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Abstract

We study the problem of predicting the future availability of bikes in a bike

station through the moment analysis of a PCTMC model with time-dependent

rates. Given a target station for prediction, the moments of the number of

available bikes in the station at a future time can be derived by a set of moment

equations with an initial set-up given by the snapshot of the current state of

all stations in the system. A directed contribution graph is constructed, and a

contribution propagation method is proposed to prune the PCTMC so that it

only contains stations which have significant contribution to the journey flows to

the target station. Once the moments have been derived, the underlying proba-

bility distribution of the available number of bikes is reconstructed through the

maximum entropy approach. We illustrate our approach on Santander Cycles,

the bike-sharing system in London. The model is parameterised using historical

data from Santander Cycles. Experimental results show that our model out-

performs a time-inhomogeneous Markov queueing model with respect to several

performance metrics for bike availability prediction.
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1. Introduction

In recent years, we have seen significant growth of bike-sharing programs all

over the world [1]. Public bike-sharing systems have been launched in many

major cities such as London, Paris, and Vienna. Indeed, they have become an

important part of urban transportation which provides improved connectivity

to other modes of public transit. The concept of bike-sharing systems is rather

simple: the system consists of a number of bike stations distributed over a

geographic area (city). Each station is equipped with a limited number of bike

slots in which public bikes can be parked. When users arrive at a station, they

pick up a bike, use it for a while, and then return it to another station of their

choice.

With the increasing popularity of the smart transport theme, there has been

great interest from the research community in the intelligent management of

bike-sharing systems. Topics include, but are not limited to, policy design

[2, 3], intelligent bike redistribution [4, 5, 6], and user journey planning [7, 8].

The focus of this paper is on the probabilistic prediction of the number of

available bikes in stations. Having a predictive model is of vital interest to

both the user and the system administrator. The user can use it to identify

likely origin/destination stations between which a trip can be successfully made.

System administrators can use the model to undertake service level agreement

checking, and plan bike redistribution for stations which are likely to break the

service level requirement.

In this paper we present a novel moment-based prediction model that can

provide probabilistic forecasts for the number of available bikes in a bike sta-

tion. By representing the bike-sharing system as a Population Continuous Time

Markov Chain (PCTMC) with time-dependent rates, our model is explanatory

as the dynamics of the system is explicitly given. Gast et al. [8] show the benefits

of predicting (forecasting) the entire probability distributions of possible bike

availabilities in a station, compared with previous models that were only able

to produce point estimates, often using time-series-based techniques [9, 10, 7].
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However, unlike [8], in which all the considered forecasting methods worked

on the level of isolated stations, our model also captures the journey dynamics

between stations.

Guenther and Bradley [11] also provide a PCTMC model with time-dependent

rates for bike availability prediction, however there are several key differences

between their model and ours. Firstly, our model provides the full probability

distribution of the number of available bikes in a station whereas their model

only provides a point estimate. Secondly, we use a model reduction method

to prune our PCTMC such that the significant journey dynamics with respect

to the target station are guaranteed to be preserved. However, their model

aggregates stations which are spatially close, assuming that they have similar

journey durations to the target station, which causes the information about the

emptiness and fullness of stations to be lost.

Contribution. We summarise the contribution of our paper as follows. Firstly,

a novel PCTMC model with time-dependent rates is presented to successfully

capture the journey dynamics between bike stations. Secondly, we propose a

novel model reduction technique to prune the PCTMC model based on the di-

rected contribution graph with a contribution propagation method for a given

target station for bike availability prediction as well as a correlation heuristic

to reduce the size of ODEs for joint moments in order to achieve a fast mo-

ment analysis. Finally, we reconstruct the underlying probability distribution

of the number of available bikes in the target station using the maximum en-

tropy principle based on a few moments generated from fluid approximation of

the PCTMC, and show that the model has a better performance on a set of

metrics for bike availability prediction compared with the Markov single-station

queueing model.

This paper is a substantial revision of the paper that appeared in QEST 2016

[12]: we give more detailed explanations of the technical aspects of the work,

particularly the moment analysis techniques used, how parameters are estimated

from data that is commonly available for bike sharing systems. We also present
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the detail of a novel correlation heuristic to accelerating moment analysis of

the reduced PCTMC by a further reduction of joint moment ODEs. More

experiments have been undertaken and we have done further work on evaluating

the reliability of the predictions, including journeys involving multiple people.

The rest of this paper is structured as follows. Section 2 presents the

background material related to our work: we briefly introduce the concepts

of PCTMC with time-dependent rates and the Markov queueing model for bike

availability prediction which we use as a baseline comparison. We also present

our assumptions about the availability of data and the broad framework for

fitting a model from the data. In Section 3, we present our PCTMC model for

the bike-sharing scenario in detail, and the model reduction techniques that we

use to make fast evaluation feasible. In the next section, we show how to re-

construct the probability distribution of the number of available bikes using the

maximum entropy approach. Section 5 presents the experimental results of our

model on the London bike-sharing system compared with the Markov queueing

model. Finally, Section 6 discusses possible extensions of our model and draws

final conclusions.

2. Background

In this section we present the modelling framework that we use for developing

our basic model, PCTMC with time-dependent rates, and discuss the idea of

the basic Markov queueing model used in [8], which we use as a baseline model

for comparison. We also discuss the data typically available for bike-sharing

systems and how this can be used to parameterise the models.

2.1. PCTMC with Time-dependent Rates

A PCTMC is a stochastic process which consists of a number of distinct

agent populations and a set of transition classes. The state of a PCTMC is

captured by an integer vector counting the number of each agent type. The

model evolves with the firing of transitions. When a transition fires, one or
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more agent populations are updated. Each transition is associated with a rate

function, which assigns a rate governed by an exponential distribution to the

transition based on the current state of the PCTMC.

In this paper, we specifically consider time-inhomogeneous PCTMCs, in

which transition rates are time-dependent. Such models are suitable for sys-

tems which experience periods of different dynamics at different times of the

day, such as the bike-sharing systems in which the direction of travel often re-

flects the daily commute. Specifically, a PCTMC with time-dependent rates can

be expressed as a tuple P = (x, T ,x0):

• x = (x1, ..., xn) ∈ Zn≥0 is an integer vector with the ith (1 ≤ i ≤ n)

component representing the current number of an agent type Si. Each

xi takes values in a finite domain Di ⊆ Z≥0. Hence, D =
∏n
i=1Di is the

state space of the model.

• T = {τ1, ..., τm} is the set of transition classes, of the form τ = (rτ (x, t),dτ ),

where:

1. rτ (x, t) ∈ R ≥ 0 is a time-dependent rate function, associating with

each transition the rate of an exponential distribution, depending on

the state of the PCTMC x as well as the current time t.

2. dτ ∈ Zn is the update vector which gives the net change for each

element of x caused by transition τ .

• x0 ∈ Zn≥0 is the initial state of the model.

We will assume that there is a set of deterministic time points t1, t2, . . . tk which

mark the times at which rates within the system change.

For readability, transitions in PCTMCs can be expressed in the chemical

reaction style, as

`1S1 + . . .+ `nSn −→τ `nS1 + . . .+ `nSn at rate rτ (x, t)

where the net change of agents of type Si due to transition τ is given by diτ =
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`i − `i (1 ≤ i ≤ n), and the transition rate is

rτ (x, t) =



rτ (x, t1) if xi ≥ `i ∀i = 1, 2, . . . , n and t < t1

rτ (x, t2) if xi ≥ `i ∀i = 1, 2, . . . , n and t1 ≤ t < t2

. . .

rτ (x, tk) if xi ≥ `i ∀i = 1, 2, . . . , n and tk−1 ≤ t < tk

0 otherwise.

As the state space of PCTMC models is often very large or even infinite,

numerical techniques traditionally used for performance analysis, based on a

Markovian approach, are entirely infeasible. Stochastic simulation is feasible,

but deriving useful metrics such as mean, variance, and probability distribu-

tion of populations often requires an excessively large number of simulation

runs, thus making this approach extremely costly in terms of computational

resources, particularly when estimating full probability distributions over large

state spaces.

In this paper, we will adopt a much more computationally efficient approach

to analyse the PCTMC for the bike-sharing model. Specifically, let M(x) :

Rn≥0 → R be a moment function, then the moment described by M evolves

according to the following set of ODEs [13]:

d

dt
E[M(x(t))] =

∑
τ∈T

E[
(
M(x(t) + dτ )−M(x(t))

)
rτ (x, t)] (1)

with E[M(x(0))] = M(x0). For instance, if we set M(x) = xi, M(x) = xi
2,

M(x) = xixj , we can get the following set of ODEs to describe the first mo-

ment, second moment and second-order joint moment respectively, of population
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variables in an arbitrary PCTMC model:

d

dt
E[xi] =

∑
τ∈T

E[(xi + diτ − xi)rτ ] =
∑
τ∈T

diτE[rτ ] (2)

d

dt
E[xi

2] =
∑
τ∈T

E[((xi + diτ )2 − xi2)rτ ]

= 2
∑
τ∈T

diτE[xi × rτ ] +
∑
τ∈T

diτ
2E[rτ ] (3)

d

dt
E[xixj ] =

∑
τ∈T

E[((xi + diτ )(xj + djτ )− xixj)rτ ]

=
∑
τ∈T

diτE[xj × rτ ] +
∑
τ∈T

djτE[xi × rτ ] +
∑
τ∈T

diτ × djτE[rτ ] (4)

where we use xi as short for xi(t), and rτ as short for rτ (x, t) for convenience.

The above system of ODEs is not closed if there exist transition rates in the

PCTMC which are nonlinear functions of the population variables, as then the

equation for one moment can only be expressed in terms of higher moments.

As a consequence of this, moment-closure methods [14, 15, 16] must be applied

to close the system of ODEs before it can be numerically solved. However, in

this work, all the transition rates in the PCTMC for the bike-sharing model are

either constants or linear functions of population variables, thus the derived sys-

tem of moment ODEs can be directly solved by standard numerical simulation

methods. With time-dependent rates, the system becomes hybrid rather than

continuous, with discrete jumps of rates at some specific points of the numerical

simulation.

2.2. Markov Queueing Model

It is intuitive to consider each bike station as a simple Markov queueing

model [8], and we will use such a model as our comparator, i.e. we will com-

pare the predictions based on our time inhomogeneous PCTMC model with

predictions derived from a time inhomogeneous queueing model.

Concretely, the most straightforward way to evaluate the behaviour of a

station is to analyse it in isolation. In this case, a station can be modelled as a

time inhomogeneous Markov M/M/1/ci queue, as illustrated in Figure 1.
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0 1 2 . . . ci

λi(t)

µi(t)

λi(t)

µi(t)

λi(t)

µi(t)

λi(t)

µi(t)

Figure 1: The time-inhomogeneous Markov queue for station i

Specifically, ci denotes the capacity of a station i, λi(t) and µi(t) are the

time-dependent bike arrival and pickup rates of station i at time t of a day.

Usually, the time of a day is split into k even slots, [t0, t1), [t1, t2), . . . , [tk−1, tk).

Then, both λi(t) and µi(t) can be estimated based on |D| days of observation

(as discussed below, days in D should be either all weekdays or all weekends),

for tj−1 < t < tj :

λi(t) =

∑
d∈D No. of bike arrivals at station i in (tj−1, tj) on day d∑

d∈D time length in (tj−1, tj) on day d during which station i is not full

µi(t) =

∑
d∈D No. of bike pickups at station i in (tj−1, tj) on day d∑

d∈D time length in (tj−1, tj) on day d during which station i is not empty

Once the parameters for the model are known we can construct the transition

rate matrix for station i: Q i(t), as

Q i(t) =



−µi(t) µi(t)

λi(t) −
(
µi(t) + λi(t)

)
µi(t)

. . .
. . .

. . .

λi(t) −
(
µi(t) + λi(t)

)
µi(t)

λi(t) −λi(t)


,

and use it to predict the probability that there are y bikes in station i at time

t+ h given the station has x bikes at time t, by the following equation:

Pr(y | x, t, h) = exp

(∫ h

0

Q i(t+ s)ds

)
x,y

where exp(M)x,y is the element at row x and column y of the matrix exponential

of M . Such a model has been used to make bike availability or station inventory

level predictions in several papers in the literature (e.g. [17, 6, 18, 8]).
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Two assumptions are made in this model. First, the bike arrivals and pickups

at stations form Poisson processes. Second, the state of a particular station

does not depend on the state of the others. The first assumption has been

successfully validated for busy stations in [8], using historical data from the

Vélib’ bike-sharing system in Paris. The second assumption is justified by mean

field conditions in the case of populations that tend to infinity. However, we

conjecture that the second assumption is generally not true in practice. For

example, when a station is empty, no bikes can depart from it, therefore the

arrival rate at other stations should be reduced. Hence, we seek a more realistic

model, which captures the journey dynamics between stations.

2.3. Data on bike sharing systems

In order to parameterise the model of this paper, we need to be able to esti-

mate the arrival and pick-up rates λi(t) and µi(t) at each station i throughout

the day. This can be done in two main ways. The first is to use the station

occupancy data that is typically published online by operators in order to fa-

cilitate the planning of trips by users. This data can be logged manually 1,

resulting in a dataset of station occupancy changes at the time points at which

the server was queried. This can be sufficient for estimating λi(t) and µi(t),

although both may be underestimated since a bike removal and arrival between

two queries will cancel each other out. A second approach is possible when

(in particular for Vélib’ in Paris and Santander Cycles in London) operators

are willing to share a more refined dataset of all the individual journeys, which

allows for far more accurate estimation of the model parameters. We use the

second approach for the London dataset which contains journey data between

751 stations in Section 5.

Some caution in choosing what data to include for parameterisation is nec-

essary, since in reality the arrival and departure rates of bikes are dependent on

1For an example of a service that aggregates this type of data for different bike-sharing

systems, see https://citybik.es/
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Figure 2: The number of bikes in use in 20 minute slots from 06:00 to 22:00 in Santander

Cycles, London during weekdays and weekends.

several other factors than just the time of day. These include the day-to-day

weather, seasonal effects, and whether a day is a working day or not. To illus-

trate this, we have displayed the difference between weekday and weekend usage

patterns in Figure 2. It is clearly visible that the weekdays have pronounced

rush hour peaks, whereas during the weekends the bikes are used most inten-

sively during lunch time. To limit these external factors, we have only used data

from the winter and early spring for the experiments, and excluded weekends

and holidays.

3. PCTMC of Bike-sharing Model

In this section we present our time-inhomogeneous PCTMC model and ex-

plain how we use it as a basis from which to derive a computationally efficient

reduced model of the moment equations suitable for deriving the probability

distribution of the number of available bikes within a future time point. Since

each journey directly involves just two stations, the departure station and the

arrival station, we focus particularly on these. Moreover, from a prediction point

of view we can consider two separate problems: given the current time t, the
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prediction of the number of bikes at the departure station at time t+h1, where

t+ h1 is the desired start time; and the prediction of the number of slots at the

arrival station at time t+h2 where h2−h1 is the expected journey duration. In

the following presentation we discuss the prediction of the number of available

bikes at time t+h, but it is clear that the prediction of the number of available

slots at the journey’s end can be treated analogously.

3.1. A Naive PCTMC Model

In the PCTMC model we can identify three kinds of agents that determine

the state of the system: bikes in stations, slots in stations and bikes which are en

route between stations. These are represented as agent types Bikei, Sloti and

Journeyij@Pl. Journey durations are generally not exponentially distributed, so

we fit the journey duration to a phase type distribution, where for the journey

from station i to station j we have P ij identical phases each with rate P ij/d
i
j ,

where dij is the mean journey duration. To faithfully represent the journey

dynamics between bike stations in a bike-sharing system with N stations, we

first propose a naive PCTMC model which contains the following transitions:

Bikei −→ Sloti + Journeyij@P1 at µi(t)p
i
j(t) ∀i, j ∈ (1, N)

Journeyij@Pl −→ Journeyij@Pl+1 at (P ij /d
i
j) #(Journeyij@Pl) 1 ≤ l < P ij ,

∀i, j ∈ (1, N)

Journeyij@PP i
j

+ Slotj −→ Bikej at (P ij /d
i
j) #(Journeyij@PP i

j
) ∀i, j ∈ (1, N)

where Bikei, Sloti represent a bike and a slot agent in station i respectively;

Journeyij@Pl represents a bike agent which is currently on a journey from sta-

tion i to station j at phase l, µi(t) is the fitted bike pickup rate governed by an

exponential distribution in station i at time t, and pij is the probability that a

journey will end at station j given that it started from station i at time t. #(S)

denotes the population of an agent type S.

Obviously, the above model is not scalable, even for solution by simulation.

Since the total number of bike stations N is usually very large (for example

there are around 750 bike stations in London), it is computationally infeasible

to analyse a model which captures the full set of bike stations. Fortunately,
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since we are only interested in the prediction of bike availability at a single

target station at a time, we only need to model stations which have a significant

contribution to the journey flows to the target station (knowing the state of a

station which has a very small contribution to the journey flows to the target

station will have negligible impact on the accuracy of bike availability prediction

for the target station). Thus, a directed contribution graph together with a

contribution propagation method is proposed to automatically identify the set

of stations which need to be modelled with respect to a given target station for

bike availability prediction.

3.2. Directed Contribution Graph with Contribution Propagation

Here we show how to derive a set of bike stations Θ(v) in which all stations

have a significant contribution to the journey flows to a given target station

v ∈ (1, 2, . . . , N) for bike availability prediction. Concretely, we first need a

way to quantify the contribution of one station to the journey flows to another

station. Specifically, we let Cij denote the contribution coefficient of station j

to station i which quantifies the contribution of station j to the journey flows

to station i.

One station can contribute to the journey flows to another station both

directly and indirectly. The definition of a direct contribution coefficient at

time t is given by the following simple formula:

cij(t) = λji (t)/λi(t)

in which λji (t) represents the bike arrival rate from station j to station i at time

t and λi(t) =
∑
j λ

j
i (t). Then, it is clear that cij(t) ∈ [0, 1], 0 ≤

∑
j 6=i cij(t) ≤ 1.

With the definition of the directed contribution coefficient, we can construct

a directed contribution graph for the bike-sharing system at each time slot of a

day. The definition of the directed contribution graph is given as follows:

Definition 1. At an arbitrary time t, the directed contribution graph for a bike-

sharing system at this moment is a graph in which nodes represent the stations

in the system, and there is a weighted directed edge from node i to node j if
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cij(t) > 0, and in this case the weight of the edge is cij(t). In particular, note

that the direction of edges is the inverse of contribution flows.

Figure 3 shows a sample directed contribution graph which consists of six

bike stations only for illustration purposes (in a real case, the graph will be

more connected).

i

n

k

l

m

j

cin = 0.2

cik = 0.7

cnl = 0.5

clk = 0.3

ckm = 0.8

clj = 0.6

cmj = 0.9

Figure 3: An example directed contribution graph with six stations

For those stations which are not directly connected in the directed contri-

bution graph, by using a contribution propagation method, we can evaluate the

indirect contribution coefficient of one station on the journey flows to another

station. Specifically, the indirect contribution coefficient is quantified by a path

dependent coefficient cij,γ(t), which is the product of the direct contribution

coefficients along an acyclic path γ from node i to node j:

cij,γ(t) =
∏
kl∈γ

ckl(t)

Intuitively, cij,γ(t) measures the estimated contribution of station j to the jour-

ney flows to station i propagated through the path γ. More specifically, taking

the graph in Figure 3 as an example, suppose station i is the target station, then

the contribution of station j to the journey flows to station i has to propagate

through its direct contribution to station m, station m’s direct contribution to

station k, and finally reach station i through station k’s direct contribution.
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Doing so, this indirect contribution is estimated by the product of the direct

contribution coefficients along the path γ = {ik, km,mj} to capture this dimin-

ishing propagation effect.

Furthermore, for the purpose of model reduction, we assume any contribu-

tion (either direct or indirect) to the journey flows to the target station which

is less than a specific threshold is insignificant. Then, we can characterize the

contribution coefficient of station j to station i by the maximum of the path

dependent coefficients:

Cij(t) =


max

all paths γ
cij,γ(t) if there exists a path from node i to node j

0, otherwise

In the following we will abbreviate cij(t), cij,γ(t) and Cij(t) as cij , cij,γ and Cij

when the value of t is unimportant. For example, according to Figure 3, the

contribution coefficient of station j to station i is Cij = cik×ckm×cmj = 0.504,

since cik × ckm × cmj > cin × cnl × clj > cin × cnl × clk × ckm × cmj .

Lastly, with Θ(v) being the set of bike stations with a significant contribution

to the journey flows into station v. Given a target station v, and its contribution

coefficient for station i ∈ (1, 2, . . . , N), we can infer:

i ∈ Θ(v) if Cvi > θ

i /∈ Θ(v) if Cvi ≤ θ

where θ ∈ (0, 1) is the threshold value which can be used to control the extent

of model reduction.

Remark. Capturing indirect contributions to the journey flows to the target sta-

tion is important because indirect journey flows with significant coefficients can

largely decide the emptiness of the stations which have a significant direct jour-

ney flow to the target station, thus can cause considerable impact on the overall

journey flow to the target station. Furthermore, we choose to characterize con-

tribution coefficients by the maximum instead of the sum of path dependent

coefficients because we only want to model stations which have at least a signif-

icant (direct or indirect) journey flow to the target station. To model stations
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which have many insignificant journey flows to the target station is costly but

can have limited impact on the predictions. Moreover, the maximum of path de-

pendent coefficients has the nice property that if i ∈ Θ(v) and Cvi = cvi,γ , then

for a station j which is on the path γ, it is certain that Cvj > θ, thus j ∈ Θ(v).

As a result, for all stations which have a significant journey flow to the target

station, that journey flow will certainly be captured in the resulting reduced

PCTMC. In contrast, this property would not be preserved if we use the sum

of path dependent coefficients. For example in Figure 3, if we set θ = 0.55 and

use the sum instead of the maximal of path dependent coefficients to charac-

terise contribution coefficients, we get Cij =
∑
γ cij,γ > 0.55, thus station j is

included in the reduced PCTMC. However, since
∑
γ cil,γ < 0.55, station l will

not be included in the reduced PCTMC. As a result,
∑
γ cij,γ > 0.55 will not

actually be satisfied in the reduced PCTMC after station l is excluded.

As an illustration of the extent of model reduction, Figure 4 shows the

empirical cumulative distribution function (CDF) of contribution coefficients

during all time slots between any two bike stations in Santander Cycles (which

is computed by historical journey data with 20 minutes slot duration). It can be

seen that more than 96% of the computed contribution coefficients are smaller

than 0.01. This means that on average more than 96% stations can be excluded

even if θ is set to a small value 0.01 for the PCTMC of a random station in

Santander Cycles.

3.3. The Reduced PCTMC Model

Given a target station v and current time t, suppose we are interested in

the number of bikes at the station at time t+ h. Letting s = (s1, s2, . . . , sn) be

the minimal set of time slots which cover [t, t+ h], we obtain Θ(v) = Θ(v, s1)∪

Θ(v, s2) ∪ . . . ∪ Θ(v, sn) ∪ v, where Θ(v, si) is the set of bike stations which

have significant contribution to the journey flows to the target station within

time slot si. In other words, we take the union of all the stations that make a

significant contribution to the journey flows across all the relevant time slots.
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Figure 4: CDF of contribution coefficients between all the bike stations in Santander Cycles

during all time slots

The PCTMC for the prediction of bike availability at station v at time t+h

is presented in Table 1

3.3.1. Approximating the Indicator Function

We are going to analyse the PCTMC using moment ODEs derived by Equa-

tion 1. For clarity of notation we let umi denote E[
(
Sloti(t)

)m
], where m is

the order of the moment. We can only access the moments of the number of

empty slots at a station i at time t, umi , during numerical simulation, whereas

the number of empty slots at station i at time t is an unknown variable. Thus,

we propose a method to approximate the indicator function 1(Sloti(t) = 0) by

a function of the moments of the number of empty slots and the capacity of the

station: 1(Sloti(t) = 0) ∼ f(u1
i , u

2
i , . . . , u

m
i , ki).

Concretely, given the first m moments of the random variable Sloti(t), and

the value domain Sloti(t) ∈ [0, 1, . . . , ki], we can approximate the probability

distribution of Sloti(t) by a discrete distribution with finite support ki. For

example, if we only know the first moment of Sloti(t) (which is u1
i ), we can
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fit a binomial distribution Sloti(t) ∼ Binomial(ki, u
1
i /ki) to the probability

distribution of Sloti(t). In this case, we get P(Sloti(t) = 0) = (1 − u1
i /ki)

ki .

Furthermore, if we know the first two moments (u1
i , u

2
i ), then we can fit a beta-

binomial distribution Sloti(t) ∼ BetaBinomial(ki, α, β), where

α =
u1
iu

2
i − ki(u1

i )
2

ki(u1
i )

2 + kiu1
i − kiu2

i − (u1
i )

2
β =

(ki − u1
i )(kiu

1
i − u2

i )

ki(u1
i )

2 + kiu1
i − kiu2

i − (u1
i )

2

Thus, we get

P(Sloti(t) = 0) =
B(α, ki + β)

B(α, β)

where B(a, b) is a beta function. Theoretically, with knowledge of more moments

of Sloti(t), the estimation of P(Sloti(t) = 0) will be more accurate. Finally, we

let

1(Sloti(t) = 0) =

1 if P(Sloti(t) = 0) > p

0 if P(Sloti(t) = 0) ≤ p

where P(Sloti(t) = 0) = f(u1
i , u

2
i , . . . , u

m
i , ki), p is a threshold value above which

we believe the number of available slots in station i is zero. In general, p should

be set to a value close to 1 in order to make sure the station is only treated as full

when there is no empty slot with a high confidence. In our later experiments,

we explicitly set p = 0.9.

3.3.2. Specifying the initial state

When we wish to use the model to make a prediction, say at time t+ h, we

must first initialise the model state for time t. A snapshot of the bike-sharing

system a time t will contain the following information2:

Bikei(t), . . . , Sloti(t), . . . , Journey
i(t,∆t), . . .

where Bikei(t) and Sloti(t) are the current number of available bikes and empty

slots at a station i; Journeyi(t,∆t) represents that there is a bike currently en

route from station i, and the journey started at time t − ∆t. Then, for each

Journeyi(t,∆t), we use a random number to determine the destination of the

2This information is actually recorded for the London bike-sharing system
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journey, and the time ∆t to determine the appropriate phase of the journey time.

Specifically, let Pt−∆t
i (Des = k), Pi(Dur > ∆t | Des = k) ∀k be the probability

that the journey will end at station k given that the journey started from station

i at time t−∆t, and the probability that the duration of a journey from station

i to station k lasts more than ∆t, respectively. Using Bayes’ theorem, we can

infer the probability that the destination of the journey will end up at a station

k given its duration lasts more than ∆t as follows:

Pt−∆t
i (Des = k | Dur > ∆t) =

Pt−∆t
i (Des = k)× Pi(Dur > ∆t | Des = k)∑N

j=1 Pt−∆t
i (Des = j)× Pi(Dur > ∆t | Des = j)

Then, we can generate a random number α uniformly distributed in (0, 1), and

decide Journeyi(t,∆t) = Journeyij(t,∆t) if:

j−1∑
k=0

Pt−∆t
i (Des = k | Dur > ∆t) ≤ α <

j∑
k=0

Pt−∆t
i (Des = k | Dur > ∆t)

Furthermore, we let

Journeyij(t,∆t) = Journeyij@Pl if (l − 1)dij/P
i
j ≤ ∆t < l × dij/P ij ,

where l ≤ P ij . Otherwise, if l > P ij , we let Journeyij(t,∆t) = Journeyij@PP i
j
.

3.4. Further Reduction of Moment ODEs for the Reduced PCTMC

We derive the moment ODEs following Equation 1 for the reduced PCTMC

for the first m order of moments. The reduced PCTMC has significantly fewer

population variables than the naive PCTMC, however, we may still face a large

number of moment ODEs which are slow to analyse especially for real-time bike

availability predictions when m is large. Thus, in order to accelerate moment

analysis of the reduced PCTMC, we propose a correlation heuristic to achieve a

further reduction on the size of the moment ODEs for the reduced PCTMC, uti-

lizing the neighbourhood relation between population variables which is firstly

introduced in [16].

Concretely, we observe that most of the derived ODEs are used to de-

scribe the evolution of joint moments of population variables. For instance,

suppose m = 2, then there will be 2 × n ODEs to describe the evolution of
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E[xi] and E[xi
2], (n2 − n)/2 ODEs to describe joint moments E[xixj ] for all

i, j ∈ (1, 2, . . . , n) ∧ i 6= j, where n is the number of population variables in

the reduced PCTMC. Clearly, the number of ODEs for joint moments grows

exponentially as m increases. Therefore, our strategy is to reduce the number

of ODEs for joint moments to accelerate moment analysis.

Specifically, for each distinct moment variable E[xm] = E[xm1
1 · · ·xmk

k ] that

appears in the left hand size of the derived moment ODEs for the reduced

PCTMC, we construct a correlation graph for it. The definition of a correlation

graph is given below:

Definition 2. The correlation graph G of a moment variable E[xm] is a graph,

in which there is a node for each population variable xi that appears in the

expression of the moment variable. Moreover, there is an edge Edge(xi, xj)

between two nodes if and only if

∃ τ ∈ T such that (diτ 6= 0 ∧ δjτ = 1) ∨ (djτ 6= 0 ∧ δiτ = 1),

where δjτ is an indicator equal to 1 if and only if xj is updated after transition

τ (djτ 6= 0) or xj appears in the rate function (rτ (x, t)) of τ .

Intuitively, this means that two population variables (xi, xj) are connected

in the correlation graph if there exists a transition in the reduced PCTMC,

in which one of the two population variables is updated, and the other is also

involved. More specifically, a connected pair of population variables in the

correlation graph are referred to one-hop neighbours in [16]. Empirically, it has

been shown that only capturing the correlation between one-hop neighbours can

achieve similar accuracy with moment analysis which captures the correlation

between all population variables in a PCTMC. We refer to [16] for more details.

By definition, the correlation graph of a moment variable can consist of one

or more correlation islands. The correlation islands are defined as follows:

Definition 3. A correlation island I is a subgraph of a correlation graph G
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x1

x2

x3

Figure 5: The correlation graph of a moment variable E[x1x2x3].

such that:

∀ xi, xj ∈ I −→ xi and xj are connected

∀ xi ∈ I, xj /∈ I −→ xi and xj are not connected

Figure 5 illustrates the correlation graph of a moment variable E[x1x2x3]

which consists of two correlation islands. Each correlation island in a correlation

graph represents a decoupled moment variable with a lower order than the mo-

ment variable represented by the correlation graph. Thus, with the identification

of correlation islands in a correlation graph, we can decouple the moment vari-

able for joint moment ODE reduction. Specifically, let E[xm] = E[xm1
1 · · ·xmk

k ]

be an arbitrary moment variable that appears on the left hand side of a moment

ODE, G be the corresponding correlation graph, and I be a correlation island

in G . We can approximate E[xm] by the following formula:

E[xm] ≈
∏
I∈G

E[
∏
xi∈I

xmi
i ]

According to the above formula, for a moment variable E[xm] which appears on

the left hand side of a moment ODE, if its correlation graph consists of more

than one correlation island, then this moment ODE can be eliminated since it

can be approximated by the product of moment variables with lower orders.

After the reduction of joint moment ODEs using the above method, we can

achieve a much faster moment analysis of the reduced PCTMC for the bike-

sharing model. The remaining set of moment ODEs is solved by numerical

simulation using the Dormand–Prince method [19].

21



4. Probability Distribution Reconstruction

From the moment analysis of the PCTMC for the bike-sharing model, we

obtain the first m moments of the number of available bikes in the target station

v at the prediction time t+ h, i.e.(
E[
(
Bikev(t+ h)

)1
],E[

(
Bikev(t+ h)

)2
], . . . ,E[

(
Bikev(t+ h)

)m
]
)

which we denote as (u1, u2, . . . , um) in the following. Our goal is to predict

the probability that the station has a specific number of bikes at time t + h.

This means the problem is to reveal P
(
Bikev(t + h) = i | u1, u2, . . . , um, kv

)
,

where i ∈ (1, 2, . . . , kv). Therefore, we need to reconstruct the entire probability

distribution of the random variable Bikev(t+ h) based on its first m moments.

The corresponding distribution is generally not uniquely determined. Hence, to

select a particular distribution, we apply the maximum entropy principle to min-

imize the amount of bias in the reconstruction process. In this way, we assume

the least amount of prior information about the true distribution. Note that the

maximum entropy approach has been successfully applied to reconstruct distri-

butions based on moments in many areas, e.g. physics [20], stochastic chemical

kinetics [21], and performance analysis [22].

4.1. The Maximum Entropy Approach

For convenience we will denote Bikev(t+h) by Xv and let G be the set of all

possible probability distributions for Xv. Then, based on the maximum entropy

principle, the goal is to select a distribution g to maximize the entropy H(g)

over all distributions in G. The problem can be denoted as follows:

arg max
g∈G

H(g) = arg max
g∈G

(
−

kv∑
x=0

g(x) ln g(x)
)

Furthermore, given (u1, u2, . . . , um), we know the following constraints should

be satisfied:
kv∑
x=0

xng(x) = un, n = 0, 1, . . . ,m

22



where u0 = 1 to ensure that g is a probability distribution. Now, the problem

becomes a constrained optimization program. Thus to perform the constrained

maximization of the entropy, we introduce one Lagrange multiplier λn per mo-

ment constraint. We thus seek extrema of the Lagrangian functional:

L(g, λ) = −
kv∑
x=0

g(x) ln g(x)−
m∑
n=0

λn
( kv∑
x=0

xng(x)− un
)

Functional variation with respect to the unknown probability mass function g(x)

yields:

∂L

∂g(x)
= 0 =⇒ g(x) = exp

(
− 1− λ0 −

m∑
n=1

λnx
n

)
Since u0 = 1, we get

kv∑
x=0

exp

(
− 1− λ0 −

m∑
n=1

λnx
n

)
= 1.

Thus we can express λ0 in terms of the remaining Lagrange multipliers

e1+λ0 =

kv∑
x=0

exp

(
−

m∑
n=1

λnx
n

)
≡ Z

Then, the general form of g(x) can be given as follows:

g(x) =
1

Z
exp

(
−

m∑
n=1

λnx
n

)

Inserting the preceding equation into the Lagrangian, we can then transform

the problem into an unconstrained minimization problem of a function Γ with

respect to variables λ1, λ2, . . . , λm:

arg min
λ1λ2,...,λm

Γ(λ1, λ2, . . . , λm)

where

Γ(λ1, λ2, . . . , λm) = lnZ +

m∑
n=1

λnu
n.

The convexity of the function Γ is proved in [20], which guarantees the existence

of a unique solution of the minimization problem.
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4.2. Solving the Unconstrained Minimization Problem

Theoretically, the optimal λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
m) which minimizes function

Γ takes the solution of the following systems of equations:

∂

∂λ1
Γ(λ1, λ2, . . . , λm) = 0

∂

∂λ2
Γ(λ1, λ2, . . . , λm) = 0

. . .

∂

∂λn
Γ(λ1, λ2, . . . , λm) = 0

However, in practice, it is impossible to solve the above equations analytically

when m ≥ 2. Thus, we apply the Broyden–Fletcher–Goldfarb–Shanno (BFGS)

algorithm [23, 24, 25, 26] which is an iterative method commonly used for solving

unconstrained nonlinear optimization problems to find a close approximation of

the optimal λ∗.

Specifically, with an initial guess λ0 and an initial Hessian matrix approxi-

mation B0 ∈ Rm×m which is positive definite (e.g., B0 can be set to the identity

matrix), the optimal λ∗ can be obtained by the iteration (here λk is the value

of (λ1, λ2, . . . , λm) after the kth iteration):

λk+1 = λk + αk ∗ dk

Bk+1 = Bk +
yky

T
k

yT
k sk

− Bksks
T
kBk

sT
kBksk

until the norm of the gradient satisfies |∇Γ(λk)| < ε for a small threshold ε,

where αk > 0 is an acceptable step size obtained by performing a line search

along dk [27], and

dk = −B−1
k ∇Γ(λk)

yk = ∇Γ(λk+1)−∇Γ(λk)

sk = αkdk.

After finding λ∗ using the above algorithm, we can finally predict the probability
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that there are an arbitrary number of available bikes in the target station by:

P
(
Xv = x

)
=

exp

(
−
∑m
n=1 λ

∗
nx

n

)
∑kv
i=0 exp

(
−
∑m
n=1 λ

∗
ni
n

) , ∀x ∈ (1, 2, . . . , kv)

Clearly we can use an analogous distribution for also predicting the available

number of slots at the end of a journey.

5. Experiments

In this section, we test the time cost and accuracy of our prediction model

in different cases and compare the accuracy of our model with the baseline

Markov queueing model. Specifically, we split the historic journey data and bike

availability data from January 2015 to April 2015 from the London Santander

Cycles Hire scheme to 10 parts, and a 10-fold cross validation is done where

in each experiment 9/10 of data is used to fit the parameters of our PCTMC

model as well as the Markov queueing model, the remaining 1/10 data is used

to test their prediction accuracy. As in [11], we fit the number of journey

phases between stations using the HyperStar tool [28] command line interface.

Specifically, we set the maximum value of P ij to 20 to make our model compact

and also to avoid overfitting. Moreover, for parameter estimation, we split a day

into slots of 20 minute duration. In our experiments, given the bike availability

in a station at time t, we predict the probability distribution of the number of

available bikes in that station at time t + h, where h is set to 10 minutes for

short range prediction and 40 minutes for long range prediction.

The evaluation of our model is twofold. The first is accuracy, the second is

efficiency. These two aspects are both influenced by the value of two important

parameters, namely m, the highest order of moments being derived, and θ, the

coefficient threshold for the identification of bike stations which have significant

contribution to the journey flow to the target station. For higher values of m,

the solution cost of our model becomes larger since more moment ODEs are de-

rived, however the model should become more accurate due to more constraints
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in the probability distribution reconstruction based on the maximum entropy

principle. For higher values of θ, more stations are excluded in the reduced

PCTMC for a target station whereas the model accuracy can be potentially re-

duced. Thus, to observe the effects on these two parameters, we do experiments

with values m = 1, 2, 3, and θ = 0.01, 0.02, 0.03.

5.1. Root Mean Square Error

For prediction accuracy, we first consider the classic criterion based on root

mean square error (RMSE), a commonly used metric for evaluating point pre-

dictions (i.e., predictions that only state the expected number of bikes). Specif-

ically, given a vector x of predictions and y of observations, with A the set of

prediction/observation pairs, the RMSE is defined as:√
1

|A|
∑
i∈A

(xi − yi)2

Furthermore, in order to convincingly show the benefits of using our PCTMC

model for bike availability prediction, we also compare our RMSE with an Au-

toRegressive Integrated Moving Average (ARIMA) model which is commonly

used to provide point prediction for bike availability in stations [7, 11]. Specif-

ically, let Yi(t) = {yi(1), yi(2), . . .} be a time series in which each element yi(t)

represents the number of available bikes at station i at discrete time step t, we

provide a spatial-temporal ARIMA(p,d,q) model as follows for bike availability

prediction:

ydi (t) =

p∑
j=1

αj y
d
i (t− j) +

∑
k∈ne(i)

p∑
j=1

γkj y
d
k(t− j) +

q∑
j=1

βj εi(t− j) + εi(t)

where ydi (t) denotes the dth differencing of yi(t) to impose stationarity, ne(i) is

the set of neighbor stations of station i for capturing spatial pattern correlation

and the εi(t) are error terms which are assumed to be independent, identically

distributed variables sampled from a normal distribution with zero mean. The

αj are the parameters of the autoregressive part of the model, the γkj are the

parameters of the spatial pattern part, the βj are the parameters of the mov-

ing average part. Here, we let the five nearest stations to denote the set of
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10min 40min

ARIMA model 1.44± 0.12 2.94± 0.17

Markov queueing model 1.45± 0.14 3.01± 0.18

PCTMC with θ = 0.03 1.44± 0.14 2.78± 0.17 m = 1, 2, 3

PCTMC with θ = 0.02 1.44± 0.13 2.76± 0.17 m = 1, 2, 3

PCTMC with θ = 0.01 1.42± 0.13 2.75± 0.17 m = 1, 2, 3

Table 2: The mean and standard deviation of RMSEs on the prediction of the number of

available bikes in the 10-fold cross validation

neighbor stations for any given station. The values of p, d, q for each station are

tunned to achieve best prediction accuracy. All the parameters are fitted using

the statsmodels Python library [29]. Moreover, like in [7, 11], an observation

frequency of 5 minutes is chosen to construct the time series. Thus, in order to

predict the number of available bikes in a station at 10 minutes later, one needs

to predict the number of available bikes at 5 minutes later first, and then use

the predicted number to estimate the number at the target time. Clearly, we

can also use this iterative approach to obtain the prediction of the number of

available bikes at 40 minutes later.

Table 2 compares the RMSE of the prediction results of our PCTMC model

with the Markov queueing model as well as the ARIMA model. As can be seen,

although the improvement of accuracy in the short range is not significant, our

PCTMC model clearly outperforms both the Markov queueing model and the

ARIMA model in the long prediction range. This means capturing the journey

dynamics provides more significant information for the long prediction range.

For the PCTMC models, smaller values of θ only reduce the RMSE slightly.

This means capturing less significant journey flows will have little impact on

the prediction accuracy. Moreover, we find that the derived highest moments

have almost no impact on the RMSE. This is obvious since the expected number

of available bikes is only decided by the first moment.
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5.2. Probability of Making Incorrect Recommendations

Predicting the expected number of available bikes is important for system

administrators when they want to decide how to redistribute bikes in the sys-

tem. However, users are interested in whether there are at least N bikes in the

target station when they want to pick up N bikes from there. We are specif-

ically interested in the probabilities of making incorrect recommendations for

the queries “Will there be at least one bike?” and “Will there be at least two

bikes?” in order to measure the accuracy of our model 3.

Concretely, for the “Will there be at least N bikes?” query, we respond “Yes”

if the predicted probability of that station having more than N bikes is greater

than a threshold value p∗, and respond “No” if the predicted probability of that

station having more than N bikes is less than or equal to p∗. Therefore, we

define P(Incorrect, N) as the probability of making incorrect recommendations

for the “Will there be at least N bikes?” query:

P(Incorrect, N) = P
(

P(Xv ≥ N) > p ∗ ∧xv < N
)

+

P
(

P(Xv ≥ N) ≤ p ∗ ∧xv ≥ N
)

where P
(

P(Xv ≥ N) > p ∗ ∧xv < N
)

is the probability of a“Yes” prediction

when the actual number of available bikes is less than N , thus making an incor-

rect recommendation of “Yes”; whereas P
(

P(Xv ≥ N) ≤ p ∗ ∧xv ≥ N
)

is the

probability of making incorrect recommendations of “No”. A larger value of the

threshold p∗ means a more conservative policy for recommendations of “Yes”.

For example, p∗ = 0 means the policy will (almost) always recommend “Yes”

for the query, whereas p∗ = 1 means the policy will always recommend “No”

for the query (in these two extreme cases, using different prediction models will

make no difference).

In Figure 6, we show the probabilities of making incorrect recommendations

for the “Will there be at least one bike?” and “Will there be at least two bikes?”

3We assume it is relatively uncommon for more than two people to plan bike journeys

together.
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queries, using the Markov queueing model (MQM) and our PCTMC model with

different parameters as a function of p∗, where p∗ ∈ {0, 0.1, 0.2, . . . , 0.9} (letting

p∗ = 1 makes no sense since it is useless to have an always “No” recommendation

policy). Note that the ARIMA model can only provide point prediction, thus is

excluded here. The PCTMC model with m = 1 is also excluded since at least

two moments are needed to make a meaningful reconstruction of the probability

distribution.

It can be seen that it is generally more likely to make incorrect recommenda-

tions for the “Will there be at least two bikes?” query than the “Will there be at

least one bike?” query using both prediction models. Furthermore, we observe

that for the short prediction range, our PCTMC model tends to have slightly

lower probabilities of making incorrect recommendations for both queries com-

pared with the Markov queueing model while increasing p∗, which makes the

policy become more conservative. For the long range prediction, the difference

between our PCTMC model and the Markov queueing model becomes more

clear. This means using our PCTMC model can effectively improve the accu-

racy of bike availability recommendations compared with the Markov queueing

model. Moreover, for the long prediction range, we also find that increasing the

value of m, which makes the reconstructed probability distribution closer to the

true distribution, has a greater effect on improving recommendation accuracy

than decreasing the value of θ so as to include more stations in the reduced

PCTMC.

5.3. Scoring for Recommendations

In the previous evaluation, we assume that making an incorrect recommen-

dation of “Yes” is equally bad as making an incorrect recommendation of “No”.

However, in reality, users are more likely to be frustrated when they are rec-

ommended to go to a station and find that there are not enough bikes there

than when they are recommended to not go to a station when there are actu-

ally enough bikes available in that station. Thus, the authors in [8] proposed a

proper scoring rule in which correct recommendations will be awarded with a
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(a) N=1 h=10min (b) N=1 h=40min

(c) N=2 h=10min (d) N=2 h=40min

Figure 6: The mean and standard deviation of probabilities of making incorrect recommen-

dations for “Will there be at least one and two bikes?” queries in the 10-fold cross validation.

unique positive score and incorrect recommendations will be penalised by vary-

ing negative scores. A key feature of a proper scoring rule is that it ensures

that the most accurate prediction model can always be expected to obtain the

highest score. Specifically, it is proved in [8] that the following scoring rule is

proper:

Score =



1 if P(Xv ≥ N) > 0.8 ∧ xv ≥ N

−4 if P(Xv ≥ N) > 0.8 ∧ xv < N

1 if P(Xv ≥ N) < 0.8 ∧ xv < N

− 1
4 if P(Xv ≥ N) < 0.8 ∧ xv ≥ N

in which we set the penalty scores for incorrect recommendations for “Yes” and

“No” recommendations to −4 and − 1
4 , respectively; the threshold value p∗ is
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set to 0.8 which is equal to:

p∗ =
Score(Incorrect,Yes)− Score(Correct,Yes)

Score(Incorrect,Yes) + Score(Incorrect,No)− Score(Correct,Yes)− Score(Correct,No)
.

The above scoring rule can be easily extended to the evaluation of the recom-

mendations to the “Will there be at least one/two slots?” queries.

We show the average score with 95% confidence interval of our PCTMC

model with different parameters as well as the Markov queueing model for the

queries “Will there be at least one/two bikes?” and “Will there be at least

one/two slots?” based on all the recommendations made in the 10-fold cross

validation in Table 3 and 4, respectively. As can be seen from the tables, the

PCTMC model has a better average score for the recommendation for both

queries. In the long prediction range, the improvement is more clear. In agree-

ment with the results of Figure 6, we also observe that with higher values of

m, the average score increases. Moreover, decreasing the value of θ again has a

rather limited effect on the scores which means that the PCTMC with θ = 0.03

has already captured almost all the significant journey dynamics to the tar-

get station for an accurate availability prediction for enhancing user experience

compared with the Markov queueing model. To summarize, the results in the

two tables again demonstrate that using our PCTMC model for bike availability

prediction can actually improve the user experience of the public bike-sharing

system.

5.4. Time Cost

The time cost of making a prediction is also important. Table 5 shows

the time cost for making a prediction using our PCTMC model with different

parameters (we do not show the time costs for the Markov queueing model since

they are negligible due to its small state space because of the independence

assumption). As can be seen from the table, although increasing the value of

m has been shown to have a great effect on reducing the probability of making

incorrect recommendations and improving the scores for recommendations, it

also incurs a greater time cost for making a prediction due to the large number

of ODEs for the derived higher moments. Decreasing the value of θ will also
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10min 40min

N = 1 N = 2 N = 1 N = 2

Markov queueing model 0.91± 0.02 0.90± 0.02 0.88± 0.02 0.85± 0.03

PCTMC with θ = 0.03
0.92± 0.02 0.91± 0.03 0.91± 0.03 0.87± 0.03 m = 2

0.93± 0.03 0.92± 0.03 0.92± 0.03 0.89± 0.03 m = 3

PCTMC with θ = 0.02
0.92± 0.02 0.91± 0.03 0.91± 0.03 0.87± 0.02 m = 2

0.93± 0.03 0.92± 0.03 0.92± 0.03 0.89± 0.03 m = 3

PCTMC with θ = 0.01
0.93± 0.02 0.91± 0.03 0.91± 0.03 0.87± 0.02 m = 2

0.93± 0.03 0.92± 0.03 0.92± 0.03 0.89± 0.03 m = 3

Table 3: The average score of making a recommendation to the “Will there be at least one

bike?” and “Will there be at least two bikes?” queries with 95% confidence interval based on

all the predictions made in the 10-fold cross validation

10min 40min

N = 1 N = 2 N = 1 N = 2

Markov queueing model 0.92± 0.03 0.90± 0.03 0.89± 0.03 0.85± 0.03

PCTMC with θ = 0.03
0.93± 0.03 0.91± 0.03 0.92± 0.02 0.88± 0.02 m = 2

0.93± 0.03 0.91± 0.03 0.92± 0.03 0.88± 0.03 m = 3

PCTMC with θ = 0.02
0.93± 0.02 0.91± 0.02 0.92± 0.02 0.88± 0.03 m = 2

0.93± 0.03 0.92± 0.03 0.92± 0.03 0.89± 0.02 m = 3

PCTMC with θ = 0.01
0.93± 0.03 0.91± 0.02 0.92± 0.02 0.88± 0.02 m = 2

0.93± 0.03 0.92± 0.03 0.93± 0.02 0.89± 0.02 m = 3

Table 4: The average score of making a recommendation to the “Will there be at least one

slot?” and ‘Will there be at least two slots?” queries with 95% confidence interval based on

all the predictions made in the 10-fold cross validation
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10min 40min

PCTMC with θ = 0.03

1.76± 0.2ms 6.98± 0.77ms m = 1

103± 13.7ms 328± 43ms m = 2

2.2± 0.2sec 8.9± 0.83sec m = 3

PCTMC with θ = 0.02

4.25± 0.4ms 15.72± 1.42ms m = 1

251± 25.5ms 1.1± 0.1sec m = 2

8.9± 1.2sec 37± 3.5sec m = 3

PCTMC with θ = 0.01

13.5± 0.9ms 49.1± 3.92ms m = 1

8.8± 1.1sec 30.1± 0.31sec m = 2

33.9± 5.4sec 157± 17.8sec m = 3

Table 5: Time cost to make a prediction with 95% confidence interval

lead to larger time cost because more journey dynamics are explicitly captured

in the reduced PCTMC. As a result, in general, given an acceptable time cost

threshold, we want to have as small a value of θ as possible to have more accurate

prediction for point estimates as illustrated in Section 5.1. For probability

distribution predictions, one should prioritize the choice of m since it has a

greater impact on the accuracy of predictions as demonstrated in Sections 5.2

and 5.3.

In this case, we assume that the time cost of making a prediction must be

less than one second for real time application. Thus, for point predictions, we

recommend to set θ = 0.01,m = 1 for both prediction ranges. For probability

distribution predictions, we recommend to set θ = 0.02,m = 2 for short range

prediction, θ = 0.03,m = 2 for long range prediction. Note that we used an

Intel CORE i7 laptop with 8GB RAM to run our experiments; the time cost

could be considerably reduced if a more powerful machine, e.g. a server, were

used.
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6. Conclusions

We have presented a moment-based approach to make predictions of avail-

ability in bike-sharing systems. The moments of the number of available bikes

are automatically derived via a PCTMC with time-inhomogeneous rates, fitted

from historical data. The entire probability distribution is reconstructed using a

maximum entropy approach. Our model is easy to understand since it explicitly

captures the dynamics of the bike-sharing system. We have demonstrated that

it outperforms a spatial-temporal ARIMA model for point estimates, and the

Markov queueing model in several performance metrics for prediction accuracy.

Moreover we have also shown that by using the directed contribution graph and

the moment ODE reduction method, the model size can be significantly reduced

to such an extent that it is suitable for real-time application.

In future work we plan to explore the impact of neighbouring stations, and

extend our model to capture their effects. For example, if a station is empty, then

the user is likely to pick up a bike from a neighbouring station, thus increasing

the pick-up rate at the neighbouring station. Conversely, if a station is full,

then the user is likely to return a bike to a neighbouring station, increasing the

bike arrival rate there. We think another merit of our PCTMC model is that it

can be easily extended to capture such impact by using the indicator function

to check whether a neighbouring station is empty or full in order to alter the

bike arrival and pick-up rate of a station.
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