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Component Aggregation for PEPA Models: An Approach Based on
Approximate Strong Equivalence

Dimitrios Milios∗, Stephen Gilmore

School of Informatics, University of Edinburgh, UK

Abstract

Approximate aggregation for PEPA components involves the construction of a smaller component that
approximates the behaviour of the original one. Such an approximation at the component level can be very
efficient and it can also result in a considerable reduction of the state-space for the underlying continuous-
time Markov chain. We propose an approximate PEPA component aggregation strategy that relies on an
approximate form of strong equivalence. The notion of strong equivalence captures behavioural similarity
between components of different size. This quality renders approximate strong equivalence appropriate as a
criterion to aggregate the state-space of PEPA components. We compare our newly proposed approach with
previous work on component aggregation, where only a part of the component behaviour has been used as
a criterion for aggregation. Our method requires fewer assumptions regarding the form of the components,
and is therefore readily applicable to a larger family of PEPA models.

Keywords: PEPA components, approximate aggregation, strong equivalence

1. Introduction

Informational systems are integral to many aspects of life and the task of performance evaluation remains
vitally important as computer infrastructures continue to expand. The rise of the cloud computing industry
means that the structure of systems is often extremely complex. Moreover, the massive numbers of people
and devices connected to the web, for example in terms of social networks or peer-to-peer networks, not
only affect the scale of the system, but also the impact of design decisions.

Markov chains have been extensively used for performance analysis of computer systems that exhibit
stochastic behaviour. The PEPA language [1] offers a high-level framework to formally describe complex
Continuous-Time Markov Chains (CTMCs). A high-level model is defined as a collection of interacting
components, and is subsequently translated into a Markov chain, which is amenable to rigorous mathematical
analysis. The ability to easily describe complex systems is definitely desirable, however sometimes the
resulting state-space is just too large to be handled by traditional analysis techniques.

State-space aggregation can effectively reduce the complexity of large Markov models. If a Markov chain
is lumpable, then it is possible to construct an aggregated Markov chain featuring transient and steady-
state behaviour that is identical to that of the original model w.r.t. the aggregated state-space [2]. In other
settings, Markov chain aggregation is characterised as approximate, since the behaviour of the original model
is approximated by a smaller Markov chain. In a recent work [3], approximate Markov chain aggregation
has been defined as a partition optimisation process that relies on the notion of quasi-lumpability. This
involves the application of a clustering algorithm that minimises an upper bound on a measure that implies
quasi-lumpability. For the rest of this paper, we shall refer to this strategy as QL-based partitioning.
The possibility of a compositional approach to aggregation has also been explored in the same work, a
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fact that allows the efficient approximation of complex models that consist of a number of components.
More specifically, the state-space of PEPA components could be partitioned by the same principle under
some assumptions; PEPA components have been treated as CTMCs, where their shared activities have
been ignored. This approach made it possible to apply QL-based aggregation to components, rather than
the entire state-space. The aggregated underlying CTMC was being produced by utilising the Kronecker
representation of PEPA models defined by Hillston & Kloul [4].

One limitation of applying this QL-based approach on PEPA components is that their shared behaviour
is completely ignored. As acknowledged in [3], the applicability of such a method is limited to models that
are composed of loosely coupled components, in the sense that there is a small number of shared actions.
The issue with the shared activities has been that their rates are simply not known at the component level,
as they depend on the global state of the system. Shared activity rates are not associated with numerical
values that can be used in terms of an optimisation process.

In this work, we propose a partitioning strategy for PEPA components that takes the entire component
behaviour into account. This is achieved by formulating estimations for shared activity rates, in order to
include these activities in the partitioning process as well. Moreover, we define a partitioning optimisation
process that relies on an approximate version of strong equivalence [1], which formally describes behavioural
equivalence of PEPA components of different size. Most importantly, strong equivalence implies lumpability
in the derived Markov chain; therefore we make use of approximate strong equivalence (ASE) as a guide to
partition the state-space of components. We shall refer to this method as ASE-based partitioning. Finally,
we provide a structured operational semantics characterisation of component aggregation. This allows us
to produce compositions of approximately aggregated components in a way that eliminates the requirement
for an alternative representation based on Kronecker algebra as in [3]. We experimentally evaluate our
ASE-based method over a case study inspired by cloud computing, and we present a comparison with the
older QL-based approach.

In Section 2, we introduce some concepts used throughout the paper. Section 3 briefly outlines QL-based
partitioning of Markov chains originally proposed in [3]. In Section 4, we discuss ASE-based partitioning.
The technical details of the clustering algorithms used for component partitioning are discussed in Section
5. In Section 6, we explain how aggregated versions of components can be formed in the case of a partition
that only induces approximate strong equivalence. Section 7 presents the operational semantics for PEPA
models featuring aggregated components. In Section 8, we present the case-study considered and we discuss
the experimental results. In Section 9, we clarify how our work is related to the literature on approximate
Markov chain aggregation. Finally, the conclusions of this work are summarised in Section 10.

2. Preliminaries

2.1. The PEPA Language

PEPA models are collections of components; the modeller has to specify the components and the way
these components interact with each other. The combination of the components can be mapped to a CTMC
that can be solved for the transient and the steady-state behaviour of the system. More formally, the
grammar for the PEPA language is the following:

S ::= (α, r).S | S + S
P ::= P BC

L
P | P/L | S

where S denotes a sequential component, while P denotes a parallel component which is defined as a
composition of sequential components. Below we explain the meaning of the operators and the notation
used.

Prefix (.). The prefix operator describes a sequential action that a component may perform. For example,
a component (α, r).P carries out an action and subsequently behaves as P . The pair (α, r) is called an
activity, where α is the action type and r is the rate of the activity. The duration of the activity is governed
by an exponential distribution with mean 1/r. The set of activities that a component P is capable of is
denoted as Act(P ).
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Choice (+). This operator denotes a choice between two different sequential behaviours. A component
P + Q can evolve either to P or Q. Whenever there is a choice between two or more activities, the
exponentially distributed transition times imply that there is a race condition between them.

Cooperation ( BC
L

). This operator denotes a parallel composition of interacting components. A coopera-
tion is defined over a set of actions L, which is called the cooperation set. The actions in this set are also
called shared actions, and they require that the components involved carry out the activity simultaneously.
Components may carry out individually any activity whose action type is not in the cooperation set.

Empty Cooperation (||). This operator is a shorthand for BC
∅

, where the cooperation set is empty.

Aggregation ([N ]). The notation S[N ] denotes a collection of identical sequential components that act in
parallel with no interaction among them.

Hiding (/). Hiding P/L renders the actions in the set L private for the component P . This means that
no cooperation can be defined for the actions in L.

Unspecified Rates. The rate of an activity can be unspecified, denoted by >, meaning that the activity
is passive.

Although the rate of passive activities is unspecified, they can also be associated with a probability. This
is required if more than one passive activities of the same action type are enabled. Then an unspecified
activity rate > may be assigned a weight w ∈ N which represents the relative probability of that particular

activity. The absence of a weight simply implies that w = 1. For example, the component P
def
= (α1, w1 ×

>).P1 +(α2, w2×>).P2, will perform α1 with probability w1/(w1 +w2) or α2 with probability w2/(w1 +w2).
The time of exiting state P remains unspecified.

2.1.1. The Derivation Graph

The Markovian interpretation of a PEPA model relies on the semantics of the PEPA language [1] sum-
marised in Fig. 1, which are defined in the style of Plotkin’s structured operational semantics [5]. For a
component P , the PEPA semantics induces the set of states reachable from P , which is called the derivative
set, denoted as ds(P ). The derivative set along with the activities involved define the derivation graph. If
the derivation graph contains no unspecified rates, then we can construct a CTMC (ds(P ),Q,π0), where π0

is some initial distribution over ds(P ), while Q is a generator matrix whose entries capture the transition
rates of the derivation graph.

In the first level of syntax, the modeller defines one or more sequential components. The second level of
syntax is the system equation, which specifies which components participate in the system and what are the
interactions among them. The local states of the components formulate the global state of the system. Any
change in the local states will also have an effect on the system state. In the case of individually performed
actions, the transitions are associated with an exponential distribution as described earlier. For a shared
action however, the components involved have to perform this action at the same time. The duration of a
synchronised transition will follow an exponential distribution that is determined by the activity with the
smallest rate. In order to see how, we have to explain the notion of apparent rate introduced in [1]:

Definition 1 (Apparent Rate). The apparent rate of an action α in a component P , which is denoted as
rα(P ), is the sum of all rates of all activities of type α in Act(P ).

As with activity rates, an apparent rate can be either a positive real number, or unspecified > with weight
equal to the sum of the weights of the activities included. Note however that the apparent rate rα(P ) can
only be defined if the activities of type α for P are either all active or all passive, since the addition of an
active rate r ∈ R+ with an unspecified rate > is not defined as an operation in [1]. Components for which
any action of type α involves both active and passive activities are considered invalid. This requirement has
some interesting implications in an approximate aggregation setting, which we explore later in Section 6.3.
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Prefix

(α, r).E
(α,r)
−−−→ E

Cooperation

E
(α,r)
−−−→ E′

E BC
L
F

(α,r)
−−−→ E′ BC

L
F

(α /∈ L)
F

(α,r)
−−−→ F ′

E BC
L
F

(α,r)
−−−→ E BC

L
F ′

(α /∈ L)

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F ′

E BC
L
F

(α,R)
−−−→ E′ BC

L
F ′

(α ∈ L) where R =
r1

rα(E)

r2

rα(F )
min(rα(E), rα(F ))

Choice

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α /∈ L)
E

(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A
def
= E)

Figure 1: Structured operational semantics for PEPA

The concept of apparent rate refers to the rate of any currently enabled activity of a given action type.
The rate of a synchronised activity will be the minimum of the two apparent rates involved, weighted by

the individual activity probabilities. More specifically, the rate of the synchronised activities P
def
= (α, r1).P ′

and Q
def
= (α, r2).Q′ will be

r =
r1

rα(P )

r2

rα(Q)
min(rα(P ), rα(Q)) (1)

In the special case where there is one or more passive actions, the unspecified rate > is evaluated in terms
of the minimum function as follows:

min(w1 ×>, r) =

{
r, r ∈ R+

min(w1, w2)×>, r = w2 ×>
(2)

where w1, w2 ∈ N.

2.1.2. PEPA Components as Labelled Transition Systems

In the PEPA language, a component name C is bound to a process definition. The derivative set ds(C)
along with the activities involved define a labelled transition system. In terms of the current paper, a
component C will actually refer to the labelled transition system with state-space ds(C), and transitions
which are specified by the semantics of Fig. 1. In other words, our use of the term “component” involves the
set of process definitions for which the semantics induce a directed graph with one connected component.
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According to standard PEPA notation [1], the set of actions of which a component C is capable is denoted
by A(C). Since we are interested in the labelled transition system induced by C, we shall make use of the
complete set of actions of a component C, which is defined as follows:

~A(C) =
⋃

C′∈ds(C)

A(C ′) (3)

Assuming an ordering of states in the derivative set ds(C), we shall describe the behaviour of components
in terms of matrices, whose entries contain the rates of each individual activity. Given the complete set of
actions of C, we have an action rate matrix Ra for every action a ∈ ~A(C). The entries of each Ra matrix
are determined by the language semantics:

• An entry Ra,ij > 0 denotes the rate of the activities of type a from the i-th state to the j-th state of
C.

• A value 0 for Ra,ij means that there is no activity of type a from the i-th to the j-th state of C.

• An unspecified rate w×> for Ra,ij implies that the activities of type a from the i-th to the j-th state
of C are passive, having weight w ∈ N.

2.2. Notions of Equivalence

In order to aggregate a Markov chain with N states, its state-space has to be partitioned into K classes,
where ideally K � N . Given a state-space S, we shall say that ∆ = {A1, . . . , AK} is a partition on S with
K classes, where A1, . . . , AK are mutually disjoint subsets of S. The states that belong to the same class
have to be equivalent in some sense. In this section, we review some notions of exact and approximate state
equivalence in Markov chains and PEPA components. A large part of the discussion in this paper relies on
the concepts that follow.

2.2.1. Lumpability

In terms of Markov chains, equivalence is formally described by the notion of lumpability [6]. Given
a partition of the state-space, lumpability implies that states that belong to the same class have identi-
cal transition probabilities to each of the partitions. This concept is formally described by the following
definition:

Definition 2 (Lumpability). A Markov chain with probability matrix P is lumpable w.r.t. a partition
∆ = {A1, . . . , AK}, if for any two classes Ak, Al ∈ ∆, and for any two states i, j ∈ Ak:∑

m∈Al

Pim =
∑
m∈Al

Pjm (4)

As can be seen in [2], given a lumpable Markov chain we can obtain a lumped model which is also a
Markov chain. Given a stochastic matrix P ∈ RN×N that is lumpable to ∆ = {A1, . . . , AK}, we define the
corresponding lumped matrix P̃ ∈ RK×K with entries:

P̃kl =
∑
m∈Al

Pim, ∀i ∈ Ak (5)

The lumped matrix P̃ has transient and steady-state behaviour that is identical to the behaviour of P w.r.t.
the aggregated state-space.

The concept of lumpability can be easily extended to CTMCs by considering the infinitesimal generator
matrix Q instead of the probability matrix P . It is also well known that if a CTMC is lumpable to some
partition ∆, the discrete-time Markov chain obtained via uniformisation is also lumpable to ∆. State-space
aggregation techniques that rely on lumpability typically exploit the structure of some high-level description
of the model. For example in [7], a lumpable partition is obtained by identifying isomorphic components of
a PEPA model.
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2.2.2. Quasi-Lumpability

In the general case, a non-trivial lumpable partition might not exist. Quasi-lumpability, which was
introduced in [8], captures approximate behaviour for Markov models. In order to describe states that
exhibit approximately the same rather than identical behaviour, we have to relax the conditions in (4).

Definition 3 (Quasi-Lumpability). A Markov Chain with probability matrix P will be quasi-lumpable w.r.t.
a partition ∆ = {A1, . . . , AK} and a bound ε, if for any two classes Ak, Al ∈ ∆, and for any two states
i, j ∈ Ak: ∣∣∣∣∣ ∑

m∈Al

Pim −
∑
m∈Al

Pjm

∣∣∣∣∣ ≤ ε, ε ≥ 0 (6)

The term near-lumpability has been used to describe the same notion in [2], however we shall use the
term “quasi-lumpability” for the rest of this paper. Most of the research in the field so far aims at computing
bounds for the state probabilities of quasi-lumpable Markov chains, assuming some partition of the state-
space [8, 9, 10]. The computation of bounds of compositions of Markov chains has also been investigated in
the context of Markov reward models [11] and PEPA [12].

2.2.3. Strong Equivalence

In the original work on PEPA [1], several equivalences for PEPA components have been introduced,
including isomorphism, weak isomorphism, strong bisimilarity and strong equivalence. Isomorphism is not
really suitable for our purposes here, as the components involved are required to have state-spaces of the
same size. Weak isomorphism and strong bisimilarity allow components of different size, however they do
not induce lumpability for the underlying CTMCs.

Strong equivalence combines the two desirable features needed to define approximate component equiva-
lence in the style of quasi-lumpability. It has been shown in [1] that if two components C and C̃ are strongly
equivalent then their underlying CTMCs will be lumpably equivalent. Moreover, the compositions C BC

L
C ′

and C̃ BC
L
C ′ will be also strongly equivalent for any C ′.

In the context of state-space aggregation, a component C̃, which is strongly equivalent to C, results from
aggregation given some partition on the state-space of C. Strong equivalence can then be defined in terms
of the action rate matrices and a partition ∆ on the state-space of C.

Definition 4 (Strong Equivalence). Let C be a PEPA component with transition rate matrices Ra, ∀a ∈
~A(C). A partition ∆ = {A1, . . . , AK} on ds(C) induces a strongly equivalent aggregated component, if for

any two classes Ak, Al ∈ ∆, and for any two states i, j ∈ Ak:∑
m∈Al

Ra,im =
∑
m∈Al

Ra,jm, ∀a ∈ ~A(C) (7)

If we relax the conditions of strong equivalence in a way similar to quasi-lumpability, we obtain the
following approximate notion of equivalence for PEPA components:

Definition 5 (Approximate Strong Equivalence). Let C be a PEPA component with transition rate matrices

Ra, ∀a ∈ ~A(C). A partition ∆ = {A1, . . . , AK} on ds(C) induces an approximately strongly equivalent
aggregated component with respect to a bound ε, if for any two classes Ak, Al ∈ ∆, and for any two states
i, j ∈ Ak: ∣∣∣∣∣ ∑

m∈Al

Ra,im −
∑
m∈Al

Ra,jm

∣∣∣∣∣ ≤ ε, ε ≥ 0, ∀a ∈ ~A(C) (8)

3. Partitioning Based on Quasi-Lumpability

The QL-based partitioning approach presented in [3] has been originally defined in terms of Markov
chains. Given certain assumptions, PEPA components could be partitioned under the same principle, which
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makes it possible for approximate aggregation to be applied in a compositional setting. In this section,
we outline QL-based partitioning of Markov chains [3], and we discuss the conditions required so that this
strategy is effectively applied for PEPA components.

3.1. Markov Chain Partitioning

As we have seen in Definition 3, quasi-lumpability resulted from relaxing the conditions imposed for
lumpable Markov chains. In quasi-lumpable models, the class-to-class transition probabilities have to be
approximately the same for states that belong to the same class. More formally, given a Markov chain with
probability matrix P that is quasi-lumpable w.r.t. ∆ = {A1, . . . , AK}, then for any two classes Ak, Al ∈ ∆
and for any two states i, j ∈ Ak we have:∣∣∣∣∣ ∑

m∈Al

Pim −
∑
m∈Al

Pjm

∣∣∣∣∣ ≤ ε, ε ≥ 0

The quantity ε above represents the maximum difference between states in the same class. A partitioning
strategy that relies on the concept of quasi-lumpability should minimise ε for every combination of states.
Under this perspective, we can use the following pseudo-metric to capture a dissimilarity measure between
states:

Ei,j =

K∑
l=1

∣∣∣∣∣ ∑
m∈Al

Pim − Pjm

∣∣∣∣∣ (9)

where i, j are states that belong to the same class. This pseudo-metric will be equal to zero, only if the
corresponding Markov chain is lumpable with respect to the partition ∆.

In theory, a partition can be considered as optimal with respect to the notion of quasi-lumpability, if it
minimises all of the Ei,j quantities. However, in (9) the dissimilarity between a pair of states is not constant,
as it depends on the way that the states are distributed across the classes. Therefore, it is not straightforward
to design an algorithm that directly minimises Ei,j with respect to the partition. The solution proposed in
[3] involves minimising d(i, j) ≥ Ei,j instead, which is the Manhattan distance in the RN space spanned by
the transition probabilities to the N states of a Markov chain:

d(i, j) =

N∑
n=1

|Pin − Pjn| (10)

In order to obtain a partitioning of the state-space that minimises the Manhattan distance for states in the
same class, we have to apply a clustering algorithm. Minimising d(i, j) also means small values for Ei,j , and
subsequently for the ε quantity in the definition of quasi-lumpability. This result also applies for CTMCs
by considering the embedded discrete-time Markov chain obtained via uniformisation [13]. The technical
details of the clustering algorithm of our choice are discussed in Section 5.

3.2. QL-based Partitioning for PEPA Components

Let us consider a PEPA component C as a labelled transition system with action rate matrices {Ra,∀a ∈
~A(C)}. If we ignore the action labels, we can simply calculate the sum R =

∑
a∈ ~A(C)Ra, which is the

transition rate matrix of the underlying CTMC. A partition on the state-space of C can be obtained by
using the QL-based partitioning method discussed in the previous section. However, the R matrix cannot be
calculated at all times, as some of the activities are shared, meaning that the corresponding rates depend on
other components. At this point, it is useful to discriminate between the shared and the individual behaviour
of a PEPA component by introducing the following definition:

Definition 6. Let C be a PEPA component whose individual activities have action type τ . We shall say that
the individual behaviour of C is characterised by the individual rate matrix Rτ , while the shared behaviour
of C is characterised by the rate matrices: Ra, ∀a 6= τ ∈ ~A(C).
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Without loss of generality, we can only consider PEPA components whose individual activities have a
single action type, namely τ . A useful observation regarding Definition 6 is that we can summarise the
individual behaviour of any component in a single rate matrix. For the shared actions however, there is no
legitimate way to produce a meaningful summary in a single matrix. Recall that the rates of these actions
are not fully determined in isolation, as they depend on the global state. More specifically, the PEPA
semantics impose that the rate of a shared activity is the minimum of the apparent rates of the components
involved. This minimum also depends on the state of the other cooperating component, so it cannot be
determined a priori i.e. without deriving the global state-space.

According to the PEPA semantics, the individual activities of a component C induce a CTMC, whose
generator matrix can be directly derived by appropriately modifying the diagonal entries of the individual
rate matrix Rτ . Note that this CTMC does not accurately capture the behaviour of C, as the shared actions
have been ignored. However, if the set of shared actions is relatively small, we can expect that Rτ will be
much more dense than the total of Ra, ∀a 6= τ ∈ ~A(C). If this condition holds and Rτ captures a significant
part of the component behaviour, it should be reasonable to apply an approximate aggregation algorithm
to Rτ , in order to obtain a nearly optimal partition ∆ with respect to the individual behaviour of C. These
claims have been experimentally evaluated in [3], where it was found that such a partitioning strategy could
adequately capture the behaviour of a class of models that involve both low and high population components.
Further evaluation and comparison with the more sophisticated ASE-based approach follow in Section 8.

4. Partitioning Based on Approximate Strong Equivalence

In this section, we discuss how approximate strong equivalence can be used as a criterion to partition the
state-space of PEPA components. Moreover, we explain how we can produce estimations about the rates of
shared activities, which are generally not known at the component level. In this way, shared activities can
be associated with certain values that can be used in terms of a numerical algorithm.

4.1. A Pseudo-metric related to Strong Equivalence

In terms of PEPA components, we need a measure to capture behavioural similarity between states. It
will be convenient for the arguments that follow to introduce the following definition:

Definition 7 (Uniformisation of PEPA Components). Let C be a PEPA component with transition rate

matrices Ra, ∀a ∈ ~A(C). We define a uniformisation constant γ for C as follows:

γ ≥ max
C′∈ds(C)

∑
a∈ ~A(C)

ra(C ′) (11)

We construct a component C̊ with action types ~A(C̊) = ~A(C), derivation set ds(C̊) ∼= ds(C), apparent rates:

ra(C̊ ′) = γ, ∀C̊ ′ ∈ ds(C̊), ∀a ∈ ~A(C̊) (12)

and transition probability tensor P̊ ∈ R|ds(C̊)|×|ds(C̊)|×| ~A(C̊)| with entries:

P̊ija =



1

γ
Ra,ij , i 6= j, ∀a ∈ ~A(C̊)

1

γ
Ra,ii, i = j, a 6= τ

1−
∑
a∈ ~A

∑
j Ra,ij

γ
, i = j, a = τ

(13)

We shall say that C̊ is the uniformisation of C.

Lemma 1. A component C is strongly equivalent to its uniformisation C̊.
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Proof. This can be trivially shown if we multiply P̊ with the uniformisation constant γ.

Similarly to the concept of uniformisation of CTMCs, a uniformised PEPA component is associated with
a jump process that describes the next-step transition probabilities, and a uniformisation constant that
expresses the rate of those jumps. The only difference is that we must have a different dimension for each
shared action, as we do not want their effects to be counterbalanced. In Definition 7, the entire component
behaviour has been summarised by a single structure; that is the tensor P̊ , whose entries describe the
absolute activity probabilities, assuming a total rate γ.

We can derive a pseudo-metric that captures the similarity measure between states of a PEPA component.
This measure will have to rely on the notion of strong equivalence, which can be conveniently expressed
in terms of the probability tensor of a uniformised PEPA component C̊. Considering a partition ∆ =
{A1, . . . , AK} on the state-space of C̊, we define the following quantity for any two states i, j that belong
to the same class:

E̊i,j =
∑

a∈ ~A(C̊)

K∑
l=1

∣∣∣∣∣ ∑
m∈Al

P̊ima − P̊jma

∣∣∣∣∣ (14)

In the equation above, E̊i,j is characterised as a pseudo-metric, as we may have E̊i,j = 0 for i 6= j. What
makes this measure appropriate to determine similarity for states of PEPA components is the fact that each
activity contributes to the measure at a different dimension, depending on its type. E̊i,j will be equal to zero

iff ∆ induces a strongly equivalent aggregated component for C̊. In a different case, ∆ can be characterised
as optimal, if it minimises the pairwise distances E̊i,j for any two states in the same class.

Similarly to what we have done for the quasi-lumpability measure, we can define an upper bound for
E̊i,j as follows:

d̊(i, j) =
∑

a∈ ~A(C̊)

K∑
l=1

∑
m∈Al

∣∣∣P̊ina − P̊jna∣∣∣
=

∑
a∈ ~A(C̊)

N∑
n=1

∣∣∣P̊ina − P̊jna∣∣∣
(15)

where N = |ds(C̊)|. It is easy to show that d̊(i, j) ≥ E̊i,j , where d̊(i, j) is the Manhattan distance between
two rows of the probability tensor. This distance is readily applicable for use in terms of a clustering
algorithm; the output of such an algorithm will be a partition on the state-space of C̊ that minimises the
pairwise Manhattan distances for states in the same class. Since d̊(i, j) is also an upper bound for E̊i,j , then

it reasonable to expect that the same partition will induce small values for the E̊i,j measure.
We note that approximate equivalence could have been alternatively defined in terms of lumpable bisim-

ulation, which is a characterisation of contextual lumpability [14]. It can be easily seen that the Manhattan
distance is also an upper bound for lumpable bisimulation, therefore this alternative definition should have
no effect on the partitioning strategy that we propose, as it relies on the Manhattan distance only.

4.2. Estimating the Rates of Shared Activities

If a is an individual action, then the entries of the corresponding rate matrix Ra are all known. In the
case where a is a shared action however, the activity rates may be either unspecified or simply determined
by other slower components. In order to examine the possibilities for shared activities, we shall decompose
Ra into apparent rates and activity probabilities.

Definition 8 (Apparent Rate Vector). Let C be a PEPA component whose state-space is indexed by ds(C).
Let ra be a vector, also indexed by ds(C), which contains the apparent rates of the states of C for action a.
We define ra to be the apparent rate vector of C for action a.
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Using Definition 8, we can decompose any rate matrix Ra as a product of two matrices:

Ra = DaPa (16)

where Da is a diagonal matrix with entries ra, and Pa is the probability matrix for the activities of type
a. For a shared action a, the activity probabilities in Pa are completely characterised by the component
specification. However, the apparent rates in ra can be either unspecified or determined by slower compo-
nents. In both cases, there is uncertainty about the entries of Ra, hence it cannot be used in terms of a
partitioning strategy in its current form.

In practice, a particular shared activity may take values within a range of values, depending on the
state of any cooperating components. In this section, we discuss a strategy to produce estimations for the
apparent rates of shared actions. These estimations constitute the maximum possible capacity of a given
action for a particular component state. In this way, we capture the maximum possible effect that a shared
activity may have in the uniformised probability tensor.

Let us assume components P and Q that cooperate on some action a. The apparent rates of P for
action a are summarised in the vector ra,P . Similarly, ra,Q is the apparent rate vector for Q. Note that the
components, and subsequently the corresponding apparent rate vectors, do not have to be of the same size.
According to the PEPA semantics, the apparent rate for a synchronised action will be the minimum of the
apparent rates for the components involved. For a particular state i in P we have the following vector of
possible values for the apparent rate:

min(ri,a,P , ra,Q) =

min(ri,a,P , r1,a,Q)
min(ri,a,P , r2,a,Q)

. . .


︸ ︷︷ ︸

|ds(Q)| entries

(17)

We see that the apparent rate ri,a,P will be determined solely by P if ri,a,P is smaller than all of the
apparent rates in Q. In other cases, there is uncertainty about the apparent rate. Our strategy is to
consider the largest possible apparent rate; that will correspond to the maximum value in the apparent rate
collection. Therefore, for the components P and Q we define the estimated apparent rate vectors r′a,P and
r′a,Q correspondingly with entries:

r′i,a,P = max
j

(min(ri,a,P , rj,a,Q))

r′i,a,Q = max
j

(min(ri,a,Q, rj,a,P ))
(18)

We can use (18) to recursively estimate the maximum possible rates for any term of the abstract syntax
tree that corresponds to a PEPA system equation. For each sequential component, we construct the apparent
rate vector. Starting from the leaves of the system equation, we resolve the apparent rate vectors of the
lower level, and we use the resulting rate vectors in the upper level. Algorithm 1 formally describes this
recursive process of constructing the estimated apparent rate vectors based on (18). We shall say that a
component C is an element of a component M , that is C ∈M , if C is part of the composition that forms the
parallel component M . We see that for any pair of components C,C ′ ∈ M that cooperate, either directly
or indirectly, we calculate estimated apparent rates. Any intermediate results are stored and used in later
calculations, so it is possible to produce rate estimations in the case of multi-way synchronisation. Hidden
activities should be treated as individual activities, regardless of their presence in a cooperation set. In the
practical application of the algorithm, parallel compositions of N identical sequential components that act
with no interaction among them, i.e. C[N ], are considered as single sequential components.

We acknowledge that Algorithm 1 may not calculate the true maximum possible apparent rates if there
is an implicit choice in the model. For example, consider a system equation of the form P BC

{a}
(Q||R), where

a ∈ ~A(P ) ∩ ~A(Q) ∩ ~A(R). According to (18), the total capacity of P for a might be limited because of
either Q or R. In that case, since this is considered as an intermediate result, the total capacity of R for a
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Algorithm 1 Recursive Expectation for Apparent Rate Vectors

Require: M is a PEPA model definition
Ensure: The rate vectors {ra,C : a ∈ ~A(C), C ∈M} contain estimations for the apparent rates

1: if M is a sequential PEPA component then
2: return {ra,M : a ∈ ~A(M)}
3: else
4: P BC

L
Q←M

5: Apply this algorithm recursively to obtain the set: {ra,C : a ∈ ~A(C), C ∈ P}
6: Apply this algorithm recursively to obtain the set: {ra,C : a ∈ ~A(C), C ∈ Q}
7: for all C ∈ P do
8: for all C ′ ∈ Q do
9: for all a ∈ L ∩ ~A(C) ∩ ~A(C ′) do

10: Construct the apparent rate vector r′a,C with entries: r′i,a,C = max
j

(min(ri,a,C , rj,a,C′))

11: Construct the apparent rate vector r′a,C′ with entries: r′i,a,C′ = max
j

(min(ri,a,C′ , rj,a,C))

12: ra,C ← r′a,C
13: ra,C′ ← r′a,C′

14: end for
15: end for
16: end for
17: return {ra,C : a ∈ ~A(C), C ∈ P} ∪ {ra,C : a ∈ ~A(C), C ∈ Q}
18: end if

will also be limited because of Q, while it should not. Nevertheless, Algorithm 1 will still give estimations
regarding the apparent rates that can be used in terms of component aggregation. The modeller has to bear
in mind that the estimated maximum rates calculated may be underestimations of the actual maximum
rates. However, the existence of an implicit choice can be easily detected at syntax level, and therefore it
can be avoided if the modeller sees fit.

As a remark in the computational complexity of Algorithm 1, every component C has to be pair with
every C ′ that is on the other side of a cooperation operator. If we have n sequential components in a model,
a rough estimate of the worst-case complexity will be of O(n2×na), where by na we denote the total number
of actions. This does not present an issue from a practical point of view however, since the algorithm is
meant to be applied at the system equation level. Even the most complex models do not normally involve
more than a few tens of compositions.

5. The Clustering Algorithm

The approximate aggregation approaches discussed in the previous two sections rely on partitioning
the state-space of a component C according to an appropriately defined Manhattan distance metric. The
clustering algorithm of our choice is the one proposed by Ng et al. in [15], which is a spectral clustering
approach [16]. Using an appropriate notion of similarity, a dataset is associated with a weighted undirected
graph that is called the similarity graph. This similarity graph is summarised by the affinity matrix S, whose
entries Sij = Sji ≥ 0 denote the pairwise similarities between the i-th and the j-th instances. The data is
partitioned depending on the eigenvectors of the Laplacian matrix, rather than on the local proximities of
data-points. In [15] in particular, the following symmetric version of the Laplacian matrix is used:

Lsym = D−1/2SD−1/2 (19)

where D is a diagonal matrix whose entries are the row sums of S.
Algorithm 2 describes our adaptation of Ng et al. [15] to partition the state-space of PEPA components.

The algorithm has as input a PEPA component C, and partitions its state-space using either its individual
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rate matrix Rτ (QL-based method), or a probability tensor obtained via component uniformisation (ASE-
based method). On the technical part, the algorithm selects the K eigenvectors that correspond to the K
largest eigenvalues of Lsym . Then the data is mapped to the rows of the X ∈ RN×K matrix formed by
stacking these eigenvectors as columns. The clusters of data are well separated in this RK space, therefore
the premise of spectral clustering methods is that they produce a globally optimal clustering.

Algorithm 2 Spectral Clustering of PEPA Components

Require: A PEPA component C with rate matrices Rτ and {Ra,∀a 6= τ ∈ ~A(C)}
1: QL-method Calculate P ∈ RN×N as the uniformisation of Rτ

ASE-method

a) Apply Algorithm 1 to estimate the maximum possible apparent rates for the components in
the model

b) Calculate P ∈ R|ds(C̊)|×|ds(C̊)|×| ~A(C̊)| such that C̊ is the uniformisation of C

2: Compute the affinity matrix S ∈ RN×N with entries:

QL-method Sij = exp
(
−d(i,j)

2σ2

)
ASE-method Sij = exp

(
− d̊(i,j)

2σ2

)
3: Construct the diagonal matrix D with entries Dii =

∑N
j=1 Sij

4: Construct the symmetric Laplacian: Lsym = D−1/2SD−1/2

5: Find the eigenvectors that correspond to the K largest eigenvalues of Lsym and form the matrix:

X = [x1x2 . . .xK ] ∈ RN×K

6: Normalise each row of X so as it has unit length:

Yij =
Xij√∑K
j=1X

2
ij

7: Given that each row of Y is a data-point in RK , perform a K-means clustering

Step 2 of Algorithm 2 involves the computation of a similarity measure between two states given their
distance. As we can see, the definition of similarity depends on the parameter σ2, which controls how quickly
the affinity Sij degrades. In fact, σ2 affects how wide a cluster can be, i.e. large values for σ2 favour wide
clusters. As noted in [16], spectral clustering algorithms do not make strong assumptions on the form of the
clusters. A too large value for σ2 could lead to cluster shapes that are not meaningful in terms of quasi-
lumpability, where we would only want to minimise the Manhattan distance between each pair of states in
the same cluster. Therefore, we need a value for σ2 that imposes “tight” clusters. Since we use stochastic
matrices only (the generator matrices of CTMCs are uniformised), we know that the maximum Manhattan
distance between any two rows is 2. In Fig. 2 we can see the effect of different σ2 values on the similarity
function. An appropriate value to enforce tight clusters is 0.1, which has been used in the experiments later
in this work.

The final step of Algorithm 2 clusters the data according to their affinities when mapped onto the space
spanned by the K largest eigenvectors of the Laplacian Lsym . This process of clustering is described in a
rather abstract way as the output of a K-means clustering approach. This step requires further explanation,
as K-means cannot guarantee a globally optimal partition. In most implementations, it starts from a random
initial solution and performs a number of iterations until it converges to a local optimum [17]. In practice,
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multiple runs are required to obtain a globally optimal solution.
The cost of performing K-means has been significantly reduced in terms of the Ng et al. method [15] using

an appropriate initialisation. Note that a normalised version of the eigenvectors is used, which are stored
as columns in the Y matrix. In the ideal case, that is when the Markov chain is completely decomposable,
the points Yi ∈ RK have the form (0, . . . , 0, 1, 0, . . . , 0) where the position of the “1” indicates the connected
component this point belongs to. Notice that instances that belong to different clusters are orthogonal to
each other. Perturbation analysis that was performed in [15] shows that this property is mostly preserved
for the largest K eigenvectors if the clusters of data are well separated. The idea is to select an initial
solution in the form of K centroids, where each centroid is a row of Y . Starting from any row of Y , we
repeatedly choose the next row that is closer to being perpendicular to all the centroids chosen so far. The
angle between different rows can be trivially measured by means of the inner product; obviously we need to
select such a row that the inner product with the rest of the centroids is as close to zero as possible.

6. Approximate Aggregation of Rate Matrices

In the general case, the partitioning algorithm will return a partition ∆ over the state-space of C that
only induces approximate equivalence of states (either in a QL or in an ASE context). The transitions of

any component C have been described by a set of rate matrices {Ra : a ∈ ~A(C)}, which correspond to the
action types that C is capable of. Given a partition ∆, the aim is to produce a new set of rate matrices
{R̃a : a ∈ ~A(C̃)} that characterises the activities of the aggregated C̃ component, whose states are labelled
by the instances of ∆.

In this section, we investigate the effect of approximate aggregation on rate matrices. We distinguish
between three different types of rate matrices, depending whether they have active or passive activities
exclusively, or a mixture of the two. We clarify the impact of approximate aggregation in each case.

6.1. Real Rate Matrices

Let us first consider the case where no passive activities are involved, so for any action type a we have
Ra ∈ RN×N , where N is the number of states in ds(C). In Definition 5, approximate strong equivalence
imposes that the class-to-class rates will be approximately the same for all of the states in the same class. In
order to summarise these class-to-class transition rates with a single value, we simply use the average, which
is a reasonable representative for populations that are nearly the same. More formally, given a component
C and a partition ∆ = {A1, . . . , AK} on ds(C) with K classes, then each instance of {R̃a : a ∈ ~A(C)} will
be a K ×K rate matrix with entries:

R̃a,ij =

∑
k∈Ai

∑
l∈Aj

Ra,kl

|Ai|
(20)

where |Ai| denotes the number of states included in class Ai.
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6.2. Rate Matrices with Unspecified Rates

We now consider the case where a rate matrix describes passive activities; the entries of a rate matrix
are exclusively either unspecified or zeros, that is Ra ∈ {0,>}N×N . It is possible to apply (20) in order to
get an approximately lumped version of it.

Recall that an activity with rate > may be assigned a weight w ∈ N, which determines the relative
probability of that particular activity, while the absence of a weight simply implies that w = 1. An
unspecified rate > should not be interpreted as “infinity”, as it is important to keep track of its probability.
Therefore, the process of aggregating a rate matrix Ra ∈ {0,>}N×N is similar to the process of aggregating
a real-valued rate matrix, as in the previous section. The effect of approximate aggregation will be on the
weights that are associated with any passive rate >, rather than on > itself.

Approximate aggregation as formulated in (20) involves two summations: given a state indexed by k we
calculate the total rate of transitioning to a class Aj , and we average these total rates for every k ∈ Ai. The
addition of two unspecified rates w1 ×> and w2 ×> is defined in [1] as follows:

w1 ×>+ w2 ×> = (w1 + w2)×> ∀w1, w2 ∈ N (21)

However, in (20) we also have to divide the sum of the rates by the size of the outgoing class. Although
division of an unspecified rate with a real number is not originally defined in [1], there is no reason why
we cannot have such an operation. In fact, Smith [18] has defined multiplication of > by a real number c.
Following Smith, we can more conveniently write:

w ×>
c

=
w

c
×> (22)

If weights can be written as fractions as in (22), then the weight of an aggregated component could be
a real rather than a natural number as required in [1]. Nevertheless, there should be no technical problem
with considering weights that are positive real numbers. Regarding the behaviour of > in the context of the
minimum operator, that will remain unchanged:

min(w1 ×>, r) =

{
r, r ∈ R+

min(w1, w2)×>, r = w2 ×>
(23)

where w1, w2 ∈ R+.
In an approximate aggregation context, we allow w to be any positive real number. It can be easily seen

that w will never be negative or zero; Equation (20) dictates that a weight w for an aggregated component
will be the average of a set of values which are assumed to be positive.

6.3. Rate Matrices with both Active and Passive Activities

We demonstrate that rate matrices that contain a mixture of real-valued and unspecified rates are
problematic. However, it is possible to avoid such an occurrence, if we impose certain restrictions on the
model definition.

According to the original work on PEPA [1], a component C is not allowed to have an action type a
that involves both active and passive activities. This requirement follows directly from the fact that the
apparent rate ra(C) cannot be defined, since the addition of an active rate r ∈ R+ with an unspecified rate
> has no clear semantic interpretation. Recall that the apparent rate ra(C) is the sum of all of the rates of
the activities of type a in Act(C). Therefore, it is important to impose that all of the activities of type a
are consistently active or passive for the same C component.

The following is an example of a valid PEPA component which can be problematic:

C
def
= (a, r1).C1 + (a, r2).C2

C1
def
= (b, r3).C

C2
def
= (b,>).C
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The C component is able to perform two actions a and b, each of which corresponds to a rate matrix:

Ra =

0 r1 r2

0 0 0
0 0 0

 , Rb =

 0 0 0
r3 0 0
> 0 0


Assuming a partition of the state-space ∆ = {{C}, {C1, C2}}, we can aggregate both matrices using (20) to
obtain:

R̃a =

[
0 r1 + r2

0 0

]
, R̃b =

[
0 0

0.5× r3 + 0.5×> 0

]
The aggregated rate matrix R̃b is not valid, as there is no way to calculate the sum of the real rate 0.5× r3

with the unspecified rate 0.5 × >. For the same reason, the apparent rate for action b cannot be defined.
Therefore, the aggregated component is not a valid PEPA component, according to the original work on
PEPA [1].

In order to overcome this problem, we have to impose an additional restriction. That is that for any PEPA
component C, it should not allowed to have action types that involve both active and passive activities for the
derivative set ds(C). The C component of the previous example is not valid according to this specification.
We can however rename the different occurrences of the b action type in such a way that we obtain the
following valid component definitions:

C
def
= (a, r1).C1 + (a, r2).C2

C1
def
= (b1, r3).C

C2
def
= (b2,>).C

In the new version of C, there is consistency of active and passive actions over all of the states of the
transition system. This is reflected in the following rate matrices that correspond to the actions that C, C1

and C2 are able to perform:

Ra =

0 r1 r2

0 0 0
0 0 0

 , Rb1 =

 0 0 0
r3 0 0
0 0 0

 ,
Rb2 =

0 0 0
0 0 0
> 0 0


Given a partition ∆ = {{C}, {C1, C2}}, we can aggregate all three matrices using (20) to obtain:

R̃a =

[
0 r1 + r2

0 0

]
, R̃b1 =

[
0 0

0.5× r3 0

]
,

R̃b2 =

[
0 0

0.5×> 0

]
To conclude, the rate matrix of a valid component C for some action a can be either Ra ∈ RN×N

or Ra ∈ {0,>}N×N . In both cases, Equation (20) will be used to produce the aggregated form for the
transitions of type a.

7. Semantics for Aggregated Models

Our objective is to aggregate PEPA components individually and reflect this reduction on the CTMC
that corresponds to a PEPA model containing these components. In this section we discuss an approach
to produce compositions of aggregated components. Following the operational semantics of the language in
Fig. 1, we define component aggregation and cooperation of aggregated components in terms of structured
operational semantics.
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7.1. Activity Aggregation

We shall formally describe the aggregated component in terms of the initial one; this will allow us to
manipulate the operational semantics of PEPA in order to produce compositions of such components. We
know that the labelled transition system of some component P corresponds to a collection of rate matrices
for the different actions of P . In Section 6, we have discussed how we can aggregate these matrices given
some partition of the state-space. Next we shall look into the interpretation of these new states and new
transitions that have been produced.

States that belong to the same class will collapse into a single state. If ∆P is a partition on P , then
state aggregation can be formally described by the following rule:

A ∈ ∆P P ∈ A
PA ≡ P

(24)

Informally, the rule says that if A is a class in ∆P , then there is a state PA in the aggregated model which
is interpreted as being in any of the states in the class. The aggregate state has been conveniently labelled
with the class, however the interpretation would be no different with a different label. The important thing
is that we miss the initial fine-grained information about the individual states in A. It is therefore inevitable
to assume that all of the included states are equally probable.

The next step is to investigate how the activities are affected in the aggregated state-space. First, we
consider the case of transitioning from an aggregated to a single state:

P
(α,r)
−−−→ P ′

PA
(α,r/|A|)
−−−→ P ′

(P ∈ A)

Intuitively, the rule states that PA is able to perform any of the activities of the components included in A.
The rate however of each one of those activities is a fraction of their original rate. In fact, since we cannot
discriminate between the states in A, all we know about PA is that it is interpreted as P with probability
1/|A|. Thus, whenever there is a rate r from P ∈ A to P ′, the corresponding rate for PA has to be adjusted
accordingly.

Another rather simple case is when transitioning from a single state to an aggregated state. The rule
that follows describes how an activity of a component P is distributed to a class A′ ∈ ∆P .

P
(α,r)
−−−→ P ′

P
(α,r)
−−−→ PA′

(P ′ ∈ A′)

According to the rule above, P is still able to perform the same activity at the same rate. The information
about the exact target state may have been lost as we only know the target class, but this does not affect
the rate of the activity.

Finally, the two cases above considered individually can be summarised in the following rule:

P
(α,r)
−−−→ P ′

PA
(α,r/|A|)
−−−→ PA′

(P ∈ A,P ′ ∈ A′) (25)

If we apply the rule in (25) for every P ∈ A and every P ′ ∈ A′, we essentially have multiple occurrences of
the same activity, probably with different rates. This is totally acceptable as on the basis of the operational
semantics PEPA models can be defined as multi-transition systems. It is reasonable however to collapse all
of these activity instances into a single activity. Then the total rate from PA to PA′ for action type α will
be:

q(PA, PA′ , α) =

∑
P∈A

∑
P ′∈A′ q(P, P ′, α)

|A|
(26)
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where q(P, P ′, α) is the rate of the activity of type α from P to P ′. The rate expression above is equivalent
to (20) used in the matrix-based aggregation of PEPA components in Section 6.

Regarding passive activities, these will be handled as discussed in Section 6. More specifically, we assume
that any unspecified rate is associated with a weight w > 0. Moreover, approximate aggregation will have
an effect on the weights, rather than on the corresponding unspecified rates. Finally, it is required that
every action type is either globally active or globally passive for the derivative set of a given component.

7.2. The Aggregated Derivation Graph

So far, we have characterised component aggregation by a structured operational semantics approach.
In this section, we investigate the effects that aggregation has on the PEPA semantics. We derive the
aggregated semantics for each of the PEPA operators introduced in [1]. More specifically, we rewrite the
operational semantics rules of Fig. 1 in the style that we have defined activities for aggregated components
in (25). Eventually, we shall see that the aggregated semantics proposed are equivalent to the combined
effect of the rule in (25) with the original PEPA semantics.

Prefix. According to the original specification of the prefix operator, whenever a component (α, r).P carries
out an activity (α, r), it subsequently behaves as P . If now the target component is a class A ∈ ∆P , then
the rate r should be distributed to the class:

(α, r).P
(α,r)
−−−→ P

(α, r).PA
(α,r)
−−−→ PA

(P ∈ A) (27)

The rule above describes the combined effect of (25) and the prefix rule in the original PEPA semantics.

Choice. The choice operator implies that a component P + Q will behave either as P or Q. Let us first
consider the case where there is an activity from P to P ′, assuming a partition ∆P such that A,A′ ∈ ∆P .
Since the Q component is not selected, it does not matter whether it is aggregated or not. Regarding the P
component, the activity in the aggregated state-space will be formed in a way similar to the rule in (25):

P
(α,r)
−−−→ P ′

PA +Q
(α,r/|A|)
−−−→ PA′

(P ∈ A,P ′ ∈ A′) (28)

Similarly, whenever there is an activity from Q to Q′, assuming a partition ∆Q such that B,B′ ∈ ∆Q, we
have the following rule:

Q
(α,r)
−−−→ Q′

P +QB
(α,r/|B|)
−−−→ QB′

(Q ∈ B,Q′ ∈ B′) (29)

Unsynchronised Cooperation. An unsynchronised cooperation is defined over an action type a which does
not belong in the cooperation set L. Any component, either aggregated or not, may simply carry out any
activity without affecting the state of other components. Therefore, starting from the rule in (25), we can
consider the following rules for unsynchronised parallel composition:

P
(α,r)
−−−→ P ′

PA BC
L
Q

(α,r)
−−−→ PA′ BC

L
Q

(α /∈ L,P ∈ A,P ′ ∈ A′) (30)

Q
(α,r)
−−−→ Q′

P BC
L
QB

(α,r)
−−−→ P BC

L
QB′

(α /∈ L,Q ∈ B,Q′ ∈ B′) (31)
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Synchronised Cooperation. Starting from the synchronised cooperation rule of Fig. 1, we shall modify it so
as to admit aggregated components. Let ∆P be a partition on P , where A,A′ ∈ ∆P , and similarly ∆Q be
a partition on the state-space of Q, where B,B′ ∈ ∆Q. We also assume that P ∈ A and P ′ ∈ A′, while in
the same way Q ∈ B and Q′ ∈ B′. Thus whenever there is a synchronised activity from P to P ′ and from
Q to Q′, for the corresponding aggregated states the activity will be defined as follows:

P
(α,r1)
−−−→ P ′ Q

(α,r2)
−−−→ Q′

PA BC
L
QB

(α,R)
−−−→ PA′ BC

L
QB′

(α ∈ L,P ∈ A,P ′ ∈ A′, Q ∈ B,Q′ ∈ B′) (32)

where
R =

r1

|A| × rα(PA)

r2

|B| × rα(QB)
min(rα(PA), rα(QB)) (33)

According to (25), we know that the rate of this particular activity for PA will be r1/|A|, while for QB it
will be r2/|B|. The rate expression above is identical to the original in Fig. 1, aside from the fact that we
have modified the rates according to the aggregation rule in (25). The apparent rates can be easily derived;
given an aggregated component PA for some action type α, the apparent rate will be:

rα(PA) =
∑

A′∈∆P

q(PA, PA′ , α) (34)

We have already stated that an action type will be consistently active or passive for the entire derivative
set of any component. The resulting apparent rate will be either a positive real number or unspecified, just
as happens for non-aggregated components.

One last thing to consider is that the rule in (32) will be applied for every possible combination of states
P , P ′, Q and Q′ that belong to the classes A, A′, B and B′ correspondingly. The total rate of transitioning
from PA BC

L
QB to PA′ BC

L
QB′ will be:

q(PA BC
L
QB , PA′ BC

L
QB′ , α) =∑

P∈A
∑
P ′∈A′ q(P, P ′, α)

|A| × rα(PA)
×
∑
Q∈B

∑
Q′∈B′ q(Q,Q′, α)

|B| × rα(QB)
×min(rα(PA), rα(QB))

Regarding the equation above, we observe that the first two terms aside from the apparent rates are equal
to the collapsed activity rates for the aggregated components PA and QA, as given by (26). So the total
rate of a synchronised transition can be further simplified as follows:

q(PA BC
L
QB , PA′ BC

L
QB′ , α) = (35)

q(PA, PA′ , α)

rα(PA)
× q(QB , QB′ , α)

rα(QB)
×min(rα(PA), rα(QB))

The rate expression for aggregated components in (35) is essentially identical to the expression used for
non-aggregated synchronised activities. Therefore, activity aggregation as defined in Section 7.1 allows us
to employ the operational semantics in Fig. 1 to construct the derivation graph for any composition of
aggregated components.

Hiding. Recall that a component P/L behaves as P , except that any activity of any action type in L will
be hidden, meaning that it will be considered as a local activity. Combining the semantics of rules for the
hiding operator in Fig. 1 with the rule in (25), we obtain the following operators that describe the combined
effect:

P
(α,r)
−−−→ P ′

PA/L
(α,r/|A|)
−−−→ PA′/L

(α /∈ L,P ∈ A,P ′ ∈ A′) (36)

P
(α,r)
−−−→ P ′

PA/L
(τ,r/|A|)
−−−→ PA′/L

(α ∈ L,P ∈ A,P ′ ∈ A′) (37)
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7.3. A Worked Example

We shall now illustrate the concepts discussed in this section with an example. Let us consider the
composition P1 BC

{a,b}
Q1 of the following components:

P1
def
= (c, r).P2 + (a,>).P3

P2
def
= (c, r).P1

P3
def
= (c, r).P4

P4
def
= (c, r).P3 + (b,>).P2;

Q1
def
= (a, ra).Q2

Q2
def
= (b, rb).Q1

We assume a partition ∆ = {{P1, P2}, {P3, P4}} on the state-space of P1. Applying the standard PEPA
semantics, for the P1 component only, will result in the graph of Fig. 3.

(c, r) (c, r)

(a,>)

(b,>)

(c, r)(c, r)

P2

P3P1

P4

Figure 3: Derivation graph for P1

It is preferable to aggregate the state-space of P1 first, and then apply the rules for the composition with
the Q1 component. In this way, we avoid unnecessarily large intermediate components. According to ∆,
the states P1 and P2 are collapsed into a single state; let that be P12. Similarly, P3 and P4 are collapsed
into P34.

The next step will be to apply the rule in (25) for states P1 and P2, and their amalgamation P12.
This will add three activities in the aggregated derivation graph: (c, r/2).P12, (c, r/2).P12 and (a,>/2).P34.
Similarly, applying rule (25) on P3 and P4 will add the activities: (c, r/2).P34, (c, r/2).P34 and (b,>/2).P12.
The aggregated derivation graph for the component is pictured in Fig. 4. Activities of the same type having
the same source and target states can be collapsed into a single activity whose rate is the sum of the
corresponding activity rates.

(c, r/2)

(c, r/2)

(b,>/2)

(a,>/2)

(c, r/2)

(c, r/2)

P12 P34

Figure 4: Derivation graph for P12
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Finally, using the standard operational semantics of PEPA, we can create the state-space for the com-
position P1 BC

{a,b}
Q1 as depicted in Fig. 5. It is easy to see that the same graph would have been produced if

we first derive the full graph for P1 BC
{a,b}

Q1, and subsequently apply the aggregated operational semantics

of Section 7.2.

(c, r)

(b, rb)

(a, ra)

(c, r)

P12 BC
{a,b}

Q1 P34 BC
{a,b}

Q2

Figure 5: Derivation graph for P12
BC
{a,b}

Q1

7.4. Side-Effects of Approximate Aggregation

By abstracting every state P that belongs to some class A with a single aggregated state PA, it has been
possible to construct components of smaller size. This aggregation has been characterised as approximate,
since it essentially relies on a partition ∆ that only induces an approximately strongly equivalent aggregated
component. In this section, we examine some implications of this approximate aggregation on the state-space
and the activities of the original model.

The first thing to consider is what information the structure of an aggregated component P ′ conveys
with respect to the original component P . Regarding interpretation of aggregated states, we already know
from the rule in (24) that an aggregated state PA is interpreted as being in any of the states in the set A.
The next thing to examine is whether the set of reachable states is affected by aggregation. The aggregation
rule in (25) guarantees that all the activities in the original component will be represented by aggregated
activities in the aggregated component. That means that the reachable set for an aggregated component will
be no smaller than the original reachable set. The converse is not true, as we have the following proposition:

Proposition 1. Let PA and P ′A be aggregated components that represent the classes A,A′ ∈ ∆ correspond-
ingly. If there is an activity of the form:

PA
(α,r)
−−−→ PA′

then in terms of the original model this is interpreted as:

P
(α,r|A|)
−−−→ P ′, ∀P ∈ A, ∀P ′ ∈ A′

The proof of Proposition 1 follows easily if we invert the effect of the rule in (25), which defines activity
aggregation. Intuitively, an aggregated activity of the form (α, r|A|) is introduced for any pair P , P ′, even
if that was not existent in the first place. In other words, approximate aggregation may introduce forged
activities in terms of the original component.

The existence of forged activities has also an effect in the case of synchronised parallel composition.
More specifically, there is no guarantee that a reachable state in the original model will also be reachable
in the aggregated model as well. We shall demonstrate through an example that approximate aggregation
may introduce deadlocks in the case of synchronised cooperation of aggregated components. Let P1 BC

{a,b}
Q1

be the composition of the following components:
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P1
def
= (a, r).P2

P2
def
= (a, r).P3

P3
def
= (b, r).P1

Q1
def
= (a, r).Q2

Q2
def
= (a, r).Q3

Q3
def
= (b, r).Q1

In short, both of the components above perform two synchronised activities of type a in succession, and then
they perform a synchronised activity of type b, returning to their initial states. Therefore, the reachable set
will consist of the states: P1 BC

{a,b}
Q1, P2 BC

{a,b}
Q2 and P3 BC

{a,b}
Q3. Assuming a partition ∆ = {{P1, P2}, {P3}}

on the state-space of P1, then the aggregated version P12 will be as follows:

P12
def
= (a, r).P12 + (a, r).P3

P3
def
= (b, r).P12

The self-loop introduced in P12 will effectively change the dynamics of the system. Following Proposition 1,
we can produce a reconstruction of P12 in the original state-space:

P ′1
def
= (a, 2r).P ′2 + (a, 2r).P3

P ′2
def
= (a, 2r).P ′1 + (a, 2r).P3

P3
def
= (b, r).P ′1

Regarding P ′1, there is nothing that enforces the succession of two activities of type a before entering the
P3 state. In fact, the P ′1 component, and as a consequence P12 as well, may jump ahead to P3 with a
single activity of type a, and then wait for a b activity. The Q component however still requires two type
a activities before it is able to offer a type b. We see that in this example approximate aggregation has
effectively introduced a deadlock.

In the general case, we can provide no guarantees regarding the reachable states of an approximately
aggregated model. We have seen that for individual components, if a state has been reachable in the original
component state-space, it will also be reachable in the aggregated state-space, however the converse is not
true, since forged activities are introduced. In the case of synchronised cooperation, forged activities may
also result in deadlocks, meaning that part of the original state-space may no longer be reachable.

8. A Case Study on Cloud Computing

Cloud systems typically consist of many inhomogeneous components, whose interactions define a complex
behaviour. The PEPA language offers a framework to represent parts of a system in isolation, while larger
components are formed as compositions of simpler building blocks. However, increased complexity often
renders analysis difficult, which makes it an ideal example to demonstrate the potential of approximation
techniques. The problem under investigation is the scalability of different routing policies in a Platform as a
Service (PaaS) system. In short, a routing algorithm is responsible for directing the workload to a number
of leased servers. This case study has been inspired by an issue that has been raised for the Heroku PaaS
provider.

According to the on-line Heroku specification documents,1 a dyno is a lightweight environment running
a single command at a time. This functionality is implemented by an isolated virtualised server. There are
two kinds of dynos available: web dynos which respond to HTTP requests, and worker dynos which execute
background jobs. Commands are not supposed to be interrupted, thus concurrency is achieved by employing
more than one dyno. Increasing the number of web dynos will increase the concurrency of HTTP requests,
while more worker dynos provide more capacity for processes running in the background. Therefore, all the

1https://devcenter.heroku.com/
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Table 1: The rate values used in the examples

Variable Name Value (sec−1)

rrequest [40, 60]
rweb 8
rmigrate 1
rworker 4
rresponse 20
rassign 500

client has to do is to upload the source code of the application and scale it to a number of dynos. The idea is
that once a service request appears, Heroku will be responsible for assigning that request to one of the dynos
that have been leased by the client, by following a routing policy. The routing policy is the key component
that we shall investigate in this case study. We list below two routing policies that have historically been
used by Heroku:

Random Routing implies that a new request is directed to a randomly-selected web dyno. The premise
of random routing is that the load is balanced across the dynos in the long term.

Smart Routing involves tracking the availability of each dyno and the load is directed accordingly, thus
minimising the number of dynos that remain idle.

Although explicit information on the implementation of these policies is not available, it is straightforward
to model the desired behaviour for each policy at a high-level.

Rap Genius2 is a website that aims to provide a critical and artistic insight into the lyrics of rap songs.
The website users have access to content via HTTP requests, and they are able to add annotations to
content. Rap Genius makes this service available via the cloud, and Heroku in particular. In the beginning
of 2013, Rap Genius reported unusually long average response times, despite the large number of dynos
leased by the website3. This performance has been attributed to a change in the Heroku routing policy from
smart to random.

Our objective is not to assess the quality of service provided by Heroku, or recreate absolutely realistic
expectations of the response time for Rap Genius. Instead, we want to demonstrate how modelling with
Markov chains may capture the effect of different routing policies, and most importantly, whether com-
positional aggregation produces results accurate enough to reach the same conclusions in a more efficient
way.

8.1. Modelling Routing Policies with PEPA

The activity types and the rates in our model are going to be the same, regardless of the routing policy.
Table 1 summarises the rates of the events considered. The number of requests will be governed by a Poison
process with rate rrequest . We experiment with two different workloads, 40 to 60 sec−1, which correspond to
2400 and 3600 requests per minute correspondingly.

8.1.1. Random Routing Policy

A dyno can be anything between idle, occupied or having one or more requests in its local queue.
According to the random routing policy, a router is supposed to randomly assign jobs to dynos, regardless
of their state. In terms of PEPA models, and subsequently CTMCs, it is very simple to represent such a
probabilistic behaviour.

Web dynos are represented by components WebDynoi, where the subscript i denotes the number of
requests in the local dyno queue. For WebDynoi, three activities are possible; service realises the main web

2http://rapgenius.com/
3http://rapgenius.com/James-somers-herokus-ugly-secret-lyrics
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service part, whose completion proceeds to the response stage, carried out by WebDynoia. It is assumed
that a response cannot be interrupted, thus no new job can be assigned or enqueued at this point. Given
that the response rate is significantly higher than the web service rate (see Table 1), this should not affect
the availability of the dyno. The migrate activity generates a migration request and decreases the queue
length. Finally, the assignweb activity adds a request to the queue.

WebDyno
def
= (assignweb ,>).WebDyno0

WebDynoi
def
= (service, rweb).WebDynoia
+ (migrate, rmigrate).WebDynoi−1

+ (assignweb ,>).WebDynoi+1

WebDynoia
def
= (response, rresponse).WebDynoi−1

The components WebDynoi and WebDynoia represent the two stages of a web service. In both cases, the
web dyno is considered to be occupied. The idle state is denoted by WebDyno, which only performs an
assignweb activity.

Regarding the worker dynos, they have a similar but simpler structure, as there is no job migration
option in this case. Other than that, assignment has been labelled by a distinct activity assignworker , in
order to distinguish between the two possible types of assignments.

WorkerDyno
def
= (assignworker ,>).WorkerDyno0

WorkerDynoi
def
= (service, rworker ).WorkerDynoia
+ (assignworker ,>).WorkerDynoi+1

WorkerDynoia
def
= (response, rresponse).WorkerDynoi−1

The routing component is characterised by a set of states that denote the number of requests in the
router queue. At any state, the router should be able to accept a web request or a migration request, either
of which will be added in the router queue. Remember that web requests are modelled by a Poisson process,
thus the request activity has a constant rate for any state of the router component. When a new job arrives,
the router will attempt to direct it to any of the web or worker dynos, depending on the type of the request.
It is more convenient to model the router as two queues, one for each type of dyno. So for the web requests
we have:

WebRouter0
def
= (request , rrequest).WebRouter1

WebRouter i
def
= (request , rrequest).WebRouter i+1

+ (assignweb , rassign).WebRouter i−1

WebRoutern
def
= (request , rrequest).WebRoutern
+ (assignweb , rassign).WebRoutern−1

where n denotes the maximum size for the corresponding queue. If the maximum size is reached, it is
assumed that any new request will be discarded until the queue is not full. In the same way, for migration
requests we have:

WorkerRouter0
def
= (migrate,>).WorkerRouter1

WorkerRouter i
def
= (migrate,>).WorkerRouter i+1

+ (assignworker , rassign).WorkerRouter i−1

WorkerRoutern
def
= (migrate,>).WorkerRoutern
+ (assignworker , rassign).WorkerRoutern−1

Finally, the router will be the parallel composition of the components above.
Figure 6 outlines the complete model of the random routing policy. Note that the model imposes a

maximum dyno queue length equal to 1. As we shall see later in Section 8.2, this model is adequate to
observe the qualitative difference between a random and a smart routing policy.

8.1.2. Smart Routing Policy
The modelling of dynos does not substantially differ from that of the random routing case, as both web

and worker dynos are characterised by the same states and the same rates. The only difference is that we
now have two distinct action types for directing a job to a dyno. We want to capture the fact that a job
may be either assigned to an idle dyno, or enqueued to an occupied dyno. Regarding the web dynos, only a
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WebDyno
def
= (assignweb ,>).WebDyno0

WebDyno0

def
= (service, rweb).WebDyno0a + (migrate, rmigrate).WebDyno
+ (assignweb ,>).WebDyno1

WebDyno0a

def
= (response, rresponse).WebDyno

WebDyno1

def
= (service, rweb).WebDyno1a + (migrate, rmigrate).WebDyno0

WebDyno1a

def
= (response, rresponse).WebDyno0

WorkerDyno
def
= (assignworker ,>).WorkerDyno0

WorkerDyno0

def
= (service, rworker ).WorkerDyno0a + (assignworker ,>).WorkerDyno1

WorkerDyno0a

def
= (response, rresponse).WorkerDyno

WorkerDyno1

def
= (service, rworker ).WorkerDyno1a

WorkerDyno1a

def
= (response, rresponse).WorkerDyno0

WebRouter0
def
= (request , rrequest).WebRouter1

WebRouter1
def
= (request , rrequest).WebRouter2 + (assignweb , rassign).WebRouter0

WebRouter2
def
= (request , rrequest).WebRouter3 + (assignweb , rassign).WebRouter1

WebRouter3
def
= (request , rrequest).WebRouter3 + (assignweb , rassign).WebRouter2

WorkerRouter0
def
= (migrate,>).WorkerRouter1

WorkerRouter1
def
= (migrate,>).WorkerRouter2 + (assignworker , rassign).WorkerRouter0

WorkerRouter2
def
= (migrate,>).WorkerRouter3 + (assignworker , rassign).WorkerRouter1

WorkerRouter3
def
= (migrate,>).WorkerRouter3 + (assignworker , rassign).WorkerRouter2

RandomN :M
def
= WebDyno[N ] ‖WorkerDyno[M ] BC

Lrandom
(WebRouter0||WorkerRouter0)

where Lrandom = {assignweb, assignworker,migrate}

Figure 6: PEPA model for random Heroku routing

WebDyno component will now be able to perform an assignweb activity, as it denotes that the dyno is idle.
For a WebDynoi component, which denotes an occupied web dyno with i requests in its local queue, jobs
can only be enqueued as follows:

WebDyno
def
= (assignweb ,>).WebDyno0

WebDynoi
def
= (service, rweb).WebDynoia
+ (migrate, rmigrate).WebDynoi−1

+ (enqueueweb ,>).WebDynoi+1

The choice between assignment or placement in the local queue is a responsibility of the routing policy.
Similarly, an assignworker activity can only be performed by WorkerDyno, while for the WorkerDynoi
component we have:

WorkerDyno
def
= (assignworker ,>).WorkerDyno0

WorkerDynoi
def
= (service, rworker ).WorkerDynoia
+ (enqueueworker ,>).WorkerDynoi+1

The smart routing policy consists of simply directing a request to a dyno that is available. If more than
one dyno is available, then the router will randomly select a dyno. If there are no dynos available at a
certain moment, then the request will be randomly enqueued to any dyno. The routing algorithm involves
a deterministic step, which is the dyno availability check. Such a deterministic behaviour cannot be directly
modelled according to the standard definition of PEPA. What we can do instead is to probabilistically
favour assigning jobs to free dynos rather than placing then in queues. The idea is that the router will delay
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directing a request until a dyno is available. This delay should not be infinite however; if too many requests
arrive, then the router will decrease its queue length by directing the requests to random dynos.

Regarding the WebRouter component, let n be the maximum queue length. Then for any queue length
i < n, the requests will be assigned to web dynos that can perform an assignweb activity; that means that
the dyno in question is idle.

WebRouter0
def
= (request , rrequest).WebRouter1

WebRouter i
def
= (request , rrequest).WebRouter i+1

+ (assignweb , rassign).WebRouter i−1

If the queue length reaches its maximum size n, that probably means that no dyno has been available for
a long time; it is then acceptable to send the request to the queue of any dyno. Let WebRoutern represent
the state at which the corresponding router queue is full. Then WebRoutern will either assign or enqueue
a request.

WebRoutern
def
= (request , rrequest).WebRoutern
+ (assignweb , rassign × 0.5).WebRoutern−1

+ (enqueueweb , rassign × 0.5).WebRoutern−1

By using similar reasoning, the migration queue on the router side will be modified as follows:

WorkerRouter0
def
= (migrate,>).WorkerRouter1

WorkerRouter i
def
= (migrate,>).WorkerRouter i+1

+ (assignworker , rassign).WorkerRouter i−1

WorkerRoutern
def
= (migrate,>).WorkerRoutern
+ (assignworker , rassign × 0.5).WorkerRoutern−1

+ (enqueueworker , rassign × 0.5).WorkerRoutern−1

where n denotes the maximum queue length, and i < n.
To summarise, when the queue on the router part is not full, then the router works according to its

“smart” mode of operation; it directs any requests to idle dynos only. Any new requests will have to wait
in the router queue before being assigned. However, if the router queue reaches maximum capacity, this is
an indication that the system is congested, suggesting that there are no idle dynos available. The router
will then enter its “random” mode of operation, as it will decrease its queue by randomly directing requests
to any dyno. That is captured by the fact that enqueueweb and enqueueworker can only be performed if the
corresponding router queue is full. The complete model for the smart routing policy is shown in Fig. 7.

8.2. Evaluation of Routing Policies

In this section, we experimentally evaluate how the routing policies considered respond to different
workloads. We consider a system whose components are appropriate for compositional aggregation, and we
evaluate the effect of aggregation approaches on the system behaviour.

More specifically, we consider a system featuring 8 web dynos and 8 worker dynos. We have two models
that implement the two routing policies; these are Random8 :8 and Smart8 :8 . By approximately reducing
the components WebDyno[8] and WorkerDyno[8] to 60% of their original size each, the global state-space
is effectively reduced to 36%. The original and the aggregated versions of the models have been solved for
their transient and steady-state behaviour via the sparse engine of the PRISM model checker [19]. The
steady-state distribution has been calculated using the Gauss-Seidel method. The transient probabilities
have been calculated via the uniformisation method. The experiments have been performed in an Intel R©
XeonTM E5430 @ 2.66GHz PC running Ubuntu Linux.

The running times for Random8 :8 and Smart8 :8 are summarised in Tables 2 and 3 correspondingly.
According to these tables, the state-space reduction resulted in the expected reduction in the analysis
time, for both approximate aggregation methods, based on quasi-lumpability (QL) and approximate strong
equivalence (ASE) correspondingly. The most interesting thing regarding the running times is that the time
needed to approximate the state-space is trivial compared to the time saved.
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WebDyno
def
= (assignweb ,>).WebDyno0

WebDyno0

def
= (service, rweb).WebDyno0a + (migrate, rmigrate).WebDyno
+ (enqueueweb ,>).WebDyno1

WebDyno0a

def
= (response, rresponse).WebDyno

WebDyno1

def
= (service, rweb).WebDyno1a + (migrate, rmigrate).WebDyno0

WebDyno1a

def
= (response, rresponse).WebDyno0

WorkerDyno
def
= (assignworker ,>).WorkerDyno0

WorkerDyno0

def
= (service, rworker ).WorkerDyno0a + (enqueueworker ,>).WorkerDyno1

WorkerDyno0a

def
= (response, rresponse).WorkerDyno

WorkerDyno1

def
= (service, rworker ).WorkerDyno1a

WorkerDyno1a

def
= (response, rresponse).WorkerDyno0

WebRouter0
def
= (request , rrequest).WebRouter1

WebRouter1
def
= (request , rrequest).WebRouter2 + (assignweb , rassign).WebRouter0

WebRouter2
def
= (request , rrequest).WebRouter3 + (assignweb , rassign).WebRouter1

WebRouter3
def
= (request , rrequest).WebRouter3
+ (assignweb , rassign × 0.5).WebRouter2
+ (enqueueweb , rassign × 0.5).WebRouter2

WorkerRouter0
def
= (migrate,>).WorkerRouter1

WorkerRouter1
def
= (migrate,>).WorkerRouter2 + (assignworker , rassign).WorkerRouter0

WorkerRouter2
def
= (migrate,>).WorkerRouter3 + (assignworker , rassign).WorkerRouter1

WorkerRouter3
def
= (migrate,>).WorkerRouter3
+ (assignworker , rassign × 0.5).WorkerRouter2
+ (enqueueworker , rassign × 0.5).WorkerRouter2

SmartN :M
def
= WebDyno[N ] ‖WorkerDyno[M ] BC

Lsmart
(WebRouter0||WorkerRouter0)

Lsmart = {assignweb, enqueueweb, assignworker, enqueueworker,migrate}

Figure 7: PEPA model for smart Heroku routing

Table 2: Running Times for Random8 :8

Original
QL-based

Aggregation
ASE-based
Aggregation

Approximation - 3 sec 3 sec

PRISM Loading 10000 sec 4000 sec 3000 sec

Transient Solutiona 29000 sec 13000 sec 9000 sec

Steady-State solution 250 sec 200 sec 100 sec

Total Time 39250 sec 17200 sec 12100 sec

Number of states 3920400 1411344 1411344

a 50 points: 0 ≤ t ≤ 4

The next thing to see is whether the approximate results obtained provide us with reliable information
regarding the properties of the routing policies. We have experimented with two different values for the
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Table 3: Running Times for Smart8 :8

Original
QL-based

Aggregation
ASE-based
Aggregation

Approximation - 3 sec 3 sec

PRISM Loading 11000 sec 5000 sec 5000 sec

Transient Solutionb 32000 sec 14000 sec 15000 sec

Steady-State solution 370 sec 230 sec 300 sec

Total Time 43370 sec 19230 sec 20300 sec

Number of states 3849444 1401852 1397124

b 50 points: 0 ≤ t ≤ 4

request rate 40 and 60, in order to observe how the two routing policies respond to different workloads. The
effects of each policy should be reflected in the average dyno queue length and in the number of dynos that
remain idle. As a general remark on the results that follow, the ASE-based partitioning strategy provides
much more accurate results than the QL-based method.

Figure 8 outlines the transient behaviour for request arrival rate equal to 40 sec−1, or 2400 requests per
minute. The data plotted depicts how the average population of idle dynos and average local queue lengths
change during the first four seconds of the system being online. We can see that after these four seconds,
the system appears to be in steady state. The left column of plots presents results for the random routing
policy, while the plots on the right column correspond to smart routing.

Judging by the first two plots in Figs. 8(a) and 8(b), which show the results of the original model, part of
the system is underused for both smart and random routing, as we have a significant number of idle dynos
in both cases. However, the average dyno queue lengths are considerably higher for random routing. This
means that some requests might have to wait in the queue, while there are dynos available. That is not the
case for smart routing however, where the dyno queues are almost empty. In other words, the smart routing
fully exploits the capacity of the Heroku configuration, in contrast with the random routing policy.

Regarding the results of the QL-based method in Figs. 8(c) and 8(d), they seem to qualitatively agree with
the true results, although the numerical values for the average idle dynos do not exactly match. Figures 8(e)
and 8(f) summarise the results for the ASE-based aggregation, where the errors appear to be significantly
smaller. This can be also verified in Fig. 9, which depicts the relative errors in measuring the queue lengths
for the partitioning strategies and the routing policies considered. The relative error at time t is calculated
as follows:

η(t) =
|f(t)− f̃(t)|

max
t
f(t)

(38)

where f(t) is the true value for the queue length at time t, and f̃(t) is the corresponding approximate
value. We think that a modest reduction in accuracy was a worthwhile price to pay, especially given the
substantial reduction in analysis time (Tables 2 and 3). For ASE-based aggregation, the errors appear to
be insignificant.

In the experiment summarised in Fig. 10, we investigate how the routing policies are affected by a higher
workload, by increasing the request arrival rate to 60 sec−1, or 3600 requests per minute. According to Figs.
10(a) and 10(b), which reflect the behaviour of the unreduced models, the system usage is similar for both
random and smart routing, as we can see by the numbers of idle web and worker dynos. For the smart
system, the dyno queues have significantly shorter length when compared to the random routing policy,
implying that the requests wait less time until they are serviced. As a final comment, we can say that a
request arrival rate to 40 is probably the most that the smart routing policy can effectively handle for the
number of dynos considered.

The results of the QL-based approach in Figs. 10(c) and 10(d) give a similar picture. The relation
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Figure 8: Random8 :8 and Smart8 :8 results for rrequest = 40
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Figure 9: Relative errors in measuring queue lengths for web dynos, worker dynos and the router, given rrequest = 40

between idle dynos and the corresponding average queue lengths has been portrayed accurately enough to
show the different behaviour of the two routing policies. Regarding the ASE-based approach in Figs. 10(e)
and 10(f), the results are more accurate most of the time. As can be also seen in Fig. 11(c), the errors for
the random routing policy are negligible, in contrast with the QL-based method in Fig. 11(a). However,
ASE-based aggregation did not produce just as accurate results for the smart routing policy this time, as
can be seen in Fig. 11(d). More specifically, it appears that the web dyno queue has been overestimated,
while we have accurate estimations for the rest of the queues. Nevertheless, ASE-based aggregation still
outperformed the QL-based method, which resulted in greater total error, as seen in Fig. 11(b).

To summarise, the smart routing policy results in better utilisation of the system resources compared to
random routing, judging by the number of requests that remain in the queues at the dyno level. Smart routing
results in a significantly shorter average queue length, regardless of the workload. Applying compositional
aggregation has led us to the same conclusion at a significantly lower cost, using either of the two partitioning
approaches considered. However, the approach based on strong equivalence resulted in significantly more
accurate approximations for the Heroku example.

8.3. Comparison with Fluid-Flow Analysis

Fluid-flow analysis [20] constitutes a particularly efficient approach to have a deep insight into the sys-
tem’s behaviour not only with respect to the stationary measures, but also the transient ones. In short,
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Figure 10: Random8 :8 and Smart8 :8 results for rrequest = 60

30



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
e
la

ti
v
e
 E

rr
o
r

Time (sec)

Web queue
Worker queue
Router queue

(a) Random routing (QL-based aggregation)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
e
la

ti
v
e
 E

rr
o
r

Time (sec)

Web queue
Worker queue
Router queue

(b) Smart routing (QL-based aggregation)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
e
la

ti
v
e
 E

rr
o
r

Time (sec)

Web queue
Worker queue
Router queue

(c) Random routing (ASE-based aggregation)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
e
la

ti
v
e
 E

rr
o
r

Time (sec)

Web queue
Worker queue
Router queue

(d) Smart routing (ASE-based aggregation)

Figure 11: Relative errors in measuring queue lengths for web dynos, worker dynos and the router, given rrequest = 60

the evolution of the population expectations is approximated by a system of ordinary differential equations
(ODE), meaning that the system is treated as continuous and deterministic. The premise of composi-
tional aggregation has been the efficient analysis of medium-to-large multi-scale systems, for which more
efficient approaches such as fluid-flow approximation are not as readily applicable. A multi-scale system is
characterised by the presence of both low and high population components, therefore the existence of low
population numbers violates the assumption of continuity that the fluid-flow method depends upon.

The Heroku model that is under investigation in this section is a typical example of a multi-scale system; a
large number of web and worker dynos that are coordinated by a single routing server. Figure 12 summarizes
the relative errors in measuring the queue lengths as given by fluid-flow analysis, for all of the iterations
of the routing models considered. We see that the method results in poor approximation in most cases,
especially when compared with ASE-based aggregation in Fig. 9 and 11. This result is in line with our
theoretical expectation that compositional aggregation can be a viable alternative to fluid-flow when the
continuity assumption is violated, as in the case of multi-scale systems.

8.4. Aggregation vs Approximation Quality

By imposing a certain compression ratio, we essentially decide the size of the aggregated component,
and subsequently the size of the entire aggregated model. By the term “compression ratio”, we refer to
the ratio of the size of an aggregated component to its original size. In this experiment, we explore how
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Figure 12: Relative errors in measuring queue lengths for web dynos, worker dynos and the router for the fluid-flow method

approximation quality is affected by different compression ratios for the two aggregation schemes discussed
in this work. Moreover, we examine whether the effect of a particular compression ratio is different when
aggregation is applied to systems of different size.

We consider the model of the smart routing policy with rrequest = 60. This time, we look into the relative
errors regarding the average component populations at steady-state. The relative error is calculated as in
(38), where t is such that the system is in steady-state. The values that we report are the averages of
the relative errors for all the PEPA components involved in three different iterations of the smart model:
Smart6:6, Smart6:8 and Smart8:6. The experimentation results are outlined in Table 4. In the first column,
we can see the compression ratios used for component aggregation. The second column shows the total
state-space size of the aggregated Markov chain. The components that have been aggregated are WebDyno
and WorkerDyno with a ratio that varies from 0.5 to 0.7. For each aggregation case, we report the average
relative errors for the QL-based and the ASE-based approach. In the general case, one would expect that
the more the size of the model is reduced, the less accurate the results will be. For the models considered,
we can see that we have lower error values as we increase the size of the aggregated model, regardless of
the aggregation approach used in each case. Regarding the comparative performance of the two aggregation
schemes, we see that ASE-based aggregation produces higher error values than the QL-based approach when
the compression ratio is fixed to 0.5. We have to note however that for the particular compression ratio both
methods exhibit poor performance. As the compression ratio is increased, the ASE-based method produces
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consistently lower errors.

Table 4: Experimentation with different compression ratios

(a) Smart6:6

Component Compression
Ratioa

Average Relative Error at Steady-State
Number of Statesb QL-based Aggregation ASE-based Aggregation

0.5 173888 0.466 0.524
0.6 251000 0.364 0.294
0.7 341052 0.287 0.194

a Aggregation has been applied to WebDyno[6] and WorkerDyno[6] independently
b The original model has 682276 states

(b) Smart6:8

Component Compression
Ratioc

Average Relative Error at Steady-State
Number of Statesd QL-based Aggregation ASE-based Aggregation

0.5 411312 0.345 0.368
0.6 593364 0.436 0.210
0.7 807508 0.226 0.225

c Aggregation has been applied to WebDyno[6] and WorkerDyno[8] independently
d The original model has 1620612 states

(c) Smart8:6

Component Compression
Ratioe

Average Relative Error at Steady-State
Number of Statesf QL-based Aggregation ASE-based Aggregation

0.5 410176 0.406 0.455
0.6 593000 0.291 0.218
0.7 803160 0.269 0.227

e Aggregation has been applied to WebDyno[8] and WorkerDyno[6] independently
f The original model has 1620612 states

As a final remark, it appears there is a trade-off between approximation quality and state-space reduction.
Nevertheless, this result should not be generalised for arbitrary models. Sometimes it should be possible to
achieve a state-space reduction that is more accurate than other configurations that involve more states. A
characteristic example is the case where the model in question is lumpable; there would be no approximation
error, as the aggregation would be exact.

9. Related Work on Approximate Markov Chain Aggregation

The notion of Near-Complete Decomposability (NCD) [21] has been used in many works as a criterion to
aggregate a Markov chain [22, 23]. Methodologies that rely on NCD typically exploit the eigen-structure of
transition probability matrices. The eigenvectors that correspond to the largest eigenvalues of a stochastic
matrix are known to convey information regarding strongly connected classes of states in a Markov chain.
For example in [24], it is shown that partitioning the state-space depending on the sign-structure of the
top eigenvectors will minimise the probability of transitioning between classes. In a more recent work
[23, 25], a recursive bi-partitioning approach has been presented which is based on information theory.
These techniques require that the Markov chain in question is reversible, as they exploit the symmetry
imposed by the detailed balance equation. The identification of nearly-completely decomposable partitions
has been extended to non-reversible models in a number of works [26, 22, 27], which make use of appropriate
reversible models to approximate a non-reversible Markov chain.

NCD can be thought of as a special case of quasi-lumpability, since for all the states that belong to the
same class, the probability of remaining in the class approaches 1, while the probabilities of transitioning
to other classes approach 0. The contrary does not hold however; which is that a quasi-lumpable (or even
lumpable) model does not have necessarily to be nearly-completely decomposable. The relationship between
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those two notions of approximate state equivalence has been investigated in [3]. It is our opinion that quasi-
lumpability covers a wider range of state equivalences, and therefore it should be more appropriate as a
criterion to aggregate a Markov chain, whose properties are otherwise unknown. Apart from the QL-based
method in [3], the most relevant approach in the literature has appeared in [28], where an abstract framework
for this kind of optimisation is established. An algorithmic identification of lumpability is examined in [27],
however aggregation of non-lumpable partitions has not been discussed.

Finally, in this work we have shown that a compositional treatment of aggregation requires a notion of
approximate equivalence that is more informative than quasi-lumpability. In terms of PEPA models, we
have seen that approximate strong equivalence captures approximate behavioural equivalence for components
regarding the total extent of their activities.

10. Conclusions and Future Work

We proposed a framework for approximate compositional aggregation of PEPA models which builds on
our earlier work in [3]. This involves defining component partitioning as an optimisation process, where
an algorithm blindly searches for approximate state equivalences over the state-space of components. The
ASE-based partitioning strategy that we propose involves the use of a clustering algorithm that minimises
an upper bound that implies approximate strong equivalence. Moreover, we have discussed how components
should be aggregated in the case of a partition that induces an approximately strongly equivalent aggregated
component, and we have explored the effect of aggregation on the structured operational semantics of the
PEPA language.

The ASE-based method utilises all of the activities that define the behaviour of a PEPA component,
in contrast with the older QL-based approach for component aggregation [3], where the shared activities
had been ignored in terms of the partitioning process. This exclusion of the shared activities imposed a
limitation regarding the applicability of the QL-method: the behaviour of a candidate component should
be dominated by its individual activities. Nevertheless, there is no such requirement in terms of ASE-based
aggregation, a fact that renders the method applicable to a wider range of models.

Both partitioning approaches have been experimentally evaluated over a realistic case study. Regarding
approximation quality, the ASE-based partitioning approach has produced significantly more accurate results
compared to QL-based aggregation [3], which is an outcome compatible with our expectations. The ASE-
based method simply relies on more data, and in the extreme case, it may capture exactly a partition that
induces a strongly equivalent component, while this is not the case for the QL-based method.

Regarding ASE-based partitioning, we have to emphasise that there is no guarantee that the best possible
partition is obtained. As a matter of fact, the method is sub-optimal, even if we assume an optimal clustering
algorithm, as it minimises only an upper bound for approximate strong equivalence. In terms of future work,
we think that approximation quality can be further improved by the refinement of our partitioning approach
so either another tighter bound or the ASE-based measure is directly minimised. Another interesting
direction for future work is to derive bounds for the approximation errors, for example in the style of [12].
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