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ABSTRACT
Cloud services and other shared third-party infrastructures allow

individual content providers to easily scale their services based on

current resource demands. In this paper, we consider an individual

content provider that wants to minimize its delivery costs under the

assumptions that the storage and bandwidth resources it requires

are elastic, the content provider only pays for the resources that it

consumes, and costs are proportional to the resource usage. Within

this context, we (i) derive worst-case bounds for the optimal cost

and competitive cost ratios of different classes of cache on Mth

request cache insertion policies, (ii) derive explicit average cost

expressions and bounds under arbitrary inter-request distributions,

(iii) derive explicit average cost expressions and bounds for short-

tailed (deterministic, Erlang, and exponential) and heavy-tailed

(Pareto) inter-request distributions, and (iv) present numeric and

trace-based evaluations that reveal insights into the relative cost

performance of the policies. Our results show that a window-based

cache on 2
nd request policy using a single threshold optimized

to minimize worst-case costs provides good average performance

across the different distributions and the full parameter ranges of

each considered distribution, making it an attractive choice for a

wide range of practical conditions where request rates of individual

file objects typically are not known and can change quickly.
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1 INTRODUCTION
Cloud services and other shared infrastructures are becoming in-

creasingly common. These infrastructures are typically third-party

operated and allow individual service providers using them to eas-

ily scale their services based on current resource demands. In the

context of content delivery, rather than buying and operating their

own dedicated servers, many content providers are already using

third-party operated Content Distribution Networks (CDNs) and

cloud-based content delivery platforms. This trend towards using

third-party providers on an on-demand basis is expected to increase

as new content providers enter the market.

Motivated by current on-demand cloud-pricing models, in this

paper, we consider an individual content provider that wants to

minimize its delivery costs under the assumptions that the resources

it requires to deliver its service are elastic, the content provider only
pays for the resources it consumes, and costs are proportional to the

resource usage. For the purpose of our analysis, we consider a

simple cost model in which the content provider pays the third-

party service for (i) the amount of storage it consumes due to

caching close to the end-users and (ii) the amount of (backhaul)

bandwidth that it and its end-users consume. Under this model,

we then analyze the optimized delivery costs of different cache on
Mth request cache insertion policies when using a Time-to-Live

(TTL) based eviction policy in which a file object remains in the

cache after insertion until a time interval T has elapsed without

any requests for the object.

It is important to note that although use of a TTL eviction pol-

icy has been shown useful in approximating the performance of a

fixed-size Least-Recently-Used (LRU) cache when the number of

file objects is sufficiently large [4, 5, 8, 9, 16, 17], and our results may

therefore provide some insight for this case, it is not the focus of

this paper. Here we assume elastic resources, where cache eviction

is not needed to make space for a new insertion, but rather to re-

duce cost by removing objects that are not expected to be requested

again soon. A TTL-based eviction policy is a good heuristic for

such purposes. Cloud service providers already provide elastic pro-

visioning at varying granularities for computation and storage, and

in the context of trends such as serverless computing, in-memory

caching, and multi-access edge computing, we believe that support

for fine-grained elasticity may increase in the future.

In the past, selective cache insertion policies have been shown

valuable in reducing cache pollution due to ephemeral content

popularity and the long tail of one-timers observed in edge net-

works [6, 20, 24, 27]. However, prior work has not bounded or

optimized the worst-case delivery costs of such policies.

In this paper, we first present novel worst-case bounds for the

optimal cost and competitive cost-ratios of different variations

of these policies. Second, we derive explicit average cost expres-

sions and cost ratio bounds for these policies under arbitrary inter-

request time distributions, assuming independent and identically

distributed request times, as well as for specific short-tailed (de-

terministic, Erlang, and exponential) and heavy-tailed (Pareto)

inter-request time distributions. Our analysis includes compar-

isons against both optimal offline policy bounds and, for the case

when hazard rates are increasing or constant, optimal online policy
bounds; all derived here. Finally, we present numeric and trace-

based evaluations and provide insights into the relative cost perfor-

mance of the policies.

Our analysis reveals that window-based cache on Mth request
cache insertion policies can substantially outperform policies that

do not take into account the recency of prior object requests when

making cache insertion decisions. With window-based cache on
Mth request policies a counter is maintained for each uncached

object that has been requested at least once within the last W
time units. A newly allocated counter is initialized to one, and the

counter is incremented by one whenever the object is referenced

withinW time units of its most recent previous request. The object

is inserted into the cache whenever the counter reaches M . Our
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results show that a single parameter version of this policy can be

used beneficially, in whichW = T , and that the best worst-case

bounds are achieved by selecting the window sizeW = T equal to

the time that it takes to accumulate a cache storage cost (for that

object) equal to the remote bandwidth costR associatedwith a cache

miss (for that object). With these protocol settings, the worst-case

bounds of the window-based cache onMth request policies have a
competitive ratio ofM + 1 (compared to the optimal offline policy).
While these ratios at first may appear discouraging for largerM , our

average case analysis for different inter-request time distributions

clearly shows substantial cost benefits of using intermediateM such

as 2-4, with the best choice depending on where in the parameter

region the system operates. For less popular objects a slightly larger

M (e.g., M = 4) may be beneficial; however, in general, window-

based cache onMth request withM = 2 typically provides the most

consistently good average performance across the full parameter

ranges of each considered distribution. Overall, the results show

that using this policy with optimal worst-case parameter setting

(i.e.,W = T = R) may be attractive for practical conditions, where

request rates of individual objects typically are not known and can

change quickly.

The remainder of the paper is organized as follows. Sections 2

and 3 present our system model and the practical insertion poli-

cies considered, respectively. Section 4 presents the optimal offline
policy and derives worst-case bounds for the different insertion

policies. Section 5 presents cost expressions for the optimal offline
bound under both arbitrary and specific distributions. Section 6

presents the corresponding expressions for an optimized baseline

policy that assumes knowledge of the precise inter-request time

distribution for each object, and shows that this policy has the same

performance as the optimal online policy when hazard rates are in-

creasing or constant. Section 7 then derives general cost expressions

for the practical insertion policies, before Section 8 presents the

distribution-specific expressions, analyzes the relative performance

of the policies, and compares their costs against the offline opti-
mal and optimized baselines. Section 9 complements the single-file

analysis results with both analytic and trace-based multi-file eval-

uations. Finally, Section 10 discusses related work and Section 11

presents our conclusions.

2 SYSTEM MODEL
Initially, let us consider the costs associated with a single file object

as seen at a single cache location. (The multi-file case is considered

in Section 9.) Furthermore, without loss of generality, for this object

and location, let us assume that the provider pays (i) a (normalized)

storage cost of 1 per time unit that the file object is stored in the

cache and (ii) a remote bandwidth cost R each time a request is made

to an object currently not in cache. At these times, the file object

needs to be retrieved from the origin servers (or a different cache),

which results in additional bandwidth costs (and delivery delays).

Note that R is defined as the incremental delivery cost, beyond that

of delivering the content from the cache to the client. This latter

(typically much smaller) baseline delivery cost is therefore policy

independent and always incurred. We obtain worst-case bounds

on cost ratios by assuming it to be zero. Setting it to zero also

allows us to entirely focus on the policy dependent costs. Finally,

note that a third party service’s accounting for storage and remote

bandwidth costs would, in practice, be based on particular time,

size, and bandwidth granularities. The finer-grained the accounting,

the more closely our model would correspond to the real system.

At the time a request is made for a file object not currently in the

cache, the system must, in an online fashion, decide whether the

object should be cached or not. Naturally, the total delivery cost of

different caching policies will depend substantially on the choices

made and the request patterns of consideration.

To illustrate the impact of these choices, consider the most basic

TTL-based cache policy that inserts a file object into the cache

whenever a request is made for the object (and the object is not

currently in the cache) and retains the object until T time units

elapse with no requests. This policy would incur a total cost of R+T
if a single request is made for the object. However, if it was known

that the object would only receive a single request, it would be

optimal to not cache the object at all. In this case, it is easy to see that

the minimal delivery cost is R. For this particular example, the cost

ratio between the basic TTL-based policy and the (offline) optimal is

therefore
R+T
R . In general, we want these cost ratios to be as small as

possible both for (i) worst-case request patterns where an adversary

selects the request pattern and (ii) average case scenarios with more

realistic request patterns. Section 4 and Sections 5-7 provide worst-

case and average-case analysis, respectively, for different TTL-based

cache onMth request insertion policies (Section 3).

3 INSERTION POLICIES
In this paper, we compare the delivery costs of different cache on
Mth request insertion policies when using a TTL-based eviction

policy in which an object remains in the cache after insertion until a

time intervalT has elapsed without any requests for the object. Note

that with elastic resources, eviction is not needed for making room

for new objects, but instead is needed for reduction of storage costs.

As we show, a simple TTL rule is very effective for this purpose.

We next describe the insertion policies considered in this paper.

• Always on 1
st (T ): Always cache a requested object if not

in the cache already and keep it in the cache until T time

units have passed since the most recent request.

• Always on Mth (M,T ): The system maintains a counter

for how many times each uncached object has been re-

quested. When the counter reachesM the object is cached,

and is kept in the cache until T time units have passed

since the most recent request, at which point the object

is evicted and the counter is reset to 0. For M = 1, this

corresponds to always on 1
st
.

• Single-window on Mth (M,T ): The system maintains a

counter for each uncached object that has been requested

at least once within the last T time units. The respective

counter is initialized to one the first time that a request is

made to an object or when a request is made to an object

that has not been requested within the last T time units.

The counter is incremented by one whenever the object is

referenced within T time units of its most recent previous

request. Finally, when the counter reaches M , the object is

cached. Again, the object remains in the cache until a time

2



interval T has elapsed without any requests for the object.

ForM=1, this policy corresponds to always on 1
st
.

• Dual-window on 2
nd (W ,T ): This policy is similar to

single-window on 2nd , but uses a potentially tighter time

thresholdW ≤ T for determining when to add an object

to the cache. With the dual-window on 2
nd

policy, when

an uncached object is requested it is added to the cache

if there has been a previous request for the object within

the lastW time units, and is kept in the cache until T time

units have passed since the most recent request. This policy

reduces to the basic single-window on 2
nd

whenW = T .

4 WORST CASE BOUNDS
For this analysis we consider an arbitrary request sequence A =
{ai } for a single object with N requests, where ai is the inter-

request time between requests i and i − 1 (2 ≤ i ≤ N ). We assume

that the object is initially uncached.

4.1 Offline optimal lower bound
We first derive the cost expression for the optimal (offline) caching

policy (across all possible policy classes; not restricted to TTL-based

policies) for the case when the cache has perfect prior knowledge of

the request sequenceA. The first request will always incur a remote

bandwidth cost R. For each of the later requests i (2 ≤ i ≤ N ), in

the (offline) optimal case, the object should have been cached (if not

already in the cache) at the time of the (i − 1)st request and remain

retained until at least the ith request, whenever ai < R. On the

other hand, if ai > R, the object should not have been cached at the

time of the i − 1
st

request, or should have been dropped from the

cache (if it was already in the cache) just after serving request i − 1.

In this case, the ith request should incur the remote bandwidth cost

R. The following lemma regarding the (offline) optimal cost follows

directly from these observations.

Lemma 4.1. Given an arbitrary request sequenceA, the minimum
total delivery cost of the optimal offline policy is:

C
of f l ine
opt = R +

N∑
i=2

min[ai ,R]. (1)

Lemma 4.1 provides a fundamental offline bound for all caching
policies. We next derive worst-case bounds for the various online

policies outlined in Section 3.

4.2 Always on 1
st (T )

For an arbitrary request sequence A, this (online) policy incurs a

total delivery cost equal to:

C
always
M=1,T = R +T +

N∑
i=2

xi , (2)

where

xi =

{
T + R, if ai > T
ai , otherwise.

(3)

Here, and throughout the paper, we use the superscript on the

cost C to indicate the class of insertion policy, the subscript to

indicate the parameters being used by the policy, and potential

parameter assignment to indicate potential special cases considered.

In equation (2), the R term corresponds to the cost of retrieving a

copy of the object to serve the first request in the sequence and

the T term corresponds to the cache storage cost incurred after

the last request. For requests 2 ≤ i ≤ N , equation (3) then takes

into account whether request i occurs withinT of the prior request

(implying an additional storage cost of ai ) or the object has been
removed from the cache prior to the request (implying an additional

storage cost T before the object was evicted and a bandwidth cost

R to retrieve a new copy). Given equations (1)-(3), it is now possible

to show the following theorem.

Theorem 4.2. The best (optimal) competitive ratio using always
on 1

st is achieved with T = R and is equal to 2. More specifically,

max

A

C
always
M=1,T=R

C
of f l ine
opt

≤ max

A

C
always
M=1,T

C
of f l ine
opt

(4)

for all T , and
Calways
M=1,T=R

Cof f l ine
opt

≤ 2 for all possible sequences A = {ai }.

Proof. We consider an arbitrary request sequence A with N
requests and then bound the cost ratio based on the worst-case

patterns that an adversary could create. For this and the following

proofs we note that the first request always must incur a remote

bandwidth cost R and then focus on the worst-case pattern of the

remaining N − 1 requests.

Case T ≤ R: For the remaining N − 1 requests, let us define

the following sets: S = {i |ai ≤ T }, S ′ = {i |T < ai ≤ R}, and
S ′′ = {i |R < ai }. Note that the set S consists of those requests

that would result in cache hits, if using always on 1
st
, while the

requests in the other sets would result in cache misses. Also, note

that the requests in both set S and S ′ would result in the optimal
offline policy retrieving the object from the local cache. Now, for

any request sequence A, we have the following relations:

C
always
M=1,T

C
of f l ine
opt

=
R +

∑
i ∈S ai + (|S ′ | + |S ′′ |)(T + R) +T

R +
∑
i ∈S ai +

∑
i ∈S ′ ai + |S ′′ |R

≤ (R +T )(1 + |S ′′ |) + (R +T )|S ′ |
R(1 + |S ′′ |) +∑

i ∈S ′ ai

≤ (R +T )(1 + |S ′′ |) + (R +T )|S ′ |
R(1 + |S ′′ |) + |S ′ |T ≤ R +T

T
. (5)

To establish the three inequalities in (5) we have used that: (i)

X+
∑
i∈S ai

X (1−ϵ )+∑i∈S ai
≤ X

X (1−ϵ ) for 0 ≤ ϵ ≤ 1 and

∑
i ∈S ai ≥ 0, (ii)

T ≤ ai when i ∈ S ′, and (iii)
d
dx (

R+T
R(1−x )+xT ) = − (R+T )(T−R)

(R+x (T−R))2 ≥ 0

when T ≤ R, respectively. Clearly, since R+T
T is monotonically

decreasing for the range 0 ≤ T ≤ R, the (above) worst-case bound
is tightest when T → R (equal to 2).

Case R ≤ T : Let us define the following sets for 2 ≤ i ≤ N :

G = {i |ai < R}, G ′ = {i |R ≤ ai ≤ T }, and G ′′ = {i |T < ai }.
Here, sets G and G ′

consist of those requests that would result in

cache hits with always on 1
st
, but only the requests in set G would

result in cache hits with the optimal offline policy. Using a similar
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approach as for the first case, we obtain the following:

C
always
M=1,T

C
of f l ine
opt

=
R +

∑
i ∈G ai +

∑
i ∈G′ ai + |G ′′ |(T + R) +T

R +
∑
i ∈G ai + (|G ′ | + |G ′′ |)R

≤ (R +T )(1 + |G ′′ |) +∑
i ∈G′ ai

R(1 + |G ′′ |) + |G ′ |R

≤ (R +T )(1 + |G ′′ |) +T |G ′ |
R(1 + |G ′′ |) + |G ′ |R ≤ R +T

R
. (6)

Here, the first inequality is derived in the same way as the first in-

equality in (5), the second inequality uses the fact that ai ≤ T when

i ∈ G ′
, and the third inequality uses the fact that

d
dx (

(R+T )(1−x )+Tx
R ) =

−1 < 0. Now, since
R+T
R has its minimum in the range R ≤ T when

T = R, we have that T = R provides the tightest bound (equal to 2).

Finally, inserting T = R into either of the two bounds, we obtain

the worst-case bound of 2. The bound is tight and is achieved, for

example, when requests are evenly spaced byT + ϵ , for some ϵ > 0.

In this case, |S | = |G | = |G ′ | = 0 and

Cawlays
M=1,T=R

Cof f l ine
opt

= T+R
R = 2. □

4.3 Always onMth (M,T )
By generalizing the techniques used to prove the worst-case prop-

erties of always on 1
st

to consider additional counter states, it is

possible to prove the following theorem.

Theorem 4.3. The best (optimal) competitive ratio using the al-
ways on Mth policy is achieved with T = R and is equal to M + 1.
More specifically,

max

A

C
always
M,T=R

C
of f l ine
opt

≤ max

A

C
always
M,T

C
of f l ine
opt

(7)

for all T , and
Calways
M,T=R

Cof f l ine
opt

≤ M + 1 for all possible sequences A = {ai }.

A proof for Theorem 4.3 is provided in the Appendix. Similar

to the proof for always on 1
st
, the proof identifies sets of inter-

request times ai based on differences and similarities in how the

always onMth
policy and the optimal offline policy treat these sets

of requests. In particular, sets are defined based on the states of the

always on Mth
policy (depending on the object’s caching status

and, if uncached, counter value) and how ai relates to T and R.
This generalizes the number of (mutually exclusive) sets of requests

from 2 × 3 for the always on 1
st

policy, to 2 × (2M + 1) for the
general always on Mth

policy, where 2M + 1 sets are needed for

each of the two cases when T ≤ R and R ≤ T , respectively.
Using this proof method, we also identify a request pattern that

shows that the bound is tight. In particular, the worst-case bound

is achievable by a request pattern in which requests occurs in

batches ofM requests,
1
and the batches are separated by more than

max[R,T ] time units. To see this, let us consider the T ≤ R case. In

this case, with the above request sequence, in each batch cycle, the

always onMth
policy downloads the objectM times, finally stores

1
Here, we consider a “batch” to consist of sufficiently closely spaced requests that the

inter-request times are negligible, but where the requests still are treated as individual

requests, and the cache still needs to make individual decisions whether to cache or

not to cache the object at the time of each of these requests.

a copy at the time of theMth
request, and then keeps it in the cache

for R time units. This pattern results in a total cost of (M + 1)R
per batch. In contrast, the optimal offline policy downloads a single

copy (at cost R), serves all M requests using this copy, and then

immediately deletes the copy, incurring negligible storage costs.

The argument for the R ≤ T case is analogous.

4.4 Single-window onMth (M,T )
While the number of counter states to consider is the same for

single-window on Mth
as for always on Mth

, the possible state

transitions when the counter is belowM differ (e.g., counter is reset

each time there is no request within a window T ). To account for

this, our proof of the following theorem for the single-window on
Mth

policy requires 2× (M − 1) additional sets to be defined (M − 1

for when T ≤ R andM − 1 for when R ≤ T ).

Theorem 4.4. The best (optimal) competitive ratio using the single-
window onMth policy is achieved withT = R and is equal toM + 1.
More specifically,

max

A

Cwindow
M,T=R

C
of f l ine
opt

≤ max

A

Cwindow
M,T

C
of f l ine
opt

(8)

for all T , and
Cwindow
M,T=R

Cof f l ine
opt

≤ M + 1 for all possible sequences A = {ai }.

A proof for Theorem 4.4 is provided in the Appendix. Interest-

ingly, the same request pattern, with batches of sizeM separated

by at least max[T ,R], as used to show that Theorem 4.3 is tight,

provides proof that Theorem 4.4 is tight.

4.5 Dual-window on 2
nd (W ,T )

Using similar methods as used in prior subsections (this time based

on 3 × 8 sets, accounting for the relationship of ai toW , T and R),
it is possible to prove the following theorem establishing that dual-
window on 2nd has the same worst-case properties as single-window
on 2

nd
. A proof is provided in the Appendix.

Theorem 4.5. The best (optimal) competitive ratio using the dual-
window on 2

nd policy is achieved with T =W = R and is equal to 3.
More specifically,

max

A

Cwindow
M=2,W =R,T=R

C
of f l ine
opt

≤ max

A

Cwindow
M=2,W ,T

C
of f l ine
opt

(9)

for all W and T , and
Cwindow
M=2,W =R,T=R

Cof f l ine
opt

≤ 3 for all possible request

sequences A = {ai }.

5 STEADY-STATE: OFFLINE BOUND
Thus far our results have not made any restrictions to the request

sequences. For the remaining analysis in this paper, we assume

that inter-request times are independent and identically distributed.

Under this assumption, we derive expressions for a general inter-

request time distribution f (t)with cumulative distribution function

F (t), as well as for specific example distributions. In the following,
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we let E[ai ] denote the average inter-request time, we let

E[ai |ai ≤ X ] =
∫ X
0

t f (t)dt∫ X
0

f (t)dt
= X − 1

F (X )

∫ X

0

F (t)dt (10)

denote the average inter-request time given that the inter-request

time is no more than X time units, and we let

P(a ≤ X |a > Y ) =
∫ X
Y f (t)dt∫ ∞
Y f (t)dt

=
F (X ) − F (Y )
1 − F (Y ) (11)

denote the (conditional) probability that an inter-request time is

no more than X given that the inter-request time is greater than Y
time units. In this section we derive results for the optimal offline
policy, while in Sections 6-8 we consider online policies.

5.1 General inter-request time distribution
Throughout this analysis we will derive expressions for the average

cost per time unit. For the (optimal) offline policy, this cost can be

calculated as the expected cost associated with an arbitrary request

divided by the average inter-request time E[ai ]:

C
of f l ine
opt =

1

E[ai ]

[∫ R

0

t f (t)dt + R
∫ ∞

R
f (t)dt

]
=

1

E[ai ]

[
[tF (t)]R

0
−

∫ R

0

F (t)dt + R(1 − F (R))
]

=
1

E[ai ]

[
R −

∫ R

0

F (t)dt
]
. (12)

Here, we associate all requests with inter-request times t less than
R with the cost t to keep the object in the cache for an additional t
time units (first integral in the first line), while all other requests

(with R < t ) incur a cost R (second integral in the first line). We

then use integration by parts (step 2) and algebraic simplifications

(step 3) to derive the final expression.

5.2 Example distributions
We next consider four example distributions.

Exponential: Assuming a Poisson process, with exponential

inter-request times, we have

f (t) = λe−λt , F (t) = 1 − e−λt , E[ai ] =
1

λ
(13)∫ t

0

F (t)dt = t − 1 − e−λt

λ
. (14)

Through insertion of these equations into equation (12) we obtain

the following cost function:

C
of f l ine
opt = λ

[
R − 1 − e−λR

λ

]
= 1 − e−λR . (15)

Erlang:We next consider Erlang distributed inter-request times

with shape parameter k (integer) and rate parameter λ > 0:

f (t) = λk tk−1e−λt

(k − 1)! , F (t) = 1 −
k−1∑
n=0

1

n!
e−λt (λt)n , E[ai ] =

k

λ
,

(16)∫ t

0

F (t)dt = t − k

λ
+
e−λt

λ

k∑
m=1

m−1∑
n=0

(λt)n
n!
. (17)

Substitution into equation (12) yields:

C
of f l ine
opt = 1 − e−λR

k

k∑
m=1

m−1∑
n=0

(λR)n
n!
. (18)

Deterministic: In the extreme case for low variability, all inter-

request times are equal to a constant a. Let δa (t) andua (t) represent
the Dirac delta function and the unit step function, both with (unit)

singularities at t = a. Then, we have:

f (t) = δa (t), F (t) = ua (t), E[ai ] = a, (19)∫ t

0

F (t)dt = max[0, t − a]. (20)

Substitution into equation (12) yields:

C
of f l ine
opt = min[1, R

a
]. (21)

Pareto: Finally, we consider Pareto distributed inter-request

times (as an example of heavy-tailed distributions) with shape

parameter α > 1 (when 0 < α ≤ 1 the expected inter-request time

is infinite) and scale parameter tm > 0. In this case, we have:

f (t) = αtαm
tα+1

, F (t) = 1 −
( tm
t

)α
, tm ≤ t ,

(22)

E[ai ] =
αtm
α − 1

, (23)∫ t

0

F (t)dt =
{

t +
t( tmt )α−tmα

α−1 , tm ≤ t
0, t < tm .

(24)

Substitution into equation (12) yields:

C
of f l ine
opt =


1 − 1

α

(
tm
R

)α−1
, tm ≤ R

R(α−1)
α tm , R < tm .

(25)

6 STEADY-STATE: STATIC BASELINE POLICY
WITH KNOWN INTER-REQUEST
DISTRIBUTION

To provide some estimates for the best possible online cache per-
formance, in this section we consider the case when an “oracle”

provider knows the precise inter-request time distribution for each

object. For this case, we consider a static baseline policy that tries

to minimize the delivery cost by selecting between the extremes of

(i) always keeping the object in the cache, or (ii) never caching the

object.
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6.1 Optimal online policy when
non-decreasing hazard rate

Interestingly, the static baseline provides an online bound when the

inter-request distribution parameters are known and the distribu-

tion has an increasing or constant hazard rate.

Theorem 6.1. Static baseline achieves the minimum cost of any
online policy when the inter-request distribution has an increasing
or constant hazard rate.

Proof. Since inter-request times are IID, we need consider only

a single representative inter-request time between requests i − 1

and i , for some i ≥ 2. After servicing request i − 1, any online

policy will, at each subsequent instant of time up to the time of

request i or until the object is discarded, need to decide whether to

retain the object in the cache, or evict it. The only information the

online policy can use to make this decision is the elapsed time since

request i − 1. Therefore, any online policy will have a threshold

parameter t∗, such that as long as the time since request i − 1 is

less than t∗, the object is retained. If time t∗ elapses before getting
request i , the object is evicted. Letting C(t∗) denote the expected
cost incurred from after servicing request i − 1, up to and including

the servicing of request i , we have:

C(t∗) = F (t∗)E[ai |ai ≤ t∗] + (1 − F (t∗))(R + t∗). (26)

Using expression (10) and simplifying gives:

C(t∗) = R(1 − F (t∗)) + t∗ −
∫ t ∗

0

F (t)dt. (27)

Taking the derivative with respect to t∗ gives:

dC(t∗)
dt∗

= 1 − F (t∗) − Rf (t∗). (28)

A constant hazard rate corresponds to an exponential distribution,

and for this case it is straightforward to show that the derivative

is negative for all t∗, positive for all t∗, or is constant at 0 for all
t∗ (when Rλ = 1), implying that the static baseline policy achieves

minimum cost. Consider now the case of increasing hazard rate,

and note that the derivative is zero when R = 1−F (t ∗)
f (t ∗) .

Whether such a point is a minimum or maximum depends on

the second derivative, given by

d2C(t∗)
d2t∗

= −f (t∗) − R
d f (t∗)
dt∗

. (29)

At a point where R = 1−F (t ∗)
f (t ∗) , the second derivative is less than

zero exactly when the derivative of the hazard rate at this point

(the derivative of f (t∗)/(1 − F (t∗))) is positive. And so, when there

is an increasing hazard rate, any point where R = 1−F (t ∗)
f (t ∗) is a local

cost maximum, and the minimum cost must occur for t∗ = 0 or

t∗ → ∞. □

Corollary 6.2. For inter-request time distributions such that (i)
there is a unique value of t∗ where R = (1− F (t∗))/f (t∗), and (ii) the
derivative of the hazard rate at this value is negative, the minimum
cost over all online policies is achieved with t∗ set to this value.

Note that the cache on Mth
policies are identical to the static

baseline if T (andW in the case of dual-window) are chosen to be

either 0 or ∞, whichever gives the best performance. Therefore,

since static baseline provides an online boundwhen the inter-request
distribution parameters are known and the distribution has an

increasing or constant hazard rate, also the cache onMth
policies

with optimized parameters achieve this bound in this case.

In contrast to the case of the short-tailed distributions (deter-

ministic, Erlang, and exponential), for which static baseline is the
optimal online policy, with Pareto (and other heavy-tailed distri-

butions) the competitive ratio of static baseline is unbounded (see

Theorem 6.6 for the case of the Pareto distribution) even when

request rates are known. For a Pareto distribution, using (22) to sub-

stitute for F (t∗) and f (t∗) in R = (1 − F (t∗))/f (t∗) yields t∗ = Rα ,
under the condition that t∗ = Rα ≥ tm . Since Pareto has decreasing

hazard rate for t ≥ tm , applying Corollary 6.2 the optimal online
policy for a Pareto inter-request time distribution sets t∗ = Rα
when Rα ≥ tm . And so, always on 1

st
with T = Rα is the optimal

online policy when tm ≤ Rα . Also, applying (27) with the optimal

t∗, for general α (and tm ≤ t∗), it can be shown that the competitive

ratio of the optimal online policy is at most 2 (attained when α → 1).

Of course, in practice, the request rates of individual objects are

never known exactly. Therefore, the static baseline policy is best

seen as providing bounds on the performance possible with an on-

line policy (when the inter-request distribution has an increasing or

constant hazard rate) or as a general measurement stick. Naturally,

if the “wrong” choice is selected of these two extremes (always keep

in cache or never cache), the worst-case performance ratio (regard-

less of distribution!) is unbounded. In Sections 7 and 8 we evaluate

different online insertion policies, and their robustness over the

full parameter space when the object inter-request distribution is

unknown.

6.2 Exponential with known λ
For the special case of a Poisson request process with known rate λ,
the delivery cost with a static policy is minimized by never caching

the object if λ < 1/R, and always keeping the object cached if

1/R ≤ λ. The average cost per time unit in these two cases is given

by λR and 1, respectively. The average cost per time unit of the

static baseline policy for a Poisson request process with known rate

is therefore:

Cstaticopt = min[λR, 1]. (30)

This policy has the same cost as the optimal offline policy in

both asymptotes; i.e., they both approach λR when λ → 0 and

approach 1 when λ → ∞. However, given the “wrong” choice of

which of the two extremes should be used, this otherwise “optimal”

policy has an unbounded worst-case cost. For example, consider

the case that we have selected to never cache the object. In this case,

it is easy to see that the cost ratio compared to both the optimal
offline policy (equation (15)) and the optimal static baseline policy
(equation (30)) is unbounded. In particular, note that both

λR
1−e−λR

(comparing with optimal offline) and λR
min[λR,1] (comparing with

optimal static baseline) go to infinity as λ → ∞. Similarly, it is easy

to see that for the case that we always cache a copy, the ratio can be

unbounded when request rates are low. To see this, note that both

1

1−e−λR (comparing with optimal offline) and 1

min[λR,1] (comparing

with optimal static baseline) go to infinity as λ → 0.
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Assuming known inter-request time distribution, for Poisson

requests, the worst-case competitive ratio of the optimal static
baseline policy is 1

1−1/e , providing uswith a guideline of the smallest

possible gap that we possibly could expect with online policies.

Theorem 6.3. Under Poisson requests we have

Conlineopt

C
of f l ine
opt

=
Cstaticopt

C
of f l ine
opt

≤ 1

1 − 1/e . (31)

Proof. The first equality comes directly from Theorem 6.1. Now,

let us identify the request rate where the ratio between Cstaticopt

and C
of f l ine
opt is the greatest. This can be shown by first noting

that
d
dλ (

λR
1−e−λR ) =

ReλR (eλR−λR−1)
(eλR−1)2 ≥ 0 and that

d
dλ (

1

1−e−λR ) =

− ReλR
(eλR−1)2 ≤ 0. Therefore, the maximum ratio

Conline
opt

Cof f l ine
opt

is obtained

when λ = 1

R . Insertion into the expressions (15) and (30) and taking

the ratio completes the proof. □

6.3 Erlang with known k and λ
Theorem 6.4. Under Erlang inter-request times, we have

Conlineopt

C
of f l ine
opt

=
Cstaticopt

C
of f l ine
opt

≤ 1

1 − e−k kk
k !

. (32)

Proof. Similarly as for a Poisson request process, the optimal

static baseline policy has cost equal to the minimum of R divided

by the average inter-request time (with Erlang inter-request times,

equal to k/λ), and 1. Consider first the low-rate ratio, between never
caching (at costmin[ λk R, 1]=

λ
k R) and optimal offline (equation (18)):

F

G
=

λ
k R

1 − e−λR
k

∑k
m=1

∑m−1
n=0

(λR)n
n!

, (33)

where we have used F and G to denote the nominator and denomi-

nator. Taking the derivative with respect to λ we obtain:

d

dλ
( F
G
) = 1

G2
(dF
dλ

G − F
dG

dλ
)

=
1

G2

(
R

k

(
1 − e−λR

k

k∑
m=1

m−1∑
n=0

(λR)n
n!

)
− λR

k

R

k
e−λR

k−1∑
n=0

(λR)n
n!

)
=

1

G2

(
R

k
− R

k
e−λR

k−1∑
n=0

(λR)n
n!
+
λR2

k2
e−λR

(
(λR)k−1
(k − 1)!

))
=

1

G2

(
R

k
− R

k
e−λR

k∑
n=0

(λR)n
n!

)
. (34)

Now, since

∑k
n=0

(λR)n
n! ≤ eλR , we have that

d
dλ (

F
G ) ≥ 0. This

shows that the worst case ratio when
λ
k R ≤ 1 is observed when

λ = k
R . Insertion into expression (33) gives the bound:

F

G
=

1

1 − e−k
k

∑k
m=1

∑m−1
n=0

kn
n!

=
1

1 − e−kkk
k !

. (35)

Similarly, when
λ
k R > 1 (and min[ λk R, 1] = 1), it is straightforward

to show that
d
dλ (

F
G ) ≤ 0, and the worst case therefore again occurs

when λ = k
R . □

Note that the Erlang competitive ratio approaches 1 as k → ∞.

6.4 Deterministic with known a
Theorem 6.5. Under deterministic inter-request times, we have

Conlineopt

C
of f l ine
opt

=
Cstaticopt

C
of f l ine
opt

= 1. (36)

Proof. Since knowledge of the (constant) inter-request time is

equivalent to knowledge of the entire request sequence, the optimal

static baseline (same as online optimal) and offline optimal policies
are identical. When a ≤ 1

R , both policies keeps the object cached

all the time, and when
1

R < a neither policy caches the object. □

6.5 Pareto with known α and tm
Theorem 6.6. With Pareto inter-request times, the worst-case cost

ratio for the optimal static baseline is unbounded. In particular,

Cstaticopt

C
of f l ine
opt

→ ∞ (37)

when α = 1

1− tm
R

and tm
R → 0+.

Proof. Assuming Pareto distributed inter-request times, the

optimal static baseline policy has cost:

Cstaticopt = min[α − 1

α

R

tm
, 1]. (38)

Assume first that
α−1
α

R
tm ≤ 1, and consider the ratio of this

quantity and the offline bound for tm ≤ R. (In the case of tm > R,
the cost ratio is 1.) This ratio has a non-negative derivative:

d

dα

©«
α−1
α

R
tm

1 − 1

α

(
tm
R

)α−1 ª®®¬ ≥ 0. (39)

Now, let x = tm
R . The maximum value of α for which

α−1
α

R
tm ≤ 1

is given by
1

1−x . For this point, the ratio is:

Cstaticopt

C
of f l ine
opt

≤ 1

1 − (1 − x)xx/(1−x )
. (40)

Taking the derivative of this function with respect to x , it can be

seen that the ratio is non-increasing in x :

d

dx

(
1

1 − (1 − x)xx/(1−x )

)
=

xx/(1−x ) lnx

(1 − x)(1 − (1 − x)xx/(1−x ))2
≤ 0,

(41)

and so the largest ratio occurs when α = 1

1−x and x → 0+. In

this case,
1

1−(1−x )xx (1−x ) → ∞ and the worst-case ratio is therefore

unbounded. □

The above result illustrates the importance of using a bounded

TTL value to remove stale objects from the cache.
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7 STEADY-STATE: INSERTION POLICIES
We next derive expressions for the delivery costs of the cache on
Mth request policies outlined in Section 3. We again assume that

inter-request times are independent and identically distributed,

with a general inter-request time distribution f (t). In Section 8,

we then use these results to derive explicit expression for the four

example distributions considered in this paper. Using these general

results, it is of course straightforward to derive explicit expressions

for other distributions also.

7.1 Always on 1
st (T ):

To derive the average cost per time unit, we consider an arbitrary

renewal period that includes both a “busy period” (during which

the object is in the cache) and an “off period” (during which the

object is not in the cache). The average cost can be calculated as

the total expected cost accumulated over such a renewal period

(i.e., R plus the time the object stays in the cache) divided by the

expected duration of the renewal period (i.e., the expected time

from when the object is added to the cache until it is removed, plus

the expected time from when the object is removed from the cache

until its next request). Therefore,

C
always
M=1,T =

R + E[Θ]
E[∆1] + E[Θ]

, (42)

where E[Θ] is the expected time that the object is in the cache and

E[∆1] = E[ai |ai > T ] −T =
1

1 − F (T )

(
E[ai ] +

∫ T

0

F (t)dt −T

)
,

(43)

is the expected time until the next request, given that the object

was just removed from the cache. To derive an expression for E[Θ],
we identify and solve the following recurrence:

E[Θ] = (1 − F (T ))T + F (T )(E[ai |ai < T ] + E[Θ]), (44)

where E[ai |ai < T ] is the expected time between two consecutive

requests, given that the inter-request time between the two requests

is less than T . This recurrence follows from the fact that the object

is removed from the cache after time T if there have been no new

requests for it (probability 1−F (T )), and that otherwise (probability
F (T )) the object’s lifetime in the cache is refreshed at the time of

the first new request. Now, solving for E[Θ] we obtain:

E[Θ] = T + F (T )
1 − F (T )E[ai |ai < T ] =

1

1 − F (T )

(
T −

∫ T

0

F (t)dt
)
,

(45)

where we have used equation (10) in the second step. Insertion of

equations (43) and (45) into equation (42) gives:

C
always
M=1,T =

(1 − F (T ))R +T −
∫ T
0

F (t)dt
E[ai ]

. (46)

7.2 Always onMth (M,T )
As for the always on 1st policy, for the always onMth

policy we can

analyze an arbitrary renewal period. SinceM requests are needed

for an uncached object to be added to the cache, the off period is

(M − 1)E[ai ] longer than for always on 1st , and the total expected

cost over a renewal period is (M − 1)R higher. The time that the

object stays in the cache is the same as for the always on 1
st

policy.

These observations yield:

C
always
M,T =

MR + E[Θ]
E[∆1] + (M − 1)E[ai ] + E[Θ]

=
(1 − F (T ))MR +T −

∫ T
0

F (t)dt
(M − F (T ))E[ai ]

. (47)

7.3 Single-window onMth (M,T )
The average cost per time unit can be calculated using the formula:

Cwindow
M,T =

E[NM ]R + E[Θ]
E[∆M ] + E[Θ] , (48)

where E[NM ] is the expected number of requests needed before

the object re-enters the cache, E[∆M ] is the expected time duration

that the object is not in the cache during a renewal period, and

E[Θ] is the same as for the prior two policies analyzed.

To obtain E[∆M ], we identify the following recurrence:

E[∆M ] = E[∆M−1] + F (T )E[ai |ai ≤ T ] + (1 − F (T ))(T + E[∆M ]).
(49)

Solving for E[∆M ] and using equation (43) for the base case of the

recurrence E[∆1], we obtain:

E[∆M ] = 1

F (T )

(
E[∆M−1] +T −

∫ T

0

F (t)dt
)

=
1

1 − F (T )

(
E[ai ]

F (T )M−1 +
∫ T

0

F (t)dt −T

)
. (50)

Similarly, to obtain E[NM ], we identify the following recurrence:
E[NM ] = E[NM−1] + F (T ) + (1 − F (T ))E[NM ]. (51)

Solving for E[NM ] and recognizing that E[N1] = 1, we obtain:

E[NM ] = 1 +
E[NM−1]
F (T ) =

M−1∑
i=0

1

F (T )i
. (52)

Inserting equations (45), (50) and (52) into equation (48) we obtain:

Cwindow
M,T =

(1 − F (T ))∑M−1
i=0

1

F (T )i R +
(
T −

∫ T
0

F (t)dt
)

E[ai ]
F (T )M−1

. (53)

7.4 Dual-window on 2
nd (W ,T )

Note that since we assumeW ≤ T , the two requests withinW of

each other that are required for an evicted object to be cached again

must occur after the object eviction. The average cost per time unit

is given by

Cwindow
M=2,W ,T =

E[N2]R + E[Θ]
E[∆2] + E[Θ]

, (54)

where E[N2] is the expected number of requests needed before the

object re-enters the cache, E[∆2] is the expected time duration that

the object is not in the cache during a renewal period, and E[Θ] is
the same as for the prior policies. Here, E[∆2] can be expressed as

E[∆2] = E[ai −T |ai > T ] + E[δ ] = E[ai |ai > T ] −T + E[δ ]

=
1

1 − F (T )

(
E[ai ] −TF (T ) +

∫ T

0

F (t)dt
)
−T + E[δ ], (55)
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where E[δ ] can be expressed using the following recurrence:

E[δ ] = F (W )E[ai |ai ≤W ] + (1 − F (W )) (E[ai |ai >W ] + E[δ ]) .
(56)

Solving for E[δ ], we obtain:

E[δ ] = E[ai |ai ≤W ] + 1 − F (W )
F (W ) E[ai |ai >W ]

=
1

F (W ) (F (W )E[ai |ai ≤W ] + (1 − F (W ))E[ai |ai >W ])

=
1

F (W )E[ai ]. (57)

Insertion into equation (55) then gives:

E[∆2] =
1

1 − F (T )

(
E[ai ] −TF (T ) +

∫ T

0

F (t)dt
)
−T +

E[ai ]
F (W ) .

(58)

Similarly, the expected number of requests E[N2] needed before

the object re-enters the cache can be expressed as

E[N2] = 1 + E[m], (59)

whereE[m] can be expressed using the following recurrence:E[m] =
F (W ) + (1 − F (W ))(1 + E[m]). Solving for E[m], we obtain: E[m] =
1 +

1−F (W )
F (W ) . Insertion into equation (59) then gives:

E[N2] = 2 +
1 − F (W )
F (W ) . (60)

Finally, substituting equations (58), (60) and (45) into equation

(54), and simplifying, yields

Cwindow
M=2,W ,T =

(1 − F (T ))
(
2 +

1−F (W )
F (W )

)
R +

(
T −

∫ T
0

F (t)dt
)

E[ai ](1 + 1−F (T )
F (W ) )

. (61)

8 RESULTS FOR EXAMPLE DISTRIBUTIONS
We next present explicit expressions for the policies considered

in this paper for four different distributions: exponential, Erlang,

deterministic, and Pareto. Table 1 summarizes these results. For

derivations of the optimal offline results (top row), and the static
baseline results that assume a known inter-request time distribution

(second row), we refer to Sections 5 and 6, respectively. We next

present and discuss results for each considered distribution.

Exponential: The results for the four insertion policies are ob-

tained by using equations (13) and (14) to substitute for E[ai ], F (t)
and the integral of F (t) in equations (46), (47), (53), (61), and then

simplifying the expressions. For example, for the always on 1
st

policy, using equations (13) and (14) to substitute into equation (46)

yields:

C
always
M=1,T = 1 − e−λT + λRe−λT . (62)

Note that the derivative of the cost with respect to T , as given by

d

dT

(
C
always
M=1,T

)
= (λ − Rλ2)e−λT , (63)

is negative for λ < R and positive for R < λ. Therefore, for the
(unrealistic) case that request rates are known, it would be optimal

to never cache (i.e., useT = 0) for file objects with λ ≤ R and never

empty the cache (i.e., T → ∞) when R < λ. For these two extreme

cases, the average (expected) cost is λR and 1, respectively. Tak-

ing the better of these corresponds to our (optimal) static baseline
policy.

With unknown request rate, an intermediate value ofT is needed

to avoid unbounded worst-case cost ratios. Motivated by our worst-

case analysis for arbitrary request distributions (Section 4), we

focus our attention on policies using T=R. Interestingly, taking the

ratio of equations (62) and (15), it can be seen that the worst-case

bound of 2 shown in Theorem 4.2 for always on 1
st

is achieved

with exponential inter-request times as λ→0:

lim

λ→0

C
always
M=1,T=R

C
of f l ine
opt

= lim

λ→0

1 − e−λR + λRe−λR

1 − e−λR
= lim

λ→0

λR + λR

λR
= 2.

(64)

Similarly, it is straightforward to show that the cost ratio, with

exponential inter-request times and λ→0, for always on Mth
is

M+1
M and that for single-window on Mth

is 1 when M≥2. This is
encouraging, since it shows that single-window onMth

in practice

may significantly outperform always on 1
st
, despite a looser worst-

case bound.

In fact, using single-window on 2
nd

with the optimal worst-case

analysis setting of T = R, the largest cost ratio (across the full

range of request rates) is only slightly higher than for the (optimal

assuming known request rate) static baseline, which has a peak ratio
of

1

1−1/e ≈ 1.582 (when λR = 1), as shown in Theorem 6.3. This can

be seen by taking the ratio of the cost functions of single-window
on 2

nd
and the offline optimal:

λRe−λR (2 − e−λR ) + (1 − e−λR )2

1 − e−λR
, (65)

and identifying the two extreme points: λR = 0 and λR ≈ 1.05236

(numerically). When λ → 0 the ratio is 1 and when λR ≈ 1.05236

the ratio is 1.588.

Figure 1 summarizes the performance of the different cache on
Mth

policies. Here, we have usedW = T = R, and on the x-axis

vary the “‘normalized average request rate” as given by the aver-

age number of requests within a window ofW = T time units.

For example, an x-axis value of 1 corresponds to an average re-

quest rate of λ = 1/T = 1/W = 1/R. Note that the window-based
policies significantly outperform the always on Mth policies, and
that single-window on 2

nd
with T = R achieves good performance

throughout, as it closely tracks static baseline, which bounds the

optimal performance of any online policy when inter-request times

are exponential (Theorem 6.1).

Finally, comparing single-window onMth
forM = 2 andM = 4,

we note that single-window on 4
th

tracks the static baseline even
better up to the peak at λR = 1, but then performs significantly

worse for higher request rates. With single-window on 2
nd

, there is

a small but noticeable gap both before and after the peak. However,

the maximum difference is substantially smaller.

Distributions with lower variability: Erlang results are ob-

tained by using equations (16) and (17) to substitute for E[ai ], F (t)
and the integral of F (t) in equations (46), (47), (53), (61), and then

simplifying. It is straightforward to show that, for any k ≥ 1, the

cost ratios for each of the policies in the limiting cases of λ → 0 and
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Table 1: Summary of costs for different distributions and insertion policies. To make room, for Erlang, we simplified expres-
sions using F (t) = 1 − ∑k−1

n=0
1

n!e
−λt (λt)n and Φ(T ) = e−λT

λ
∑k
m=1

∑m−1
n=0

(λT )n
n! .

Policy Exponential Erlang Deterministic Pareto

Offline 1 − e−λR 1 − λ
k Φ(R) min[ Ra , 1]

1 − 1

α
(
tm
R

)α−1
, if tm ≤ R

R(α−1)
α tm , if R < tm
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Figure 1: Cost ratios for an exponential inter-request time
distribution andW = T = R.

λ → ∞ are the same as for exponentially distributed inter-request

times.

Results for deterministic inter-request times are obtained by us-

ing equations (19) and (20) to substitute into equations (46), (47),

(53), (61), taking limits (when needed), and simplifying the expres-

sions on a case-by-case basis. Again, the cost ratios for each of the

policies in the limiting cases of λ → 0 and λ → ∞ are the same as

for exponentially distributed inter-request times. Figure 2 shows

the cost ratio results for Erlang and deterministic inter-request

times. Note in particular how the peak cost ratio for single-window
onMth

, withM ≥ 2, reduces as k increases and inter-request times

become increasingly deterministic (far-right sub figure).

Pareto: Results for Pareto inter-request time distributions are

obtained using equations (22), (23) and (24) to substitute for E[ai ],
F (t) and the integral of F (t) in equations (46), (47), (53), and (61).

Figure 3 shows cost ratio results for three different values of α .
We note that (as per Theorem 6.6), static baseline performs very

poorly when α → 1 (and tm is small). This is illustrated by the

large peak cost ratio in Figure 3(a), where α = 1.1. For larger α (e.g.,

α = 2 in Figure 3(c)), this peak reduces substantially. Otherwise,

the results are similar as for the other inter-request distributions

in that the maximum observed peaks are for always on 1
st
, and in

that single-window on 2
nd

has a tighter bound than single-window
on 4

th
, suggesting that single-window on 2

nd
with T = R is a good

choice.

9 MULTI-FILE EVALUATION
Thus far we have focused primarily on deriving analytic expres-

sions and insights based on the single file case. In this section,

we complement this analysis with both analytic (Section 9.1) and

trace-based (Section 9.2) evaluations for the multi-file case.

Throughout the section the different cache onMth request poli-
cies use the threshold valuesW = T = R. Being the optimal worst-

case choices, they are natural choices for this context, since predict-

ing individual object popularities is difficult and object popularities

in practice typically change over time.

9.1 Heavy-tailed popularity analysis
File object popularities are typically highly skewed [6, 20, 24, 27].

For this analysis, we consider the delivery cost for a cache when

the file object popularity is Zipf distributed with parameter γ (i.e.,

the frequency of requests to the ith most popular file object is

proportional to
1

iγ ) and all file objects have the same size. Since

both storage and bandwidth cost in our model scale proportional to

the file size, results for variable-sized files could be easily obtained

simply by weighting the costs for each file according to the file

size.

Figure 4 shows the cost ratio for the different policies as a func-

tion of the normalized average request rate, when γ=1 and there

are 1, 000, 000 files. To allow comparisons with the single-file case,

we include results for three forms for the inter-request time distri-

bution of each file: Pareto with α=1.25 (Figure 4(a)), exponential
(Figure 4(b)), and Erlang with k=4 (Figure 4(c)). Different files have
different distribution parameter values (value of tm for Pareto, λ for

exponential and Erlang) so as to achieve the desired Zipf request

frequency distribution. Results for Zipf popularity distributions

with γ=0.75 and γ=1.25 are very similar.

We note that window onMth
withM = 2 has a peak cost-ratio

compared to the offline optimal of 1.4, and significantly outperforms
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(a) Erlang, k = 2
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(b) Erlang, k = 4
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(c) Deterministic

Figure 2: Cost ratios for low variability inter-request time distributions andW = T = R.
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(a) α = 1.1
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(b) α = 1.25
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(c) α = 2

Figure 3: Cost ratios for Pareto inter-request time distributions andW = T = R.
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(a) Pareto α = 1.25
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(b) Exponential
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(c) Erlang k = 4

Figure 4: Multi-file analysis for different inter-request time distributions; Zipf popularity distribution (frequency of requests
to file i proportional to 1/iγ , γ = 1, and 1, 000, 000 files).

the always on Mth
policies. These results again clearly highlight

the value of a more selective insertion policy.

Also important to note is the small gap between the static baseline
policy and the window-based policies for exponential (Figure 4(b))

and Erlang (Figure 4(c)) distributed inter-request times, and that the

window-based policies outperform the static baseline policy when

inter-request times are Pareto distributed (Figure 4(a)). The static
baseline policy optimizes its selection between always caching, and

never caching, each file according to that file’s inter-request time

distribution. This yields minimum cost among all online policies for

the distributions considered in Figures 4(b) and 4(c). Yet, window on
2
nd

and window on 4
th

achieve close to this online bound, while

treating all files the same. These results are highly encouraging and

show that the same policy can be used for all files, regardless of

popularity and the form of the inter-request time distribution.

While the cost gap generally is small, we note that the region

over which the window-based policies (and other online policies)

leave a significant gap compared to the offline optimal is substan-
tially wider for the multi-file case than for the single file case. For

example, for exponential inter-request times, there is a significant

gap in the multi-file case (Figure 4(b)) for normalized average re-

quest rate values from about 10
−5

to 10
2
, while a significant gap in

the single file case (Figure 1) appears only for request rate values

from about 10
−2

to 10. This is explained by the fact that in the

multi-file case, files have widely-varying request rates, and over a

wide range of average request rates there are files whose individ-

ual request rate falls in the region in which, in the single file case,

there is a substantial gap compared to the offline optimal. Interest-
ingly, the size of the set of files contributing to this gap will differ

for different average request rates. For example, at low average

request rates, there will be a small set of relatively popular files

contributing to the gap. However, due to the skew in popularity,

this set will account for a disproportionate share of the total request

volume. The small step around 10
−6

to 10
−5

is due to the most pop-

ular files entering this region. At high average request rates, the
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Figure 5: Trace-based simulation results withW = T = R.

number of files whose individual request rate falls in the region

with a substantial gap increases, but these files now account for a

disproportionately smaller share of the total request rate, an effect

that reduces the size of the peak gap for the cache onMth request
policies. Note that for the always onMth

policies, the worst-case

gap (at low request rates) is the same as for the single file case.

However, the worst-case asymptotes are not approached until the

request rates for all files are low (which happens when the average

request rate falls somewhere between 10
−4

and 10
−6
, depending

on the distribution skew).

9.2 Trace-based evaluation
For our trace-based analysis, we use a 20month long trace capturing

all YouTube video requests from a campus network with 35,000

faculty, staff, and students. The trace spans between July 1, 2008,

and February 28, 2010, and contains roughly 5.5 million requests

to 2.4 million unique YouTube videos [6]. This type of traffic is

particularly interesting since file popularities are ephemeral and

there typically is a long tail of less popular files that individually

are viewed very few times, but that as an aggregate contribute to a

significant part of the total views. For example, in the university

dataset, 90% of the videos are requested three or fewer times, and

yet these videos make up half of the views observed on campus.

Figure 5 shows summary results for our trace-based simulations.

Here, for each policy we plot the ratio of the total aggregate delivery

cost across all videos divided by the corresponding delivery cost

using the offline optimal policy, as a function of the time that a file

would need to be stored in cache to accumulate remote delivery cost

R. With the unit normalization described in Section 2,W = T = R
implies that storing a file in cache forW = T time units would

incur a cost equal to R, and so the x-axis values also correspond

to the window sizesW and T . For the static baseline policy, we
make the optimistic assumptions that (i) an oracle can be used to

determine which of always local and always remote will perform
best for each individual video, and (ii) in the case of always local
the file object is not retrieved until the time of the first request (at

a cost R). In practice, such knowledge would not be available to

any online policy. Yet, the window on Mth
policies significantly

outperform the static baseline policy. This shows the importance of

being selective in what is added to the cache.

Due to the dominance of videos that see few requests, the results

resemble the multi-file analytic results for lower average request

rates, with the window-based cache on Mth request policies per-
forming the best. For example, with 5.5 million requests to 2.4

million videos over a 20 month period, a window sizeW = T of

20 months would imply a normalized average request rate, as used

on the x-axes in Figures 1-4, of 2.3. Furthermore, window onMth

withM = 4 is a slightly better choice thanM = 2 for shorter than

month-long caching thresholdsW = T = R, whereas for longer
thresholds,M = 2 is the better policy.

Much of the improvements over the always on 1st policy, come

from the window onMth
policies, with intermediateM , requiring

smaller storage. For example, with a one-week threshold the average

cache size at object evictions (across all object evictions) reduces

from 153,729 objects (with always on 1st ) to 57,652 (M = 2) and

29,034 (M = 4). The corresponding values for a 30-day (“one month”

in Figure 5) threshold are: 343,139, 150,364 and 58,170. Here, we

also note that the variance in cache size needed over these time

scales is relatively small, despite significant seasonal request volume

variations in the trace (e.g., comparing summer breaks vs. regular

term [6]). For example, in the case of the one-month threshold,

the ratios of the maximum observed cache size to the minimum

observed cache size at any two cache evictions instances (across

the full 20-month trace) for these three policies are: 2.67, 2.21, and

2.02, respectively.

To better understand (i) which files contribute most of the abso-

lute cost and (ii) which files contribute most of the cost inflation (as

seen in Figure 5) compared to the offline optimal bound, Figure 6
breaks down the cost due to videos of different popularities. Fig-

ure 6(a) shows the costs of the different policies associated with

the videos with more than 20 views, expressed relative to the total

offline optimal bound cost. This set contains 0.95% of the unique

videos and is responsible for 22.8% of the views. Figures 6(b) and 6(c)

show the corresponding results for the videos that have 4-20 views

and 1-3 views over the duration of the 20-month long trace, respec-

tively. These two sets contain 9.0% and 90% of the unique videos,

and are responsible for 27.6% and 49.6% of the views, respectively.

These figures also show that the advantage of using window-

based, rather than purely counter-based, cache onMth request poli-
cies is consistent across the three popularity classes, and that the

fraction of the offline optimal caching cost that the long-tail of less

popular videos contributes increases as the thresholds increase (and

more videos are cached). Much of the penalty of the static baseline
policy is associated with the more popular videos (comparing Fig-

ures 6(a) and (b) to Figure 6(c)), and longer thresholds, likely due to

this policy not capturing the ephemeral popularity of these videos.

Interestingly, even when the time in cache to accumulate a stor-

age cost equal to the remote delivery cost R is very small, the few
timers (with 1-3 views) still contribute approximately 50% of the

total cost for all policies, except for always on 1
st

and always on
2
nd

, for which the contribution is even higher. Overall, these re-

sults show the importance of selective caching policies such as the

window-based cache onMth
request policies analyzed in this paper.
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Figure 6: Breakdown of cost contributions of the videos belonging to three different popularity categories. (University dataset.)

10 RELATEDWORK
Most existing caching works focus on replacement policies [2, 26].

However, recently it has been shown that the cache insertion poli-

cies play a very important factor in reducing the total delivery

costs [6, 24]. Motivated by these works, this paper focuses on the

delivery cost differences between different selective cache insertion

policies.

Few papers (regardless of replacement policy) have modeled

selective cache insertion policies such as cache onMth request. This
class of policies is motivated by the risk of cache pollution due

to ephemeral content popularity and the long tail of one-timers

(one-hit wonders) observed in edge networks [6, 20, 24, 27]. Recent

works including trace-based evaluations of cache on Mth request
policies [6, 24]. Carlsson and Eager [6] also present simple analytic

models for hit and insertion probabilities. However, in contrast to

the analysis presented here, they assume that content is not evicted

until interest in the content has expired. Garetto et al. [17, 25]

and Gast and Van Houdt [18, 19] present TTL-based recurrence

expressions and approximations for two variations of cache onMth

request, referred to as k-LRU and LRU(m) in their works. However,

none of these works present performance bounds or consider the

total delivery cost. In contrast, we derive both worst-case bounds

and average-case analysis under a cost model that captures both

bandwidth and storage costs.

Finally, it is important to note that TTL-based eviction policies [1,

21] (and variations thereof [8]) have been found useful for approx-

imating the performance of capacity-driven replacement policies

such as LRU [4, 5, 9, 16, 17]. Our results may therefore also provide

insight for the case in which a content provider uses a fixed-sized

cache. Generalizations of the TTL-based Che-approximation [9]

and TTL-based caches in general have proven useful to analyze

individual caches [4, 5, 9, 16, 17], networks of caches [4, 13–15, 17],

and to optimize different system designs [7, 11, 12, 23].

As we show here, elasticity assumptions can also be a powerful

toolbox for deriving tight worst-case bounds and exact average-case

cost ratios of different policies. Furthermore, as discussed in Section

9.1, since both storage costs and bandwidth costs are proportional

to the file sizes, the results can also easily be extended to scenarios

with variable sized objects, at no additional computational cost. In

contrast, just finding lower and upper bounds for the cache miss

rate of the optimal offline policy is computationally expensive when

caches are non-elastic [3] and even simple LRU is hard to analyze

under non-elastic constraints [10, 22].

11 CONCLUSIONS
In this paper, we consider the delivery costs of a content provider

that wants to minimize its delivery costs under the assumptions

that the resources it requires are elastic, the content provider only

pays for the resources that it consumes, and costs are proportional

to the resource usage. Under these assumptions, we first derived

worst-case bounds for the optimal cost and competitive cost-ratios

of different classes of cache onMth request cache insertion policies.

Second, we derived explicit average cost expressions and bounds

under arbitrary inter-request time distributions, as well as for short-

tailed inter-request time distributions (deterministic, Erlang, and

exponential) and heavy-tailed inter-request distributions (Pareto).

Finally, using these analytic results, we have presented numeri-

cal evaluations and cost comparisons that reveal insights into the

relative cost performance of the policies. Interestingly, we have

found that single-window onMth
with an intermediateM (e.g., 2-4)

and T = R achieves most of the benefits of this class of policies.

ChoosingT = R guarantees a worst-case competitive ratio ofM + 1
(compared to the optimal offline policy), but typically performs

much better. For example, we have found that this policy with

M = 2 closely tracks the online optimal policy for the short-tailed

inter-request time distributions, and significantly outperforms the

standard non-selective policy always on 1
st

across all inter-request

distributions considered here. Using M = 4 can result in further

improvements for lower request rates (e.g., as associated with a

long tail of less popular file objects), but performs somewhat worse

when request rates are intermediate (where the gap between the

online and offline policies is the greatest). These results suggest

that cache on 2
nd

optimized to minimize worst-case costs provides

good average performance, making it an attractive choice for a

wide range of practical conditions where request rates of individual

objects typically are not known and can quickly change.
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A ADDITIONALWORST-CASE PROOFS
A.1 Proof Theorem 4.3: Always onMth

We next prove Theorem 4.3, which specifies the worst-case proper-

ties of always onMth
.

Proof. Case T ≤ R: For 2 ≤ i ≤ N , let us define the fol-

lowing sets based on the operation of the always on Mth
pol-

icy: SAm = {i |ai ≤ R ∧ i is the mth
request}, SCm = {i |R < ai ∧

i is themth
request}, where we label request i as themth

request

when it is the mth
request to the object since the object was re-

moved from the cache most recently or the request sequence started.

For the case that the previous request put the object into the cache

or the object remained in the cache, we define the following sets:

SA+ = {i |ai ≤ T∧i < ∪Mm=2S
A
m }, SB+ = {i |T < ai ≤ R∧i < ∪Mm=2S

A
m },

and SC+ = {i |R < ai ∧ i < ∪Mm=2S
C
m }. Note that the set SA+ corre-

sponds to cache hits using the always onMth
policy, and that sets

SB+ and SC+ corresponds to cases where the counter is reset after the

object has been removed from the cache (and the cache incurred

an extra storage cost T after most recent prior request).

Now, for an arbitrary request sequence A, we can bound the

cost of the always on Mth
policy as follows: C

always
M,T ≤ R +∑M

m=2 |SAm |R +∑M
m=2 |SCm |R +∑

i ∈SA+ ai + (|SB+ | + |SC+ |)(R +T ) +T ,
where the final T only is needed if the last request in the sequence

is from set SA+ . (In all other cases the bound becomes loose.) Now,

noting that (i) |SAM | + |SCM | ≤ |SAM−1 | + |SCM−1 | ≤ ... ≤ |SA
2
| + |SC

2
|,

(ii)

∑M
m=2(|SAm | + SCm |) ≤ (M1)(|SA

2
| + |SC

2
|), and (iii) |SB+ | + |SC+ | ≤

|SA
2
| + |SC

2
|, we can writeC

always
M,T ≤ R +M(|SA

2
| + |SC

2
|)R + (|SA

2
| +

|SC
2
|)T +∑

i ∈SA+ ai +T .

For the optimal offline policy, we note that all requests in the

sets SAm , SA+ , S
B
+ correspond to cache hits (associated with an extra

storage cost ai ), whereas the remaining requests are cache misses

(associated with a remote access cost R). Therefore, for the same

request sequence A, the cost of the optimal (offline) policy can be

bounded as follows:C
of f l ine
opt = R+

∑
i ∈∪Mm=2SAm

ai +
∑M
m=2 |SCm |R+∑

i ∈SA+ ai +
∑
i ∈SB+ ai + |SC+ |R ≥ R +

∑M
m=2 R |SCm | +T |SB+ | + |SC+ |R +∑

i ∈SA+ ai ≥ R +T (|SA
2
| + |SC

2
|)+∑

i ∈SA+ ai . Here, we have used that

(i)

∑
i ∈∪Mm=2SAm

ai ≥ 0, (ii)

∑
i ∈SB+ ai ≥ T |SB+ |, (iii)

∑
i ∈SC+ ai ≥ R |SC+ |,

and (vi) T |SB+ | + |SC+ |R ≥ T (|SB+ | + |SC+ |) = T (|SA
2
| + |SA

2
|). Taking

the ratio

C
always
M,T

C
of f l ine
opt

≤
R +M(|SA

2
| + |SC

2
|)R + (|SA

2
| + |SC

2
|)T +∑

i ∈SA+ ai +T

R +T (|SA
2
| + |SC

2
|) +∑

i ∈SA+ ai

≤
R +M(|SA

2
| + |SC

2
|)R + (|SA

2
| + |SC

2
|)T +T

R +T (|SA
2
| + |SC

2
|)

, (66)

it is easy to show that the worst case scenario happens with |SA
2
| +

|SC
2
| → ∞ and that the worst-case bound is minimized by setting

T = R. (To see this, note that
d
dx (

R+MRx+Tx+T
R+Tx ) = MR2−T 2

(R+Tx )2 ≥ 0.)

In this case the worst-case ratio reduces to (M + 1).
Finally, we show that this ratio is achievable by a request pattern

in which requests occurs in batches ofM requests, with consecutive

batches spaced by more than R time units. In this case, we have

ai = 0 for all i ∈ SAm , |SA+ | = |SB+ | = |SC+ | = |SBm | = 0 for allm, and

|SAm | = |SC+ | for allm. In each batch cycle, the always onMth
policy

downloads the objectM times from the server and keeps it in the

cache for R time units (at a total cost of (M + 1)R per batch). In

contrast, the optimal offline policy downloads a single copy (at cost

R), serves all M requests using this copy, and then instantaneously

deletes the copy (to avoid storage costs).

Case R ≤ T : Let us define the following sets for 2 ≤ i ≤ N :

GA
m = {i |ai ≤ R ∧ i is the mth

request}, GC
m = {i |R < ai ∧

i is the mth
request}, where 2 ≤ m ≤ M , and GA

+ = {i |ai ≤
R ∧ i < ∪Mm=2G

A
m }, GB

+ = {i |R < ai ≤ T ∧ i < ∪Mm=2G
C
m }, and
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GC
+ = {i |T < ai ∧ i < ∪Mm=2G

C
m }. With these sets, only the re-

quests in sets GA
+ and GB

+ correspond to cache hits (with associ-

ated cost ai ) with the always on Mth
policy. Furthermore, with

this policy, the requests in set GC
+ corresponds to cases where

the counter is reset after the object has been removed from the

cache. These cache misses are therefore associated with an ex-

tra storage cost T (corresponding to the time the object was in

the cache without being requested again after the most recent

earlier request). Now, for an arbitrary request sequence A, we

can bound the cost of this policy as follows: C
always
M,T ≤ R +∑M

m=2 |GA
m |R+∑M

m=2 |GC
m |R+∑i ∈GA

+
ai+

∑
i ∈GB

+
ai+ |GC

+ |(R+T )+T .
Now, noting that (i)

∑M
m=2(|GA

m | + |GC
m |) ≤ (M − 1)(|GA

2
| + |GC

2
|),

(ii) |GC
+ | = |GA

2
| + |GC

2
|, (iii) ∑

i ∈GB
+
ai ≤ |GB

+ |T , we can write

C
always
M,T ≤ R +M |GC

+ |R + (|GC
+ |)T + |GB

+ |T +
∑
i ∈GA

+
ai +T . Simi-

larly, for the same request sequenceA, the cost of the optimal offline
policy can be bounded as follows:C

of f l ine
opt = R+

∑M
m=2

∑
i ∈GA

m
ai+∑M

m=2 |GC
m |R +∑

i ∈GA
+
ai + |GB

+ |R + |GC
+ |R ≥ R + |GB

+ |R + |GC
+ |R +∑

i ∈GA
+
ai , where we have used that (i)

∑
i ∈GA

m
ai ≥ 0, and (ii)

|GC
m | ≥ 0. Taking the ratio

C
always
M,T

C
of f l ine
opt

≤
R +M |GC

+ |R + |GC
+ |T + |GB

+ |T +
∑
i ∈GA

+
ai +T

R + |GB
+ |R + |GC

+ |R +
∑
i ∈GA

+
ai

≤
R +M |GC

+ |R + |GC
+ |T + |GB

+ |T +T
R + |GB

+ |R + |GC
+ |R

(67)

it can be seen that, as earlier, this ratio is minimized when T = R,
for which it is bounded by (M + 1) when |GB

+ | = 0 and (|GC
+ |) → ∞.

(To see this, note that
d
dx (

R+MRx+Tx+BT+T
R+BR+Rx ) = BM+M−1

(B+x+1)2 ≥ 0.) It

is trivial to see that the same request pattern (but with batches

separated by more than T rather than R) results in the worst case

being achieved. This shows that the bound is tight. □

A.2 Proof Theorem 4.4: Single-window onMth

We next prove Theorem 4.4, which specifies the worst-case proper-

ties of single-window onMth
.

Proof. Case T ≤ R: For 2 ≤ i ≤ N , let us define the following

sets based on the operation of the single-window on Mth
policy:

SAm = {i |ai ≤ T ∧ i is anmth
candidate}, SBm = {i |T < ai ≤ R ∧

i is anmth
candidate}, and SCm = {i |R < ai ∧ i is anmth

candidate},
where we say that a request is anmth

candidate whenever the pre-

vious request in the request sequence to the object set the counter

to (m − 1). Note that the first overall request and the first request

after the object has been removed from the cache always sets the

counter to one (and the next request to the object hence becomes

a 2
nd

candidate). For the case that the previous request put the

object into the cache or the object remained in the cache, we define

the following sets: SA+ = {i |ai ≤ T ∧ i < ∪Mm=2S
A
m }, SB+ = {i |T <

ai ≤ R ∧ i < ∪Mm=2S
B
m }, and SC+ = {i |R < ai ∧ i < ∪Mm=2S

C
m }. Note

that the requests in the set SA+ corresponds to cache hits using the

single-window onMth
policy, and that sets SB+ and SC+ correspond to

cases where the counter is reset after the object has been removed

from the cache (and the cache incurred an extra storage costT after

the most recent prior request).

Now, for an arbitrary request sequence A, we can bound cost

of the single-window on Mth
policy as follows: Cwindow

M,T ≤ R +∑M
m=2 |SAm |R + ∑M

m=2 |SBm |R + ∑M
m=2 |SCm |R + ∑

i ∈SA+ ai + (|SB+ | +
|SC+ |)(R + T ) + T , where the final T only is needed if the last re-

quest in the sequence is from set SA+ . (In all other cases the bound

becomes loose.) Now, noting that (i) |SAM | ≤ |SAM−1 | ≤ ... ≤ |SA
2
|,

(ii)

∑M
m=2 |SAm | ≤ (M1)|SA

2
|, (iii) ∑m=2 |SBm | + ∑

m=2 |SCm | + |SB+ | +
|SC+ | ≤ |SA

2
|, and (iv) |SB+ | + |SC+ | ≤ |SA

2
|, we can write Cwindow

M,T ≤
R +M |SA

2
|R + |SA

2
|T +∑

i ∈SA+ ai +T .

For the optimal offline policy, we note that all requests in the sets

SAm , SBm , SA+ , S
B
+ correspond to cache hits (associated with an extra

storage cost ai ), whereas the remaining requests are cache misses

(associated with a remote access cost R). Therefore, for the same

request sequence A, the cost of the optimal (offline) policy can be

bounded as follows:C
of f l ine
opt = R+

∑
i ∈∪Mm=2SAm

ai+
∑
i ∈∪Mm=2SBm

ai+∑M
m=2 |SCm |R + ∑

i ∈SA+ ai +
∑
i ∈SB+ +|S

C
+ |R ≥ R + T (∑M

m=2 |SBm | +
|SB+ |)+R(

∑M
m=2 |SCm |+|SC+ |)+

∑
i ∈SA+ ai ≥ R+|SA

2
|T+∑i ∈SA+ ai . Here,

we have used that (i)

∑
i ∈∪Mm=2SAm

ai ≥ 0, (ii)

∑
i ∈SBm ai ≥ T |SBm |, (iii)∑

i ∈SCm ai ≥ T |SCm |, (iv) ∑i ∈SB+ ai ≥ T |SB+ |, (v)
∑
i ∈SC+ ai ≥ T |SC+ |,

(vi)T
∑M
m=2 |SBm | +R∑M

m=2 |SCm | +T |SB+ | +R |SC+ | ≥ T (∑M
m=2 |SBm | +∑M

m=2 |SCm | + |SB+ | + |SC+ |) = T |SA2 |. Taking the ratio

Cwindow
M,T

C
of f l ine
opt

≤
R +M |SA

2
|R + |SA

2
|T +∑

i ∈SA+ ai +T

R +T |SA
2
| +∑

i ∈SA+ ai

≤
R +M |SA

2
|R + |SA

2
|T +T

R +T |SA
2
|

(68)

it is easy to show that the worst case scenario happens with |SA
2
| →

∞ and that the worst-case bound is minimized by setting T = R. In
this case the worst-case ratio reduces to (M + 1).

Finally, we show that this ratio is achievable by a request pattern

in which requests occurs in batches ofM requests, with consecutive

batches spaced by more than R time units. In this case, we have

ai = 0 for all i ∈ SAm , |SA+ | = |SB+ | = |SC+ | = |SBm | = 0 for all m,

and |SAm | = |SC+ | for allm. In each batch cycle, the single-window
onMth

policy downloads the objectM times from the server and

keeps it in the cache for R time units (at a total cost of (M + 1)R per

batch). In contrast, the optimal offline policy downloads a single

copy (at cost R), serves all M requests using this copy, and then

instantaneously deletes the copy (to avoid storage costs).

Case R ≤ T : Let us define the following sets for 2 ≤ i ≤ N :

GA
m = {i |ai ≤ R ∧ i is an mth

candidate}, GB
m = {i |R < ai ≤

T ∧i is anmth
candidate},GC

m = {i |T < ai ∧i is anmth
candidate},

where 2 ≤ m ≤ M , and GA
+ = {i |ai ≤ R ∧ i < ∪Mm=2G

A
m },

GB
+ = {i |R < ai ≤ T ∧ i < ∪Mm=2G

B
m }, and GC

+ = {i |T < ai ∧ i <

∪Mm=2G
C
m }. With these sets, only the requests in the sets GA

+ and

GB
+ correspond to cache hits (with associated cost ai ) with the

single-window on Mth
policy. Furthermore, with this policy, the

requests in set GC
+ correspond to cases where the counter is reset

after the object has been removed from the cache. These cache
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misses are therefore associated with an extra storage cost T (cor-

responding to the time the object was in the cache without being

requested again after the most recent earlier request). Now, for

an arbitrary request sequence A, we can bound the cost of this

policy as follows: Cwindow
M,T ≤ R +

∑M
m=2 |GA

m |R + ∑M
m=2 |GB

m |R +∑M
m=2 |GC

m |R+∑
i ∈GA

+
ai +

∑
i ∈GB

+
ai + |GC

+ |(R+T )+T . Now, noting
that (i)

∑M
m=2(|GA

m | + |GB
m |) ≤ (M1)(|GA

2
| + |GB

2
|), (ii) ∑M

m=2 |GC
m | +

|GC
+ | = |GA

2
| + |GB

2
|, (iii) |GC

+ | = |GA
2
| + |GB

2
| − ∑M

m=2 |GC
m | ≤

|GA
2
| + |GB

2
|, and (iv)

∑
i ∈GB

+
ai ≤ |GB

+ |T , we can write Cwindow
M,T ≤

R + M(|GA
2
| + |GB

2
|)R + (|GA

2
| + |GB

2
|)T + |GB

+ |T +
∑
i ∈SA+ ai + T .

Similarly, for the same request pattern A, the cost of the opti-
mal offline policy can be bounded as follows: C

of f l ine
opt = R +∑M

m=2
∑
i ∈GA

m
ai+

∑M
m=2 |GB

m |R+∑M
m=2 |GC

m |R+∑i ∈GA
+
ai+ |GB

+ |R+
|GC
+ |R ≤ R+(|GA

2
|+ |GB

2
|)R+ |GB

+ |T +
∑
i ∈SA+ ai , where we have used

that (i)

∑
i ∈GA

m
ai ≥ 0, (ii) |GB

m | ≤ 0, and (iii)

∑M
m=2 |GC

m | + |GC
+ | =

|GA
2
| + |GB

2
|. Taking the ratio

Cwindow
M,T

C
of f l ine
opt

≤
R+M ( |GA

2
|+ |GB

2
|)R+( |GA

2
|+ |GB

2
|)T+ |GB

+ |T+
∑
i∈SA+

ai+T

R+( |GA
2
|+ |GB

2
|)R+ |GB

+ |T+
∑
i∈SA+

ai

≤
R +M(|GA

2
| + |GB

2
|)R + (|GA

2
| + |GB

2
|)T + |GB

+ |T +T
R + (|GA

2
| + |GB

2
|)R + |GB

+ |T
.

(69)

it is easy to show that, as earlier, this ratio is minimized when

T = R, for which it is bounded by (M + 1) when |GB
+ | = 0 and

(|GA
2
| + |GB

2
|) → ∞. It is trivial to see that the same request pattern

(but with batches separated by more thanT rather than R) results in
the worst case being achieved. This shows that the bound is tight.

□

A.3 Proof Theorem 4.5: Dual-window on 2
nd

We next prove Theorem 4.5, which specifies the worst-case proper-

ties of dual-window on 2
nd

.

Proof. CaseW ≤ T ≤ R: Let us define the following sets for 2 ≤
i ≤ N : SA

2
= {i |ai <W ∧ i is a 2nd candidate}, SB

2
= {i |W ≤ ai <

T∧i is a 2nd candidate}, SC
2
= {i |T ≤ ai < R∧i is a 2nd candidate},

SD
2
= {i |R ≤ ai ∧ i is a 2nd candidate}, SA+ = {i |ai <W ∧ i < SA

2
},

BB+ = {i |W ≤ ai < T ∧ i < SB
2
}, SC+ = {i |T ≤ ai < R ∧ i < SC

2
}, and

SD+ = {i |R ≤ ai ∧ i < SD
2
}. We can now write CM=2

W ,T = R + (|SA
2
| +

|SB
2
|+ |SC

2
|+ |SD

2
|)R+∑i ∈SA+ ai +

∑
i ∈SB+ ai +(|SC+ |+ |SD+ |)(R+T ), and

Copt = R +
∑
i ∈SA

2

ai +
∑
i ∈SB

2

ai +
∑
i ∈SC

2

ai + |SD
2
|R +∑

i ∈SA+ ai +∑
i ∈SB+ ai +

∑
i ∈SC+ ai + |SD+ |R. Now, noting that |SC+ | + |SD+ | = |SA

2
|,

and making similar simplifications as in prior proofs, it is easy to

show that:

Cwindow
M=2,W ,T

C
of f l ine
opt

≤
R + 2|SA

2
|R + |SA

2
|T + |SB

2
|R + |SC

2
|R

R + |SA
2
|T + |SB

2
|W + |SC

2
|T

. (70)

This expression is minimized whenW → T andT → R. With these

choices, the worst-case bound of 3 is achieved when |SB
2
| = |SC

2
| = 0

and |SA
2
| → ∞ (and the same worst-case request sequence as used

for the single parameter version).

CaseW ≤ R ≤ T : Let us define the following sets for 2 ≤ i ≤ N :

HA
2
= {i |ai < W ∧ i is a 2nd candidate}, HB

2
= {i |W ≤ ai < R ∧

i is a 2nd candidate}, HC
2
= {i |R ≤ ai < T ∧ i is a 2nd candidate},

HD
2
= {i |T ≤ ai ∧i is a 2nd candidate},HA

+ = {i |ai <W ∧i < HA
2
},

HB
+ = {i |W ≤ ai < R ∧ i < HB

2
}, HC
+ = {i |R ≤ ai < T ∧ i < HC

2
},

and HD
+ = {i |T ≤ ai ∧ i < HD

2
}. We can now write CM=2

W ,T =

R+(|HA
2
|+|HB

2
|+|HC

2
|+|HD

2
|)R+∑i ∈HA

+
ai+

∑
i ∈HB

+
ai+

∑
i ∈HC

+
ai+

|HD
+ |(R + T ), and Copt = R +

∑
i ∈HA

2

ai +
∑
i ∈HB

2

ai + (|HC
2
| +

|HD
2
|)R + ∑

i ∈HA
+
ai +

∑
i ∈HB

+
ai + (|HC

+ | + |HD
+ |)R. Now, noting

that |HD
+ | = |HA

+ |, and making similar simplifications as in prior

proofs, it is easy to show that:

Cwindow
M=2,W ,T

Copt
≤

R + 2|HA
2
|R + |HA

2
|T + |HB

2
|R

R + |HA
2
|R + |HB

2
|W

. (71)

This expression is minimized whenW → T andT → R. With these

choices, the worst-case bound of 3 is achieved when |HB
2
| = 0 and

|HA
2
| → ∞.

Case R ≤W ≤ T : Let us define the following sets for 2 ≤ i ≤ N :

GA
2
= {i |ai < R ∧ i is a 2nd candidate}, GB

2
= {i |R ≤ ai < W ∧

i is a 2nd candidate}, GC
2
= {i |W ≤ ai < T ∧ i is a 2nd candidate},

GD
2
= {i |T ≤ ai ∧ i is a 2nd candidate}, GB

+ = {i |ai < R ∧ i < GA
2
},

GA
+ = {i |R ≤ ai <W ∧ i < GB

2
}, GC
+ = {i |W ≤ ai < T ∧ i < GC

2
},

and GD
+ = {i |T ≤ ai ∧ i < GD

2
}. We can now write Cwindow

M=2W ,T =

R+(|GA
2
|+ |GB

2
|+ |GC

2
|+ |GD

2
|)R+∑i ∈GA

+
ai+

∑
i ∈GB

+
ai+

∑
i ∈GC

+
ai+

|GD
+ |(R+T ), andC

of f l ine
opt = R+

∑
i ∈GA

2

ai +(|GB
2
|+ |GC

2
|+ |GD

2
|)R+∑

i ∈GA
+
ai + (|GB

+ |+ |GC
+ |+ |GD

+ |)R. Now, noting that |GD
+ | = |GA

2
|+

|GB
2
|, and making similar simplifications as in prior proofs, it is easy

to show that:

Cwindow
M=2,W ,T

C
of f l ine
opt

≤
R + 2|GD

+ |R + (|GB
+ | + |GC

+ | + |GD
+ |)T

R + (|GB
+ | + |GC

+ | + |GD
+ |)R

. (72)

This expression is minimized when T → R (and W = T = R).
With these choices, the worst-case bound of 3 is achieved when

|GB
+ | = |GC

+ | = 0 and |GD
+ | → ∞.

□
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