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Abstract. This paper considers a network of infinite-server queues with the special feature that,

triggered by specific events, the network population vector may undergo a linear transformation

(a ‘multiplicative transition’). For this model we characterize the joint probability generating

function in terms of a system of partial differential equations; this system enables the evaluation

of (transient as well as stationary) moments. We show that several relevant systems fit in the

framework developed, such as networks of retrial queues, networks in which jobs can be rerouted

when links fail, and storage systems. Numerical examples illustrate how our results can be used to

support design problems.
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1. Introduction

The vast majority of queueing network models studied in the literature are of the following form:

there is a set of nodes that are fed by streams of external arrivals, and a routing mechanism that

determines to which queue served clients are forwarded or whether the client leaves the system

altogether. The most common queueing disciplines are of single-server type (entailing that clients

may have to wait until they get into service) and of infinite-server type (in which all customers

present at a node are served in parallel).

A key feature of the conventional class of models described above is that clients join and leave

queues one by one. In many applications, however, triggered by specific events, the full population

of individual queues may move around the network (or leave the system altogether). Particularly

in the reliability and availability context, there are many relevant examples of such dynamics. We

could for instance think of a data communication network with unreliable nodes: at the moment

that a node goes down, all traffic residing at the node may be instantly lost. Another example

concerns rerouting: triggered, for instance, by a link failure, clients are moved from one set of

resources to an alternative set (the ‘backup route’). Due to the fact that they correspond to
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transitions of the entire population of specific queues, the dynamics of the above two examples do

not align with those of conventional queueing models.

Scope, object of study. Motivated by the above examples, the main objective of the present paper

is to analyze queueing networks with multiplicative transitions. These multiplicative transitions

effectively entail that the network dynamics include transitions by which the network’s population

vector, say m, is (pre-)multiplied by a matrix A with integer-valued, nonnegative entries, so that

the network population after the transition becomes Am. For instance, choosing A to be a diagonal

matrix with [A]ii = 0 and [A]kk = 1 for all k 6= i would correspond to the event of all clients at node

i being lost. Relocation of clients can be taken care of in a similar manner: the full population of

queue i moving to queue j corresponds to [A]ji = 1, [A]kk = 1 for all k 6= i, and all other entries

equal to 0.

In this paper the queues considered are of infinite-server type. This type of queue is particularly

relevant in contexts where the sojourn time at a node of each client is not (or hardly) affected by

other clients. As such, the model has a broad variety of applications, ranging from the number of

websurfers simultaneously present at a set of websites, to the number of messenger RNA molecules

simultaneously present in a collection of cells. A specific application that features in the present

article concerns the optimal design of storage networks. To make the model as widely applicable

as possible, we assume that all relevant transition rates (i.e., arrival rates and departure rates)

are affected by an external autonomously evolving Markovian environmental process; the resulting

model is therefore of a Markov modulated nature. As will become clear, in a reliability context such

an environmental process can be used to model the state of the nodes of the network (i.e., ‘up’ or

‘down’).

Contributions. The paper has two main contributions. (i) In the first place we set up a general

model of a network of infinite-server queues with multiplicative transitions. For this model we

derive a system of partial differential equations that describe its time-dependent behavior (in terms

of the probability generating function of the joint queue length distribution), as well as a proce-

dure to evaluate the corresponding moments. The model turns out to have a non-trivial stability

condition (under which the system’s stationary behavior is well-defined), which we establish using

the expression we found for the time-dependent mean. (ii) In the second place, we point out that

various natural, practically relevant models fit in our framework. Most notably, we concentrate

on a network of retrial queues, a network with rerouting, and a storage network. Our results can

be used to support various design decisions. In the storage system application, for instance, inter-

esting tradeoffs can be numerically assessed: files are typically stored on multiple locations so as

to mitigate the risk of loss, but evidently one wants to do so without using an unnecessarily large

amount of storage space.

Literature. As mentioned above, in typical queueing network models the number of clients per

queue changes by one at a time; see e.g. the standard textbooks [12, 19]. Several papers, such as

[5, 8, 16], consider queues with batch arrivals and batch services and find product-form results,

but these typically neither cover our multiplicative update rule nor allow the transition rates to be

affected by an environmental process.
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As mentioned above, a relevant special case of our model corresponds to the context of reliability.

In many situations, when a network resource (a node or a link) fails, all clients using it will be lost.

Such models are known as queueing models with catastrophes; for a fairly complete account of such

models, we refer to the recent literature review in [11, Section 1]. The models studied are typically

(but not always) one-dimensional; interesting contributions include [6, 21].

Queueing models for which the underlying infrastructure alternates between being ‘up’ and ‘down’

can be seen as examples of stochastic processes on dynamically evolving graphs. Despite the sizeable

literature on random graphs, the body of work on dynamic random graphs is considerably smaller,

and (evidently) the body of work covering stochastic processes on dynamic random graphs is even

smaller. In a recent contributions, results on dynamic random graphs have been reported; see e.g.

[9, 10, 14, 23]. Our paper can be regarded as being among the first to facilitate describing queueing

processes on a randomly evolving graph (but it is noticed that the model we propose is substantially

more general, as the multiplicative transitions are not restricted to node failures and repairs).

As mentioned, our model covers various practically relevant models as special cases. In each of

the corresponding application areas there is a large collection of papers and textbooks available; in

Section 4 we include a number of domain-specific references.

Organization. The paper is organized as follows. Section 2 presents the model in its generic form,

and after some preliminaries, the results in terms of partial differential equations characterizing

the joint probability generating function and ordinary linear differential equations characterizing

the moments. In addition, the stability condition is provided, under which stationary moments

exist, which can be found by solving systems of linear equations. Section 3 gives an indication of

the width of our framework: we show that it covers a network of retrial queues, a network with

rerouting, and a storage network. Section 4 demonstrates a couple of design issues that can be

resolved by using our machinery. Finally, Section 5 provides a discussion and concluding remarks.

2. Analysis

This section studies our generic model: a network of infinite-server queues with multiplicative

transitions. We first introduce the model, then study its time-dependent behavior, derive its

stability condition, and conclude by commenting on numerical issues.

2.1. Model. In this subsection we describe our network of infinite-server queues with multiplicative

transitions between the nodes. Let N := {1, . . . , N} (with N ∈ N) be the set of infinite-server

queues. The object of study is (M(t))t>0 (withM(t) ∈ NN0 ), that is, the multivariate queue content

process (also sometimes referred to as the network population process). The process (X(t))t>0

(with X(t) ∈ I := {1, . . . , I}) is the environment process (or: background process), which evolves

autonomously of the queue content process; in our setup, (X(t))t>0 is assumed to be an irreducible

continuous-time Markov chain.

The following transition rates play a role:
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◦ The rate λ
(i)
n > 0 is the external arrival rate at queue n ∈ {1, . . . , N} when the background

process X(·) is in i ∈ I . Note that this entails that the arrival process at each of the

queues is a Markov-modulated Poisson process.

◦ Likewise, the rate µ
(i)
nn′ > 0 is the departure rate for every customer present from queue n

to queue n′ when the background process X(·) is in i ∈ I . Here n ∈ N and n′ ∈ N ∪{0},
where n′ = 0 corresponds to the client leaving the network. Note that at the queues, the

clients are served simultaneously, reflecting the infinite-server nature of each of the queues.

◦ Define for each pair (i, j) with i, j ∈ I such that i 6= j the set Kij := {1, . . . ,Kij} with

Kij ∈ N. Let, for each k ∈ Kij , A
(k)
ij be an (N × N)-matrix with entries in N0. The rate

α
(k)
ij > 0 is the rate at which the queue content, say m ∈ NN0 , is converted into A

(k)
ij m, and

at the same time the environment process X(·) jumps from state i to state j, for i, j ∈ I .

For obvious reasons, we refer to these events as multiplicative transitions.

Two issues are worth highlighting. (i) Note that the above description does not explicitly include

notation for state transitions of the background process that do not involve multiplication with an

A-matrix. It is easily observed, however, that such transitions can be introduced by letting the A-

matrix correspond to an identity matrix. (ii) Transitions from i to j with i = j (‘self-transitions’)

are allowed. Our setup in this respect differs from how continuous-time Markov processes are

typically defined; observe that X(·) is nonetheless a continuous-time Markov chain.

Notice that it can be anticipated that this system has a non-trivial stability condition. Observe that

if some of the A-matrices have entries larger than 1, the parameters may be such that the network

population can grow quickly and eventually explode. When the stability condition applies, however,

this cannot happen. We derive the stability condition in Section 2.4. Evidently, the system’s

time-dependent behavior can be studied regardless of the validity of such a stability condition;

this time-dependent behavior is the topic of Sections 2.2–2.3. In Section 2.5 we comment on the

numerical evaluation of the performance measures under study.

2.2. System of partial differential equations. The objective of this subsection is to characterize

the distribution of (M(t), X(t)) ∈ NN0 ×I . We take the classical approach of setting up a system

of partial differential equations for the corresponding transforms. To this end, we first define, for

i ∈ I and t > 0,

ϕi(ϑ, t) := E
(
e〈ϑ,M(t)〉Ii(t)

)
,

with Ii(t) := 1{X(t) = i}, the indictor function for the event that X(t) equals i. Evidently, these

quantities uniquely describe the system’s probabilistic behavior.

So as to set up the differential equations, the main idea is to relate the state of the system at

time t + ∆t to the state at time t, for ∆t small. We rely on the usual ‘Markovian reasoning’,

meaning that when the environmental process is in state i at time t the following three types of

events have to be considered: (i) with a probability of essentially λ
(i)
n ∆t there is an external arrival

at node n, (ii) with probability µ
(i)
nn′Mn(t) ∆t there is a departure from node n to n′ (with n′

possibly equalling 0, to model the clients that leave the network), and (iii) with probability α
(k)
ij ∆t

the environmental process jumps to j while simultaneously the network population vector M(t) is

instantly replaced by A
(k)
ij M(t). Working out these transitions in detail, elementary calculations
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reveal that, as ∆t ↓ 0,

ϕi(ϑ, t+ ∆t) = ϕi(ϑ, t) + ξi(ϑ, t)∆t− ζi(ϑ, t)∆t+ o(∆t), (1)

where

ξi(ϑ, t) :=
N∑
n=1

eϑnE
(
e〈ϑ,M(t)〉Ii(t)

)
λ(i)
n +

N∑
n=1

N∑
n′=1

e−ϑn+ϑn′E
(
e〈ϑ,M(t)〉Ii(t)Mn(t)

)
µ

(i)
nn′ +

N∑
n=1

e−ϑnE
(
e〈ϑ,M(t)〉Ii(t)Mn(t)

)
µ

(i)
n0 +

I∑
j=1

Kji∑
k=1

E
(
e〈ϑ,A

(k)
ji M(t)〉Ij(t)

)
α

(k)
ji

and

ζi(ϑ, t) :=
N∑
n=1

E
(
e〈ϑ,M(t)〉Ii(t)

)
λ(i)
n +

N∑
n=1

N∑
n′=1

E
(
e〈ϑ,M(t)〉Ii(t)Mn(t)

)
µ

(i)
nn′ +

N∑
n=1

E
(
e〈ϑ,M(t)〉Ii(t)Mn(t)

)
µ

(i)
n0 +

I∑
j=1

Kij∑
k=1

E
(
e〈ϑ,M(t)〉Ii(t)

)
α

(k)
ij .

To understand the structure of ξi(ϑ, t) and ζi(ϑ, t), note that their first terms reflect the external

arrivals, the second terms the routing to other queues, the third terms clients leaving the network,

and the fourth terms the multiplicative transitions.

The next step is to rewrite the expressions for ξi(ϑ, t) and ζi(ϑ, t) in terms of partial derivatives

with respect to the arguments ϑn, n ∈ N . We thus obtain, with AT denoting the transpose of the

matrix A,

ξi(ϑ, t) =

N∑
n=1

eϑnϕi(ϑ, t)λ
(i)
n +

N∑
n=1

N∑
n′=1

e−ϑn+ϑn′
∂

∂ϑn
ϕi(ϑ, t)µ

(i)
nn′ +

N∑
n=1

e−ϑn
∂

∂ϑn
ϕi(ϑ, t)µ

(i)
n0 +

I∑
j=1

Kji∑
k=1

ϕj
(
(A

(k)
ji )Tϑ, t

)
α

(k)
ji

and

ζi(ϑ, t) =
N∑
n=1

ϕi(ϑ, t)λ
(i)
n +

N∑
n=1

N∑
n′=1

∂

∂ϑn
ϕi(ϑ, t)µ

(i)
nn′ +

N∑
n=1

∂

∂ϑn
ϕi(ϑ, t)µ

(i)
n0 +

I∑
j=1

Kij∑
k=1

ϕi(ϑ, t)α
(k)
ij .

We proceed in the common way: by subtracting ϕi(ϑ, t) from both sides in (1), dividing by ∆t,

and taking the limit ∆t ↓ 0, we arrive at the following result.

Proposition 1. The transforms ϕi(ϑ, t), for i ∈ I , satisfy the following system of partial differ-

ential equations:

∂

∂t
ϕi(ϑ, t) = ϕi(ϑ, t)

N∑
n=1

(
eϑn − 1

)
λ(i)
n +

N∑
n=1

N∑
n′=1

(
e−ϑn+ϑn′ − 1

) ∂

∂ϑn
ϕi(ϑ, t)µ

(i)
nn′ +

N∑
n=1

(
e−ϑn − 1

) ∂

∂ϑn
ϕi(ϑ, t)µ

(i)
n0 +
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I∑
j=1

Kji∑
k=1

ϕj
(
(A

(k)
ji )Tϑ, t

)
α

(k)
ji − ϕi(ϑ, t)

I∑
j=1

Kij∑
k=1

α
(k)
ij . (2)

From this relation moments can be evaluated by differentiation and inserting ϑ = 0, as we demon-

strate in the next subsection.

2.3. Moments. We now find an explicit expression for the I mean queue content vectors (each of

them in RN+ )

M̄ i(t) =
[
E(Mn(t)Ii(t))

]N
n=1

,

i ∈ I . In addition to playing a central role in our performance evaluation framework, these

expressions also allow us to establish the stability condition for this type of queueing network; see

Section 2.4.

The first step is to identify the transient distribution of the environmental process X(·). To this

end, we let πi(t) := P(X(t) = i) for i ∈ I ; this means that π(t) = [πi(t)]
I
i=1 is the transient

distribution vector of the background process. Inserting ϑ = 0 in (2) yields a (homogeneous)

system of coupled linear differential equations:

π′i(t) =

I∑
j=1

Kji∑
k=1

πj(t)α
(k)
ji − πi(t)

I∑
j=1

Kij∑
k=1

α
(k)
ij .

This system can be compactly rewritten as

π′(t) = Ā Tπ(t)

with Ā = [ᾱij ]
I
i,j=1 the corresponding generator matrix with elements, for i, j ∈ I and i 6= j,

ᾱij =

Kij∑
k=1

α
(k)
ij , ᾱii = −

∑
i′ 6=i

ᾱii′ .

We thus find π(t) = exp(Ā Tt)π(0). Observe that Ā is a transition rate matrix (i.e., a matrix with

negative diagonal elements and row sums equal to zero). This entails that, for any t > 0, π(t) is a

probability distribution on I .

Our next objective is to identify the first moments of the queue sizes. To obtain these quantities we

differentiate the full equation (2) with respect to each of the ϑn (n ∈ N ). Plugging in ϑ = 0 then

leads, after some straightforward but tedious algebra, to the following (non-homogeneous) system

of linear differential equations:

M̄
′
i(t) = Liπi(t) + MiM̄ i(t) +

I∑
j=1

AjiM̄ j(t),

with the matrices Li, Mi, and Aij defined as follows.

◦ Firstly, Li :=
[
λ

(i)
n

]N
n=1

, i.e., a column vector with the arrival rates in the different queues

when the background process is in state i ∈ I .

◦ Secondly,

Mi :=
[
µ

(i)
n′n + 1{n = n′}µ̄(i)

n

]N
n,n′=1

, with µ̄(i)
n = −

N∑
n′=0

µ
(i)
nn′ ,
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is the matrix with the departure rates between the different queues when the background

process is in state i ∈ I .

◦ In addition, we introduce the following notation for the multiplicative update process:

Aij :=

Kij∑
k=1

α
(k)
ij A

(k)
ij , Aii :=

Kii∑
k=1

α
(k)
ii A

(k)
ii − ᾱiIN ,

for i, j ∈ I , i 6= j, with IN denoting the (N ×N)-dimensional identity matrix, and with

ᾱi :=

I∑
j=1

Kij∑
k=1

α
(k)
ij .

Moreover, the above set of equations can be a combined into a single equation. To this end,

we define M̄(t) to be the vector [M̄ i(t)]
I
i=1 of dimension J := IN . Also A := [Aji]

I
i,j=1 and

M := diag([Mi]
I
i=1), which are (J × J)-dimensional matrices. Finally, L := diag([Li]

I
i=1) is a

matrix of dimension J × I.

Proposition 2. For any t > 0,

M̄
′
(t) = Lπ(t) + (M + A )M̄(t) . (3)

Solving the differential equation for the transient moment vector (3) leads to the following explicit

solution (in terms of integrals over matrix-exponentials):

M̄(t) = e(M +A )tM̄(0) +

∫ t

0
e(M +A )(t−s)Lπ(s) ds

= e(M +A )tM̄(0) +

∫ t

0
e(M +A )(t−s)L eĀ Tsπ(0) ds. (4)

The stationary means follow from equating M̄(t) to 0 and defining π as the solution to A Tπ = 0,

so that the stationary mean M̄ is given by

M̄ = −(M + A )−1Lπ. (5)

Note, however, that this reasoning tacitly assumes that the underlying queueing network is stable,

an issue we return to in Section 2.4.

Along the same lines higher moments of the queue sizes can be found as well. The higher transient

moments can be phrased in terms of a (non-homogeneous) system of linear differential equations.

The procedure to identify them is of a recursive nature, as determining the n-th transient moment

requires knowledge of the first n−1 transient moments. Similarly, higher stationary moments follow

as solutions to linear equations (under the stability condition), where finding the n-th stationary

moment requires the first n−1 stationary moments being available. For analogous procedures in a

related context, see [15].

2.4. Stability. As it turns out, Prop. 2 facilitates the provision of conditions for the ergodicity of

the Markov chain. Before proceeding to stating and proving our stability result, we first define ω

to be spectral abscissa of M + A , that is

ω := max{Reλ : λ ∈ spec(M + A )}

where spec(M + A ) is the set of eigenvalues of M + A .
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Proposition 3. The Markov chain Z(t) ≡ (M(t), X(t)) is ergodic provided ω is negative.

Proof. To prove the claim, we study the ergodicity of the skeleton Markov chain {Z(∆n);n ∈ N}
for some ∆ > 0. Obviously, if the skeleton Markov chain is ergodic for some ∆ > 0, so is Z(t),

as the mean recurrence time for any state of the skeleton chain is an upper bound for the mean

recurrence time of the original chain Z(t).

Appealing to [2, Prop. I.5.3], it suffices to show that for some ε > 0, ∆ > 0, and M > 0, the

following mean drift condition holds:

E(m,i)

(
‖M(∆)‖1

)
− ‖m‖1 < −ε

for all m with ‖m‖1 > M and all i ∈ I ; the subscript (m, i) indicates that the expectation is

conditional on Z(0) = (m, i).

Define L :=
∑I

i=1

∑N
n=1 λ

(i)
n . From the differential equation for the first moment (3), we derive the

following bound:

E(m,i)

(
‖M(∆)‖1

)
− ‖m‖1 =

∥∥M̄(∆)|M(0)=m,π(0)=ei

∥∥
1
− ‖m‖1

=

∥∥∥∥e(M +A )∆(ei ⊗m) +

∫ ∆

0
e(M +A )(∆−s)Lπ(s)ds

∥∥∥∥
1

− ‖m‖1

6 ‖e(M +A )∆‖1‖m‖1 +

∫ ∆

0
‖e(M +A )(∆−s)‖1 Lds− ‖m‖1

6 ‖m‖1γeω
?∆ + γ L

∫ ∆

0
eω

?(∆−s)ds− ‖m‖1

6 ‖m‖1γeω
?∆ − γ

ω?
L (1− eω

?∆)− ‖m‖1 =: g(∆) ,

for ω < ω? < 0 and where γ > 0 is a constant; see [3, Prop. 11.18.8] for the bound on the norm of

the matrix exponential. Clearly, with R := γL/ω? < 0,

lim
∆→∞

g(∆) = −R− ‖m‖1,

which is negative for ‖m‖1 > −R > 0. Hence, for any choice of M > −R, there exists a ∆ such

that the drift condition of the skeleton chain holds for ‖m‖1 >M. The skeleton chain {Z(∆n)}n∈N
is therefore ergodic, which is inherited by the original Markov process. �

Remark 1. At first sight it may look unnatural that the stability condition is in terms of the

matrices M and A only, and does not involve the external arrival rate matrix L . To get a feel

for the underlying intuition, let us consider the simplest network possible: an isolated infinite-

server queue, with external arrival rate λ > 0, exponential holding times with mean µ−1 > 0, and a

multiplicative transition from state m ∈ N0 to akm (with ak ∈ N0) with rate αk > 0 (k = 1, . . . ,K).

Then, using the results of Section 2.3, the mean number of clients in the queue at time t, denoted

by M̄(t), satisfies the differential equation

M̄ ′(t) = λ+
K∑
k=1

αk(ak − 1)M̄(t)− µM̄(t);

observe that the process goes up by one with rate λ, jumps from m to akm (leading to a net change

of (ak − 1)m) with rate αk, and goes down by one with rate µm. To ensure stability, the mean
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number in the system should not explode. This leads to a stability condition that does not involve

λ, viz. (in self-evident vector notation) 〈α,a− 1〉 < µ. ♦

2.5. Efficient evaluation of performance metrics. In many applications, the performance of

the system during a finite time interval [0, T ] is expressed in terms of quantities of the form

v(T ) :=

I∑
i=1

N∑
n=1

%n,iM̄n,i(T ), w(T ) :=

∫ T

0

I∑
i=1

N∑
n=1

%n,iM̄n,i(t)dt,

for some vector % ∈ RJ and T > 0, with M̄n,i(t) := E
(
Mn(t)Ii(t)

)
. In this section we point out

how to efficiently compute the vectors M̄(T ) and
∫ T

0 M̄(t)dt.

We first study M̄(T ); note that v(T ) then follows upon evaluation of 〈%,M̄(T )〉. The first term

of expression (4) is a matrix-exponential, for which standard evaluation techniques have been

developed; see e.g. [17]. The second term reads B(T ) · π(0), with

B(T ) :=

∫ T

0
e(M +A )(T−s)L eĀ Tsds.

By [22, Thm. 1], B(T ) equals the (J × I)-dimensional top right corner matrix of eCT , where

C :=

[
M + A L

OI,J Ā T

]
(with OI,J defined as an all-zeros matrix of dimension I × J). We thus end up with the following

result.

Lemma 1. For any T > 0,

M̄(T ) = e(M +A )TM̄(0) +
[
IJ ,OJ,I

]
· eCT ·

[
OJ,I

II

]
π(0).

Now we explain how to evaluate
∫ T

0 M̄(t)dt, which facilitates the computation of

w(T ) =

∫ T

0
〈%,M̄(t)〉dt =

〈
%,

∫ T

0
M̄(t)dt

〉
.

Due to Lemma 1,∫ T

0
M̄(t)dt =

∫ ∞
0

e(M +A )tdt · M̄(0) +
[
IJ ,OJ,I

]
·
∫ T

0
eC tdt ·

[
OJ,J

II

]
π(0).

Define, with J+ := J + I, the matrices

C1 :=

[
OJ,J IJ
OJ,J M + A

]
, C2 :=

[
OJ+,J+ IJ+

OJ+,J+ C

]
,

which are of dimensions 2J × 2J and 2J+ × 2J+, respectively. Again applying [22, Thm. 1], we

arrive at ∫ T

0
M̄(t)dt =

[
IJ ,OJ,J

]
· eC1T ·

[
OJ,J

IJ

]
M(0) +

[
IJ ,OJ,I

]
·
[
IJ+ ,OJ+,J+

]
· eC2T ·

[
OJ+,J+

IJ+

][
OJ,J

II

]
π(0).

This can be rewritten in the following more compact form.
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Lemma 2. For any T > 0,∫ T

0
M̄(t)dt =

[
IJ ,OJ,J

]
· eC1T ·

[
OJ,J

IJ

]
M(0) +

[
IJ ,OJ,2J+−J

]
· eC2T ·

[
O2J+−I,I

II

]
π(0).

3. Retrial queues, rerouting, storage systems

In this section we show the power of the framework introduced in the previous section, by pointing

out how it facilitates the modelling of all sorts of relevant phenomena. We specifically focus on:

(i) systems in which nodes go down but in which lost customers attempt reentry, (ii) systems in

which customers are rerouted when one of the links along the route goes down, and (iii) storage

systems.

3.1. Retrial queues. In this subsection we consider a network of faulty service stations. Each

of the stations alternates between being ‘up’ and ‘down’. While a station is in the ‘up’ state it

processes clients as a standard infinite-server queue. Upon going down, all clients present at a

service station move instantly to an associated retrial location, from where they (independently of

each other) try to reenter the service station or renege. For an in-depth account of related retrial

models, we refer to [1]. We note that, to the best of our knowledge, the literature does not cover

the model we study here.

We now point out how this retrial mechanism fits in the framework that we set up in the previous

section. Let the components 1 up to N◦ of M(·) correspond to the service stations in the net-

work, and the components N◦ + 1 up to 2N◦ =: N to the associated retrial locations. Here we

assume that the up-time of station n ∈ {1, . . . , N◦} is exponentially distributed with parameter

γ
(u)
n , and the corresponding down-time is exponentially distributed with parameter γ

(d)
n . We thus

have constructed an environmental process of dimension I = 2N
◦
, where each state of this process

corresponds to the particular set of stations that are up (and consequently also the set of stations

that are down). In the sequel we let S(i) denote the set of stations that are up when the environ-

mental process is in state i. (It is noted that the above model can be extended in a straightforward

manner to the situation in which the up-times and down-times stem from phase-type distributions.

Similarly, Markov-modulated arrivals can be dealt with.)

We let λn be the arrival rate at station n; note that clients arriving at station n when it is down are

immediately placed in the corresponding retrial pool (which is component N◦ + n of M(·)). Also,

let µnn′ denote the rate of being routed (after service completion) from node n to node n′ (with

n′ = 0 corresponding, as always, with the client leaving the network). The rate κn is the retrial

rate at the n-th retrial location (i.e., component N◦+n of M(·)), and νn the corresponding renege

rate (reflecting clients that leave the network from a retrial location, i.e., before being served, e.g.

due to impatience).

Let us now describe how the above parameters translate into the rates of the framework of the

previous section. Suppose the environmental process is in state i. Let us first consider the external

arrivals. Define 1n(i) := 1{n ∈ S(i)}. For n = 1, . . . , N◦, the external arrival rates when the

environmental process is in state i, are given by

λ(i)
n = λn 1n(i), λ

(i)
n+N◦ = λn (1− 1n(i)).
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Regarding the service completions, we have for the service stations (with n, n′ = 1, . . . , N◦)

µ
(i)
nn′ = µnn′ 1n′(i), µ

(i)
n,n′+N◦ = µnn′ (1− 1n′(i)), µ

(i)
n0 = µn0,

and for the retrial locations (again with n = 1, . . . , N◦)

µ
(i)
n+N◦,n = κn 1n(i), µ

(i)
n+N◦,0 = νn.

We now consider the transitions related to the stations alternating between the active and inactive

mode. Two cases are to be distinguished; as it turns out, for all i, j ∈ I we have that Kij = 1.

◦ Suppose that for a j 6= i and some n ∈ {1, . . . , N◦} we have S(i) = S(j) ∪ {n}; then the

background process jumps from i to j after an exponentially distributed time with rate

αij = γ
(u)
n . Note that this transition corresponds to station n failing, and thus clients

being moved to the corresponding retrial location. The vector M(t) is premultiplied by

a (N × N)-dimensional matrix Aij consisting of a 0 on position (n, n), a 1 on position

(n+N◦, n), all diagonal entries except the n-th being 1, and all other entries being 0.

◦ Suppose on the other hand that for i 6= j and some n ∈ {1, . . . , N◦} we have S(j) =

S(i) ∪ {n}; then the background process jumps from i to j with rate αij = γ
(d)
n , without

the network population vector changing. This transition corresponds to station n having

been repaired.

This framework has the potential to support various design issues. In the network described, an

objective may be to keep the fraction of lost clients (due to reneging) below some tolerable level,

say, ε. To this end, define Za(t) as the total number of clients arrived in [0, t] and Z`(t) as the

number of clients lost. With λ defined in the evident way,

EZa(t) =

∫ t

0

I∑
i=1

N∑
n=1

πi(s)λ
(i)
n ds =

∫ t

0
〈λ, π̄(s)〉ds.

Likewise, with η defined appropriately (i.e., a vector of which the first IN◦ entries equals 0 and

the second IN◦ entries equal the appropriate νn),

EZ`(t) =

∫ t

0

I∑
i=1

N∑
n=N◦+1

E
(
Mn(s)Ii(s)

)
νn ds =

∫ t

0
〈ν,M̄(s)〉ds. (6)

The numerical evaluation of the above performance metrics is facilitated by Lemma 2.

Suppose that for a given time horizon T the service requirement is EZ`(T ) 6 ε · EZa(T ). If for

given repair rates γ(d) ≡ (γ
(d)
1 , . . . , γ

(d)
N◦) this condition is not met, one may wonder by how much

the repairs have to be sped up to meet the service requirement. A relevant optimization problem

is then

min
γ(d)
〈γ(d),1〉, subject to EZ`(T ) 6 ε · EZa(T ).

3.2. Rerouting. Routing concerns the selection of a path along which traffic is transmitted. To

make the service level more robust, one may adopt the policy that when a network element fails,

traffic using that network element is routed along an alternative route. For a textbook treatment

of routing in communication networks, we refer to e.g. [13].
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Our present framework can be used to track the number of clients that use the different direct and

indirect routes. The clients along these routes correspond to the customers of our framework and

the queues (i.e., the components of M(·)) record the quantity of clients utilizing each of the direct

and indirect routes. More formally, the rerouting model can be cast in our framework as follows.

Let there be N◦ origin-destination pairs, each connected by a direct route (consisting of one link)

as well as an indirect route (consisting of two links). Let the direct link used by the n-th origin-

destination pair be labelled by n, and let N (n) := {n1(n), n2(n)} (both elements being contained

in {1, . . . , N◦} \ {n}) be the links of the corresponding indirect route. We thus have N = 2N◦

queues, the first N◦ queues corresponding to the number of clients on the direct routes and the

second N◦ queues corresponding to the number of clients on the indirect routes. The parameters

γ
(u)
n and γ

(d)
n correspond to the up-time and down-time of link n. Clients for origin-destination pair

n arrive according to a Poisson process with rate λn, and stay in the system for an exponential time

with parameter µn. We again stress that various generalizations are possible, such as phase-type

up- and down-times and Markov modulated arrival processes; these extensions are conceptually

very similar to the setup we describe here, but notationally burdensome.

Each of the N◦ links can be up or down, so that the background process has I = 2N
◦

states.

Suppose the background process is in state i. Again, 1n(i) := 1{n ∈ S(i)}. For n = 1, . . . , N◦,

λ(i)
n = λn 1n(i), λ

(i)
n+N◦ = λn (1− 1n(i)) 1n1(n)(i) 1n2(n)(i).

All µnn′ = 0 for n, n′ ∈ {1, . . . , N}, and µn0 = µn+N◦,0 = µn.

We now consider the transitions corresponding to links going down (and coming up again). We

distinguish two cases; for all i, j ∈ I we have that Kij equals 0 or 1.

◦ Suppose that for a j 6= i and some n ∈ {1, . . . , N◦} we have S(i) = S(j) ∪ {n}; then the

background process jumps from i to j after an exponentially distributed time with rate

αij = γ
(u)
n . Note that this transition corresponds to link n failing, and thus clients using

this route as a direct route move to the indirect route (if available) and clients using this

link as part of their indirect route are lost. The queue content vector is premultiplied by a

(N ×N)-dimensional matrix Aij consisting of (i) a 0 on position (n, n), (ii) a 1 on position

(n+N◦, n) but only if N (n) ⊆ S(i) (where it is noted that if N (n) 6⊆ S(i), then files are

lost), (iii) a 0 on position (n′ + N◦, n′ + N◦) if {n} ⊆ N (n′) (corresponding to files that

are lost), (iv) all other diagonal entries being 1, and (v) all other entries being 0.

◦ Suppose on the other hand that for i 6= j and some n ∈ {1, . . . , N◦} we have S(j) = S(i) ∪
{n}; then the background process jumps from i to j with rate αij = γ

(d)
n . This transition

corresponds to link n having been repaired. The queue content vector is premultiplied by

a (N × N)-dimensional matrix Aij consisting of (i) a 0 on position (n + N◦, n + N◦), (ii)

a 1 on position (n, n+N◦), (iii) all other diagonal entries being 1, and (iv) all other entries

being 0.

Again, our model can be used to study design questions. As indicated above, clients are lost if both

the direct route and the indirect route are unavailable. Compared to using only direct routes, the

option of indirect routes evidently reduces the number of lost clients, but this comes at the price

of the servers being more intensively used. Let Z`(t) denote, as before, the number of clients lost
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in [0, t]; see Equation (6). In addition, let Zs(t) be the amount of link resources used in [0, t]:

EZs(t) =

∫ t

0

I∑
i=1

N◦∑
n=1

E
(
Mn(s)Ii(s)

)
ds+ 2

∫ t

0

I∑
i=1

N∑
n=N◦+1

E
(
Mn(s)Ii(s)

)
ds;

again Lemma 2 can be used to numerically evaluate this quantity.

With a time horizon T , let %` be the cost of loss and %s the cost of storage, so that the total cost is

%` · EZ`(T ) + %s · EZs(T ). (7)

Its value can be compared to the value of the same objective function in the system without

rerouting. Typically, for small % := %`/%s the system without rerouting is to be preferred, whereas

for large % rerouting pays off. To optimally design the system, it would be useful to have knowledge

of the critical value %? (for which both mechanisms have the same cost, that is).

3.3. Applications to storage networks. In storage networks information is typically stored at

multiple locations (e.g. on multiple data storage servers), so as to mitigate the danger of files

being lost. A relevant design issue concerns developing a policy that controls the fraction of files

lost without unnecessarily replicating them. For a general account of various aspects of storage

networks, see e.g. [18].

Consider a system with K storage locations, each of which can be either ‘up’ or ‘down’. Let the

up-time of location k ∈ {1, . . . ,K} be exponentially distributed with parameter γ
(u)
k , and let the

corresponding down-time exponentially distributed with parameter γ
(d)
k . We thus have constructed

an environmental process of dimension I = 2K , where each state corresponds to the set of locations

that are up (and consequently also the set of locations that are down). We let, for any i ∈ {1, . . . , I},
the set U(i) denote the locations that are up when the environmental process is in state i. We

order the I states such that the state 1 corresponds to all locations up, the states 2 up to K + 1

to all situations with one location down, etc., so that state 2K corresponds to all locations being

down.

Files can be stored on any subset of the locations; there are N = 2K − 1 of these. We let S(n)

denote the locations involved in the n-th subset, for n ∈ {1, . . . , N}. These are ordered in the same

way as above: queue 1 corresponds to files stored at all locations, the queues 2 up to K + 1 to files

stored at all-but-one locations, etc., so that queues 2K −K − 2 up to 2K − 1 correspond to files

stored on just a single location (which are lost if this location fails).

We now argue that this model is covered by the general multiplicative-transition framework that we

introduced in the previous section. Consider the situation that the environmental process is in state

i. Let λn be the (constant) arrival rate that is intended to be stored at the set of locations S(n).

However, if i is such that this is not possible (because some of the locations are down), it is only

stored at the subset of S(n) that is up. This means that, with V (i, n) := {n′ : S(n′)∩U(i) = S(n)},
external arrivals to subset n occur at rate

λ(i)
n =

∑
n′∈V (i,n)

λn′ .
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During operations, files may be copied to additional locations, may be deleted from locations or

may be deleted completely. Therefore, files hop from queue n to n′ with rate µ
(i)
nn′ (with n′ = 0

corresponding to files leaving the network).

We now consider the multiplicative transitions. Two cases are to be distinguished.

◦ Suppose that for some j ∈ {1, . . . , I}, that is assumed to be different from the current

environmental state i, it holds that U(i) = U(j)∪ {k}; then the background process jumps

from i to j after an exponentially distributed time with rate γ
(u)
k (note that this transition

corresponds to the event that location k finishes its up-time, i.e., goes down). Simulta-

neously the N -dimensional queue content vector is premultiplied by a matrix Aij that is

defined as follows. It has a zero on the diagonal positions that correspond to subsets that

contain location k (i.e., n such that {k} ⊆ S(n)). In the same column, it has a one on the

position n′ such that S(n′) = S(n) \ {k} (if any).

◦ Suppose that for i 6= j we have U(j) = U(i)∪{k}; then the background process jumps from

i to j with rate γ
(d)
k (without any change in the network population vector; this transition

corresponds to the event that location k finishes its down-time, i.e., becomes functioning

again).

Recalling that the entries 2K − K − 2 up to 2K − 1 of M(·) correspond to files stored at just a

single location, we can evaluate the mean number of lost files in [0, t] as

EZ`(t) =

∫ t

0

I∑
i=1

2K−1∑
n=2K−K−2

E
(
Mn(s)Ii(s)

)
γ

(u)

n−2K+K+1
ds,

which can be numerically evaluated using Lemma 2.

Consider for example the case of K = 2 locations, so that I = 4 and N = 3. In self-evident notation

we code the 4 states of the background process as

{1, 2, 3, 4} ≡ {{1, 2}, {1}, {2}, ∅}

(with the left-hand side in the previous display being in terms of the elements i ∈ I , and the

right-hand side in terms of the corresponding U(i)). Then Kij = 1 for all i, j ∈ I , and

A12 = A34 =

 0 0 0

1 1 0

0 0 0

 , A13 = A24 =

 0 0 0

0 0 0

1 0 1

 ,

whereas the other A-matrices equal I3 (note that A12 and A34 correspond to location 2 going down,

and A13 and A24 to location 1 going down). In addition,

α12 = α34 = γ
(u)
2 , α13 = α24 = γ

(u)
1 , α21 = α43 = γ

(d)
2 , α31 = α42 = γ

(d)
1 .

4. Numerical experiments

To illustrate the potential of our results, in this section we provide two examples: one on a retrial

queue, and another one on storage networks.
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4.1. Retrial queue. In this first example, we consider a single retrial system, i.e., a two-queue

network consisting of a service station and a retrial location. The service station alternates be-

tween being ‘up’ and ‘down’, with the corresponding durations being exponentially distributed

with parameters γ(u) and γ(d), respectively. Clients arrive with rate λ and their service times are

exponentially distributed with mean µ−1. The rate at which customers in the retrial queue attempt

to reenter service is κ, where the corresponding renege rate is ν.

We now cast this system in the terminology of our overarching model. The background process

can be in two states (so that I = 2); we let state 1 correspond to the station being functioning,

and state 2 to the station being down. The dimension of M(·) is N = 2; the first component

corresponds to the queue at the service station, whereas the second component corresponds to the

retrial pool. The matrices A12 and A21 are given by

A12 =

(
0 0

1 1

)
, A21 =

(
1 0

0 1

)
.

The arrival rates are λ
(i)
n = λ for (i, n) equalling (1, 1) or (2, 2), and otherwise 0. In addition,

µ
(1)
21 = κ, µ

(1)
20 = µ

(2)
20 = ν, µ

(1)
10 = µ, whereas the other departure rates are 0. Also, α12 = γ(u) and

α21 = γ(d).

Let M̄ni(t) be the mean number in queue n when the background process is in state i at time t;

observe that we constructed our model such that M̄12(t) = 0 for all t > 0. The time-dependent

means follow from solving a system of linear differential equations:

M̄ ′11(t) = λπ1(t)− (µ+ γ(u))M̄11(t) + κM̄21(t),

M̄ ′21(t) = γ(d)M̄22(t)− (κ+ ν + γ(u))M̄21(t),

M̄ ′22(t) = λπ2(t) + γ(u)M̄11(t) + γ(u)M̄21(t)− (ν + γ(d))M̄22(t).

We now present the stationary means M̄11, M̄21, and M̄22. Let Γ := γ(u)+γ(d), π1 = γ(d)/Γ = 1−π2.

Sending t → ∞, and letting the derivatives in the above differential equations be equal to 0, we

obtain

M̄21 =
λ γ(u)

Γη

(
µ+ γ(u) + γ(d)

µ+ γ(u)

)
, η := (κ+ ν + γ(u))

ν + γ(d)

γ(d)
− κ γ(u)

µ+ γ(u)
− γ(u),

and

M̄11 =
1

µ+ γ(u)

(
κM̄21 + λ

γ(d)

Γ

)
, M̄22 =

κ+ ν + γ(u)

γ(d)
M̄21.

We now consider the model’s loss ratio `, defined as the long-run fraction of clients leaving the

network without being served (i.e., due to reneging). With M̄21 and M̄22 as computed above,

` =
ν

λ

(
M̄21 + M̄22

)
.

Experiment 1. To control the loss ratio, the service provider may opt for speeding up the repair

times. The above formulas allow us to determine the smallest γ(d) such that the loss ratio ` is

below some maximally allowed value `?; observe that ` is decreasing in γ(d). It requires elementary

calculus to verify that

lim
γ(d)→∞

M̄21 =
λγ(u)

κµ+ νµ+ νγ(u)
, lim

γ(d)→∞
M̄22 = 0,
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Figure 1. Retrial queue: loss ratio `, Experiments 1 and 2.

so that

lim
γ(d)→∞

` =
νγ(u)

κµ+ νµ+ νγ(u)
;

this expression increases in γ(u) and ν and decreases in µ and κ, as expected.

Observe that it in general cannot be guaranteed that there is a γ(d) such that ` 6 `?: the parameters

can be such that ` > `? for all γ(d). This is because even very short down-times lead to the event

of clients simultaneously moving to the retrial queue, where the effect of clients reneging starts to

kick in.

In the numerical experiment we chose λ = 100, κ = 2, ν = 2, µ = 1 and γ(u) = 0.1. First suppose

that the loss ratio should remain below 10%. One needs to take γ(d) larger than 2.1496, as illustrated

by Fig. 1 (left panel). Suppose, on the contrary, that the target is 1%, then this cannot be achieved

by increasing γ(d); based on the above results, we conclude that even by making the repairs very

fast, the loss ratio will (for these values of λ, κ, ν, µ and γ(u)) never get below 0.2/4.2 ≈ 4.76%

(corresponding to the horizontal dashed line in the graph).

Experiment 2. An alternative way to control ` is by making the up-times longer, i.e., by decreasing

γ(u). It is readily verified that

lim
γ(u)↓0

M̄21 = lim
γ(u)↓0

M̄22 = 0,

so that the loss rate ` will be below any critical value `? for γ(u) small enough.

In our numerical experiment we again chose λ = 100, κ = 2, ν = 2, µ = 1, but now we fix γ(d) = 0.5.

We wonder whether in this scenario a loss ratio below 1% can be achieved by tuning γ(u). Fig. 2

(right panel) shows that this is indeed the case: as it turns out, γ(u) should be below 0.0037.

In practice, one may want to find the most cost effective pair (γ(u), γ(d)) such that the performance

requirement is met. With %(u) the cost of making the mean up-times one unit longer, and %(d)

the cost of making the hazard rate corresponding to the down-times one unit larger, a relevant

optimization problem could be of the type

min
γ(u),γ(d)

%(u)

γ(u)
+ %(d)γ(d), subject to ` 6 `?.
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4.2. A storage system. In this example we show how to analyze a specific storage system; it

has some elements in common with the class of models that was introduced in Section 3.3, but

there are a few notable differences. Files arrive according to a Poisson process with rate λ. With

probability p the file will be offered standard service, and with probability 1− p premium service.

A basic file is randomly allocated to one of the two locations (say A and B), where it will stay

until that location goes ‘down’. In our example copies of files are never deleted (except through a

failure of the storage location). A premium file is randomly allocated to one of the locations, but

is then copied at rate µ to the other location. When a location goes ‘down’ in the premium case,

upon repair files are again copied back (also at rate µ, that is). The locations’ up- and down-times

are independent and statistically identical; up-times (down-times, respectively) are exponentially

distributed with rate γ(u) (γ(d)). In this system there are five queues to be kept track of: premium

files on location A, premium files on location B, premium files on locations A and B, basic files on

location A, and basic files on location B.

Experiment 1. The parameters we picked are: λ = 10 000 (i.e., on average 10 000 files arrive per

day), µ = 24 (i.e., it takes on average an hour before a stored file is copied to a second location),

γ(u) = 0.01 (i.e., each of the storage locations are functional on average for consecutive periods of

100 days), and γ(d) = 2 (i.e., it takes 12 hours to repair a storage location). We let the system

start empty at time 0, with both locations being ‘up’ (but other initial conditions are handled in

the precise same way).

The first graphs show, for T = 1 (i.e., one day), the expected number of lost files EZ`(T ), and the

expected integral of the number of stored files, EZs(T ), as functions of the fraction of premium files

p. In the previous section we pointed out how these metrics can be evaluated, but the computation

of EZ`(T ) can be done more efficiently, relying on the following idea; the performance measure

EZa(T ) can be dealt with analogously.

The idea is to append one coordinate to the state space; the resulting extra component MN+1(t)

records the number of files lost in [0, t] (which can be seen as a queue with zero departure rate).

The transform of the vector (M(t),MN+1(t)) ∈ NN+1
0 (jointly with the state of the environmental

process) can be characterized in the precise same way as that of just M(t), i.e., by setting up

a system of partial differential equations. This provides us with an expression for EZ`(T ) of the

form (4). Observe that it entails that we can evaluate the quantity EZ`(T ), which can be evaluated

using Lemma 1; in this way we avoid evaluating integrals of the type of (6).

The graphs in Fig. 2 show, for T = 1, that EZs(T ) increases in p (left panel), whereas EZ`(T )

decreases in p (right panel), as expected.

Experiment 2. We now consider a cost function that is a linear combination of EZ`(t) and EZs(t),
i.e., (7). In this case the optimal design amounts to minimizing the objective function (7) with

respect to the fraction p ∈ [0, 1]. Let %` and %s again respectively correspond to the cost of a lost

file and the cost of a unit of storage per unit time. Clearly, p? = 0 for % ↓ 0 (as losing files is not

penalized), whereas p? = 1 for % ↑ ∞ (as storing files is not penalized). Bearing in mind the shapes

of EZ`(t) and EZs(t), as depicted in Fig. 2, the optimization of a linear combination of EZ`(t) and

EZs(t) leads to p? equalling either 0 or 1. The left panel of Fig. 3 shows the region in which the
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Figure 2. Storage system: EZ`(T ) and EZs(T ) as functions of p, Experiment 1.
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Figure 3. Storage system: areas in which p? equals 0 and 1, for different values of the rates γ(d)

and γ(u) on the horizontal axis and ‘cost ratio’ % on the vertical axis, Experiment 2.

optimal p? is 0 or 1, for combinations of γ(d) and % := %`/%s with %s fixed equal to one and γ(u)

equal to one (and all other parameters as in Experiment 1). In the right panel of Fig. 3 we show a

similar picture, but now with γ(u) on the horizontal axis.

Experiment 3. We now vary the value of the repair rate γ(d) with the goal of achieving a prede-

termined performance target. For any value of p we compute the minimally required repair rate

(defined as γ̄(d)) from γ(d) ∈ [0, 24], in an attempt to ensure that the loss fraction EZ`(T )/EZa(T )

is below 0.05 (where we pick T = 2). Observe that the constraint γ̄(d) 6 24 amounts to imposing

the requirement that repairs must be expected take at least 1 hour to perform.

Inspection of Fig. 4 immediately reveals that for p smaller than 0.5 we are unable to achieve our

desired loss fraction using only the available changes in γ(d). Indeed it is conceivable that for small

p there does not exist a repair rate such that the loss fraction goes below 0.05, a phenomenon

similar to that which we earlier saw in Experiment 1 for the retrial queue. As p is increased within

[0, 0.5] we see an approximately linear decrease in the loss fraction resulting from the increased

proportion of files being placed in the premium category (where they are unlikely to become lost).

For p ∈ [0.5, 0.8], we observe that we are able to achieve our desired loss fraction; moreover the

storage location can be repaired increasingly slowly if more files are multiply stored (i.e., when p
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Figure 4. Storage system: γ(d) and the corresponding proportion of files lost for different values

of the fraction p, Experiment 3.

increases). This effect initially results in a very rapid decrease in the repair rate but has less of an

impact as p is increased closer to 0.8, at which point the repair rate can no longer be traded off

against increased duplication. Notice that the mechanism by which γ(d) decreases basic file losses

is by reducing the portion of [0, T ] during which both storage locations are inoperable; this variable

has no effect on basic files which are accepted into the system only to be lost due to a failure later.

Hence, focusing on basic files, it can be seen that eventually the effect of γ(d) on the portion of [0, T ]

for which both storage locations are inoperable becomes negligible compared to the reductions in

losses from increasing p. The result of this is that for p > 0.8 the loss fraction continues to decrease

approximately linearly as more files are placed in the very safe premium category, as we saw for

p < 0.5.

5. Discussion and concluding remarks

In this paper we studied a network of Markov-modulated infinite-server queues with the distin-

guishing feature that it also incorporates events by which the network population vector makes

multiplicative transitions (at which it changes from m to Am, for some matrix A). As we argued,

the resulting framework covers various relevant models as special cases; for example, it enables the

modelling of retrial queues, networks with rerouting, and storage systems.

Our results for the system’s transient behavior are in terms of (i) a system of partial differential

equations describing the moment generating function of the network population vector, and (ii) a

procedure to compute moments. In these expressions time t can be sent to ∞ so as to obtain the

corresponding stationary behavior, under the proviso that the stability condition applies.

Future research. The model we have developed triggers various intriguing research questions. In

the first place, one may wonder whether under a specific scaling of the parameters one could find a
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weak limit for its transient or stationary behavior. Such a procedure has been developed in [4, 15]

for Markov-modulated infinite-server queues without multiplicative transitions. For that model the

limiting process (after scaling the arrival rates and the environmental process) is a multivariate

Ornstein-Uhlenbeck process. In this diffusion limit all limiting marginal distributions (and the

model’s stationary distribution, too) are asymptotically Normal. For our model however, with

multiplicative transitions that is, it is anticipated that there is no limiting process of diffusion type,

due to the possibly large jumps caused by the multiplicative transitions; cf. [7]. In particular, the

marginal distributions are expected to be asymmetric.

Scaling the external arrival rates by a common factor, say K, it is seen from (5) that the stationary

mean also grows proportionally to K. Calling the stationary distribution under this scaling M (K),

one may want to asymptotically characterize large-deviation probabilities of the type

pK := P

(
M (K)

K
∈ S

)
,

for K large and a set S that does not contain EM (K)/K = −(M + A )−1Lπ. It is not clear

how such asymptotics can be found; observe that due to the multiplicative transitions the model

does not fit in the Freidlin-Wentzell framework [20], so that standard large-deviation techniques

are likely to fail.

Other challenges lie in the application of our techniques to develop design principles for various

sorts of operational networks. For instance for storage networks, one may want to develop an

optimal replication policy, striking a proper balance between controlling the risk of files being lost

and excessively using storage space.
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