it corresponds to the case y0 = s.

The analysis of this policy is a deduced from that of Section 4.1. In Corollary 2, we give closed-form

expressions for E(W1), Pb and Ψ as a function of y0. The proof is given in Section 2 of the online supplement.

Corollary 2 For 1 ≤ y0 ≤ s, we have

Ψ =
q
(

a(1−α)
s

)k
as

s!

1− a(1−q−α)
s

p0,0

1− q a
y0

as−y0y0!
s!

(
a(1−α)

s

)k
1

1− a(1−q−α)
s

,
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Pb =

αas

s!
p0,0

(
1−

(
a(1−α)

s

)k

1− a(1−α)
s

+

(
a(1−α)

s

)k

1− a(1−q−α)
s

)
1− q a

y0

as−y0y0!
s!

(
a(1−α)

s

)k
1

1− a(1−q−α)
s

,

E(W1) =
as

s!

λ(1−Ψ− Pb)

p0,0

(
k−1∑
x=0

x
(

a(1−α)
s

)x
+
(

a(1−α)
s

)k ( k
(
1− a(1−q−α)

s

)
+

a(1−q−α)
s(

1− a(1−q−α)
s

)2

))
1− q a

y0

as−y0y0!
s!

(
a(1−α)

s

)k
1

1− a(1−q−α)
s

,

with

p0,0 =


y0−1∑
x=0

ax

x!
+

(
s−y0−1∑

x=0

ax+y0

(y0+x)!
+ as

s!

k−1∑
x=0

(a(1−α))x

sx
+ as

s!
(a(1−α))k

sk
1

1− a(1−q−α)
s

)
1− q a

y0

as−y0y0!
s!

(a(1−α))k

sk
1

1− a(1−q−α)
s


−1

.

In Appendix D, further simplifications of the above expressions are given for the multi-server special

cases: y0 = 1 (highest reservation) and y0 = s (non-idling).

4.3.2 Non-idling Case for Model A

We provide in Proposition 3 closed-form expressions for E(W1), Pb, Pa and Ψ. The proof is given in Section

3 of the online supplement.

Proposition 3 For the non-idling case, we have

p0,0 =


s−1∑
x=0

ax

x!
+

as

s!

 k∑
x=0

λx
x∏

i=1

(
1−αi−1

sµ+iβ

)
+

∞∑
x=1

λx+k

k∏
i=1

(1−αi−1)
x+k∏

i=k+1
(1−αi−1−qi−1)

x+k∏
i=1

(sµ+iβ)



1− a
s

k∏
i=1

(1− αi−1)
∞∑

x=0

qk+xλx+k
x+k∏

i=k+1
(1−αi−1−qi−1)

x+k∏
i=1

(sµ+iβ)



−1

,

Ψ =
∞∑

x=0

qk+xPs+k+x =
s

a
(Ps − ps,0) =

as

s!

k∏
i=1

(1− αi−1)
∞∑

x=0

qk+xλx+k
x+k∏

i=k+1
(1−αi−1−qi−1)

x+k∏
i=1

(sµ+iβ)

1− a
s

k∏
i=1

(1− αi−1)
∞∑

x=0

qk+xλx+k
x+k∏

i=k+1
(1−αi−1−qi−1)

x+k∏
i=1

(sµ+iβ)

p0,0,

Pb =
∞∑

x=0

αxPs+x =

as

s!

 k∑
x=0

αxλx
x∏

i=1

(
1−αi−1

sµ+iβ

)
+

∞∑
x=1

αk+x

k∏
i=1

(1− αi−1)

qk+xλx+k
x+k∏

i=k+1
(1−αi−1−qi−1)

x+k∏
i=1

(sµ+iβ)



1− a
s

k∏
i=1

(1− αi−1)
∞∑

x=0

qk+xλx+k
x+k∏

i=k+1
(1−αi−1−qi−1)

x+k∏
i=1

(sµ+iβ)

p0,0,

20



Pa =

as

s!

 k∑
x=0

(
αx + xβ

λ

)
λx

x∏
i=1

(
1−αi−1

sµ+iβ

)
+

∞∑
x=1

(
αx+k + (x+ k)β

λ

) k∏
i=1

(1− αi−1)

qk+xλx+k
x+k∏

i=k+1
(1−αi−1−qi−1)

x+k∏
i=1

(sµ+iβ)



1− a
s

k∏
i=1

(1− αi−1)
∞∑

x=0

qk+xλx+k
x+k∏

i=k+1
(1−αi−1−qi−1)

x+k∏
i=1

(sµ+iβ)

p0,0,

and

E(W1) =
Pa − Pb

β(1−Ψ− Pa)
.

5 Numerical Experiments

We investigate the benefits of the callback offer and the impact of the policy parameters on the system

performance. The policy parameters are the state-dependent number of agents reserved for inbounds, and

the threshold k for the callback proposition. Because of the analysis complexity, the conclusions we derive

are mainly based on numerical observations. For some particular cases, we develop analytical results that

provide better understanding and support the conclusions.

5.1 Benefits of the Callback Offer
We evaluate the benefits of the callback offer on the performance measures, in relation with the system

workload. We consider the single-server non-idling case (optimal policy, Corollary 1) of Model C with k = 0

(optimal k, Proposition 5). The objective is to provide a simple closed-form expression of the difference

between the system cost in two situations; with and without the callback offer. Using Corollary 2, for

y0 = s = 1 and k = 0 (situation with the callback option), we obtain Pb = αa
1+αa , Ψ = qa

1+αa , E(W1) =
1
µ

(1−q−α)a
(1−(1−q−α)a)(1−qa) , and E(W2) = 1

µ
1+a(α/q)(1−α)(1−(1−q−α)a)
(1−a(1−α))(1−(1−q−α)a) . For y0 = s = 1 and k = ∞ (situation

without the callback option), we obtain after simplification Pb = αa
1+αa , Ψ = 0 and E(W1) =

1
µ

(1−α)a
(1−(1−α)a) .

The last situation reduces to an M/M/1 queue with balking. We do not provide for it the expression of

E(W2) because outbounds do not exist when the callback option is not offered (it is simply considered as

zero). The difference in system costs between the two situations (without the offer minus with the offer),

denoted by ∆(a), is then

∆(a) =
γ1

µ

(
(1− α)a

(1− (1− α)a)
−

(1− q − α)a

(1− (1− q − α)a)(1− qa)

)
−
γ2

µ

1 + a(α/q)(1− α)(1− (1− q − α)a)

(1− a(1− α))(1− (1− q − α)a)
.

This difference can be either positive or negative.

In Figure 8, we illustrate the impact of the arrival rate on the system cost in the two situations (with and

without the callback offer). Figure 8(a) reveals that the callback option can improve the system cost when

the arrival rate is high. Since we have ∆(0) = −γ2

µ < 0, under light workload, the callback option should

not be provided. Roughly speaking, if a call goes to queue 2, then this call would loose priority. This is not

useful because calls in queue 1 have anyway short waiting times.

Under a heavy workload situation, the preference is not always for using the callback option. As a

tends to 1
1−α , ∆(a) becomes equivalent to

γ1−γ2
1+αa
qa

µ(1−(1−α)a) . This expression can either be positive or negative

depending on the sign of its numerator. The higher γ1 or q are in comparison with γ2 and α, the more likely

this expression would be positive. More qualitatively, this implies that the callback offer has a positive effect

only if a high importance is given to inbounds and if customers would easily accept the callback offer (Figure
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(b) α = 60% and q = 10%

Figure 8: System cost with and without the callback offer (non-idling case of Model C, s = 1, k = 0,
SC = E(W1) + 0.1E(W2))

8(a)). In the case where customers are more likely to balk than to accept the callback offer (Figure 8(b)),

providing a callback offer would deteriorate the system cost.

Finally, we numerically observe that the function |∆(a)| is increasing in a. This induces that the benefits

or the loss due to the use of the callback option would be more apparent under a heavy workload situation.

This is precisely the value of the callback offer, that could better manage congested situations.

5.2 Impact of Agent Reservation

We examine here the impact of the reservation on the system performance. We first consider the two-server

case in Section 5.2.1, and second the multi-server case in Section 5.2.2.

5.2.1 Two-Server Case

The reason for considering the two-server case is to allow the reservation policy to be only dependent on

one parameter; the threshold y0 that defines the limit on the length of queue 2 at and above which no agent

should be reserved for inbounds. An illustration of the effect of y0 on the performance measures is given for

Model C in Figure 9.

The reservation for inbounds increases in y0. Therefore, E(W1) and Pa decreases in y0 (Figures 9(a) and

9(c)), and E(W2) increases in y0 (Figure 9(b)). We observe from Figure 9(b) that reservation deteriorates

the overall expected waiting time, E(W ). This is related to two reasons. The first one is that agent

reservation creates unproductive idling situations with one agent idle while queue 2 is not empty. The latter

deteriorates the overall performance of the system. The second reason is related to the reduction of balking

and abandonment of inbounds. Since reservation induces more availability of agents for inbounds, it reduces

the proportion of lost inbounds (Pa). Agents have then to treat more tasks (recall that outbounds do not

abandon) as shown in Figure 9(d). This deteriorates the overall expected waiting time. It is the negative

effect for reducing the proportion of abandonment.
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(d) Agent utilization

Figure 9: Effect of y0 (s = 2, λ = 1.9, µ1 = µ2 = 1, α = q = 30%, r1 = 100%, k = 0, β = 0)

5.2.2 Impact of the Call Center Size

We investigate the impact of the call center size s on the performance measures and its relation with the reser-

vation policy. Consider Model C with k = 0 (optimal k, Proposition 5) and let us define ρ as ρ = λ
sµ1

. Propo-

sition 4 provides convexity results justifying that reservation policies bring higher improvement in large call

centers than in small ones (recall that non-idling is optimal in the single-server case). For large call centers,

these results support therefore the well known notion that only limited server pooling/flexibility/availability

is needed (Bassamboo et al., 2010; Legros et al., 2015a).

Proposition 4 Consider the non-idling case of Model C. For the optimal threshold on queue 1 (k = 0), Pb,

Ψ, E(W1) and E(W ) are decreasing and convex in s, when ρ = a/s and λ are held constant.

The proof of the proposition is given in Appendix E. Table 2 illustrates for Model C the behavior of the

performance measures as a function of s, when ρ is held constant and equal to 0.99. In the second and third

columns, we give the upper and lower bounds of E(W1) using the results of Section 4.3.1, respectively. The

upper bound is obtained in the non-idling case and the lower bound is obtained in the highest reservation

case. In the fourth column, we compute the relative difference between the upper and lower bounds of E(W1)

so as to assess the possibilities of performance improvement for inbounds. We observe that the higher is s,

the more it is possible to improve E(W1). In the fifth column, we give the lower bound of E(W2) obtained in

the non-idling case. We do not give upper bounds of E(W2) from the extreme reservation case, since these

are too high and do not provide interesting situations for the optimization problem. In the sixth column, we

give the total expected system cost in the non-idling case. We observe that the expected total cost decreases
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in s. In the seventh, eight and ninth columns, we give the optimal performance measures obtained via the

algorithm proposed in Section 4.1, under the optimal reservation policy. In the last column, we compute the

relative difference between the optimal system cost and that obtained in the non-idling case. We observe

that the larger is the call center, the higher is the agent reservation for inbounds. For small call centers (for

s ≤ 5 in Table 2), non-idling is optimal. As s increases, we observe for the optimal reservation policy that

E(W1) moves from the neighborhood of its upper bound to that of its lower bound, and that E(W2) remains

relatively close to its lower bound. This implies that the relative difference between the system cost in the

optimal case and that in the non-idling case increases in the call center size.

Table 2: Effect of s (ρ = 0.99, µ1 = µ2 = 1, r1 = 1, α = β = 0, q = 30%, k = 0, SC = E(W1) + 0.01E(W2))

s E(W1)max E(W1)min rd E(W2)min SCNI E(W1)op E(W2)opt SCopt rd

1 3.178 3.178 0% 289.36 6.07 3.178 289.36 6.07 0.00%
2 1.584 1.367 -14% 145.57 3.04 1.584 145.57 3.04 0.00%
5 0.628 0.510 -19% 68.16 1.31 0.628 68.16 1.31 0.00%
10 0.304 0.170 -44% 26.09 0.56 0.250 29.04 0.54 -4.27%
20 0.150 0.063 -60% 13.17 0.28 0.098 15.12 0.25 -11.48%
50 0.058 0.018 -69% 6.39 0.12 0.029 6.45 0.09 -23.28%
100 0.028 0.005 -82% 3.93 0.07 0.009 4.04 0.05 -26.11%
500 0.004 0.001 -89% 0.70 0.01 0.001 0.71 0.01 -29.22%

In summary, the main conclusion of this section is that reservation has more potential of improvement

in large call centers, since large call centers allow for less flexibility than small ones.

5.3 Impact of the Threshold k

We examine the optimization of the threshold k. We also investigate the relation between reservation and

k. Finally, the policy of a fixed threshold k is evaluated in comparison with a state-dependent k.

5.3.1 Exogenous Parameters and Threshold k

Proposition 5 gives, for the non-idling case for Model C, first order monotonicity results in k.

Proposition 5 In the non-idling case for Model C, Pb is insensitive to k, Ψ is decreasing in k, E(W1) and

E(W2) are increasing in k, for k ≥ 0.

The proof of the proposition is given in Appendix F. A consequence of the monotonicity results of E(W1)

and E(W2) is that k = 0 is optimal for non-idling Model C. Yet, k = 0 is not the optimal value for Models

A, B and G because of inbounds balking, abandonment and/or the possible non-availability of a called back

customer.

Balking and call acceptance parameters for Model B. We consider the impact of αx and qx (x ≥ s)

on the monotonicity of the performance measures in k for Model B. In Figure 10, we consider three numerical

cases:

• Case 1: qx = 0.4 and αx = min(0.5, 0.05x),

• Case 2: qx = min(0.4, 0.05x) and αx = 0.5,
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• Case 3: qx = 0.1 and αx = min(0.5, 0.05x2),

for x ≥ s. Cases 1 and 3 illustrate situations with non constant balking parameters and Case 2 illustrates a

situation with non constant callback acceptance parameters. The monotonicity results in k in Cases 1 and 2

are identical to those derived for the non-idling case of Model C. However, in Case 3, E(W1) is non-increasing

in k.

When αx is strongly increasing in x (Case 3), the inbounds expected waiting time can be non-increasing

in k (Figure 10(a)). The proportion of inbounds increases in k. Therefore, inbounds arrive more often at

a long queue 1 (large values of x), and the balking would then be more important (large values of αx).

Although increasing k has the negative effect of increasing balking, it also has the positive effect of reducing

the system workload by reducing arrivals that enter the system. This can improve the expected waiting time

of inbounds. From the numerical experiments, we however observe that qx do not impact the first order

monotonicity results in k. This is related to the fact that qx has no effect on the system workload, and that

the callback offer is only proposed for x ≥ k.
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Figure 10: Impact of balking and call acceptance parameters (s = 1, λ = 0.5, µ1 = 1, r1 = 100%, non-idling
case)

Abandonment for Model A. Figures 11 and 12 illustrate the impact of k on the performance measures,

for different values of the abandonment rate β. We observe that the abandonment in queue 1 only affects

the monotonicity properties of E(W1) and E(W2). This explains why k = 0 is no longer necessarily optimal.

Two phenomenons are in competition when β > 0. From the one hand, increasing k reduces the number of

callbacks and increases thus the proportion of inbounds, which would in turn increase E(W1) and E(W2).
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From the other hand, the increasing of the number of customers in queue 1 increases also the departure rate

(after abandonment or service) of inbounds from the system, which makes the system more efficient and

may decrease E(W1) and E(W2). The first (second) phenomenon is predominant for small (large) values

of β. We observe that the non-increasing of E(W2) requires higher arrival or abandonment rates than the

non-increasing of E(W1) (Figure 12). The behavior of the other performance measures is more intuitive; the

proportion of abandonment increases in k, and the proportion of callbacks decreases in k.
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Figure 11: Impact of abandonment (s = 1, λ = 1.2, µ1 = 1, α = q = 30%, r1 = 100%)
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Figure 12: Impact of abandonment (s = 10, λ = 12, µ1 = 1, β = 3, α = 10%, q = 30%, r1 = 100%)

Outbound service process for Model G. Let us define T , a random variable, representing the total

time spent by the system capacity to serve an outbound call. For a given outbound call, this corresponds to
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the summation of the durations spent by agents to handle eventually its non-availability situations plus its

service duration.

The case k = 0 is also not necessarily optimal when the overall expected time spent to serve an outbound

call is larger than the expected time to serve an inbound one. In Proposition 6, we give the expected value

and the standard deviation of the time spent by the system capacity to serve an outbound call.

Proposition 6 The random time T has a phase type distribution with expected value

E(T ) =
r1

r1 + r2

1

µ1
+

r2
r1 + r2

1

µ2
+

1− r1 − r2
r1 + r2

1

µ3
,

and standard deviation

σ(T ) =

√
r1(4− 3r1 − 2r2)

µ2
1(r1 + r2)(2− r1 − r2)

+
r2(4− 3r2 − 2r1)

µ2
2(r1 + r2)(2− r1 − r2)

+
(1− r1 − r2)(4− r1 − r2)

µ2
3(r1 + r2)(2− r1 − r2)

.

The proof of this proposition is given in Appendix G. From Proposition 6, we deduce that outbounds

require a larger expected time of treatment than that of inbounds if and only if

1− r1 − r2

µ3
> r2

(
1

µ1
−

1

µ2

)
. (3)

Inequality (3) simply states that if the time lost in handling a non-available situation is larger than the

time saved due to fast outbounds (those who have already resolved a part of their problem), then outbounds

require a larger expected time of treatment.

Figure 13 illustrates a situation where the overall expected time of an outbound treatment, E(T ), is

larger than that of the service time of an inbound, 1/µ1. We observe that the monotonicity properties in k

of the performance measures E(W1), Pa and Ψ are not affected by the parameters of service of outbounds,

because of the higher priority given to inbounds. The reason is that, during their sojourn in the queue, the

latter will only assist at service durations that are exponentially distributed with rate µi (i = 1, 2, 3). We

observe that E(W2) is either strictly increasing in k or decreasing then increasing. The second situation

occurs when outbounds are treated within a much larger time than that of inbounds. Two phenomenons are

in competition; the first one already mentioned earlier is that increasing k reduces the number of outbounds

which would suffer from the high proportion of prioritized inbounds. The second one is that if k is too small,

the proportion of outbounds can be too important for the system capacity. It might then take too long time

to serve them.

5.3.2 Reservation and Threshold k

We investigate here the relation between the agent reservation policy and the choice for the threshold k. We

proved in Proposition 2 that for Model A, the higher is q, the less agents should be reserved for inbounds. The

reason is the low proportion of inbounds. The impact of k is similar to that of q. Increasing k is equivalent

to decreasing q, therefore the higher k is the more agents should be reserved for inbounds. This observation

agrees with the classical idea in control problems stating that the longest queue should be preferred: through

the choice of the reservation level in our model.
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Figure 13: Impact of the service process (s = 1, λ = 0.75, µ1 = 1, µ2 = 1.5, µ3 = 10, α = β = 0, q = 30%,
r1 = 0%, r2 = 7%)

However, Table 3 reveals that this observation is no longer true when Model G is considered. In this

table, we provide the performance measures for different values of k. Similarly to Table 2, we provide the

upper and lower bounds for E(W1) and Pa to examine the possibilities of improvement. We also compute

the lower bound for E(W2). In the presented numerical illustration, the two extreme situations are again

the non-idling case and the extreme reservation case. In the last five columns, we give the optimal values

of the performance measures. We also compute the relative difference found in the comparison between the

non-idling case and the optimal case.

On the contrary to what one would expect, we observe here that agent reservation decreases in k. For

example in Table 3, when k ≥ 6, non-idling is optimal. The reason is related to two phenomenons. The

first one is the possible non-availability of outbounds (20% are not available). The second one is the smaller

impact of outbounds in service on inbounds performance when r1 < 1 than when r1 = 1 (50% of outbounds

occupy agents a shorter time than inbounds). The low priority of outbounds together with their non-full

availability make queue 2 difficult to reduce, especially when inbounds are numerous in the system (i.e., when

k is high). Therefore, the increasing of E(W2) in k is strong (see column 8) and reservation for inbounds

should not be provided when k is high. Because outbounds occupy agents a shorter time than inbounds

when r1 < 1, outbounds have less impact on E(W1) in Model G than in Model A. Thus, the effect of k and

the agent reservation on E(W1) is weaker for Model G than for Model A (see columns 2 and 3). Increasing

reservation when k is high has a strong impact on E(W2) but a small one on E(W1), which advocates for

a non-idling policy. The deterioration of E(W2) with reservation is weaker when k is small, so, reservation

should be provided in this case to reduce E(W1).

5.3.3 Value of a Fixed Threshold k

We have defined the threshold parameter k on the number of calls in queue 1 to control the decision of

proposing or not the callback offer. We have shown that k = 0 is optimal for the non-idling case of Model C.

In other words, the callback offer should be proposed to all delayed customers. It is also the case for Models

A, B and G in most cases. Yet, with significant abandonment or large treatment time for outbounds, k = 0

may not be any longer optimal. In the modeling, the value of a fixed threshold k comes from its simplicity
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Table 3: Impact of k (λ = 49.5, s = 50, µ1 = 1, µ2 = 1.5, µ3 = 10, r1 = 50%, r2 = 30%, α = 10%, q = 30%,
β = 0.5, SC = E(W1) + 0.01E(W2) + Pa)
k E(W1)max E(W1)min rd Pamax Pamin rd E(W2) SCNI

0 0.013 0.010 -21.16% 4.85% 4.04% -20.13% 0.343 0.065
1 0.015 0.012 -19.68% 5.02% 4.20% -19.62% 0.497 0.070
2 0.018 0.015 -18.81% 5.21% 4.44% -17.50% 0.656 0.076
3 0.020 0.017 -18.34% 5.32% 4.56% -16.87% 0.799 0.081
4 0.023 0.019 -17.76% 5.43% 4.68% -16.17% 0.918 0.086
5 0.025 0.021 -17.34% 5.52% 4.77% -15.80% 1.039 0.090
6 0.027 0.023 -17.18% 5.56% 4.82% -15.22% 1.158 0.094
7 0.029 0.025 -15.65% 5.69% 4.96% -14.78% 1.247 0.098
8 0.031 0.027 -12.55% 5.74% 5.08% -13.06% 1.349 0.102
9 0.032 0.029 -9.63% 5.82% 5.28% -10.23% 1.444 0.105
k E(W1)opt E(W2)opt Paopt SCopt rd

0 0.011 0.456 4.12% 0.057 -12.07%
1 0.014 0.594 4.26% 0.063 -10.69%
2 0.017 0.687 4.48% 0.068 -10.44%
3 0.019 0.861 4.63% 0.074 -9.72%
4 0.021 0.963 4.80% 0.079 -8.84%
5 0.024 1.087 4.99% 0.084 -6.83%
6 0.027 1.158 5.56% 0.094 0.00%
7 0.029 1.247 5.69% 0.098 0.00%
8 0.031 1.349 5.74% 0.102 0.00%
9 0.032 1.444 5.82% 0.105 0.00%

and from the analysis tractability for the performance evaluation. However, a fixed threshold k may not be

optimal. It is then also interesting to evaluate the performance of our fixed-k policy in comparison with a

state-dependent-k policy for the proposition of the callback offer upon arrival.

For Model A with constant balking and callback acceptance parameters, the value functions defined in

Section 2 can be rewritten, for n ≥ 0, including the decision to propose or not the callback offer through the

operator Wn, as

Un+1(x, y) = γ1(x− s)+ + γ2y + λWn(x, y) + β(x− s)+(Vn(x− 1, y) + γ3) + min(s, x)µVn(x− 1, y)

+
(
1− λ− β(x− s)+ −min(s, x)µ1

)
Vn(x, y), for x, y ≥ 0,

with

Vn+1(x, y) = min(Un+1(x+ 1, y − 1), Un+1(x, y)),

for y > 0 and 0 ≤ x < s and Vn+1(x, y) = Un+1(x, y) in the remaining cases, and

Wn+1(x, y) = min(α(Un+1(x, y) + γ3) + (1− α)Un+1(x+ 1, y), α(Un+1(x, y) + γ3) + qUn+1(x, y + 1) + (1− q − α)Un+1(x+ 1, y)),

for x ≥ s and Wn+1(x, y) = Un+1(x, y) in the remaining cases. We choose W0(x, y) = V0(x, y) = U0(x, y) =

0, for x, y ≥ 0.

In Figure 14, we present the optimal decision found through value iterations. We only present the states

where an action on the callback offer has to be taken (x ≥ s). We observe that the optimal decision for the

callback offer if of switch type. The optimal decision for the points on the curve is not to propose the callback

offer. To the contrary to the reservation policy found in Section 3, the switching curve is not monotonous

in x or in y.

We observe that if the optimal decision in a given state (x, y) is not to propose the callback offer, then

the same decision should be taken in state (x, y+1). The reason is related to the congestion of queue 2. The

decision not to propose the offer is taken in order to use call abandonment in queue 1 which decreases the

system workload. Therefore, if the system is too congested with y outbounds in queue 2, it would also be
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Figure 14: Optimal switching curve for the callback offer (λ = 1.2, µ1 = 1, q = α = 30%, β = 1,
SC = E(W1) + 0.0005E(W2) + 0.1Pa, r1 = 1, s = 1)

with y+1 outbounds in queue 2. The decision as a function of x is more complex. For small values of x, the

decision is more likely to give the offer so as to reduce the number of customers in queue 1. This decision

can be taken because the system is not congested. For higher values of x, the offer can be interrupted to

reduce the workload in the system by letting customers abandon from queue 1. For even higher values of

x, the proportion of abandonment and the waiting time in queue 1 can be so significant that the decision is

again to propose the callback offer even if it would increase the system workload.

One can compare between the two modelings, with a fixed or a state-dependent k using simulations.

The optimal fixed-k is assumed to be a real number in order to achieve a lower system cost than if k would

be an integer (in practice, this means that randomization between two adjacent thresholds is allowed). For

various settings, Table 4 reveals that the difference between the optimal system cost and the cost found with

a fixed-k is not important. However, it is notable that the optimal state-dependent policy improves E(W2)

and almost do not affect the other metrics.

Table 4: Comparison between the two threshold modelings (µ1 = 1, r1 = 1)

Cases Parameters
λ s β α q SC

1 1.2 1 1 30% 30% E(W1) + 0.0005E(W2) + 0.1Pa
2 0.99 1 2 0% 80% E(W1) + 0.00004E(W2) + 0.01Pa
3 0.8 1 1.5 10% 40% E(W1) + 0.0001E(W2) + 0.01Pa
4 12 10 3 10% 60% E(W1) + 0.0001E(W2) + 0.2Pa
5 120 100 3 10% 60% E(W1) + 0.0000001E(W2)

Cases Optimal fixed-k policy Optimal state-dependent-k policy
k E(W1) E(W2) Pa SC E(W1) E(W2) Pa SC

1 3.1 0.095 39.200 46.8% 0.161 0.095 36.100 46.8% 0.160
2 3.9 0.020 897.980 42.2% 0.060 0.021 464.260 41.3% 0.044
3 6.8 0.030 61.878 40.7% 0.041 0.031 35.689 40.8% 0.038
4 1.2 0.044 3.338 20.1% 0.085 0.044 3.338 20.1% 0.085
5 0.9 0.014 580.393 12.0% 0.014 0.014 542.040 12.0% 0.014

For Model G, the optimal decisions for the callback offer can be obtained using the same approach.

However, further assumptions should be made on the balking parameters when the callback option would
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be proposed or not. For instance, it seems appropriate to assume that the callback offer would reduce the

balking behavior. In this case, the conclusion derived above are still valid. The callback offer reduces then at

the same time balking, abandonment and the waiting time in queue 1, but it increases the system workload.

For Model G, either the treatment time of outbounds is shorter than that of inbounds and k = 0 is thus

optimal, or it is not and the conclusions derived above are also still valid.

To conclude Section 5.3, k = 0 is optimal when the balking parameters are constant (αx = α, x ≥ s),

no abandonment is considered (β = 0), or the treatment time of an outbound call is lower or equal than

that of an inbound one (E(T ) ≤ 1/µ1). Increasing k increases the size of queue 1. When αx is strongly

increasing in x, this also increases the balking proportion which reduces the effective arrival rate. When

β > 0, call abandonment helps to reduce the length of queue 1. If much more importance is given to the

waiting time in queue 1 than that to abandonment (γ1 >> γ3), then k > 0 is useful to discharge the system.

If the treatment time of an outbound call is large, it is also useful to have k > 0 in order to avoid too high

proportion of outbounds. The relation between the optimal reservation policy and the optimal k depends

on the service process of outbounds. If this one is identical to that of inbounds (Model A), then more agents

should be reserved for inbounds as k increases.

Summary of Section 5 results. Table 5 summaries the impact of the parameters on the objective

function components. We use the sign “+” for a positive effect and the sign “-” for a negative one.

Table 5: Impact of the parameters

E(W1) E(W2) Pa

Increasing s + + +
Increasing the agent reservation + - +
Increasing k - - -
Increasing k with a high balking/abandonment parameters + +,- -
Increasing k with a high difficulty to serve outbounds - +,- -

In most observed situations, k = 0 is optimal and the reservation policy can be obtained via the MDP

approach from Section 3. In the remaining cases, a finite number of steps should be done to find the optimal

value of k with its corresponding reservation policy (by starting from the case k = 0 and by incrementing k

by one at each step). The number of tests is finite because the deterioration of E(W2) in k after a given value

of k is much faster than the eventual improvement of E(W1) in k. Beyond this value of k, any reservation

policy would anyway further deteriorate E(W2). Moreover, Pa deteriorates with k. Hence, after a given

value of k, the total expected system cost only increases in k and the search for the optimal value of k should

be stopped at that point.

6 Conclusions and Future Research

We considered a call center that offers two channels: real-time telephone service and postponed (callback)

service. Customers choose which channel to use based on a probabilistic choice model. We demonstrated

the operational advantages of agent reservation in this context.

The key operational findings of this paper are that (1) the value of the callback option is more significant
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under heavily loaded situations, (2) the benefits of agent reservation are more apparent in large call centers

than in small ones, (3) reservation increases the agent utilization due to the abandonment reduction, (4)

reservation is not likely to be used under light or heavily loaded situations, (5) the callback offer should be

proposed to all delayed customers except when the abandonment is significant or when the overall treatment

time of an outbound is much larger than that of an inbound. These operational findings came together with

theoretical contributions. The major ones are (1) the proof that non-idling is optimal in the single-server

case, (2) the proof of the optimality of a threshold policy in the two-server case, (3) the algorithm proposed

for the performance evaluation when transition rates are assumed to be constant.

Several interesting areas of future research arise. It would be useful to empirically validate the customer

reaction model to the callback offer through real data analysis. It is also interesting to extend the proof

of the optimal policy for the two-server case to that for the multi-server case. Another research avenue is

to consider other optimization problem formulations, for example in terms of quantiles on the waiting time

distributions of inbound and outbound calls. Finally, it would be interesting to consider non-stationary

arrival parameters and investigate its impact on job scheduling.
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Appendix

A Proof of Theorem 1

We first rewrite the value functions in the two-server case for Model A (µ1 = µ2 = µ, r1 = 1). So as to

simplify the presentation of the proof, we redefine the states as follows. The parameter z denotes the state

of the agents team (z = 0 when both agents are idle; z = 1 when only one agent is busy with an inbound or

an outbound call; and z = 2 when both agents are busy), x is redefined here as the number of inbounds in

queue 1 and y is the number of outbounds in queue 2. We have for n ≥ 0,

Un+1(0, 0, y) = γ2y + λVn(1, 0, y) + (1− λ)Vn(0, 0, y), for y ≥ 0,

Un+1(1, 0, y) = γ2y + λVn(2, 0, y) + µVn(0, 0, y) + (1− λ− µ)Vn(1, 0, y), for y ≥ 0,

Un+1(2, x, y) = γ1x+ γ2y + λ
(
1(0≤x<k) ((1− αx)Vn(2, x+ 1, y) + αx(Vn(2, x, y) + γ3))

+1(k≤x<N) (qxVn(2, x, y + 1) + αx(Vn(2, x, y) + γ3) + (1− qx − αx)Vn(2, x+ 1, y))

+1(x=N)(qN−1Vn(2, x, y + 1) + (1− qN−1)(Vn(2, x, y) + γ3))
)

+ βx(Vn(2, x− 1, y) + γ3) + 2µ
(
1(x=0)Vn(1, 0, y) + 1(x>0)Vn(2, x− 1, y)

)
+ (1− λ− βx− 2µ)Vn(2, x, y), for x, y ≥ 0,

with Vn+1(0, 0, y) = Un+1(1, 0, y − 1) for y > 0 (recall that we assume that it is optimal to serve an

outbound call when all agents are idling); Vn+1(1, 0, y) = min(Un+1(2, 0, y− 1), Un+1(1, 0, y)) for y > 0; and

Vn+1(z, x, y) = Un+1(z, x, y) in the remaining cases. We choose V0(z, x, y) = U0(z, x, y) = 0, for z = 0, 1, 2

and x, y ≥ 0.

We define a class of functions F from {0, 1, 2} × N2 to R as follows: f ∈ F if

f(2, x+ 1, y) ≥ f(2, x, y), (4)

f(1, 0, y) ≥ f(0, 0, y), (5)

f(2, 0, y) ≥ f(1, 0, y), (6)

f(2, x, y + 1) ≥ f(2, x, y), (7)

f(0, 0, y + 1) ≥ f(0, 0, y), (8)

f(1, 0, y + 1) ≥ f(1, 0, y), (9)

f(2, x, y) + f(2, x+ 1, y + 1) ≥ f(2, x+ 1, y) + f(2, x, y + 1), (10)

f(0, 0, y) + f(1, 0, y + 1) ≥ f(1, 0, y) + f(0, 0, y + 1), (11)

f(1, 0, y) + f(2, 0, y + 1) ≥ f(2, 0, y) + f(1, 0, y + 1), (12)

f(2, x, y + 2) + f(2, x+ 1, y) ≥ f(2, x, y + 1) + f(2, x+ 1, y + 1), (13)

f(0, 0, y + 2) + f(1, 0, y) ≥ f(0, 0, y + 1) + f(1, 0, y + 1), (14)

f(1, 0, y + 2) + f(2, 0, y) ≥ f(1, 0, y + 1) + f(2, 0, y + 1), (15)
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for x, y ≥ 0. Relations (4) and (7) define a class of increasing functions in x and in y. Relation (10) defines

supermodularity for z = 2. By summing up Relations (10) and (13) we obtain f(2, x, y) + f(2, x, y + 2) ≥

2f(2, x, y + 1), by summing up Relations (11) and (14) we obtain f(0, 0, y) + f(0, 0, y + 2) ≥ 2f(0, 0, y + 1),

and by summing up Relations (12) and (15) we obtain f(1, 0, y) + f(1, 0, y + 2) ≥ 2f(1, 0, y + 1). Thus if

f ∈ F , then f is convex in y. Relation (13) means that the function f(2, x, y+1)−f(2, x+1, y) is increasing

in y.

Remark 1 For the multi-server case of Model G, we need to add another relation to the class of functions

defined below. The additional relation is f(x+2, y, s2, s3)+f(x, y+1, s2, s3) ≥ f(x+1, y, s2, s3)+f(x+1, y+

1, s2, s3). It is required to prove that the relation f(x, y + 2, s2, s3) + f(x+ 1, y, s2, s3) ≥ f(x, y + 1, s2, s3) +

f(x+ 1, y + 1, s2, s3) propagates through the minimizing operator. The proof through value iteration is hard

to do for the arrival term if x = s+ k− 2, and for the service term if 0 ≤ x+ s2 + s3 ≤ s− 2. It is however

doable for the remaining cases.

To simplify the presentation, we denote by “serve” the decision action to serve an outbound call, and by

“keep” the decision action to keep an outbound call in queue 2. The proof of the optimality of the threshold

policy reduces to show that Relation (13) is true for Un, n ≥ 0. We next prove by induction on n that both

Vn and Un are in F . We divide the proof into the following 5 steps:

• Step 1. We prove that V0, U0 ∈ F .

• Step 2. We prove that if Un ∈ F , then Vn ∈ F , for n ≥ 0.

• Step 3. We prove that the cost term G(z, x, y) = γ1x+ γ2y is in F .

• Step 4. We prove for a given n ≥ 0 that if Vn ∈ F , then the following arrival term is also in F :

An(2, x, y) = 1(0≤x<k) ((1− αx)Vn(2, x+ 1, y) + αx(Vn(2, x, y) + γ3))

+1(k≤x<N) (qxVn(2, x, y + 1) + αx(Vn(2, x, y) + γ3) + (1− qx − αx)Vn(2, x+ 1, y))

+ 1(x=N)(qN−1Vn(2, x, y + 1) + (1− qN−1)(Vn(2, x, y) + γ3)),

for x, y ≥ 0, An(1, 0, y) = Vn(2, 0, y) and An(0, 0, y) = Vn(1, 0, y) for y ≥ 0.

• Step 5. We prove for a given n ≥ 0 that if Vn ∈ F , then the following departure term is also in F :

Dn(2, x, y) = βx(Vn(2, x− 1, y) + γ3) + 2µ
(
1(x=0)Vn(1, 0, y) + 1(x>0)Vn(2, x− 1, y)

)
+ (1− λ− βx− 2µ)Vn(2, x, y),

for x, y ≥ 0, Dn(1, 0, y) = µVn(0, 0, y) + (1 − λ − µ)Vn(1, 0, y) and Dn(0, 0, y) = (1 − λ)Vn(0, 0, y) for

y ≥ 0.

The proofs for the previous five steps are given below.

Step 1. For x, y ≥ 0 and z = 0, 1, 2, V0(z, x, y) = U0(z, x, y) = 0. Then V0, U0 ∈ F .
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Step 2. Assume that for a given n ≥ 0, Un ∈ F . We only consider the non-trivial cases where z = 0 or

z = 1 and y > 0. In the other cases Un = Vn. Therefore we only need to show Relations (5), (6), (8), (9),

(11), (12), (14) and (15).

- For Relations (5) and (8), we have

Vn(0, 0, y) = Un(1, 0, y − 1), for y > 0. (16)

If “keep” is optimal in (1, 0, y), then Vn(1, 0, y) = Un(1, 0, y). Combining Equation (16) with Relation (9)

for Un leads to Vn(0, 0, y) ≤ V (1, 0, y) and proves Relations (5) for Vn. If “serve” is optimal in (1, 0, y), then

Vn(1, 0, y) = Un(2, 0, y−1). Combining Equation (16) with Relation (6) for Un leads to Vn(0, 0, y) ≤ V (1, 0, y)

and proves Relations (5) for Vn.

We have Vn(0, 0, y+1) = Un(1, 0, y). Combining Inequality (16) with Relation (9) for Un leads to Vn(0, 0, y) ≤

V (0, 0, y + 1). Therefore in all cases, Relations (5) and (8) hold for Vn.

- For Relations (6) and (9), we have

Vn(1, 0, y) ≤ Un(2, 0, y − 1), for y > 0, (17)

Vn(1, 0, y) ≤ Un(1, 0, y), for y ≥ 0. (18)

Observe that Vn(2, 0, y) = Un(2, 0, y). Combining Inequality (17) with Relation (7) for Un proves Relation

(6).

If “keep” is optimal in (1, 0, y+1), then Vn(1, 0, y+1) = Un(1, 0, y+1). Combining equality (18) with Relation

(9) for Un proves Relation (9) for Vn. If “serve” is optimal in (1, 0, y + 1), then Vn(1, 0, y + 1) = Un(2, 0, y).

Combining equality (17) with Relation (7) for Un proves (9) for Vn. Therefore in all cases, Relations (6) and

(9) hold for Vn.

- For Relation (11), we have

Vn(1, 0, y) + Vn(0, 0, y + 1) ≤ 2Un(1, 0, y) for y ≥ 0, (19)

Vn(1, 0, y) + Vn(0, 0, y + 1) ≤ Un(2, 0, y − 1) + Un(1, 0, y) for y ≥ 0. (20)

If “keep” is the optimal action in state (1, 0, y+1), for y > 0, then Vn(0, 0, y) + Vn(1, 0, y+1) = Un(1, 0, y−

1)+Un(1, 0, y+1). Thus, combining the convexity in y of Un and Inequality (19) proves Relation (11) for Vn,

for y ≥ 0. If “serve” is the optimal action in state (1, 0, y + 1), for y > 0, then Vn(0, 0, y) + Vn(1, 0, y + 1) =

Un(1, 0, y−1)+Un(2, 0, y). Combining Relation (12) for Un and Inequality (20) proves Relation (11) for Vn,

for y > 0. In all cases, Relation (11) then holds for Vn.

- For Relation (12), we have

Vn(2, 0, y) + Vn(1, 0, y + 1) ≤ Un(2, 0, y) + Un(1, 0, y + 1) for y ≥ 0, (21)

Vn(2, 0, y) + Vn(1, 0, y + 1) ≤ 2Un(2, 0, y) for y ≥ 0. (22)
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If “keep” is the optimal action in state (1, 0, y), for y > 0, then Vn(1, 0, y) + Vn(2, 0, y + 1) = Un(1, 0, y) +

Un(2, 0, y + 1). Thus, Relation (12) for Un and Inequality (21) prove Relation (12) for Vn, for y ≥ 0. If

“serve” is the optimal action in state (1, 0, y), for y > 0, then Vn(1, 0, y) + Vn(2, 0, y + 1) = Un(2, 0, y − 1) +

Un(2, 0, y + 1). Combining the convexity in y of Un and Inequality (22) proves Relation (12) for Vn, for

y > 0. In all cases, Relation (12) then holds for Vn.

- For Relation (14), we have

Vn(0, 0, y + 1) + Vn(1, 0, y + 1) ≤ Un(1, 0, y) + Un(1, 0, y + 1) for y ≥ 0, (23)

Vn(0, 0, y + 1) + Vn(1, 0, y + 1) ≤ Un(1, 0, y) + Un(2, 0, y) for y ≥ 0. (24)

If “keep” is the optimal action in states (1, 0, y), for y > 0, then Vn(0, 0, y + 2) + Vn(1, 0, y) = Un(1, 0, y +

1) + Un(1, 0, y). Inequality (23) proves Relation (14) for Vn, for y ≥ 0. If “serve” is the optimal action in

state (1, 0, y), for y ≥ 0, then Vn(0, 0, y + 2) + Vn(1, 0, y) = Un(1, 0, y + 1) + Un(2, 0, y − 1). Combining next

Relation (15) for Un and Inequality (24) proves Relation (14) for Vn, for y ≥ 0. Finally in all cases, Relation

(14) is true for Vn.

- For Relation (15), we have

Vn(1, 0, y + 1) + Vn(2, 0, y + 1) ≤ Un(1, 0, y + 1) + Un(2, 0, y + 1) for y ≥ 0, (25)

Vn(1, 0, y + 1) + Vn(2, 0, y + 1) ≤ Un(2, 0, y) + Un(2, 0, y + 1) for y ≥ 0. (26)

If “keep” is the optimal action in states (1, 0, y+2), for y ≥ 0, then Vn(1, 0, y+2)+Vn(2, 0, y) = Un(1, 0, y+

2) + Un(2, 0, y). Combining next Relation (15) for Un and Inequality (25) proves Relation (15) for Vn, for

y ≥ 0. If “serve” is the optimal action in state (1, 0, y + 2), for y ≥ 0, then Vn(1, 0, y + 2) + Vn(2, 0, y) =

Un(2, 0, y + 1) + Un(2, 0, y). Inequality (26) proves Relation (15) for Vn, for y ≥ 0. Finally in all cases,

Relation (15) is true for Vn.

Step 3. The step is easy to prove and directly follows from Koole (2007) page 33.

Step 4. Assume that Vn ∈ F , for a given n ≥ 0. We now prove that An ∈ F . In Relations (5), (7), (8),

(9), (11) and (14), x is constant and the arrival of a new call has the same effect on each term of the relation

(either increasing the number of customers in queue 1 by one, or changing z into z+1). Moreover, since the

transition rates are constant, the induction from Vn to An is straightforward (see Koole (2007) page 35).

Next, the other relations have to be shown to prove the induction from Vn to An. For Relations (4), (7),

(10) and (13), the case x < k − 1 is a simplification of the case k ≤ x < N − 1 because the possibility of

going to queue 2 is not considered. We therefore only show the case k ≤ x < N − 1.
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- For Relation (4), if x = k − 1, then

An(2, x+ 1, y)−An(2, x, y) = qkVn(2, x+ 1, y + 1) + αk(Vn(2, x+ 1, y) + γ3) + (1− αk − qk)Vn(2, x+ 2, y)

− (1− αk−1)Vn(2, x+ 1, y)− αk−1(Vn(2, x, y) + γ3)

= qk (Vn(2, x+ 1, y + 1)− Vn(2, x+ 1, y)) + αk−1(Vn(2, x+ 1, y)− Vn(2, x, y))

+ (1− αk − qk)(Vn(2, x+ 2, y)− Vn(2, x+ 1, y)) + γ3(αk − αk−1) ≥ 0,

since Vn is increasing in x and in y.

If k ≤ x < N − 1, then

An(2, x+ 1, y)−An(2, x, y) = qx+1Vn(2, x+ 1, y + 1) + αx+1(Vn(2, x+ 1, y) + γ3) + (1− αx+1 − qx+1)Vn(2, x+ 2, y)

− qxVn(2, x, y + 1)− αx(Vn(2, x, y) + γ3)− (1− αx − qx)Vn(2, x+ 1, y)

= qx (Vn(2, x+ 1, y + 1)− Vn(2, x+ 1, y)) + (qx+1 − qx)Vn(2, x+ 1, y + 1)

+ αx(Vn(2, x+ 1, y)− Vn(2, x, y)) + (αx+1 − αx)Vn(2, x+ 1, y) + γ3(αx+1 − αx)

+ (1− αx+1 − qx+1)(Vn(2, x+ 2, y)− Vn(2, x+ 1, y)) + (αx + qx − αx+1 − qx+1)Vn(2, x+ 1, y)

≥ (qx+1 − qx)(Vn(2, x+ 1, y + 1)− Vn(2, x+ 1, y)) ≥ 0,

since Vn is increasing in y and qx is increasing in x.

If x = N − 1, then

An(2, x+ 1, y)−An(2, x, y) = qxVn(2, x+ 1, y + 1) + (1− qx)(Vn(2, x+ 1, y) + γ3)

− qxVn(2, x, y + 1)− αx(Vn(2, x, y) + γ3)− (1− αx − qx)Vn(2, x+ 1, y)

= αx(Vn(2, x+ 1, y + 1)− Vn(2, x, y)) + qx(Vn(2, x+ 1, y + 1)− Vn(2, x, y + 1))

+ γ3(1− qx − αx) ≥ 0,

since Vn is increasing in x and in y. Finally in all cases, Relation (4) is true for An.

- For Relation (6), we may write

An(2, 0, y)−An(1, 0, y) = (1− α0)Vn(2, 1, y) + α0(Vn(2, 0, y) + γ3)− Vn(2, 0, y)

= (1− α0)(Vn(2, 1, y)− Vn(2, 0, y)) + α0γ3 ≥ 0,

since Relation (4) is true for Vn. Hence, Relation (6) is true for An.

For the following relations, we do not write the terms in γ3 since the do disappear in the considered

differences.

- For Relation (10), if x = k − 1, then

An(2, x, y) +An(2, x+ 1, y + 1)−An(2, x, y + 1)−An(2, x+ 1, y)

= αk−1Vn(2, x, y) + (1− αk−1)Vn(2, x+ 1, y) + qkVn(2, x+ 1, y + 2) + αkVn(2, x+ 1, y + 1) + (1− αk − qk)Vn(2, x+ 2, y + 1)

− αk−1Vn(2, x, y + 1)− (1− αk−1)Vn(2, x+ 1, y + 1)− qkVn(2, x+ 1, y + 1)− αkVn(2, x+ 1, y)− (1− αk − qk)Vn(2, x+ 2, y)

= αk−1(Vn(2, x+ 1, y + 1) + Vn(2, x, y)− Vn(2, x+ 1, y)− Vn(2, x, y + 1))

+ qk(Vn(2, x+ 1, y + 2) + Vn(2, x+ 2, y)− Vn(2, x+ 2, y + 1)− Vn(2, x+ 1, y + 1))

+ (1− αk)(Vn(2, x+ 2, y + 1) + Vn(2, x+ 1, y)− Vn(2, x+ 1, y + 1)− Vn(2, x+ 2, y)).

The term proportional to αk−1 is positive since Relation (10) holds for Vn, the term proportional to qk is

positive since Relation (13) holds for Vn, the term proportional to 1−αk is positive since Relation (10) holds

for Vn. Hence, Relation (10) is true for An, for x = k − 1.
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If k ≤ x < N − 1, then

An(2, x, y) +An(2, x+ 1, y + 1)−An(2, x, y + 1)−An(2, x+ 1, y)

= qxVn(2, x, y + 1) + αxVn(2, x, y) + (1− qx − αx)Vn(2, x+ 1, y)

+ qx+1Vn(2, x+ 1, y + 2) + αx+1Vn(2, x+ 1, y + 1) + (1− qx+1 − αx+1)Vn(2, x+ 2, y + 1)

− qxVn(2, x, y + 2)− αxVn(2, x, y + 1)− (1− qx − αx)Vn(2, x+ 1, y + 1)

− qx+1Vn(2, x+ 1, y + 1)− αx+1Vn(2, x+ 1, y)− (1− qx+1 − αx+1)Vn(2, x+ 2, y)

= qx(Vn(2, x, y + 1) + Vn(2, x+ 1, y + 2)− Vn(2, x, y + 2)− Vn(2, x+ 1, y + 1))

+ αx(Vn(2, x, y) + Vn(2, x+ 1, y + 1)− Vn(2, x, y + 1)− Vn(2, x+ 1, y))

+ (1− αx+1 − qx+1)(Vn(2, x+ 1, y) + Vn(2, x+ 2, y + 1)− Vn(2, x+ 1, y + 1)− Vn(2, x+ 2, y))

+ (qx+1 − qx)(Vn(2, x+ 1, y + 2) + Vn(2, x+ 1, y)− 2Vn(2, x+ 1, y + 1)).

The terms proportional to qx, αx and 1 − qx+1 − αx+1 are positive since Relation (10) is true for Vn, the

term proportional to qx+1 − qx is also positive since Vn is convex in y. Hence Relation (10) is true for An,

for k ≤ x < N − 1.

If x = N − 1, then

An(2, x, y) +An(2, x+ 1, y + 1)−An(2, x, y + 1)−An(2, x+ 1, y)

= qxVn(2, x, y + 1) + αxVn(2, x, y) + (1− qx − αx)Vn(2, x+ 1, y) + qxVn(2, x+ 1, y + 2) + (1− qx)Vn(2, x+ 1, y + 1)

− qxVn(2, x, y + 2)− αxVn(2, x, y + 1)− (1− qx − αx)Vn(2, x+ 1, y + 1)− qxVn(2, x+ 1, y + 1)− (1− qx)Vn(2, x+ 1, y)

= qx(Vn(2, x, y + 1) + Vn(2, x+ 1, y + 2)− Vn(2, x, y + 2)− Vn(2, x+ 1, y + 1))

+ αx(Vn(2, x, y) + Vn(2, x+ 1, y + 1)− Vn(2, x, y + 1)− Vn(2, x+ 1, y)).

The terms proportional to qx and αx are positive since Relation (10) is true for Vn. Hence Relation (10) is

true for An, for x = N − 1.

- For Relation (12), we have for y ≥ 0,

An(1, 0, y) +An(2, 0, y + 1)−An(2, 0, y)−An(1, 0, y + 1)

= Vn(2, 0, y) + α0Vn(2, 0, y + 1) + (1− α0)Vn(2, 1, y + 1)− α0Vn(2, 0, y)− (1− α0)Vn(2, 1, y)− Vn(2, 0, y + 1)

= (1− α0)(Vn(2, 0, y) + Vn(2, 1, y + 1)− Vn(2, 1, y)− Vn(2, 0, y + 1)) ≥ 0,

since Relation (10) holds for Vn. Hence Relation (12) is true for An.

- For Relation (13), if x < k−1 the transition rates are constant and the induction from Vn to An follows.
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If x = k − 1, then

An(2, x, y + 2) +An(2, x+ 1, y)−An(2, x, y + 1)−An(2, x+ 1, y + 1)

= αk−1Vn(2, x, y + 2) + (1− αk−1)Vn(2, x+ 1, y + 2) + qkVn(2, x+ 1, y + 1) + αkVn(2, x+ 1, y) + (1− αk − qk)Vn(2, x+ 2, y)

− αk−1Vn(2, x, y + 1)− (1− αk−1)Vn(2, x+ 1, y + 1)− qkVn(2, x+ 1, y + 2)− αkVn(2, x+ 1, y + 1)

− (1− αk − qk)Vn(2, x+ 2, y + 1)

= αk−1(Vn(2, x, y + 2) + Vn(2, x+ 1, y + 1)− Vn(2, x+ 1, y + 2)− Vn(2, x, y + 1))

+ αk(Vn(2, x+ 1, y) + Vn(2, x+ 2, y + 1)− Vn(2, x+ 2, y)− Vn(2, x+ 1, y + 1))

+ qk(Vn(2, x+ 1, y + 1) + Vn(2, x+ 2, y + 1)− Vn(2, x+ 2, y)− Vn(2, x+ 1, y + 2))

+ Vn(2, x+ 2, y) + Vn(2, x+ 1, y + 2)− Vn(2, x+ 1, y + 1)− Vn(2, x+ 2, y + 1)

= (αk − αk−1)(Vn(2, x+ 1, y) + Vn(2, x+ 1, y + 2)− 2Vn(2, x+ 1, y + 1))

+ αk−1(Vn(2, x, y + 2) + Vn(2, x+ 1, y)− Vn(2, x, y + 1)− Vn(2, x+ 1, y + 1))

(1− qk − αk)(Vn(2, x+ 2, y) + Vn(2, x+ 1, y + 2)−+Vn(2, x+ 1, y + 1)− Vn(2, x+ 2, y + 1)).

The term proportional to αk − αk−1 is positive since Vn is convex in y, the term proportional to αk−1 is

positive since Relation (13) is true for Vn, the term proportional to 1 − qk − αk is positive since Relation

(13) is true for Vn. Hence Relation (13) is true for An, for x = k − 1.

If k ≤ x < N − 1, then

An(2, x, y + 2) +An(2, x+ 1, y)−An(2, x, y + 1)−An(2, x+ 1, y + 1)

= qxVn(2, x, y + 3) + αxVn(2, x, y + 2) + (1− qx − αx)Vn(2, x+ 1, y + 2)

+ qx+1Vn(2, x+ 1, y + 1) + αx+1Vn(2, x+ 1, y) + (1− qx+1 − αx+1)Vn(2, x+ 2, y)

− qxVn(2, x, y + 2)− αxVn(2, x, y + 1)− (1− qx − αx)Vn(2, x+ 1, y + 1)

− qx+1Vn(2, x+ 1, y + 2)− αx+1Vn(2, x+ 1, y + 1)− (1− qx+1 − αx+1)Vn(2, x+ 2, y + 1)

= qx(Vn(2, x, y + 3) + Vn(2, x+ 1, y + 1)− Vn(2, x+ 1, y + 2)− Vn(2, x, y + 2))

+ αx(Vn(2, x, y + 2) + Vn(2, x+ 1, y)− Vn(2, x+ 1, y + 1)− Vn(2, x, y + 1))

+ (1− αx+1 − qx+1)(Vn(2, x+ 1, y + 2) + Vn(2, x+ 2, y)− Vn(2, x+ 1, y + 1)− Vn(2, x+ 2, y + 1))

+ (αx+1 − αx)(Vn(2, x+ 1, y + 2) + Vn(2, x+ 1, y)− 2Vn(2, x+ 1, y + 1)).

The terms proportional to qx, αx and 1 − qx+1 − αx+1 are positive since Relation (13) is true for Vn, the

term proportional to αx+1 − αx is also positive since Vn is convex in y. Hence Relation (13) is true for An,

for k ≤ x < N − 1.

If x = N − 1, then

An(2, x, y + 2) +An(2, x+ 1, y)−An(2, x, y + 1)−An(2, x+ 1, y + 1)

= qxVn(2, x, y + 3) + αxVn(2, x, y + 2) + (1− qx − αx)Vn(2, x+ 1, y + 2) + qxVn(2, x+ 1, y + 1) + (1− qx)Vn(2, x+ 1, y)

− qxVn(2, x, y + 2)− αxVn(2, x, y + 1)− (1− qx − αx)Vn(2, x+ 1, y + 1)− qxVn(2, x+ 1, y + 2)− (1− qx)Vn(2, x+ 1, y + 1)

= qx(Vn(2, x, y + 3) + Vn(2, x+ 1, y + 1)− Vn(2, x+ 1, y + 2)− Vn(2, x, y + 2))

+ αx(Vn(2, x, y + 2) + Vn(2, x+ 1, y)− Vn(2, x, y + 1)− Vn(2, x+ 1, y + 1))

+ (1− qx − αx)(Vn(2, x+ 1, y + 2) + Vn(2, x+ 1, y)− 2Vn(2, x+ 1, y + 1)).

The terms proportional to qx and αx are positive since Relation (13) is true for Vn, the term proportional

to 1− qx − αx is also positive since Vn is convex in y. Hence Relation (13) is true for An, for x = N − 1.
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- For Relation (15), we have

An(1, 0, y + 2) +An(2, 0, y)−An(1, 0, y + 1)−An(2, 0, y + 1)

= Vn(2, 0, y + 2) + α0Vn(2, 0, y) + (1− α0)Vn(2, 1, y)− Vn(2, 0, y + 1)− α0Vn(2, 0, y + 1)− (1− α0)Vn(2, 1, y + 1)

= Vn(2, 0, y + 2) + Vn(2, 1, y)− Vn(2, 0, y + 1)− Vn(2, 1, y + 1) + α0(Vn(2, 0, y) + Vn(2, 1, y + 1)− Vn(2, 0, y + 1)− Vn(2, 1, y)).

The terms proportional to 1 is positive since Relation (13) is true for Vn, the term proportional to α0 is

also positive since Relation (10) is true for Vn. Hence Relation (15) is true for An.

Step 5. Assume that Vn ∈ F , for a given n ≥ 0. We now show that Dn ∈ F .

- For Relation (4), if x = 0, then

Dn(2, 1, y)−Dn(2, 0, y) = βVn(2, 0, y) + βγ3 + 2µ(Vn(2, 0, y)− Vn(1, 0, y))

+ (1− λ− β − 2µ)(Vn(2, 1, y)− Vn(2, 0, y))− βVn(2, 0, y) ≥ 0,

since Vn is increasing in x and Relation (6) is true for Vn.

If x > 0, then

Dn(2, x+ 1, y)−Dn(2, x, y) = βx(Vn(2, x, y)− Vn(2, x− 1, y)) + βγ3 + βVn(2, x, y)

+ 2µ(Vn(2, x, y)− Vn(2, x− 1, y)) + (1− λ− β(x+ 1)− 2µ)(Vn(2, x+ 1, y)− Vn(2, x, y))− βVn(2, x, y) ≥ 0,

since Vn is increasing in x. Hence Relation (4) is true for Dn.

- For Relation (5), we have

Dn(1, 0, y)−Dn(0, 0, y) = µVn(0, 0, y) + (1− λ− µ)(Vn(1, 0, y)− Vn(0, 0, y))− µVn(0, 0, y) ≥ 0.

Hence Relation (5) is true for Dn.

- For Relation (6), we have

Dn(2, 0, y)−Dn(1, 0, y) = µ(Vn(1, 0, y)− Vn(0, 0, y)) + µVn(1, 0, y) + (1− λ− 2µ)(Vn(2, 0, y)− Vn(1, 0, y))− µVn(1, 0, y) ≥ 0.

Hence Relation (6) is true for Dn.

- For Relation (7), if x ≥ 0, then

Dn(2, x, y + 1)−Dn(2, x, y) = βx(Vn(2, x− 1, y + 1)− Vn(2, x− 1, y)) + 2µ1(x=0)(Vn(0, 0, y + 1)− Vn(0, 0, y))

+ (1− λ− βx− 2µ)(Vn(2, x, y + 1)− Vn(2, x, y)) ≥ 0,

since Vn is increasing in y. Hence Relation (7) holds for Dn.

- Relations (8) and (9) are obviously also true for Dn.

- For Relation (10), if x, y ≥ 0, then

Dn(2, x, y) +Dn(2, x+ 1, y + 1)−Dn(2, x+ 1, y)−Dn(2, x, y + 1)

= βx(Vn(2, x− 1, y) + Vn(2, x, y + 1)− Vn(2, x, y)− Vn(2, x− 1, y + 1)) + β(Vn(2, x, y + 1)− Vn(2, x, y))

+ 2µ1(x=0)(Vn(1, 0, y) + Vn(2, 0, y + 1)− Vn(2, 0, y)− Vn(1, 0, y + 1))

+ 2µ1(x>0)(Vn(2, x− 1, y) + Vn(2, x, y + 1)− Vn(2, x, y)− Vn(2, x− 1, y + 1))

+ (1− λ− β(x+ 1)− 2µ)(Vn(2, x, y) + Vn(2, x+ 1, y + 1)− Vn(2, x+ 1, y)− Vn(2, x, y + 1))

+ β(Vn(2, x, y)− Vn(2, x, y + 1)) ≥ 0,

41



since Relations (10) and (12) are true for Vn.

- For Relation (11), we have for y ≥ 0,

Dn(0, 0, y) +Dn(1, 0, y + 1)−Dn(1, 0, y)−Dn(0, 0, y + 1)

= µ(Vn(0, 0, y + 1)− Vn(0, 0, y)) + (1− λ− µ)(Vn(0, 0, y) + Vn(1, 0, y + 1)− Vn(1, 0, y)− Vn(0, 0, y + 1))

+ µ(Vn(0, 0, y)− Vn(0, 0, y + 1)) ≥ 0,

since Relation (11) is true for Vn.

- For Relation (12), we have for y ≥ 0,

Dn(1, 0, y) +Dn(2, 0, y + 1)−Dn(2, 0, y)−Dn(1, 0, y + 1)

= µ(Vn(0, 0, y)− Vn(0, 0, y + 1)) + 2µ(Vn(1, 0, y + 1)− Vn(1, 0, y))

+ (1− λ− 2µ)(Vn(1, 0, y) + Vn(2, 0, y + 1)− Vn(2, 0, y)− Vn(1, 0, y + 1)) + µ(Vn(1, 0, y)− Vn(1, 0, y + 1))

≥ µ(Vn(0, 0, y) + Vn(1, 0, y + 1)− Vn(1, 0, y)− Vn(0, 0, y + 1)).

The term proportional to µ is positive since Relation (11) is true for Vn. Therefore Relation (12) is true for

Dn.

- For Relation (13), if x, y ≥ 0, then

Dn(2, x, y + 2) +Dn(2, x+ 1, y)−Dn(2, x, y + 1)−Dn(2, x+ 1, y + 1)

= βx(Vn(2, x− 1, y + 2) + Vn(2, x, y)− Vn(2, x− 1, y + 1)− Vn(2, x, y + 1)) + β(Vn(2, x, y)− Vn(2, x, y + 1))

+ 2µ1(x=0)(Vn(1, 0, y + 2) + Vn(2, 0, y)− Vn(1, 0, y + 1)− Vn(2, 0, y + 1))

+ 2µ1(x>0)(Vn(2, x− 1, y + 2) + Vn(2, x, y)− Vn(2, x− 1, y + 1)− Vn(2, x, y + 1))

+ (1− λ− β(x+ 1)− 2µ)(Vn(2, x, y + 2) + Vn(2, x+ 1, y)− Vn(2, x, y + 1)− Vn(2, x+ 1, y + 1))

+ β(Vn(2, x, y + 2)− Vn(2, x, y + 1)) ≥ β(Vn(2, x, y + 2) + Vn(2, x, y)− 2Vn(2, x, y + 1)) ≥ 0,

since Relations (13) and (15) are true for Vn and Vn is convex in y. Therefore, Relation (13) is true for Dn.

- For Relation (14), we have for y ≥ 0,

Dn(0, 0, y + 2) +Dn(1, 0, y)−Dn(0, 0, y + 1)−Dn(1, 0, y + 1)

= µ(Vn(0, 0, y)− Vn(0, 0, y + 1)) + (1− λ− µ)(Vn(0, 0, y + 2) + Vn(1, 0, y)− Vn(0, 0, y + 1)− Vn(1, 0, y + 1))

+ µ(Vn(0, 0, y + 2)− Vn(0, 0, y + 1)) ≥ µ(Vn(0, 0, y + 2) + Vn(0, 0, y)− 2Vn(0, 0, y + 1)) ≥ 0,

since Relation (14) is true for Vn and since Vn is convex in y. Hence, Relation Relation (14) is true for Dn.

- For Relation (15), we have for y ≥ 0,

Dn(1, 0, y + 2) +Dn(2, 0, y)−Dn(1, 0, y + 1)−Dn(2, 0, y + 1)

= µ(Vn(0, 0, y + 2)− Vn(0, 0, y + 1)) + 2µ(Vn(1, 0, y)− Vn(1, 0, y + 1))

+ (1− λ− 2µ)(Vn(1, 0, y + 2) + Vn(2, 0, y)− Vn(1, 0, y + 1)− Vn(2, 0, y + 1)) + µ(Vn(1, 0, y + 2)− Vn(1, 0, y + 1))

≥ µ(Vn(1, 0, y + 2) + Vn(1, 0, y)− 2Vn(1, 0, y + 1)) + µ(Vn(1, 0, y) + Vn(0, 0, y + 2)− Vn(0, 0, y + 1)− Vn(1, 0, y + 1)).

The two terms proportional to µ are positive, the first one because Vn is convex in y and the second one

because Relation (14) holds for Vn. Therefore Relation (15) is true for Dn. The proof is completed. 2
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B Proof of Proposition 2

To prove Proposition 2, we need to prove by induction on n (n ≥ 0) that, for x, y ≥ 0,

V ′
n(x, y) + Vn(x+ 1, y) ≥ Vn(x, y) + V ′

n(x+ 1, y), (27)

U ′
n(x, y) + Un(x+ 1, y) ≥ Un(x, y) + U ′

n(x+ 1, y), (28)

V ′
n(x, y + 1) + Vn(x, y) ≥ V ′

n(x, y + 1) + Vn(x, y), (29)

U ′
n(x, y + 1) + Un(x, y) ≥ U ′

n(x, y + 1) + Un(x, y), (30)

where Vn(x, y), Un(x, y) and V ′
n(x, y), U

′
n(x, y) are the value functions associated with the parameters γ1,

γ2, γ3 and q for x ≥ s + k, and the parameters γ′1, γ
′
2, γ

′
3 and q + q′ for x ≥ s + k, respectively. Summing

up Relations (27) and (29) prove that V ′
n(x, y+ 1) + Vn(x+ 1, y) ≥ Vn(x, y+ 1) + V ′

n(x+ 1, y). This implies

that situation 1 requires more reservation than situation 2.

We have U0 = V0 = U ′
0 = V ′

0 = 0. Thus, Relations (27), (28), (29) and (30) hold for n = 0.

We first prove that Relation (28) implies Relation (27). Assume now that Relation (28) holds for a given

n ≥ 0. Therefore, U ′
n(x, y) + Un(x+ 1, y) ≥ U ′

n(x+ 1, y) + Un(x, y). We only consider the non-trivial cases

where 0 ≤ x < s and y > 0. We have

V ′
n(x+ 1, y) + Vn(x, y) ≤ U ′

n(x+ 1, y) + Un(x, y) for 0 ≤ x ≤ s− 1, y > 0, (31)

V ′
n(x+ 1, y) + Vn(x, y) ≤ U ′

n(x+ 1, y) + Un(x+ 1, y − 1) for 0 ≤ x ≤ s− 1, y > 0, (32)

V ′
n(x+ 1, y) + Vn(x, y) ≤ U ′

n(x+ 2, y − 1) + Un(x+ 1, y − 1) for 0 ≤ x ≤ s− 2, y > 0. (33)

If “keep” is the optimal action in states (x, y) and (x + 1, y) for situations 2 and 1, respectively, then

V ′
n(x, y)+Vn(x+1, y) = U ′

n(x, y)+Un(x+1, y). Combining Equation (31) with Relation (28) for Un proves

Relation (27) for Vn.

If “serve” is the optimal action in states (x, y) and (x + 1, y) for situations 2 and 1, respectively, then

V ′
n(x, y) + Vn(x+ 1, y) = U ′

n(x+ 1, y − 1) + Un(x+ 2, y − 1). Combining Equation (33) with Relation (28)

for Un proves Relation (27) for Vn.

If “serve” is the optimal action in state (x, y) and “keep” is the optimal action in state (x+1, y) for situations

2 and 1, respectively, then V ′
n(x, y) + Vn(x+ 1, y) = U ′

n(x+ 1, y − 1) + Un(x+ 1, y). Inequality (32) proves

Relation (27) for Vn.

The case where “keep” would be the optimal action in state (x, y) and “serve” would be the optimal action

in state (x + 1, y) for situations 2 and 1, respectively, is not considered because it is in contradiction with

Relation (28) for Un.

We second prove that Relation (30) implies Relation (29). Assume now that Relation (30) holds for a given
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n ≥ 0. Again, we only consider the non-trivial cases where 0 ≤ x < s and y > 0. We have

V ′
n(x, y) + Vn(x, y + 1) ≤ U ′

n(x, y) + Un(x, y + 1) for 0 ≤ x ≤ s− 1, y > 0, (34)

V ′
n(x, y) + Vn(x, y + 1) ≤ U ′

n(x, y) + Un(x+ 1, y) for 0 ≤ x ≤ s− 1, y > 0, (35)

V ′
n(x, y) + Vn(x, y + 1) ≤ U ′

n(x+ 1, y − 1) + Un(x+ 1, y) for 0 ≤ x ≤ s− 1, y > 0. (36)

If “keep” is the optimal action in states (x, y) and (x, y + 1) for situations 1 and 2, respectively, then

Vn(x, y)+V ′
n(x, y+1) = Un(x, y)+U ′

n(x, y+1). Combining Equation (34) with Relation (30) for Un proves

Relation (29) for Vn.

If “serve” is the optimal action in states (x, y) and (x, y + 1) for situations 1 and 2, respectively, then

Vn(x, y) + V ′
n(x, y + 1) = Un(x + 1, y − 1) + Un(x + 1, y). Combining Equation (36) with Relation (30) for

Un proves Relation (29) for Vn.

If “keep” is the optimal action in state (x, y) and “serve” is the optimal action in state (x, y+1) for situations

1 and 2, respectively, then Vn(x, y) + V ′
n(x, y+1) = Un(x, y) +U ′

n(x+1, y). Inequality (35) proves Relation

(29) for Vn.

The case where “serve” would be the optimal action in state (x, y) and “keep” would be the optimal action

in state (x, y + 1) for situations 1 and 2, respectively, is not considered because it is in contradiction with

Relation (30) for Un.

We now prove that Relations (27) and (29) for Vn imply Relation (28) and (30) for Un+1.

The proof of Relation (27) for the departure term can be easily done since the terms are identical in situations

1 and 2 except for the cost parameter related to the abandonment. This implies a positive difference

(β(γ3 − γ′3)((x + 1 − s)+ − (x − s)+) ≥ 0 since γ3 ≥ γ′3. We therefore only focus on the cost and arrival

terms. We denote by G(x, y) and G′(x, y) the cost terms in situations 1 and 2, respectively and A(x, y) and

A′(x, y) the arrival terms in situations 1 and 2, respectively. We have

G′(x, y) +G(x+ 1, y)−G(x, y)−G′(x+ 1, y) = (γ1 − γ′1)((x+ 1− s)+ − (x− s)+) ≥ 0,

since γ1 ≥ γ′1 and

G(x, y) +G′(x, y + 1)−G′(x, y)−G(x, y + 1) = γ′2 − γ2 ≥ 0,

since γ′2 ≥ γ2.

For the arrival term we may write for x ≥ s+ k (the terms where x < s+ k are simplifications of this case

and are therefore omitted)

A′
n(x, y) +An(x+ 1, y)−An(x, y)−A′

n(x+ 1, y)

= αx(V
′
n(x, y) + Vn(x+ 1, y)− Vn(x, y)− V ′

n(x+ 1, y))

+ q(V ′
n(x, y + 1) + Vn(x+ 1, y + 1)− Vn(x, y + 1)− V ′

n(x+ 1, y + 1))

+ (1− αx+1 − q)(V ′
n(x+ 1, y) + Vn(x+ 2, y)− Vn(x+ 1, y)− V ′

n(x+ 2, y))

+ q′(V ′
n(x+ 2, y)− V ′

n(x+ 1, y + 1) + V ′
n(x, y + 1)− V ′

n(x+ 1, y))

+ (γ3 − γ′3)(αx+1 − αx).

The terms proportional to αx, q and 1− αx+1 − q are positive since Relation (27) is true for Vn. The term

proportional to q′ is positive since this relation defines that the optimal policy in situation 2 is of switch
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type. The last term is also positive since γ3 ≥ γ′3. Therefore, Relation (28) is true for Un+1.

For the arrival term we also may write for x ≥ s + k (the terms where x < s+ k are simplifications of this

case and are therefore omitted)

A′
n(x, y + 1) +An(x, y)−An(x, y + 1)−A′

n(x, y)

= αx(V
′
n(x, y + 1) + Vn(x, y)− Vn(x, y + 1)− V ′

n(x, y))

+ q(V ′
n(x, y + 2) + Vn(x, y + 1)− Vn(x, y + 2)− V ′

n(x, y + 1))

+ (1− αx − q)(V ′
n(x+ 1, y + 1) + Vn(x+ 1, y)− Vn(x+ 1, y + 1)− V ′

n(x+ 1, y))

+ q′(V ′
n(x, y + 2)− V ′

n(x+ 1, y + 1) + V ′
n(x+ 1, y)− V ′

n(x, y + 1)).

The terms proportional to αx, q and 1 − αx − q are positive since Relation (29) is true for Vn. The term

proportional to q′ is positive since this relation defines that the optimal policy in situation 2 is of switch

type. Therefore, Relation (30) is true for Un+1. This finishes the proof of the proposition. 2

C Performance Analysis for Model C

We provide here the details for the steps of the performance evaluation method for Model C.

Step 1. The stationary probabilities are determined by the following set of equilibrium equations. For

y = 0, we may write

λpx,0 = (x+ 1)µpx+1,0, for 0 ≤ x < y0, (37)

λpy0,0 = (y0 + 1)µpy0+1,0 + y0µpy0,1, for x = y0, (38)

(λ+ xµ)px,0 = (x+ 1)µpx+1,0 + λpx−1,0, for y0 < x < s, (39)

((1− α)λ+ sµ)ps,0 = sµps+1,0 + λps−1,0, for x = s, (40)

(λ(1− α) + sµ)px,0 = sµpx+1,0 + λ(1− α)px−1,0, for s < x ≤ s+ k, (41)

(λ(1− α) + sµ)px,0 = sµpx+1,0 + (1− q − α)λpx−1,0, for x > s+ k. (42)

For y = yi − 1 and 1 ≤ i ≤ s− y0, we have

(λ+ (y0 + i− 1)µ)py0+i−1,yi−1 = (y0 + i)µpy0+i,yi−1, for x = y0 + i− 1, (43)

(λ+ (y0 + i)µ)py0+i,yi−1 = λpy0+i−1,yi−1 + (y0 + i)µpy0+i,yi +min(y0 + i+ 1, s)µpy0+i+1,yi−1, for x = y0 + i. (44)

For 0 < y < y1 − 1, yi ≤ y < yi+1 − 1 and 1 ≤ i < s− y0, we get

(λ+ (y0 + i)µ)py0+i,y = (y0 + i)µpy0+i,y+1 + (y0 + i+ 1)µpy0+i+1,y, for x = y0 + i. (45)

For 0 < y ≤ y1 − 1 and i = 0 or yi ≤ y ≤ yi+1 − 1 and 1 ≤ i < s− y0, we have

(λ+ xµ)px,y = (x+ 1)µpx+1,y + λpx−1,y, for y0 + i < x < s, (46)

(λ(1− α) + sµ)ps,y = sµps+1,y + λps−1,y , for x = s, (47)

(λ(1− α) + sµ)px,y = sµpx+1,y + λ(1− α)px−1,y , for s < x < s+ k, (48)

(λ(1− α) + sµ)ps+k,y = sµps+k+1,y + λ(1− α)ps+k−1,y + qλps+k,y−1, for x = s+ k,

(λ(1− α) + sµ)px,y = sµpx+1,y + (1− q − α)λpx−1,y + qλpx,y−1, for x > s+ k. (49)
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Finally, for y ≥ ys−y0 , we may write

(λ(1− α) + sµ)ps,y = sµps,y+1 + sµps+1,y , for x = s, (50)

(λ(1− α) + sµ)px,y = sµpx+1,y + λ(1− α)px−1,y , for s < x < s+ k,

(λ(1− α) + sµ)ps+k,y = sµps+k+1,y + λ(1− α)ps+k−1,y + qλps+k,y−1, for x = s+ k,

(λ(1− α) + sµ)px,y = sµpx+1,y + (1− q − α)λpx−1,y + qλpx,y−1, for x > s+ k. (51)

Step 2. We denote by a the offered load, a = λ
µ . Lemma 1 simplifies the expressions of px,y, for x ≤ s+ k

and y ≥ 0, by writing them as a function of only two state probabilities from the row y in the Markov chain

as given in Figure 7.

Lemma 1 The following holds.

1. If y = yi − 1 for 1 ≤ i ≤ s− y0, then

py0+i,yi−1 =

(
a

y0 + i
+
y0 + i− 1

y0 + i

)
py0+i−1,yi−1.

2. For 1 ≤ i < s − y0, yi − 1 ≤ y < yi+1 − 1 and 2 ≤ x ≤ s − y0 − i or i = 0, 0 ≤ y < y1 − 1 and

2 ≤ x ≤ s− y0, we have

py0+i+x,y =
1

(y0 + i+ x)!

(y0 + i+ 1)py0+i+1,y

x−1∑
j=0

(y0 + i+ j)!ax−j−1 − apy0+i,y

x−1∑
j=1

(y0 + i+ j)!ax−j−1

 .

3. For 0 ≤ y < ys−y0
− 1, we have

ps+1,y =

(
1 +

a(1− α)

s

)
ps,y −

a

s
ps−1,y.

4. For y ≥ 0 and 0 ≤ x ≤ k, we have

ps+x,y =

(
1− a(1− α)

s

)−1(
ps+1,y

(
1−

(
a(1− α)

s

)x)
− ps,y

(
a(1− α)

s
−
(
a(1− α)

s

)x))
.

Proof. The proof of the first statement is straightforward. If y = yi − 1 for 1 ≤ i ≤ s− y0, then Equation

(43) leads to py0+i,yi−1 = ( a
y0+i +

y0+i−1
y0+i )py0+i−1,yi−1.

We now prove the second statement by induction on x. For 1 ≤ i < s − y0, yi − 1 ≤ y < yi+1 − 1 and

2 ≤ x ≤ s− y0 − i or i = 0, 0 ≤ y < y1 − 1 and 2 ≤ x ≤ s− y0, let us define the property P (x) by

P (x) : py0+i+x,y =
1

(y0 + i+ x)!

(y0 + i+ 1)py0+i+1,y

x−1∑
j=0

(y0 + i+ j)!ax−j−1 − apy0+i,y

x−1∑
j=1

(y0 + i+ j)!ax−j−1

 ,

for 0 ≤ i < s− y0 and 2 ≤ x < s− y0 − i− 1.

Combining x = y0 + i + 1 and Equation (46), and combining x = y0 + 1 and Equation (39) prove that

P (2) is true.

46



Assume that P (x) and P (x+ 1) are true, and let us prove that P (x+ 2) is also true, for 0 ≤ i < s− y0 and

2 ≤ x < s− y0 − i− 1.

We may write

py0+i+x,y =
1

(y0 + i+ x)!

(y0 + i+ 1)py0+i+1,y

x−1∑
j=0

(y0 + i+ j)!ax−j−1 − apy0+i,y

x−1∑
j=1

(y0 + i+ j)!ax−j−1

 ,

and

py0+i+x+1,y =
1

(y0 + i+ x+ 1)!

(y0 + i+ 1)py0+i+1,y

x∑
j=0

(y0 + i+ j)!ax−j − apy0+i,y

x∑
j=1

(y0 + i+ j)!ax−j

 .

Equation (46) for 1 ≤ i < s−y0 and 2 ≤ x < s−y0− i−1 or Equation (39) for i = 0 and 2 ≤ x < s−y0−1

are equivalent to

py0+i+x+2,y =
a+ y0 + i+ x+ 1

y0 + i+ x+ 2
py0+i+x+1,y −

a

y0 + i+ x+ 2
py0+i+x,y .

We thus obtain, for 0 ≤ i < s− y0 and 2 ≤ x < s− y0 − i− 1,

py0+i+x+2,y =

a+ y0 + i+ x+ 1

y0 + i+ x+ 2

 1

(y0 + i+ x+ 1)!

(y0 + i+ 1)py0+i+1,y

x∑
j=0

(y0 + i+ j)!ax−j − apy0+i,y

x∑
j=1

(y0 + i+ j)!ax−j


−

a

y0 + i+ x+ 2

 1

(y0 + i+ x)!

(y0 + i+ 1)py0+i+1,y

x−1∑
j=0

(y0 + i+ j)!ax−j−1 − apy0+i,y

x−1∑
j=1

(y0 + i+ j)!ax−j−1


=

(y0 + i+ 1)py0+i+1,y

(y0 + i+ x+ 2)!

(a+ y0 + i+ x+ 1)
x∑

j=0

(y0 + i+ j)!ax−j − a(y0 + i+ x+ 1)

x−1∑
j=0

(y0 + i+ j)!ax−j−1


−

apy0+i,y

(y0 + i+ x+ 2)!

(a+ y0 + i+ x+ 1)
x∑

j=1

(y0 + i+ j)!ax−j − a(y0 + i+ x+ 1)

x−1∑
j=1

(y0 + i+ j)!ax−j−1


=

1

(y0 + i+ x+ 2)!

(y0 + i+ 1)py0+i+1,y

x+1∑
j=0

(y0 + i+ j)!ax−j+1 − apy0+i,y

x+1∑
j=1

(y0 + i+ j)!ax−j+1

 .

We next deduce that P (x+ 2) is also true for 0 ≤ i < s− y0 and 2 ≤ x < s− y0 − i− 1. So, the property

P (x) is true, which finishes the proof of the second statement.

The third statement immediately follows from Equations (40) and (47).

Let us now prove the fourth statement. The corresponding homogeneous equation to Equations (41) and

(48) is

sµz2 − (λ(1− α) + sµ)z + λ(1− α) = 0,

with z as a variable, for z ∈ C. It has two solutions, z = 1 and z = a(1−α)
s . Thus for y ≥ 0 and 0 ≤ x ≤ k,

ps+x,y = α+ β
(

a(1−α)
s

)x
with ps,y = α+ β and ps+1,y = α+ β a(1−α)

s . Finally, for y ≥ 0 and 0 ≤ x ≤ k, we

obtain

ps+x,y =

(
1− a(1− α)

s

)−1(
ps+1,y

(
1−

(
a(1− α)

s

)x)
− ps,y

(
a(1− α)

s
−
(
a(1− α)

s

)x))
.

This finishes the proof of the fourth statement, and that of the lemma. 2
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Step 3. We show in Lemma 2 how px,y, for x ≥ s + k and y ≥ 0, can be computed as a function of

ps+k,0, ps+k,1, · · · , ps+k,y.

Lemma 2 The solution of Equations (42), (49) and (51) is given by

px+s+k,y =

 y∑
j=0

ay,jx
j

 zx, (52)

for x ≥ 0, where

z =
1

2

1 +
a(1− α)

s
−

√(
1 +

a(1− α)

s

)2

− 4(1− q − α)a

s

 ,

and the constants ay,j for y ≥ 0 and 0 ≤ j ≤ y are given by

ay,0 = ps+k,y, (53)

for y ≥ 0,

ay,y =
a0,0
y!

(
qλz

−sµz2 + (1− q − α)λ

)y

,

for y > 0, and

ay,j+1 =
[
(−sµz2 + (1− q − α)λ)(j + 1)

]−1

 y∑
i=j+2

ay,i

(
i

j

)(
sµz2 + (−1)i+j(1− q − α)λ

)
+ qλzay−1,j

 ,

(54)

for 0 ≤ j < y − 1 and y > 1.

Proof. Consider the system of equations given by Equations (42), (49) and (51). This system can be solved

analytically using standard results from the theory of linear difference equations. Consider the corresponding

homogeneous equation to Equations (42), (49) and (51). We have

sµz2 − (λ(1− α) + sµ)z + (1− q − α)λ = 0, (55)

with z as a variable, for z ∈ C. It has two solutions denoted by z and z′ and are given by

z =
1

2

1 +
a(1− α)

s
−

√(
1 +

a(1− α)

s

)2

− 4(1− q − α)a

s

 ,

and

z′ =
1

2

1 +
a(1− α)

s
+

√(
1 +

a(1− α)

s

)2

− 4(1− q − α)a

s

 .
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We next provide the intervals where z and z′ are ranging. We have 0 ≤ z < 1 and z′ ≥ 1. Let us first prove

that z′ ≥ 1. Since z′ increases in q, we have

z′ ≥
1

2

1 +
a(1− α)

s
+

√(
1 +

a(1− α)

s

)2

−
4a(1− α)

s

 =
1

2

1 +
a(1− α)

s
+

√(
1−

a(1− α)

s

)2
 = 1.

In what follows, we prove that 0 ≤ z < 1. Since z decreases in q,

z ≤
1

2

1 +
a(1− α)

s
−

√(
1 +

a(1− α)

s

)2

−
4a(1− α)

s

 =
1

2

1 +
a(1− α)

s
−

√(
1−

a(1− α)

s

)2
 =

a(1− α)

s
< 1.

From Equation (55), we may write sµzz′ = (1 − q)λ. Since λ ≥ 0, 0 ≤ q ≤ 1 and z′ > 1 > 0, we obtain

z ≥ 0.

Because of the last term in the right hand side of Equations (49) and (51), the stationary probabilities

px+s+k,y, for x ≥ 0 and y ≥ 0, can be written as a sum of two polynomials multiplied by zx and z′x,

respectively. Since z′ > 1, the convergence of the stationary probabilities forces the polynomial that is

multiplied by z′x to be equal to zero. We therefore obtain Equation (52), for x ≥ 0 and y ≥ 0, that is,

px+s+k,y =

 y∑
j=0

ay,jx
j

 zx,

with ay,j ∈ R for y ≥ 0 and 0 ≤ j ≤ y. In what follows, we compute the parameters ay,j , for y ≥ 0 and

0 ≤ j ≤ y, as a function of ps+k,y, for y ≥ 0. It is straightforward to obtain Equation (53). Using Equations

(49), (51) and (52), we have

(λ(1− α) + sµ)

 y∑
j=0

ay,jx
j

 zx = sµ

 y∑
j=0

ay,j(x+ 1)j

 zx+1 (56)

+ (1− q − α)λ

 y∑
j=0

ay,j(x− 1)j

 zx−1 + qλ

y−1∑
j=0

ay−1,jx
j

 zx,

for x, y > 0. Since
y∑

j=0

ay,j(x+ 1)j =

y∑
j=0

 y∑
i=j

ay,i

(
i

j

)xj ,

and
y∑

j=0

ay,j(x− 1)j =

y∑
j=0

 y∑
i=j

(−1)iay,i

(
i

j

) (−1)jxj ,

Equation (56) leads to

(λ(1− α) + sµ)ay,y−1z = sµz2(ay,y−1 + ay,yy) + (1− q − α)λ(ay,y−1 − ay,yy) + qλzay−1,y−1, (57)

for y > 0. Since z is a root of Equation (55), Equation (57) can be rewritten as

0 = sµz2ay,yy − (1− q − α)λay,yy + qλzay−1,y−1,
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for y > 0. This implies

ay,y = ay−1,y−1
qλz

(−sµz2 + (1− q − α)λ)y
,

for y > 0. It thus follows that

ay,y =
a0,0
y!

(
qλz

−sµz2 + (1− q − α)λ

)y

,

for y > 0. For 0 ≤ j < y − 1 and y > 1, Equation (56) also leads to

(λ(1− α) + sµ)ay,jz = sµz2

 y∑
i=j

ay,i

(
i

j

)+ (1− q − α)λ

 y∑
i=j

(−1)iay,i

(
i

j

) (−1)j + qλzay−1,j . (58)

Since z is a root of Equation (55), Equation (58) can be rewritten as

0 = ay,j+1(j + 1)(sµz2 − (1− q − α)λ) +

y∑
i=j+2

ay,i

(
i

j

)(
sµz2 + (−1)i+j(1− q − α)λ

)
+ qλzay−1,j ,

for 0 ≤ j < y − 1 and y > 1. Finally, this leads to Equation (54).

We then compute ay,j , for y ≥ 0 and 0 ≤ j ≤ y, as a function of ps+k,y, for y ≥ 0. This finishes the proof

of the lemma. 2

Step 4. Here, we evaluate all stationary probabilities for x ≥ 0 and y = 0 as a function of p0,0. Using

Equation (37), we have

px,0 =
ax

x!
p0,0, (59)

for 0 ≤ x ≤ y0. Using the second statement of Lemma 1, we obtain

py0+x,0 =
1

(y0 + x)!

(y0 + 1)py0+1,0

x−1∑
j=0

(y0 + j)!ax−j−1 − apy0,0

x−1∑
j=1

(y0 + j)!ax−j−1

 , (60)

for 2 ≤ x ≤ s− y0. From the second and third statements of Lemma 1, we may write

ps+x,0 =

(
1− a(1− α)

s

)−1
(
ps,0

(
1−

(
a(1− α)

s

)x+1
)

− ps−1,0
a

s

(
1−

(
a(1− α)

s

)x))
, (61)
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for 0 ≤ x ≤ k. Using now Equations (60) and (61), we obtain

ps+k,0 =
(y0 + 1)py0+1,0

s!(1− a(1−α)
s )

(a(1− α)

s

)k (
1− a

s

) s−y0−2∑
j=0

(y0 + j)!as−y0−j−1 + (s− 1)!

(
1−

(
a(1− α)

s

)k+1
)

(62)

− apy0,0

s!(1− a(1−α)
s )

(a(1− α)

s

)k (
1− a

s

) s−y0−2∑
j=1

(y0 + j)!as−y0−j−1 + (s− 1)!

(
1−

(
a(1− α)

s

)k+1
) .

Next, combining Equation (38) and y0µpy0,1 = qλ
∞∑
x=0

ps+k+x,0 provides a relation between py0,0 and py0+1,0.

From Equations (38)-(42), we have

λpy0,0 − (y0 + 1)µpy0+1,0 = qλ
ps+k,0

1− z
.

Combining the previous equation and Equations (59) and (62) implies

py0+1,0 =
a

y0 + 1

1 + qa
(1−a(1−α)/s)(1−z)s!

((
a(1−α)

s

)k (
1− a

s

) s−y0−2∑
j=1

(y0 + j)!as−y0−j−1 + (s− 1)!

(
1−

(
a(1−α)

s

)k+1
))

1 + qa
(1−a(1−α)/s)(1−z)s!

((
a(1−α)

s

)k (
1− a

s

) s−y0−2∑
j=0

(y0 + j)!as−y0−j−1 + (s− 1)!

(
1−

(
a(1−α)

s

)k+1
)) ay0

y0!
p0,0.

(63)

Using Equations (38) and (63), we also obtain

py0,1 =
p0,0

1− z

q a
y0

as

s!

(
a(1−α)

s

)k
1 + qa

(1−a(1−α)/s)(1−z)s!

((
a(1−α)

s

)k (
1− a

s

) s−y0−2∑
j=0

(y0 + j)!as−y0−j−1 + (s− 1)!

(
1−

(
a(1−α)

s

)k+1
)) .

Using Lemmas 1 and 2 together with Equations (63) and (59), we thus have closed-form expressions for

the stationary probabilities px,0 for x ≥ 0 and py0,1 as function of p0,0.

Step 5. We propose in this step a method to compute the stationary probabilities of a given row as a

function of the stationary probabilities in the previous rows of the Markov chain. Consider y ≥ 0, and

suppose that the stationary probabilities of rows 0, 1, · · · , y are known in the Markov chain as a function of

p0,0. If for a given i (i ∈ {1, · · · s − y0 − 1}) we have yi ≤ y + 1 < yi+1 − 1 or 0 < y + 1 < y1 − 1, then

(y0 + i)µpy0+i,y+1 = qλ
∞∑
x=0

ps+k+x,y, and if y+ 1 ≥ ys−y0 then sµps,y+1 = qλ
∞∑
x=0

ps+k+x,y. Consequently, the

first stationary probability of row y + 1 is also known as a function of p0,0.

Observe that using Equation (52) for y ≥ 0, we have

∞∑
x=0

ps+k+x,y =
∞∑
x=0

 y∑
j=0

ay,jx
j

 zx =

y∑
j=0

ay,j

( ∞∑
x=0

xjzx

)
.

For 0 ≤ j ≤ y, and x, y ≥ 0, we define the function fj in the variable t by fj(t) =
∞∑
x=0

xjtx with t ∈ [0, 1).

The function fj(t) is given by the recursive relation fn+1(t) = t (fn(t))
′
for n ≥ 0 and f0(t) = 1

1−t with
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t ∈ [0, 1) (Queffélec and Zuily, 2013). Thus we can derive the infinite sum
∞∑
x=0

ps+k+x,y, for 0 ≤ j ≤ y, and

x, y ≥ 0, through a finite number of calculations. 2

We next distinguish three cases.

- Case 1 : If for a given i (i ∈ {1, · · · s− y0}) y + 1 = yi − 1, then using the first statement of Lemma 1, the

second stationary probability of row y+1 (py0+i,yi−1) is also known as a function of p0,0. Using Lemma 1 we

evaluate px,yi−1 for y0+ i−1 ≤ x ≤ s+k as a function of p0,0 and py0+i+1,yi−1. Using Lemma 2 we evaluate

ps+k+x,yi−1 for x ≥ 0 as a function of ps+k,0, ps+k,1, · · · , ps+k,yi−1. Since the stationary probabilities of rows

0, 1, · · · , yi − 2 are known as a function of p0,0 then we evaluate ps+k+x,yi−1 for x ≥ 0 as a function of p0,0

and py0+i+1,yi−1. Using Equation (44), we obtain (y0+i)µpy0+i,yi = (λ(1−1y0+i≥sα)+(y0+i)µ)py0+i,yi−1−

λpy0+i−1,yi−1 − min(y0 + i + 1, s)µpy0+i+1,yi−1. Moreover, we have (y0 + i)µpy0+i,yi = qλ
∞∑
x=0

ps+k+x,yi−1.

Thus the equation (λ(1−1y0+i≥sα)+(y0+ i)µ)py0+i,yi−1−λpy0+i−1,yi−1−min(y0+ i+1, s)µpy0+i+1,yi−1 =

qλ
∞∑
x=0

ps+k+x,yi−1 provides a relation between p0,0 and py0+i+1,yi−1. As a consequence all probabilities of

row y + 1 can be derived as a function of p0,0.

- Case 2 : If for a given i (i ∈ {1, · · · s − y0 − 1}) we have yi ≤ y + 1 < yi+1 − 1 or 0 < y + 1 < y1 − 1,

then using Lemma 1 we evaluate px,y+1 for y0 + i ≤ x ≤ s+ k as a function of p0,0 and py0+i+1,y+1. Using

Lemma 2, we evaluate ps+k+x,y+1 for x ≥ 0 as a function of ps+k,0, ps+k,1, · · · , ps+k,y+1. Since the stationary

probabilities of rows 0, 1, · · · , y are known as a function of p0,0 then we evaluate ps+k+x,y+1 for x ≥ 0 as a

function of p0,0 and py0+i+1,y+1. Using Equation (45) we obtain (y0+i)µpy0+i,y+2 = (λ(1−1y0+i≥sα)+(y0+

i)µ)py0+i,y+1 − (y0 + i+1)µpy0+i+1,y+1. Moreover we have sµps,y+2 = qλ
∞∑
x=0

ps+k+x,y+1. Thus the equation

(λ(1− 1y0+i≥sα) + (y0 + i)µ)py0+i,y+1 − (y0 + i+ 1)µpy0+i+1,y+1 = qλ
∞∑
x=0

ps+k+x,y+1 provides a relation be-

tween p0,0 and py0+i+1,y+1. As a consequence all probabilities of row y+1 can be derived as a function of p0,0.

- Case 3 : If y + 1 ≥ ys−y0 , then using Lemma 1 we evaluate px,y+1 for s ≤ x ≤ s + k as a function

of p0,0 and ps+1,y+1. In all cases using Lemma 2 we evaluate ps+k+x,y+1 for x ≥ 0 as a function of

ps+k,0, ps+k,1, · · · , ps+k,y+1. Since the stationary probabilities of rows 0, 1, · · · , y are known as a function of

p0,0, then we evaluate ps+k+x,y+1 for x ≥ 0 as a function of p0,0 and ps+1,y+1. Using Equation (50), we obtain

sµps,y+2 = (λ(1 − α) + sµ)ps,y+1 − sµps+1,y+1. Moreover, we have (y0 + i)µpy0+i,yi = qλ
∞∑
x=0

ps+k+x,yi−1.

Thus, the equation (λ(1− α) + sµ)ps,y+1 − sµps+1,y+1 = qλ
∞∑
x=0

ps+k+x,yi−1 provides a relation between p0,0

and ps+1,y+1. As a consequence all probabilities of row y + 1 can be derived as a function of p0,0.

Step 6. We now evaluate p0,0. In what follows we prove that the overall sum of the probabilities can be

evaluated after a finite number of calculations. We define the quantity Px as Px =
∞∑
y=0

px,y for x ≥ s. For

s ≤ x < s + k we have λ(1 − α)Px = sµPx+1, then Ps+x =
(

a(1−α)
s

)x
Ps, for 0 ≤ x ≤ k. For x ≥ s + k

we have (1 − q − α)λPx = sµPx+1, then Ps+k+x =
(

a(1−α)
s

)k (
(1−q−α)a

s

)x
Ps, for x ≥ 0. Using now

y0µ
y1−1∑
y=1

py0,y +(y0+1)µ
y2−1∑
y=y1

py0+1,y + · · ·+(s− 1)µ
ys−y0−1∑

y=ys−y0−1

ps−1,y + sµ

(
Ps −

ys−y0−1∑
y=0

ps,y

)
= λq

∞∑
x=0

Ps+k+x,
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and
∞∑
x=0

Ps+k+x = Ps
( a(1−α)

s )
k

1− a(1−q−α)
s

, we therefore obtain

Ps =

[
1− q

a

s

(
a(1− α)

s

)k 1

1− a(1−q−α)
s

]−1
ys−y0

−1∑
y=0

ps,y −
y0

s

y1−1∑
y=1

py0,y −
y0 + 1

s

y2−1∑
y=y1

py0+1,y − · · · −
s− 1

s

ys−y0
−1∑

y=ys−y0−1

ps−1,y

 .

Thus the quantity Ps can be computed after a finite number of calculations as a function of p0,0. Since
∞∑
x=s

Px = Ps

k−1∑
x=0

(
a(1−α)

s

)x
+Ps

(a(1−α))k

sk
1

1− a(1−q−α)
s

, the overall sum of the probabilities can also be evaluated

after a finite number of calculations. Using the fact that all probabilities sum up to one, we obtain p0,0.

This finishes the characterization of all stationary probabilities.

Step 7. We now use the stationary probabilities to derive the system performance measures. The propor-

tion of customers who ask for a callback, ψ, is given by

ψ = q
∞∑

x=s+k

Px = Ps

q
(

a(1−α)
s

)k
1− a(1−q−α)

s

.

The proportion of customers who balk the system, Pb, is given by

Pb = α
∞∑
x=s

Px = αPs

(
k−1∑
x=0

(
a(1− α)

s

)x

+
(a(1− α))k

sk
1

1− a(1−q−α)
s

)
.

Applying the Little law leads to λ(1− ψ − Pb)E(W1) =
∞∑
x=0

xPs+x. Therefore,

E(W1) =
Ps

λ(1− ψ − Pb)

(a(1− α)

s

) 1− k
(

a(1−α)
s

)k−1
+ (k − 1)

(
a(1−α)

s

)k
(
1− a(1−α)

s

)2 +

(
a(1− α)

s

)k
(1−q−α)a

s
+ k

(
1− (1−q−α)a

s

)
(
1− (1−q−α)a

s

)2
 .

Again, applying the Little law implies

E(W2) =
1

λψ

y1−1∑
y=1

ypy0,y +

y2−1∑
y=1

ypy0+1,y + · · ·+
ys−y0

−1∑
y=1

yps−1,y +
∞∑
y=1

∞∑
x=s

ypx,y

 .

Using now the following relation

ψE(W2) + (1− ψ − Pb)E(W1) = E(W ),

we obtain E(W ). This finishes the characterization of the performance measures in the general case.

D Highest Reservation and Non-Idling Cases
We simplify here the expressions given in Corollary 2. We focus on the multi-server setting for the special

cases y0 = 1 (highest reservation) and y0 = s (non-idling). These results are for example useful for the

numerical computations in Table 2. We first consider the highest reservation policy with y0 = 1. We have

Ψ =
q
(

a(1−α)
s

)k
as

s!

1− a(1−q−α)
s

p0,0

1− q as

s!

(
a(1−α)

s

)k
1

1− a(1−q−α)
s

,

Pb =

αas

s!
p0,0

(
1−

(
a(1−α)

s

)k

1− a(1−α)
s

+

(
a(1−α)

s

)k

1− a(1−q−α)
s

)
1− q as

s!

(
a(1−α)

s

)k
1

1− a(1−q−α)
s

,
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E(W1) =
as

s!

λ(1−Ψ− Pb)

p0,0

(
k−1∑
x=0

x
(

a(1−α)
s

)x
+
(

a(1−α)
s

)k ( k
(
1− a(1−q−α)

s

)
+

a(1−q−α)
s(

1− a(1−q−α)
s

)2

))
1− q as

s!

(
a(1−α)

s

)k
1

1− a(1−q−α)
s

,

with

p0,0 =

1 +

(
s−2∑
x=0

ax+1

(x+1)!
+ as

s!

k−1∑
x=0

(a(1−α))x

sx
+ as

s!
(a(1−α))k

sk
1

1− a(1−q−α)
s

)
1− q as

s!
(a(1−α))k

sk
1

1− a(1−q−α)
s


−1

.

We now consider the non-idling policy with y0 = s. We have

Ψ =
q
(

a(1−α)
s

)k
as

s!
p0,0

1− a(1−q−α)
s

− q a
s

(
a(1−α)

s

)k ,

Pb =
αas

s!
p0,0

1− (a(1−α))
s

,

E(W1) =
1

λ

as

s!
p0,0

((
a(1−α)

s

) 1−k
(

a(1−α)
s

)k−1
+(k−1)

(
a(1−α)

s

)k(
1− a(1−α)

s

)2 +
(

a(1−α)
s

)k (1−q−α)a
s

+k
(
1− (1−q−α)a

s

)
(
1− (1−q−α)a

s

)2

)
(
1−

q a
s

(
a(1−α)

s

)k

1− a(1−q−α)
s

)
(1−Ψ− Pb)

,

with

p0,0 =

[
s−1∑
x=0

ax

x!
+

as

s!

1− (a(1−α))
s

]−1

.

Using the fact that the overall system is equivalent to an M/M/s queue with balking, we can also compute

E(W2) in the non-idling case as follows.

E(W ) = ΨE(W2) + (1−Ψ− Pb)E(W1)

=
p0,0

as

s!

λ

a(1−α)
s(

1− a(1−α)
s

)2 .
E Proof of Proposition 4
Since E(W1) and E(W2) are both increasing in k, we choose the optimal value of k which is k = 0. We

rewrite the performance measures as functions of the Erlang Delay Loss Formulae, Cs and the parameter

ρ = λ
sµ . Under the stability constraint λ(1− α) < sµ, we have

Cs =
1

1 + s!
s−1∑
x=0

(sρ)x−s

x!
(1− ρ(1− α))

,Ψ = qCs, Pb = αCs, E(W1) =
1

λq

Ψ
(

(1−q−α)ρ
1−(1−q−α)ρ

)
1−Ψ− Pb

,
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and

E(W ) =
Ψρ(1− α)

λq (1− ρ(1− α))
.

Harel (2011) shows that the Erlang loss formulae is strictly decreasing in s. In particular, he shows that

the function φ(s) = s!
s−1∑
x=0

(sρ)x−s

x! is strictly increasing in s. This expression is in the denominator of Cs and

is multiplied by the positive coefficient 1− ρ(1− α). We therefore deduce that Cs is decreasing in s as well

as Ψ, Pb and E(W ), because they are all proportional to Cs. Since Ψ and Pb are decreasing in s, 1−Pb −Ψ

is increasing in s and E(W1) is decreasing in s.

Harel (2011) also shows that 1
1+φ(s) is strictly convex in s (convexity of the Erlang loss formula) and

that 1

1+s!
s−1∑
x=0

(sρ)x−s

x! (1−ρ)

= 1
1+φ(s)(1−ρ) is strictly convex in s (convexity of the Erlang delay formula). Since

Cs =
1

1+φ(s)(1−ρ(1−α)) , one may write

∂2Cs

∂s2
= (1− ρ(1− α))

2(1− ρ(1− α))(φ′(s))2 − φ′′(s)(1 + φ(s))

(1 + φ(s)(1− ρ(1− α)))
3 .

From Harel (2011), we have 2(1− ρ(1− α))(φ′(s))2 − φ′′(s)(1 + φ(s)) > 0 for α = 0 and α = 1. Since φ(s)

does not depend on α and 1 − ρ(1 − α) is strictly increasing in α, we obtain ∂2Cs

∂s2 > 0. Therefore, Cs is

strictly convex in s.

We next deduce that Ψ, Pb and E(W ) are convex in s. One may see that E(W1) is proportional to Ds,

with Ds =
Cs

1−(α+q)Cs
. We have

Ds+2 +Ds − 2Ds+1 =
Cs+2 + Cs − 2Cs+1 + (α+ q) (CsCs+1 + Cs+1Cs+2 − 2CsCs+2)

(1− (α+ q)Cs)(1− (α+ q)Cs+1)(1− (α+ q)Cs+2)

=
(Cs+2 + Cs − 2Cs+1)(1− (α+ q)Cs+1) + 2(α+ q)(Cs − Cs+1)(Cs+1 − Cs+2)

(1− (α+ q)Cs)(1− (α+ q)Cs+1)(1− (α+ q)Cs+2)
.

Since Cs is strictly convex, Cs+2+Cs−2Cs+1 > 0. Since Cs is strictly decreasing, (Cs−Cs+1)(Cs+1−Cs+2) >

0. Thus, Ds is strictly convex in s and E(W1) is also strictly convex in s. This finishes the proof of the

proposition. 2

F Proof of Proposition 5
Recall that in the non-idling case, we have

Ψ =
q
(

a(1−α)
s

)k
as

s!
p0,0

1− a(1−q−α)
s

− q a
s

(
a(1−α)

s

)k .
Since for stability reason a(1−α)

s ≤ 0, we obtain

∂Ψ

∂k
= q

as

s!
p0,0

(
a(1−α)

s

)k
ln
(

a(1−α)
s

)(
1− a(1−q−α)

s

)
(
1− a(1−q−α)

s
− q a

s

(
a(1−α)

s

)k)2
≤ 0.
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Thus, Ψ is decreasing in k. We now rewrite E(W1) as

E(W1) =

(
1− (1−q−α)a

s

)
λq

f(k)g(k),

where

f(k) =
Ψ(

a(1−α)
s

)k
(1−Ψ− Pb)

,

and

g(k) =

(a(1− α)

s

) 1− k
(

a(1−α)
s

)k−1
+ (k − 1)

(
a(1−α)

s

)k
(
1− a(1−α)

s

)2 +

(
a(1− α)

s

)k
(1−q−α)a

s
+ k

(
1− (1−q−α)a

s

)
(
1− (1−q−α)a

s

)2
 .

First we show that f(k) is increasing in k. We have

f ′(k) =

(
a(1− α)

s

)k −∂Ψ
∂k Pb −Ψ ln

(
a(1−α)

s

)
(1−Ψ− Pb)((

a(1−α)
s

)k
(1−Ψ− Pb)

)2 ≥ 0,

because Ψ is decreasing in k and a(1−α)
s < 1 for stability reason. We rewrite g(k) as

g(k) =

a(1−α)
s

(
1− (1−q−α)a

s

)2
− qa

s

(
1− a(1−α)

s

)k (
k
(
1− a(1−α)

s

)(
1− (1−q−α)a

s

)
+ 1− a(1−α)

s
(1−q−α)a

s

)
(
1− a(1−α)

s

)2 (
1− (1−q−α)a

s

)2 .

Only the numerator, say n(k), of this expression depends on k. We have

n′(k) = −
qa

s
ln

(
a(1− α)

s

)(
1−

a(1− α)

s

)k (
(k + 1)

(
1−

a(1− α)

s

)(
1−

(1− q − α)a

s

)
+ 1−

a(1− α)

s

(1− q − α)a

s

)
≥ 0,

since a(1−α)
s < 1. We finally deduce that E(W1) is increasing in k, which completes the proof of the

proposition. 2

G Proof of Proposition 6
When an idle agent considers the service of the first outbound call in line, There are two possibilities. The

first possibility (with probability r1 + r2 > 0) is that the customer is available and will be served within an

exponential duration with parameter µ1 or µ2 with probability r1 or r2, respectively. The second possibility

(with probability 1− r1 − r2) is that the customer is not available and the agent will be occupied a random

duration exponentially distributed with parameter µ3. This customer will be then called back again latter

according to the same process and independently of the fact that she has been already called back. Let us

denote by Ui, a Bernouilli random variable, which takes the value 1 with probability r1 + r2 and 0 otherwise

for i ≥ 1; by Vi, a Bernouilli random variable, which takes the value 1 with probability r1
r1+r2

and 0 otherwise

for i ≥ 1; and by Ti,j an exponential random variable with parameter µj , for i ≥ 1 and j = 1, 2, 3. The time

duration, denoted by the random variable T , which is spent by the system capacity to serve an outbound

call, can be written as follows.

T = U1(V1T1,1 + (1− V1)T1,2) + (1− U1)(T1,3 + U2(V2T2,1 + (1− V2)T2,2) + (1− U2)(T2,3 + · · ·

=
∞∑
i=1

i−1∏
k=1

(1− Uk)UiViTi,1 +
∞∑
i=1

i−1∏
k=1

(1− Uk)Ui(1− Vi)Ti,2 +
∞∑
i=1

i∏
k=1

(1− Uk)Ti,3.
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We next derive the expected value of T . Since all the considered random variables are independent, we

have

E(T ) =
∞∑
i=1

i−1∏
k=1

E(1− Uk)E(Ui)E(Vi)E(Ti,1) +
∞∑
i=1

i−1∏
k=1

E(1− Uk)E(Ui)E(1− Vi)E(Ti,2) +
∞∑
i=1

i∏
k=1

E(1− Uk)E(Ti,3)

=
r1

r1 + r2

1

µ1
+

r2

r1 + r2

1

µ2
+

1− r1 − r2

r1 + r2

1

µ3
.

We now derive the variance of T , denoted by V ar(T ). Again, from the independence of the random

variables, we obtain

V ar(T ) =

∞∑
i=1

V ar(

i−1∏
k=1

(1− Uk)UiViTi,1) +

∞∑
i=1

V ar(

i−1∏
k=1

(1− Uk)Ui(1− Vi)Ti,2) +

∞∑
i=1

V ar(

i∏
k=1

(1− Uk)Ti,3).

Let us define the sequence Sn by Sn = V ar

(
n∏

k=1

(1− Uk)

)
, for n ≥ 0, with S0 = 0. We have

Sn = Sn−1(V ar(1− Un) + E2(1− Un)) + V ar(1− Un)E
2

(
n−1∏
k=1

(1− Uk)

)
,

for n ≥ 1. Since V ar(1−Un) = (r1 + r2)(1− r1 − r2), E
2(1−Un) = (1− r1 − r2)

2 and E2

(
n−1∏
k=1

(1− Uk)

)
=

(1− r1 − r2)
2n−2, we obtain

Sn = (1− r1 − r2)Sn−1 + (r1 + r2)(1− r1 − r2)
2n−1, (64)

for n ≥ 1. Using Equation (64), it is easy to prove by induction that Sn = (1− r1 − r2)
n(1− (1− r1 − r2)

n),

for n ≥ 0. We next compute V ar(UnVnTn,1), for n ≥ 1. We may write

V ar(UnVnTn,1) = V ar(UnVn)V ar(Tn,1) + V ar(UnVn)E
2(Tn,1) + E2(UnVn)V ar(Tn,1)

=
1

µ21

(
2V ar(UnVn) + E2(UnVn)

)
=

1

µ21

(
2V ar(Un)V ar(Vn) + 2E2(Un)V ar(Vn) + 2V ar(Un)E

2(Vn) + E2(Un)E
2(Vn)

)
=
r1

µ21

(
2(1− r1 − r2)r2

r1 + r2
+ 2r2 + 2

(1− r1 − r2)r1

r1 + r2
+ r1

)
=
r1(2− r1)

µ21
.

Hence

∞∑
i=1

V ar(

i−1∏
k=1

(1− Uk)UiViTi,1)) =

∞∑
i=1

(
Si−1(V ar(UiViTi,1) + E2(UiViTi,1)) + E2(

i−1∏
k=1

(1− Uk))V ar(UiViTi,1)

)

=
∞∑
i=1

(
(1− r1 − r2)

i−1(1− (1− r1 − r2)
i−1)(

r1(2− r1)

µ21
+
r21
µ21

) + (1− r1 − r2)
2i−2 r1(2− r1)

µ21

)

=
2r1

µ21

∞∑
i=1

(1− r1 − r2)
i−1 −

r21
µ21

∞∑
i=1

(1− r1 − r2)
2(i−1)

=
r1(4− 3r1 − 2r2)

µ21(r1 + r2)(2− r1 − r2)
.

Using the same approach, we also obtain
∞∑
i=1

V ar(
i−1∏
k=1

(1 − Uk)Ui(1 − Vi)Ti,2)) = r2(4−3r2−2r1)
µ2
2(r1+r2)(2−r1−r2)

and
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∞∑
i=1

V ar(
i∏

k=1

(1− Uk)Ti,3) =
(1−r1−r2)(4−r1−r2)
µ2
3(r1+r2)(2−r1−r2)

. This finishes the proof of the proposition. 2

58


