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The Markov-modulated Erlang Loss System

M. Mandjes • ?, P.G. Taylor †, K. De Turck ◦

July 4, 2017

Abstract

This paper focuses on a loss system in which both the arrival rate and the per-customer service
rate vary according to the state of an underlying finite-state, continuous-time Markov chain.
Our first contribution consists of a closed-form expression for the stationary distribution of this
Markov-modulated Erlang loss queue. This, in particular, provides us with an explicit formula
for the probability that the queue is full, which can be regarded as the Markov-modulated coun-
terpart of the well-known Erlang loss formula. It facilitates the computation of the probability
that an arbitrary arriving customer is blocked.
Furthermore, we consider a regime where, in a way that is common for this type of loss system,
we scale the arrival rate and the number of servers, while also scaling the transition rates of
the modulating Markov process. We establish convergence of the stationary distribution to a
truncated Normal distribution, which leads to an approximation for the blocking probability.
In this ‘fast regime’, the parameters of the limiting distribution critically depend on the precise
scaling imposed. We also derive scaling results for a ‘slow regime’, in which the modulating
Markov process is slow relative to the arrival process.
Numerical experiments show that the resulting approximations are highly-accurate.
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1 Introduction

The Erlang loss model, or M/M/C/C queue, dates back to Erlang’s original paper [9] in 1917. It
models a setting in which calls arrive at a telephone exchange according to a Poisson process with
rate λ, call holding times are exponentially distributed with mean µ, and C lines are available. The
blocking probability turns out to have the clean, explicit form embodied in the expression

pbl =
1

C!

(
λ

µ

)C/ C∑
`=0

1

`!

(
λ

µ

)`
. (1)

Equation (1) is often referred to as the Erlang-B formula. Since Erlang’s time, the model has been
broadly applied for dimensioning circuit-switched telephone networks. Arguably, (1) is the most
frequently used formula in communications engineering.

The model has been extended in many directions. In the first place, Erlang himself analyzed the
model in which customers who find all servers busy are not lost but rather join a queue, leading
to the Erlang-C formula. Later, it was found that pbl depends on the service time distribution only
through its mean; for nice accounts of this remarkable insensitivity property, see [15, 20].

A further generalization is the loss network [12], which was defined about 25 years ago to study
the probabilistic properties of a network withR user classes (characterized by their Poisson arrival
processes and exponential service times) andK links, with Ck circuits being available at link k. On
arrival, a user of class r seizes a specified number Ark circuits from each link k if this number of
circuits is available, or is rejected and ‘lost’ from the system if there is a link ` at which the required
Ar` circuits are not free. Loss networks also have the insensitivity property with respect to the
distribution of the holding times of each of the user classes [12].

Even with the advent of modern packet-switched data networks, the loss model (together with
its many variants) has many uses in communications engineering via concepts such as effective
bandwidth [8], and also in a broad range of other resource allocation problems.

One obvious variant of the Erlang loss model is the Markov-modulated M/M/C/C queue. The
point of difference between this model and the standard Erlang loss model is that the arrival and
service rates vary over time. More specifically, the system has Poisson arrivals and exponential
service time distributions, but with the special feature that the arrival rates and service rates are
determined by an external, independently-evolving, continuous-time Markov chain. This queue
considered is still a loss system, with customers arriving to find all servers busy being rejected from
the system and lost. However, despite the fact that M. Neuts analyzed the related Ph/M/C/K+C

model in his celebrated monograph [16, pp. 92–94], the Markov-modulated loss queue does not
appear to have received much attention in the literature.

The evolution of the Markov-modulated M/M/C/C queue is uniquely described by the bivariate
continuous-time Markov chain (M(t), J(t))t>0, where M(t) denotes the number of customers in
the system, and J(t) the state of the modulating Markov chain (also referred to as the background
process), at time t. In the literature on matrix-analytic methods, the process (M(t))t>0 is usually
referred to as the level process, whereas (J(t))t>0 is called the phase process. The process (J(t))t>0
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is assumed to be irreducible, taking values in some finite state space S := {1, . . . , d}. We use
Q = (qij)i,j∈S to denote the generator of the modulating Markov chain. As usual, qij > 0 for
i 6= j and Qe = 0, with e denoting a (d × 1) column vector of ones. The (1 × d) vector α denotes
the stationary distribution of the Markov chain (J(t))t>0: it is the unique non-negative vector
satisfying αQ = 0 and αe = 1.

The vectors λ = (λj)j∈S and µ = (µj)j∈S contain the arrival rates and per-customer service rates.
At time t the arrival rate is λJ(t), whereas the total service rate at time t is µJ(t)M(t), proportional
to the number of customers currently present. The number of arrivals between 0 and t is Poisson
with the random parameter ∫ t

0
λJ(s)ds. (2)

Under the assumption that at least one λj and one µj are positive, the irreducibility of Q leads
to the fact that the whole queue is modelled by an irreducible finite state Markov chain. As a
consequence, the stationary distribution

πk,j := lim
t→∞

P(M(t) = k, J(t) = j) (3)

exists for k ∈ {0, . . . , C} and j ∈ S. We shall use (M,J) to denote random variables distributed
according to this stationary distribution.

In this paper we provide an explicit analysis of the stationary distribution (3) of the Markov-
modulated M/M/C/C queue, which we encode by its parameters (λ,µ, Q,C). In addition, we
provide remarkably simple, yet accurate approximations in particular scaling regimes. More specif-
ically, the main contributions of our work are the following.

◦ We derive an explicit expression for the probabilities πk ≡ (πk,j)j=1,...,d. In particular, we
identify the blocking probability in closed form, which can be considered the true Markov-
modulated counterpart of the classical formula (1).

◦ We consider the scaling (Nλ,µ, NfQ,CN ) forN large; here CN := N%+βNγ , with % the sys-
tem’s offered load (αλ)/(αµ), β > 0 a given constant (typically referred to as the ‘hedge’),
and γ := max{1 − f/2, 1/2}. In this central-limit type of scaling, we show that an appropri-
ately centered and scaled version of the stationary number of customers converges to a trun-
cated Normal random variable. This finding also provides us with a compact, closed-form
approximation of the blocking probability in this ‘fast’ regime. Importantly, the parameters
of the truncated Normal random variable critically rely on whether f < 1, f = 1, or f > 1.
The proof relies on a variant of the methodology developed in [4].

◦ In addition, we study a ‘slow’ regime of the type (λ,µ, εQ,C), with ε ↓ 0. Relying on the
theory of singularly perturbed Markov chains, we propose explicit approximations in this
case.

◦ The paper concludes with a series of representative experiments. In both the fast and slow
regime, the proposed approximations perform remarkably well, despite their simple form.
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The organization of our paper is as follows. Section 2 presents the explicit results for the non-scaled
model (λ,µ, Q,C). Results for the fast and slow regimes are covered in Section 3. The numerical
experiments can be found in Section 4.

2 Exact analysis

The objective of this section is to identify the blocking probability in the Markov-modulated coun-
terpart of the M/M/C/C queue characterized by the parameters (λ,µ, Q,C). We do so by pro-
viding an expression for the vector of probabilities πC that M = C while J runs over the various
values in S. In addition, we identify the full distribution πk ≡ (πk,j) for k ∈ {0, . . . , C} and j ∈ S.

In the sequel we frequently work with probability generating functions. For k ∈ {0, . . . , C}, we
write πk for the 1× d vector whose entries are πk,j , with j ∈ S. Then

Π(z) :=
C∑
k=0

πkz
k

is the vector-valued probability generating function of the level process, defined for all z ∈ C.

We first derive the equations that determine the stationary distribution of (M(t), J(t)). Denoting
by 1A the indicator of the event A, it is immediate that the vectors πk, with k = 0, . . . , C, satisfy the
equations

πk
[
Q− 1{k<C}diag{λ} − kdiag{µ}

]
+ πk−11{k>0}diag{λ}+ πk+11{k<C}(k + 1)diag{µ} = 0, (4)

with diag{η} the diagonal matrix whose entries are given by the vector η. Multiplying Equation
(4) by zk and summing over k = 0, . . . , C, we derive the fact that Π(z) satisfies

Π(z)Q+ (z − 1)

[(
Π(z)− πCzC

)
diag{λ} − dΠ(z)

dz
diag{µ}

]
= 0. (5)

By substituting z = 1 in Equation (5), we obtain the equation

Π(1)Q = 0, (6)

which makes sense, because Π(1) =
∑C

k=0 πk is the marginal stationary distribution α of the
phase, which must satisfy αQ = 0. Combining this with the obvious identity Π(1)e = 1, Equa-
tion (6) uniquely defines Π(1) = α.

Differentiating Equation (5) with respect to z and putting z = 1 we see that

Π′(1) [Q− diag{µ}] + (Π(1)− πC) diag{λ} = 0. (7)

Because Q−diag{µ} is an irreducible generator with at least one row sum strictly less than zero, it
must be non-singular (see, for example, [17, pp. 8 and 31]). It follows that we can rewrite Equation
(7) as

Π′(1) = [Π(1)− πC ] diag{λ} [diag{µ} −Q]−1 . (8)
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We can also derive a similar relationship for the higher derivatives of Π(z), again evaluated at
z = 1. Repeated differentiation of (5) shows us that, for k = 1, . . . , C − 1,

Π(k)(z)Q+ k

[(
Π(k−1)(z)− C!

(C − k + 1)!
zC−k+1πC

)
diag{λ} −Π(k)(z)diag{µ}

]
+ (z − 1)

[(
Π(k)(z)− C!

(C − k)!
zC−kπC

)
diag{λ} −Π(k+1)(z)diag{µ}

]
= 0,

where we have written Π(k)(z) for the k-th derivative of Π(z). Inserting z = 1 we see that

Π(k)(1) [Q− k · diag{µ}] + k

(
Π(k−1)(1)− C!

(C − k + 1)!
πC

)
diag{λ} = 0. (9)

The matrix Q − k · diag{µ} is nonsingular for the same reason that Q − diag{µ} is nonsingular,
and so we can write

Π(k)(1) = k

(
Π(k−1)(1)− C!

(C − k + 1)!
πC

)
diag{λ} [k · diag{µ} −Q]−1 . (10)

We are now in a position to determine the vector πC . It follows from Equations (8) and (10) that

Π(k)(1) = k! Π(1)
C∏
i=1

(
diag{λ} [i · diag{µ} −Q]−1

)
− k!πC

k∑
`=1

(
C

`− 1

) k∏
i=`

(
diag{λ} [i · diag{µ} −Q]−1

)
(11)

where the matrix products multiply on the right as i runs through successive values.

As an immediate consequence of the fact that the level process attains values in {0, . . . , C}, observe
that, for any value of z,

Π(C)(z) =
dC

dzC

C∑
k=0

πkz
k = C!πC .

Substituting this into Equation (11), we see that

πC

[
C∑
`=0

(
C

`

) C∏
i=`+1

(
diag{λ} [i · diag{µ} −Q]−1

)]
= α

C∏
i=1

(
diag{λ} [i · diag{µ} −Q]−1

)
, (12)

with the empty product taken to be the identity matrix. We thus arrive at the following theorem.

Theorem 2.1. In the Markov-modulated M/M/C /C queue with parameters (λ,µ, Q,C), the vector πC
satisfies equation (12).
If the matrix

A(λ,µ, Q,C) :=
C∑
`=0

(
C

`

) C∏
i=`+1

(
diag{λ} [i · diag{µ} −Q]−1

)
(13)

is nonsingular, then πC is given by the expression

πC = α

C∏
i=1

(
diag{λ} [i · diag{µ} −Q]−1

)[ C∑
`=0

(
C

`

) C∏
i=`+1

(
diag{λ} [i · diag{µ} −Q]−1

)]−1

.

(14)
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Remark 2.1. The expression (14) is the Markov-modulated analogue of the celebrated Erlang loss
formula. The fraction of time that all servers are busy and the background process is in phase j
is given by (πC)j and the fraction of time that all servers are busy irrespective of the state of the
background process is πC e. In all instances we considered, the matrix A(λ,µ, Q,C) turned out
to be nonsingular, and we conjecture that this is true for all (λ,µ, Q,C). However, a proof of this
conjecture has eluded us to date.

Expression (14) also provides us with an explicit formula for the customer blocking probability pbl,
defined as the probability that an arbitrary arriving customer finds all servers busy. It is obtained
by weighting the probabilities πC,j by the fractions λj/αλ.

Corollary 2.1. The blocking probability pbl is given by

pbl =
πC λ

αλ
=

d∑
j=1

πC,jλj

/
d∑
j=1

αjλj .

In fact, the above analysis not only yields the vector πC , but actually all πk for k ∈ {0, . . . , C}. To
this end, realize that

π̄k := Π(k)(1) =
dk

dzk

C∑
`=0

π`z
`

∣∣∣∣∣
z↑1

=
C∑
`=k

`!

(`− k)!
π`;

having identified the vectors π̄k, it is trivial to obtain πk. Directly from Equation (11) and Theo-
rem 2.1,

Π(k)(1) = k!πC

[
C∑
`=0

(
C

`

) C∏
i=`+1

diag{λ} [i · diag{µ} −Q]−1

]
−

k!πC

[
k−1∑
`=0

(
C

`

) k∏
i=`+1

diag{λ} [i · diag{µ} −Q]−1

]
.

In the special case where λi ≡ λ and µi ≡ µ, for all i ∈ S, we can verify that

π̄k =
1

B(C)

C∑
`=k

1

(`− k)!

(
λ

µ

)`
, B(C) :=

C∑
`=0

1

`!

(
λ

µ

)`
.

In particular, as desired, π̄C = C!πC = (λ/µ)C/B(C), demonstrating that the classical Erlang loss
formula (1) is indeed a special case of our model.

We can find the moments of the stationary number of clients in the systemM , jointly with the state
J of the background process. It takes an elementary computation to verify that(

EM1{J=1}, . . . ,EM1{J=d}
)

= (α− πC) diag{λ} [diag{µ} −Q]−1

=

(
C−1∑
k=0

πk

)
diag{λ} [diag{µ} −Q]−1 ,

6



and likewise(
EM(M − 1)1{J=1}, . . . ,EM(M − 1)1{J=d}

)
= 2

(
Π(1)(1)− CπC

)
diag{λ} [2 · diag{µ} −Q]−1

= 2

(
C−1∑
k=0

kπk

)
diag{λ} [2 · diag{µ} −Q]−1 .

These expressions facilitate the computation of VarM .

Remark 2.2. The naïve way to numerically compute the process’s equilibrium distribution amounts
to solving the (C + 1)d-dimensional system of balance equations, which (in its basic form) takes
O(C3d3) operations. This can already be substantially be reduced by exploiting the system’s band
structure; from the results in e.g. [18] it immediately follows that in our model the computational
cost drops to (C + 1)d(d + 1)2/4 = O(Cd3). Careful counting reveals that evaluation of (14) has
complexity O(Cd3) as well. This means that such methods may be prohibitively slow when C or d
is large (where the value of d has more impact than the value of C).

3 Asymptotic analysis

As argued in Remark 2.2, the evaluation of the quantities derived in the previous section may
be time consuming in specific regimes, in particular when C and/or d is large. This motivates
interest in considering scalings under which more explicit results can be derived. In this section
we consider two scalings, which we refer to as the fast regime and the slow regime. The fast scaling,
which directly relates to the scalings proposed in [1, 4, 5], involves blowing up the arrival rates
and the transition rates of the background process, but, importantly, at different rates. In the slow
regime, the transitions of the background process are made increasingly rare. For convenience, we
assume henceforth that λj > 0 and µj > 0 for all j ∈ S.

3.1 The fast regime

We proceed by introducing the scaling of the fast regime in more detail; it involves adaptation of
(i) the arrival rates λ, (ii) the transition rate matrix Q, and (iii) the capacity C. We first define by %
the load imposed on the system: with λ∞ := αλ =

∑
i∈S αiλi and µ∞ := αµ =

∑
i∈S αiµi, this

offered load is defined as
% :=

λ∞
µ∞

.

The scaling regime is now defined as follows:

◦ We linearly scale the arrival rates by a factor N : λ 7→ Nλ (and leave the service rates unal-
tered).

◦ The jumps of the modulating process are sped up by a factor Nf , for some f > 0, which
amounts to Q 7→ NfQ.

◦ In, for example, [4] it was pointed out that in the corresponding infinite-server queue the vari-
ance of the stationary number of customers essentially grows like N2γ , with the parameter
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γ defined as 1
2 max{2 − f, 1} ∈ [1

2 , 1]. This motivates us to consider a scaling of the capacity
C 7→ CN , with

CN := bN%+ βNγc,

for β > 0. The parameter β is usually referred to as the hedge: the higher the hedge, the lower
the blocking probability.

As both the arrival process and the jump process of the modulating Markov chain (J(t))t>0 are
accelerated (albeit at different rates), this regime can be thought of as being fast.

Denote the stationary number of clients in the resulting scaled system by the random variable
M (N) ∈ {0, . . . , CN}. In self-evident notation, the objective of this section is to study the stationary
number of clients in the scaled version (Nλ,µ, NfQ,CN ) of our original system (λ,µ, Q,C), when
N grows large.

We now further motivate the relevance of this scaling regime, by pointing at a link with the phe-
nomenon of overdispersion. As was mentioned in the introduction, the number of arrivals between
times 0 and t has a mixed Poisson distribution, where the random parameter is given by (2). In
the asymptotic regime introduced above, more explicit statements can be made: as shown in [14],
the number of arrivals up to time t in the scaled system, denoted by A(N)(t), obeys a (functional)
central limit theorem with scale function Nγ . More specifically, as N grows large,

A(N)(t)−Nλ∞t
Nγ

converges to a zero-mean Normally distributed random variable. It entails the fact that the mean
of the number of arrivals grows essentially linearly in N , whereas the variance behaves as N2γ .
We observe that the case where f > 1 (and therefore γ = 1

2 ) corresponds to the ‘traditional Poisson
regime’, in which the mean and the variance of the number of arrivals roughly match. The situation
where f < 1 (in which γ > 1

2 ), however, exhibits overdispersion [3]: the variance grows faster than
the mean. The phenomenon of overdispersion has been observed in various operational contexts
such as call center data [6] and hospital arrivals [13].

The boundary case when f = 1 is more subtle and has to be dealt with separately: the variance
behaves linearly, as is the case for f > 1, but the system is more variable than in the Poisson regime.
This is expressed by the fact that the mean and variance are both essentially proportional to N , but
the proportionality constant corresponding to the variance is larger than that corresponding to the
mean.

Before we can state our main scaling result, we have to introduce new notation. Define by D the
deviation matrix corresponding to the background process J(·); its (i, j)-th entry is given by

Dij =

∫ ∞
0

(
(eQt)ij − αj

)
dt,

for i, j = 1, . . . , d. This allows us to introduce σ2 := τ2 1{f61} + % 1{f>1}, with

τ2 :=
U

µ∞
, where U := α (diag{λ} − %diag{µ})D (diag{λ} − %diag{µ}) e; (15)
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below, in Corollary 3.1, we show that U plays a central role in an asymptotically exact approxima-
tion of p(N)

bl .
Our main result in this section shows that an appropriately centered and normalized version of
M (N) converges in distribution to a truncated Normal random variable; the variance of this Nor-
mal distribution critically depends on whether f is smaller or larger than 1. Here and in the sequel,
let N(µ, σ2) denote a random variable that has a Normal distribution with mean µ and variance σ2.

Proposition 3.1. Consider the scaling (Nλ,µ, NfQ,CN ). The random variable

M̄ (N) :=
M (N) −N%

Nγ

converges, as N →∞, to (N(0, σ2) |N(0, σ2) 6 β).

With π(N)
k denoting the counterpart of πk in the N -scaled model, define

P (N)(s) :=
(
E e−sM̄

(N)
1{J=1}, . . . ,E e−sM̄

(N)
1{J=d}

)
=

CN∑
k=0

exp

(
−s
(
k −N%
Nγ

))
π

(N)
k .

In order to prove Proposition 3.1, by Lévy’s convergence theorem [21, Thm. 18.1] it suffices to
establish the convergence

P (N)(s)e→ E(exp(−sN(0, σ2)) |N(0, σ2) 6 β), (16)

as N →∞. From (16) it then follows after a routine calculation that we should prove

P (N)(s)e→ eσ
2s2/2P(N(0, 1) 6 σs+ β/σ)

P(N(0, 1) 6 β/σ)
. (17)

Several techniques can be used to prove this convergence. Perhaps the most straightforward
among these is a variation of that presented in [4], of which we have included a sketch in Ap-
pendix A.

The following corollary of the derivation in Appendix A provides us with the asymptotics of the
blocking probability, with this probability in the N -scaled model denoted by

p
(N)
bl :=

π
(N)
C λ

αλ
=

d∑
j=1

π
(N)
CN ,j

λj

/
d∑
j=1

αjλj .

Let φN(·) and ΦN(·) denote the density and cumulative distribution function of a standard Normal
random variable, respectively.

Corollary 3.1. Consider the scaling (Nλ,µ, NfQ,CN ). As N →∞,

N1−γp
(N)
bl →

µ∞
λ∞

(∫ 0

−∞
e−r

2σ2/2−rβ dr

)−1

=
σ

%

φN(β/σ)

ΦN(β/σ)
=: b. (18)
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The above corollary is the Markov-modulated counterpart of the Halfin-Whitt-type result for the
non-modulated loss system, as has been presented in e.g. [19, Thm. 10.4.3]. The non-modulated
result [19, Thm. 10.4.3] states that, under essentially the same scaling as the one that we consider,
the blocking probability is inversely proportional to

√
N (where the proportionality constant was

explicitly given). Corollary 3.1 entails that in the Markov-modulated case the blocking probability
is inversely proportional to N1−γ , rather than

√
N , where it is noted that N1−γ =

√
N for f > 1.

Now we study the asymptotics of the blocking probability more closely, To this end, consider the
f > 1, f < 1, and f = 1 cases separately. We denote by gN ∼ hN that gN/hN → 1 as N →∞.

◦ For f > 1, Corollary 3.1 yields (realizing that γ = 1
2 ),

p
(N)
bl ∼

b√
N

=
1√
N

1
√
%

φN(β/
√
%)

ΦN(β/
√
%)
,

in line with the (classical) asymptotics for the non-modulated M/M/C/C queue under a
Halfin-Whitt-type scaling [11] and [19, Thm. 10.4.3]. For the non-scaled model (λ,µ, Q,C),
this leads to the approximation

pbl ≈
1
√
%

φN((C − %)/
√
%)

ΦN((C − %)/
√
%)
. (19)

◦ For f < 1, we have γ = 1− f/2, and therefore Corollary 3.1 yields

p
(N)
bl ∼

b√
Nf

=
1√
Nf

√
Uµ∞
λ∞

φN(β
√
µ∞/U)

ΦN(β
√
µ∞/U)

,

with U as in (15). For the non-scaled model (λ,µ, Q,C), we thus obtain the approximation

pbl ≈
√
Uµ∞
λ∞

φN((C − %)
√
µ∞/U)

ΦN((C − %)
√
µ∞/U)

. (20)

◦ For f = 1, again due to Corollary 3.1, we see that

p
(N)
bl ∼

b√
N

=
1√
N

1
√
%

√
U

λ∞
− 1

φN(β/
√
τ2 + %)

ΦN(β/
√
τ2 + %)

.

We observe the
√
N scaling as in the case f > 1, but with a different proportionality constant.

This yields for the non-scaled model

pbl ≈
√
U/µ∞ + %

%
·

[
φN

(
C − %√
U/µ∞ + %

)/
ΦN

(
C − %√
U/µ∞ + %

)]
. (21)

In Section 4 we get back to these approximations, also proposing a single approximation that works
for all three regimes simultaneously, across all values of f > 0.
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3.2 The slow regime

A crucial characteristic of the regime discussed in Section 3.1 is that the modulating Markov chain
jumps relatively fast. In this section we consider the situation in which the opposite applies: we
study the scaling (λ,µ, εQ,C) for ε ↓ 0. Note that for ε = 0, the system decomposes into d different
ergodic classes, each constituting an (unmodulated) Erlang loss model, while for any positive ε,
the system is ergodic. As a consequence, the regime ε ↓ 0 can be analyzed relying on the theory of
singularly perturbed Markov chains.

To this end, let Q(ε) denote the family of generator matrices of the process (M(t), J(t))t>0, indexed
by the ‘rarity parameter’ ε. For notational convenience, we swap levels and phases compared
with the rest of the paper: the levels represent the background state and the phases represent the
number of customers present. Thus, Q(ε) can be decomposed as follows: with⊗ as usual denoting
the Kronecker product,

Q(ε) =


Q̃1

. . .
Q̃d

+ ε · (Q⊗ I) =: Q(0) + ε · Q(1),

where Q̃i represents the (C + 1) × (C + 1)-dimensional generator matrix of a (non-modulated)
Erlang loss model with parameters (λi, µi, C). We let νi denote the corresponding the stationary
distribution vector: for j = 0, . . . , C,

νi,j =
1

j!

(
λi
µi

)j/ C∑
`=0

1

`!

(
λi
µi

)`
.

The idea now is to determine the stationary distribution π(ε), making use of the results of [2,
Section 3]. As established there, π(ε) is analytic around ε = 0, and as such admits a Taylor-series
expansion:

π(ε) =
∞∑
k=0

εkπ(k), (22)

for appropriate (vector-valued) coefficients π(k). Before pointing out the main result of this sub-
section, we first introduce a number of matrices; D is the (d × d) deviation matrix corresponding
to Q, as before:

◦ V and W are d× (C + 1)d and (C + 1)d× d matrices, respectively, defined by

V :=


νT

1

. . .
νT
d

 ; W :=


e

. . .
e

 = I ⊗ e,

◦ and D represents the deviation matrix for Q(0), with D̃i the deviation matrix of Q̃i,

D =


D̃1

. . .
D̃d

 .

11



Then the results of [2] imply that the vectors π(k) have the geometric structure given by

π(k) = π(0)
(
Q(1)D(I + Q(1)WDV )

)k
.

This expression can be simplified since, after some manipulations, it turns out that DQ(1)WDV

vanishes in our specific case. Indeed, as Q(1) = (Q⊗ I) and W = I ⊗ e, we have

DQ(1)W =


D̃1

. . .
D̃d

 · (Q⊗ e) = 0,

where the last step is due to the fact that D̃ie = 0. We obtain the following result.

Proposition 3.2. Consider the scaling (λ,µ, εQ,C). As ε ↓ 0, π(ε) admits the Taylor-series expansion
(22), where

π(k) = π(0)
(
Q(1)D

)k
.

We now analyze the complexity of computing π(k) relying on Prop. 3.2. Observe that (in self-
evident notation) π(0)

i = αiνi, which is in line with the intuition that when the switching between
different background states is very slow, the stationary distribution is effectively reached within
each regime. Note that, due to the fact that the matrices Q̃i are tridiagonal, computing products of
the form vD̃i is an operation that has a computational complexity of O(C), and hence computing
an additional term π(k) takes O(Cd) operations. The multiplication with Q(1) takes O(Cd2) opera-
tions, and is therefore the bottleneck. It means that when K terms of the expansion (22) are to be
evaluated, the complexity isO(d3 +KCd2). Our experiments (reported in the next section) indicate
that the evaluation of π(k) through Prop. 3.2 typically compares favorably with the complexity of
the approaches discussed in Remark 2.2 (which were O(Cd3) or higher).

The above results lead to the following approximation in the slow regime.

Corollary 3.2. Consider the scaling (λ,µ, εQ,C). As ε ↓ 0, with π(ε) admitting the Taylor-series expan-
sion (22), and π(k) as in Prop. 3.2, the following Taylor expansion applies to pbl:

pbl =
1

αλ

d∑
j=1

πC,j(ε)λj .

4 Numerical experiments

In this section we report on the output of a set of numerical experiments. Section 4.1 studies the
impact of the model’s parameters. In Section 4.2 we perform extensive accuracy tests for a broad
range of parameter settings.
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Figure 1: log pbl as a function δ ∈ [0, 1], for three values of q. The top curve corresponds to q = 1
10 ,

the middle one to q = 1, and the bottom one to q = 10.

4.1 Impact of model parameters

In this subsection we consider the following experiments:

◦ We first demonstrate by means of a concrete example that modulation can result in an in-
crease as well as a decrease of the blocking probability.

◦ Next, we present an example that is indicative of the potential errors that would result from
replacing a Markov-modulated loss system by its non-modulated counterpart, relying on the
expressions obtained in Section 2. This example underscores the relevance of the model stud-
ied in this paper; naïvely using the ‘classical’ Erlang loss model typically leads to substantial
errors.

◦ For the fast regime, we then study the numerical performance of approximations based on
the asymptotic results derived in Section 3. Importantly, we derive a new approximation of
the blocking probability that is valid across all f > 0, with the situations f < 1, f > 1, and
f = 1 not needing to be distinguished, which outperforms (19)–(20).

◦ We conclude the section with experiments for the slow regime, showing a high degree of
accuracy for small ε.

A. Modulation can affect blocking probability both ways. Following the intuition that modulation in-
creases the variance and more variance means worse performance, one might be led to think that
adding modulation (while keeping % constant) will always increase the blocking probability. We
show that this is not the case and that the effect can go both directions. To this end, consider a

13



system with C = 5 and a three-state background chain with generator Q defined as follows:

Q =

−10 5 5

1 −2 1

1 8 −9

 .

• If we take the arrival and service rates constant (thus effectively ending up in an unmodu-
lated system) at λ1 = λ2 = λ3 = 2.0727 and µ1 = µ2 = µ3 = 1, we find an offered load of
% = 2.0727, and a blocking probability of 0.0409.

• With the same C and Q but with λ1 = 12, λ2 = 4, λ3 = 8, µ1 = 3, µ2 = 5, and µ3 = 1, we find
that % is still 2.0727, but the blocking probability drops to 0.031.

• Alternatively, with the same C and Q, but with λ1 = 0.6820, λ2 = 2.0727, λ3 = 3, and
µ1 = µ2 = µ3 = 1, we find again the same %, but the blocking probability is now 0.0422,
which is higher than in the unmodulated case.

B. Impact of burstiness on blocking probability. In this example, with d = 2, we assume q12 = q21 =: q,
so that α1 = α2 = 1

2 , and µ1 = µ2 = 1. The number of servers C is set to 100. We create burstiness
by assuming heterogeneity in the arrival rates: λ1 = 70 + 50 δ and λ2 = 70 − 50 δ, with δ ∈ [0, 1].
Observe that (i) the system is underloaded on average, in the sense that ` := (α1%1 + α2%2)/C =

0.7 < 1 (with %i := λi/µi), irrespective the value of δ, (ii) for δ = 0 the system is an ordinary (non-
modulated) Erlang-loss system operating in underload (in that %/C < 1), (iii) for δ = 1 the system
alternates between ‘overloaded periods’ (as %1/C = 120/100 > 1) and ‘underloaded periods’ (as
%2/C = 20/100 < 1). We conclude that the burstiness in the arrival process increases when δ goes
from 0 to 1; δ can therefore be interpreted as a ‘burstiness parameter’.

When evaluating the performance of this system, one could naïvely use the classical (i.e., non-
modulated) Erlang-loss formula, neglecting the burstiness in the arrival process. This approach
evidently gives the correct result for δ = 0, but becomes increasingly questionable when δ grows.
Fig. 1 shows log pbl as a function of δ ∈ [0, 1], for three values of q. We observe that the blocking
probability significantly grows with δ. This effect is not that strong for large q, due to the fact that
the modulating process is relatively fast: the periods with overload are so short that hardly any
blocking occurs before the modulating process jumps back to the underloaded state. For small q,
however, the increase of the blocking probability is rather pronounced.

C. Fast regime, convergence to truncated Normal distribution. In the second series of experiments we
study the convergence of the random variable M̄ (N) to (N(0, σ2) |N(0, σ2) 6 β) as N tends to∞.
We choose β = 0.5, and

λ =

(
1.2

0.6

)
, µ =

(
0.6

1.8

)
, Q =

(
−1 1

2 −2

)
.

The QQ-plots in Fig. 2 illustrate the convergence as N becomes large, which is particularly fast for
larger values of f .
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Figure 2: QQ-plots of M̄ (N) versus (N(0, σ2) |N(0, σ2) 6 β). The dashed curve corresponds to
N = 100, and the solid one to N = 500; to assess the convergence, the diagonal (in blue) has also
been depicted.

D. Fast regime, convergence to the limiting variance. In the next experiments we numerically study
the speed of convergence of N−2γ VarM̄ (N) to its limiting value. It is readily verified that, with
η := β/σ,

m := E[N(0, σ2) |N(0, σ2) 6 β] = −σ φN(η)

ΦN(η)
,

v := Var[N(0, σ2) |N(0, σ2) 6 β] = σ2

(
1− φN(η)

ΦN(η)

(
η +

φN(η)

ΦN(η)

))
.

We use the same values for Q, λ and µ as in the previous example. The numerical experiments
show that vN := Var M̄ (N) indeed converges to v, but that this convergence is rather slow: compare
N−2γ VarM (N) in the top panels of Fig. 3 (the solid curves) with its theoretical limit (the blue step
function, with the isolated point corresponding to f = 1).

As we concluded above, the approximation VarM (N) ≈ N2γ v typically performs poorly. Inter-
estingly, however, there is a highly-accurate alternative. The idea is to replace σ2 by its ‘prelimit
counterpart’

σ2
N :=

1

µ∞

(
N2−f−2γU +N1−2γλ∞

)
= N2−f−2γ U

µ∞
+N1−2γ%, (23)

as in Equation (27) in Appendix A; likewise, we also replace η by ηN := β/σN . This leads to the
approximation:

VarM (N) ≈ N2γ vN , with vN := σ2

(
1− φN(ηN )

ΦN(ηN )

(
ηN +

φN(ηN )

ΦN(ηN )

))
.

The plots in the bottom panels of Fig. 3 show that the approximation is remarkably accurate: the
solid and dashed curves are close. Important from an application perspective is that the approxi-
mations are conservative.

E. Fast regime, approximation of the blocking probability. Here we see behavior that is very similar to
that observed for the variance of M (N), in the sense that (i) the convergence (18) turns out to be
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Figure 3: The solid curves are N−2γ VarM (N) as a function of f , for four values of β (the same in
the top graphs and the bottom graphs). In the top graph N−2γ VarM (N) can be compared with v
(in blue), and in the bottom graphs with vN (dashed curves). The red curves correspond toN = 500

and the black curves to N = 5000.

slow, and (ii) replacing σ2 by σ2
N (as given by Equation (23)) drastically improves the performance.

As a result, we have the accurate approximation

p
(N)
bl ≈ N

γ−1bN , with bN :=
σN
%

φN(ηN )

ΦN(ηN )
.

The results displayed in Fig. 4 again show a nearly perfect fit for f > 0.5, and still reasonably
accurate performance for f ∈ (0.1, 0.5); again, we have used the same values for Q, λ and µ.

Based on the above observations, we therefore propose the replacement of the approximations
(19) and (20) for the blocking probability in the non-scaled model (λ,µ, Q,C) for f > 1 and f < 1

by the approximation (21) that corresponds to f = 1 across all values of f > 0. Throughout our
experiments, we have observed that this approximation is typically highly-accurate, and when
there is a bias it tends to be conservative.

Approximation 4.1. Consider the non-scaled model (λ,µ, Q,C). Then, with C > %,

pbl ≈
√
U/µ∞ + %

%
·

[
φN

(
C − %√
U/µ∞ + %

)/
ΦN

(
C − %√
U/µ∞ + %

)]
. (24)

F. Slow regime, convergence to the limiting variance and approximation of the blocking probability. This last
example considers the approximation proposed for the slow regime. We conduct an experiment
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Figure 4: The solid curves are N1−γ p
(N)
bl as a function of f , for four values of β (the same in the

top graphs and the bottom graphs). In the top graph N1−γ p
(N)
bl can be compared with b (in blue),

and in the bottom graphs with bN (dashed curves). The red curves correspond to N = 500 and the
black curves to N = 5000.

Figure 5: pbl as a function of ε ∈ (0, 1), with the quadratic quasi-stationary approximation indicated
in green.
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Figure 6: The variance VarM as a function of ε ∈ (0, 1), with the quadratic quasi-stationary ap-
proximation indicated in green.

showing the good fit even a lower-order approximation can provide. With d = 2, we assume
q12 = q21 = 1, so that α1 = α2 = 1

2 . Also, we take µ = (1, 2), and λ = (2, 1), and as a consequence
the offered load % is equal to 1. We consider the scaling (nλ,µ, εQ, 1.2n) and let ε be small; we take
n = 500 and n = 5 000. In Figs. 5-6 we consider the blocking probability pbl and the variance of the
stationary number of customers VarM , by truncating the series (22) after the quadratic term.

First observe that the blocking probability is decreasing in ε, which can be understood as follows.
The parameters are chosen such that the system is a temporarily underloaded (overloaded) when
in state 1 (state 2) respectively. When ε increases, the background process jumps more frequently
between the states, thus reducing the burstiness, and hence the blocking probability. A similar
reasoning applies to the variance.
Figs. 5-6 show that for relatively small ε the approximation is accurate, even though just three
terms, a constant, a linear, and aquadratic term have beeen included. The fit can be made more
accurate for larger ε by taking into account a quadratic term.

4.2 Validation of approximation

In this subsection we discuss the performance, under a broad range of possible parameter values,
of the approximation (23) of the variance of M (N), and the approximation (24) of pbl. Recall that
these approximations rely on our result that the M̄ (N) converges to a truncated Normal random
variable. As this convergence can be made arbitrarily slow (just as this can be done in a conven-
tional central limit theorem setting), it is clear that it is possible to construct cases in which the
approximations lose accuracy. More specifically, when (i) the transition rates of the modulating
Markov chain are low, or when (ii) the arrival rates (and/or service rates) during different states
are highly heterogeneous, we anticipate that the accuracy of our approximation is likely to de-
grade. We shall see that this intuition is confirmed by the experiments below.
In view of the above observations, we performed the following extensive set of numerical exper-
iments. We chose thoroughly to examine the case where the modulating Markov chain has two
states, fixing the hedge β to some values that we will detail below, and fixing f to 1 (as any other
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value of f can be obtained by rescaling the parameters). This brings us to six free parameters,
namely

λ1, λ2, µ1, µ2, q1 := q12, and q2 := q21.

We bring this down to four by imposing the constraint that the average arrival rate α1λ1 + α2λ2,
as well as the average service rate α1µ1 + α2µ2, must be equal to 1. As we scale up time and space
afterwards, these constraints in fact do not restrict the parameter space, it just makes it so that for
the same scaling parameter N , and identical β and f , we have the same service capacity (because
the loads are the same), and the same ‘relaxation rate’ µ∞ (which governs the rate of convergence
to equilibrium in the model’s infinite-server counterpart; see for example [4]).
This leaves us with four (positive) parameters: q1, q2, and the ratios r1 := λ1/λ2 and r2 := µ1/µ2. In
order to explore this four dimensional parameter space, we randomly generated these parameters
in the following way. Let ν1, . . . , ν4 denote four standard normal random variables and c1, . . . , c4

four constants. Then the random parameters Q1, Q2, R1, R2 were given by

Q1 = 10c1+ν1 ; Q2 = 10c2+ν2 ; R1 = 10c3+ν3 ; R2 = 10c4+ν4 .

Hence, the parameters essentially adhere to a log-normal law. Choosing the constants ci appropri-
ately allow us to explore more extreme areas of the parameter space.
For each row of the two tables in Appendix B, we generated 50 000 points in parameter space. We
list the constants ci, β, and four characterizations of the relative error of (A) the standard deviation
of the system content and (B) the blocking probability (indicated in the following by a superscript
‘(s)’ and ‘(b)’, respectively): with ? ∈ {(s), (b)},

◦ p?5 and p?10 denote the fraction of samples that have a relative error of more than 5% resp.
10%, and

◦ E? and σ? denote the average relative error and its standard deviation.

The first table shows the results for scaling parameter N = 500, the second for N = 5 000. The
general conclusion is that the approximations perform well with our procedure being set up to
cover a broad range of parameter values (some of which rather extreme), typically a relatively low
fraction of scenarios leads to substantial inaccuracies. In addition, the tables show that even if the
low value of N brings already quite satisfactory results, they improve significantly when N is in-
creased to 5 000. We also observe an asymmetric effect when the mean of theQ2 samples is shifted:
we see an improvement when the values are on average higher, and a marked deterioration when
the values are lower. This is as could have been expected, as the convergence of the background
chain will be respectively higher and lower in these cases. For the other two parameters, shifts in
both directions lead to loss of accuracy.
The quality of the approximation of the standard deviation generally improves when β increases,
whereas the opposite is true when the blocking probability is concerned. This can be explained
from the fact that for higher β the blocking probability requires convergence of the tail of the
distribution.
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5 Concluding remarks

In this paper, we have presented a full analysis of the Markov-modulated counterpart of the classi-
cal Erlang loss system. Our first main result is the derivation of an explicit formula describing the
stationary behavior, which also leads to a closed-form expression for the blocking probability. As
a second contribution we provide simple, yet highly-accurate approximations which are provably
correct under specific scalings.

The approximations relate to a fast regime (in which arrivals as well as the background process’
transitions are sped up) and a slow regime (in which the background process jumps slowly). In
the fast regime, the steady-state distribution tends to that of a truncated Normal random variable.
Potential topics for future research are the following:

◦ Large deviations of the blocking probability under the scaling (Nλ,µ, NfQ,NC), where the
capacity is blown up proportionally to the arrival rate, whereas the transitions of the back-
ground process can be relatively slow (f < 1) or fast (f > 1). We anticipate that the blocking
probability will decay essentially exponentially. Recent work on similar models [10] has
shown that the case f = 1 is delicate and should be handled separately.

◦ The development of sound staffing rules for the Markov-modulated loss system. A simi-
lar issue could be studied for the model in which customers finding all servers busy join a
waiting line.
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A Sketch of the proof of Proposition 3.1

First observe that

(P (N))′(s) = − 1

Nγ

CN∑
k=0

k exp

(
−s
(
k −N%
Nγ

))
π

(N)
k +N1−γ%P (N)(s),

or, alternatively,

CN∑
k=0

k exp

(
−s
(
k −N%
Nγ

))
π

(N)
k = N%P (N)(s)−Nγ(P (N))′(s). (25)

Multiplying the balance equations of the scaled model by exp(−sN−γ(k−N%)) and summing over
k ∈ {0, . . . , CN} yields the identity

CN∑
k=0

exp

(
−s
(
k −N%
Nγ

))
π

(N)
k

[
N diag{λ}1{k<CN} + k · diag{µ} −NfQ

]

=

CN∑
k=0

exp

(
−s
(
k −N%
Nγ

))
π

(N)
k−1N diag{λ}1{k>0}

+

CN∑
k=0

exp

(
−s
(
k −N%
Nγ

))
π

(N)
k+1 diag{µ}1{k<CN}. (26)
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Now let us study (26) in greater detail. Writing κN := π
(N)
CN

, the first term on the left hand side can
be rewritten as

N
(
P (N)(s)− κNe−sβ

)
diag{λ};

the first term on the right hand side is precisely equal to this expression, but multiplied by a factor
exp(−sN−γ). Using (25), the second term on the left hand side reads

N%P (N)(s) diag{µ} −Nγ(P (N))′(s) diag{µ};

and the second term on the right hand side is equal to this expression multiplied by exp(sN−γ).

We thus arrive at the system of differential equations

P (N)(s)Q = N1−f
(

1− e−s/Nγ
)(
P (N)(s)− κNe−sβ

)
diag{λ}

+N1−f
(

1− es/Nγ
)
%P (N)(s) diag{µ} −Nγ−f

(
1− es/Nγ

)
(P (N))′(s) diag{µ}.

The next steps are now exactly as in [4], and we therefore omit details here. We postmultiply the
equation by the fundamental matrix F := D+A (whereA := eα), useQF = I−A, bringP (N)(s)A

to the right hand side, to obtain an expression for P (N)(s) in terms of itself and its derivative. Then
we use the Taylor-series expansion

1− e±s/Nγ
= ∓sN−γ − 1

2
s2N−2γ +O(N−3γ),

to iterate the resulting identity, which we then postmultiply with eNf . Mimicking the reasoning
in [4], one obtains, with ψ(N)(s) := P (N)(s)e,

0 = − sN1−γψ(N)(s) ·α(diag{λ} − %diag{µ})e
+ s2N2−f−2γψ(N)(s) ·α(diag{λ} − %diag{µ})F (diag{λ} − %diag{µ})e

+
s2

2
N1−2γψ(N)(s) ·α(diag{λ}+ %diag{µ})e

− s · (ψ(N))′(s) ·αdiag{µ}e+ se−sβ N1−γκN diag{λ}e+ o(1),

where the first term on the right hand side cancels (as an immediate consequence of the definition
of %). After dividing by µ∞ s, we obtain the one-dimensional ordinary differential equation,

(ψ(N))′(s) = sψ(N)(s) · 1

µ∞

(
N2−f−2γU +N1−2γλ∞

)
+ e−sβN1−γκN diag{λ}e

µ∞
, (27)

where U , defined in (15), is given by

U = α (diag{λ} − %diag{µ})F (diag{λ} − %diag{µ})e
= α (diag{λ} − %diag{µ})D (diag{λ} − %diag{µ})e.

Now we consider the limiting solution ψ(·) when N → ∞, first looking at the homogeneous ver-
sion of the differential equation (27) which is precisely the same as the equation in [4]). By dis-
tinguishing between the cases f < 1, f > 1, and f = 1, the reasoning presented in [4] yields the
solution g(s) := c1 exp(s2σ2/2), with σ2 as defined above, for some free constant c1. In [4] it could
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be concluded that c1 = 1 due to the lack of the non-homogeneous term; evidently, we cannot do
this here.
The next (standard) step is to try g(s)h(s) as solution to the non-homogeneous limiting differential
equation, with the function h(·) to be identified. To this end, we first define

κ := lim
N→∞

N1−γ(κN diag{λ}e)/µ∞,

whose value we determine below. We obtain the equation

g′(s)h(s) + g(s)h′(s) = sg(s)h(s)σ2 + κe−sβ,

such that h′(s) = κe−sβ/g(s), and hence

h(s) =

∫ s

−∞

κ

c1
e−r

2σ2/2−rβ dr + c2.

We thus have found the solution

ψ(s) = c1e
s2σ2/2 ·

(
κ

c1

∫ s

−∞
e−r

2σ2/2−rβ dr + c2

)
.

The next goal is to identify the unknown constants. To this end, notice that∫ s

−∞
e−r

2σ2/2−rβ dr =

∫ sσ

−∞

1

σ
exp

(
−1

2

(
u+

β

σ

)2
)
eβ

2/(2σ2)du,

which can be interpreted as P (N(0, 1) < σs+ β/σ)σ−1eβ
2/(2σ2). Using the standard asymptotic

relation P(N(0, 1) > x)xex
2/2
√

2π → 1, this quantity behaves, for s→ −∞, as

1√
2π

1

σs+ β/σ
e−(σs+β/σ)2/2 1

σ
eβ

2/(2σ2) =
1√
2π

1

σ2s+ β
e−βs e−s

2σ2/2.

We conclude that

lim
s→−∞

1

s
log

(
es

2σ2/2 · 1

c1

∫ s

−∞
e−r

2σ2/2−rβ dr

)
= β.

Because M̄ (N) 6 β, we also know that, for s < 0, ψ(s) 6 e−sβ , and hence

− lim
s→−∞

1

s
logψ(s) 6 β,

and therefore c2 = 0. Now from ψ(0) = 1 it follows that

κ =

(∫ 0

−∞
e−r

2σ2/2−rβ dr

)−1

= σ
φN(β/σ)

ΦN(β/σ)
.

where we recall that φN(·) and ΦN(·) denote the density and cumulative distribution function of
a standard Normal random variable, respectively. It takes elementary calculus to verify that the
resulting expression for ψ(s) coincides with (16).
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B Output of numerical experiments

[c1, c2, c3, c4] β p
(s)
5 p

(s)
10 E(s) σ(s) p

(b)
5 p

(b)
10 E(b) σ(b)

[0, 0, 0, 0] 0.5 7.75% 3.23% 1.95 (-02) 6.61 (-02) 8.34% 3.10% 2.74 (-02) 4.49 (-02)
[0, 0, 0, 0] 1.0 6.67% 2.66% 1.74 (-02) 7.38 (-02) 6.92% 3.04% 1.33 (-02) 4.28 (-02)
[0, 0, 0, 0] 1.5 5.95% 2.31% 1.60 (-02) 4.26 (-02) 6.31% 2.78% -1.03 (-02) 6.35 (-02)
[0, 0, 0, 0] 2.0 4.84% 2.03% 1.46 (-02) 4.69 (-02) 83.16% 3.89% -4.98 (-02) 9.44 (-02)
[0, 2, 0, 0] 0.5 0.54% 0.14% 7.59 (-03) 8.70 (-03) 0.51% 0.10% 1.71 (-02) 6.32 (-03)
[0, 2, 0, 0] 1.0 0.33% 0.08% 7.38 (-03) 9.77 (-03) 0.61% 0.23% 1.73 (-03) 1.01 (-02)
[0, 2, 0, 0] 1.5 0.49% 0.15% 7.65 (-03) 9.46 (-03) 0.26% 0.07% -2.67 (-02) 9.15 (-03)
[0, 2, 0, 0] 2.0 0.29% 0.08% 6.57 (-03) 5.70 (-03) 97.69% 0.29% -7.23 (-02) 2.01 (-02)
[0, 0, 2, 0] 0.5 14.39% 6.77% 3.15 (-02) 1.02 (-01) 12.73% 4.67% 3.24 (-02) 4.65 (-02)
[0, 0, 2, 0] 1.0 12.28% 5.82% 2.76 (-02) 8.40 (-02) 10.65% 4.20% 1.90 (-02) 4.80 (-02)
[0, 0, 2, 0] 1.5 11.28% 5.38% 2.58 (-02) 7.93 (-02) 9.51% 4.22% -2.60 (-03) 5.78 (-02)
[0, 0, 2, 0] 2.0 10.18% 4.88% 2.51 (-02) 9.95 (-02) 71.63% 4.54% -3.75 (-02) 7.85 (-02)
[0, 0, 0, 2] 0.5 15.55% 7.62% 3.33 (-02) 8.02 (-02) 11.70% 4.67% 3.17 (-02) 4.81 (-02)
[0, 0, 0, 2] 1.0 14.11% 6.15% 2.92 (-02) 7.18 (-02) 9.38% 4.00% 1.71 (-02) 4.99 (-02)
[0, 0, 0, 2] 1.5 11.73% 5.42% 2.73 (-02) 7.75 (-02) 8.25% 4.03% -5.36 (-03) 7.01 (-02)
[0, 0, 0, 2] 2.0 10.85% 4.60% 2.51 (-02) 6.94 (-02) 76.54% 5.25% -4.26 (-02) 9.36 (-02)
[0,−2, 0, 0] 0.5 21.90% 13.95% 7.31 (-02) 3.89 (-01) 28.24% 18.46% 8.40 (-02) 2.15 (-01)
[0,−2, 0, 0] 1.0 20.78% 13.27% 6.93 (-02) 3.74 (-01) 26.20% 18.44% 7.93 (-02) 2.36 (-01)
[0,−2, 0, 0] 1.5 18.80% 12.13% 6.29 (-02) 4.20 (-01) 23.98% 16.92% 5.89 (-02) 2.96 (-01)
[0,−2, 0, 0] 2.0 17.73% 11.64% 6.40 (-02) 2.84 (-01) 86.37% 23.07% 5.68 (-02) 5.83 (-01)
[0, 0,−2, 0] 0.5 14.21% 6.49% 3.05 (-02) 1.24 (-01) 12.43% 4.31% 3.19 (-02) 4.82 (-02)
[0, 0,−2, 0] 1.0 12.50% 5.66% 2.65 (-02) 7.28 (-02) 10.94% 4.08% 1.89 (-02) 4.55 (-02)
[0, 0,−2, 0] 1.5 11.18% 5.18% 2.58 (-02) 9.08 (-02) 9.67% 4.65% -1.47 (-03) 6.18 (-02)
[0, 0,−2, 0] 2.0 10.37% 4.97% 2.41 (-02) 8.16 (-02) 72.37% 5.23% -3.51 (-02) 9.33 (-02)
[0, 0, 0,−2] 0.5 16.73% 7.47% 3.44 (-02) 1.16 (-01) 12.01% 4.68% 3.23 (-02) 5.80 (-02)
[0, 0, 0,−2] 1.0 14.46% 6.61% 3.00 (-02) 7.67 (-02) 9.23% 3.85% 1.72 (-02) 5.71 (-02)
[0, 0, 0,−2] 1.5 12.36% 5.67% 2.80 (-02) 7.25 (-02) 8.18% 4.10% -4.64 (-03) 8.30 (-02)
[0, 0, 0,−2] 2.0 10.58% 4.67% 2.58 (-02) 1.12 (-01) 77.73% 5.41% -4.19 (-02) 8.85 (-02)

Table 1: Results for N = 500.
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[c1, c2, c3, c4] β p
(s)
5 p

(s)
10 E(s) σ(s) p

(b)
5 p

(b)
10 E(b) σ(b)

[0, 0, 0, 0] 0.5 1.34% 0.32% 5.51 (-03) 1.52 (-02) 1.01% 0.13% 6.15 (-03) 1.12 (-02)
[0, 0, 0, 0] 1.0 1.09% 0.24% 5.76 (-03) 1.47 (-02) 1.17% 0.36% -1.20 (-03) 1.46 (-02)
[0, 0, 0, 0] 1.5 1.08% 0.18% 3.04 (-03) 1.04 (-02) 1.69% 0.45% 5.07 (-03) 1.68 (-02)
[0, 0, 0, 0] 2.0 0.80% 0.16% 3.41 (-03) 9.92 (-03) 2.02% 0.60% -1.04 (-02) 2.17 (-02)
[0, 2, 0, 0] 0.5 0.06% 0.01% 3.04 (-03) 4.42 (-03) 0.06% 0.01% 3.00 (-03) 2.71 (-03)
[0, 2, 0, 0] 1.0 0.03% 0.01% 3.43 (-03) 2.29 (-03) 0.08% 0.00% -5.59 (-03) 3.28 (-03)
[0, 2, 0, 0] 1.5 0.02% 0.00% 1.15 (-03) 1.81 (-03) 0.03% 0.01% 1.76 (-03) 2.74 (-03)
[0, 2, 0, 0] 2.0 0.03% 0.00% 1.59 (-03) 2.00 (-03) 0.15% 0.02% -1.60 (-02) 5.68 (-03)
[0, 0, 2, 0] 0.5 3.61% 1.07% 9.35 (-03) 4.02 (-02) 1.88% 0.32% 8.18 (-03) 1.63 (-02)
[0, 0, 2, 0] 1.0 2.97% 0.81% 8.39 (-03) 2.13 (-02) 1.64% 0.48% 1.12 (-03) 1.61 (-02)
[0, 0, 2, 0] 1.5 2.71% 0.69% 6.39 (-03) 2.73 (-02) 2.14% 0.53% 6.79 (-03) 1.75 (-02)
[0, 0, 2, 0] 2.0 2.20% 0.65% 6.12 (-03) 1.94 (-02) 2.62% 0.59% -7.15 (-03) 2.23 (-02)
[0, 0, 0, 2] 0.5 3.04% 0.68% 9.12 (-03) 1.90 (-02) 1.68% 0.40% 7.65 (-03) 1.46 (-02)
[0, 0, 0, 2] 1.0 2.80% 0.68% 8.93 (-03) 1.79 (-02) 1.76% 0.51% 8.10 (-04) 1.84 (-02)
[0, 0, 0, 2] 1.5 2.55% 0.65% 6.68 (-03) 1.89 (-02) 2.28% 0.61% 5.74 (-03) 1.78 (-02)
[0, 0, 0, 2] 2.0 2.06% 0.58% 6.62 (-03) 2.20 (-02) 2.60% 0.87% -8.57 (-03) 2.77 (-02)
[0,−2, 0, 0] 0.5 11.68% 5.32% 1.61 (-02) 8.93 (-02) 11.24% 4.96% 2.23 (-02) 5.79 (-02)
[0,−2, 0, 0] 1.0 11.10% 5.51% 1.62 (-02) 9.98 (-02) 11.92% 6.00% 1.95 (-02) 7.95 (-02)
[0,−2, 0, 0] 1.5 9.96% 4.34% 1.30 (-02) 8.28 (-02) 13.11% 6.82% 2.68 (-02) 1.00 (-01)
[0,−2, 0, 0] 2.0 9.21% 4.15% 1.07 (-02) 6.42 (-02) 16.68% 8.81% 1.90 (-02) 1.67 (-01)
[0, 0,−2, 0] 0.5 3.29% 1.05% 9.00 (-03) 2.58 (-02) 1.69% 0.28% 7.96 (-03) 1.36 (-02)
[0, 0,−2, 0] 1.0 3.32% 0.81% 9.07 (-03) 2.59 (-02) 1.58% 0.34% 1.25 (-03) 1.59 (-02)
[0, 0,−2, 0] 1.5 2.51% 0.88% 6.57 (-03) 2.28 (-02) 2.11% 0.46% 6.67 (-03) 2.13 (-02)
[0, 0,−2, 0] 2.0 2.21% 0.55% 5.83 (-03) 1.61 (-02) 2.52% 0.73% -6.99 (-03) 2.28 (-02)
[0, 0, 0,−2] 0.5 3.40% 0.83% 9.68 (-03) 2.34 (-02) 1.89% 0.42% 7.99 (-03) 2.00 (-02)
[0, 0, 0,−2] 1.0 2.72% 0.52% 8.89 (-03) 1.99 (-02) 1.69% 0.46% 4.94 (-04) 1.73 (-02)
[0, 0, 0,−2] 1.5 2.23% 0.41% 6.30 (-03) 1.95 (-02) 2.19% 0.71% 5.61 (-03) 1.86 (-02)
[0, 0, 0,−2] 2.0 2.17% 0.48% 6.56 (-03) 2.32 (-02) 2.62% 0.86% -8.74 (-03) 2.58 (-02)

Table 2: Results for N = 5 000.
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