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Abstract

Distributed and iterative network utility maximization algorithms, such as

the primal-dual algorithms or the network-user decomposition algorithms,

often involve trajectories where the iterates may be infeasible, convergence

to the optimal points of relaxed problems different from the original, or

convergence to local maxima. In this paper, we highlight the three issues

with iterative algorithms. We then propose a distributed and iterative al-

gorithm that does not suffer from the three issues. In particular, we as-

sert the feasibility of the algorithm’s iterates at all times, convergence to

global maximum of the given problem (rather than to global maximum of

a relaxed problem), and avoidance of any associated spurious rest points

of the dynamics. A benchmark algorithm due to Kelly, Maulloo and Tan

(1998) [Rate control for communication networks: shadow prices, propor-

tional fairness and stability, Journal of the Operational Research society,

49(3), 237-252] involves fast user updates coupled with slow network up-

dates in the form of additive-increase multiplicative-decrease of suggested

user flows. The proposed algorithm may be viewed as one with fast user up-

dates and fast network updates that keeps the iterates feasible at all times.

Simulations suggest that the convergence rate of the ordinary differential

equation (ODE) tracked by our proposed algorithm’s iterates is comparable

to that of the ODE for the aforementioned benchmark algorithm.
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decomposition, Distributed interior point method.
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1. Introduction and the main result

1.1. Background

We revisit the classic setting of decentralised congestion control as ad-

dressed by Kelly et al. [1]. Consider a network with m directed link re-

sources. Let c(l) be the capacity of the link l. There are n users and each

has a single fixed path. Each user sends data along its associated path

with the first vertex of the path being the source of the user’s data and the

last vertex being its terminus. Let A be the m × n matrix with Ale = 1

if the path e uses link l and Ale = 0 otherwise. Let [n] denote the set

{1, 2, . . . , n} of users and let [m] denote the set {1, 2, . . . ,m} of links. Let

we : R+ → R, e ∈ [n] be the utility functions of the users. User e derives a

utility we(x(e)) when sending a flow of rate x(e). The functions we, e ∈ [n]

are assumed to be strictly concave and increasing. Let x = (x(e), e ∈ [n]),

w = (we, e ∈ [n]), and c = (c(l), l ∈ [m]). Let A = {x|x ≥ 0 and Ax ≤ c}.
Throughout, we make the standing assumption that A has an interior fea-

sible point, i.e., there exists a point for which all inequalities are strict. The

system optimal operating point solves the problem:

System(w,A, c) : max
x∈A

W (x) :=

n∑
e=1

we(x(e)). (1)

The important decentralization concerns are that the network operator does

not know the utility functions of the users, and the users know neither the

rate choices of the other users nor the flow constraints on the network.

Kelly [2] proposed the decomposition of the above problem into two

subproblems, one to be solved by each user, and the other to be solved by

the network. Let λe be the cost per unit rate to user e set by the network,

and let pe be the price user e is willing to pay. The maximization problem

solved by user e is

User(we;λe) : max
pe:pe≥0

we

(
pe
λe

)
− pe. (2)

2
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If p = (pe, e ∈ [n]) is known to the network, its optimization problem is

Network(A, c; p) : max
x∈A

n∑
e=1

pe log(x(e)). (3)

The solution to Network(A, c; p) is well-known to satisfy the so-called pro-

portional fairness criterion: if µl, l ∈ [m] are the optimal dual price variables

associated with the dual to Network(A, c; p), then

x(e) =
pe∑
l:l∈e µl

, e ∈ [n], (4)

is the optimal solution to the network problem. Kelly [2] showed that there

exist costs per unit rate (λ?e, e ∈ [n]), prices (p?e, e ∈ [n]), and flows (x?(e), e ∈
[n]), satisfying p?e = λ?e ·x?(e) for e ∈ [n] such that p?e solves User(we;λ

?
e) for

e ∈ [n] and (x?(e), e ∈ [n]) solves Network(A, c; p?); furthermore, (x?(e), e ∈
[n]) is the unique solution to System(w,A, c). The costs per unit rate satisfy

λ?e =
∑

l:l∈e µ
?
l for some dual price variables.

In order to ensure operation at x?, taking the information asymmetry

constraints into account, Kelly et al. [1] proposed the following fast user

adaptation dynamics:

pe(t) = x(e, t) · w′e(x(e, t)), e ∈ [n], (5)

d

dt
x(e, t) = κ ·

(
pe(t)− x(e, t) ·

∑
l:l∈e

µl(t)

)
, e ∈ [n], (6)

µl(t) = ψl

(∑
e:e3l

x(e, t)

)
, l ∈ [m], (7)

where ψl(y) is a penalty1 or cost per unit flow when the total flow in the link

is y. It signifies the level of congestion in that link. Thus µl(t) in (7) is the

cost per unit flow through link l, and may be interpreted as a dual variable

of the network problem. The optimal dual variables for Network(A, c; p)

are such that the net cost of user e flow matches the price pe paid by that

user; see (4). The network, adapts the flow x(e, t) using an additive-increase

1Kelly et al. [1] suggest two functions as examples, one of which is ψl(y) = (y − c(l) +

ε)+/ε2 for some ε > 0.
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multiplicative-decrease scheme as in (6), perhaps the first mathematical jus-

tification for the scheme already then in use in TCP/IP congestion control

schemes. The network attempts to equalize, albeit slowly, the instantaneous

net cost of user e flow, x(e, t) ·∑l:l∈e µl(t), to the instantaneous price paid

by that user, pe(t). On the other hand, if we differentiate (2) with respect

to pe and use the relation pe(t) = λe(t) ·x(e, t), we get that pe(t) in (5) max-

imizes User(we;λe(t)). So the users adapt instantaneously (in comparison

to the network’s slower speed of adaptation) to the congestion signal. Kelly

et al. [1] provided a Lyapunov function for the dynamical system defined

by (5)-(7). The stable equilibrium point of the dynamical system maximizes

a relaxation of the system problem, as determined by the choice of ψl(·) in

(7).

The papers Kelly [2] and Kelly et al. [1] are landmark papers for three

reasons.

1. They provided perhaps the first mathematical justification for the

additive-increase and multiplicative-decrease scheme then already in

use for TCP/IP congestion.

2. They firmly rooted the idea of proportional fairness in the minds of

network engineers.

3. They also provided the general framework to study other notions of

fairness via utility functions and network utility maximization.

1.2. Three issues and the motivation for our work

Despite the popularity of this approach, there are three issues we would

like to highlight.

• x(t) may not remain feasible at all times t.

• x(t) converges to the optimal value of a relaxation of the system prob-

lem.

• There are multiple fixed points for the dynamics.

The first issue was highlighted in Johansson et al. [3]. The dynamics (5)-

(7) cannot then be used in systems where feasibility has to be ensured at
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all times. Take for example identification of optimal flow parameters in

a software defined communication network with a centralized controller.

Flows may go through links of fixed capacities, and these must be respected

at all times, even during the learning and exploration phases that may ensue

before arrival at the final optimal flow values. This may also be required

in mobile offloading settings [4], [5] under additional assumptions of strict

service level guarantees, in smart grid energy routing settings [6], or in road

traffic settings where one simply cannot have more traffic than the road’s

capacity at any time, be it during the exploratory phase or otherwise.

The second issue is often circumvented via iterative algorithms where

the Lagrange multipliers or penalty functions are also adapted over time, in

some examples at a slower time scale; see for example, Arrow and Hurwicz

[7], Low and Lapsley [8], Chiang et al. [9], Palomar and Chiang [10], and the

more recent works of Gao et al. [11] and [4]. Such approaches either assume

knowledge of the utility functions at the network end or may encounter

infeasible iterates, or both.

The third issue is about multiple spurious rest points, other than the

global optimum, for the iterative dynamics. Indeed, if x(e, t) = 0 for user

e at some time t0, and if2 limr→0 rw
′
e(r) = 0, then from (5), the user’s

willingness to pay pe(t0) = 0, and from (6) one gets x(e, t) ≡ 0, t ≥ t0, i.e.,

the iterates never exit the facet defined by xe = 0. See Figure 1. When there

is no stochasticity, there is no exit from this facet, and the iterates converge

to a rest point for the dynamics different from the global optimum. Further,

there is no a priori guarantee that these rest points are not attracting, and so

there may be no exit even under stochasticity if the iterates start sufficiently

close to these rest points.

The purpose of this paper is to provide an algorithm that circumvents

these three issues.

2This is the case when the marginal utility for user e at supplied rate r = 0, w′e(0+),

is finite. The quantity limr→0 rw
′
e(r) can be nonzero only when w′e(0+) = ∞, for e.g.,

we(r) = log r.
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x(2)

x(3)

x(1)

Figure 1: There are many rest points for the dynamics, with the spurious ones indicated

by open circles on the facets. The solid circle is the global optimum and is on the interior.

If the iteration starts on one of the facets, it remains on the facet when there is no

stochasticity, and we do not have convergence to the global optimum point. Indeed, each

open circle rest point is attracting for dynamics within that facet.

1.3. Most relevant related works

The literature on network utility maximization is so vast that we will not

be able to do justice to twenty years of literature on the topic. However, we

will focus on works where the iterates remain feasible at all times. There are

three works, Hochbaum [12], Mo and Walrand [13] and La and Anantharam

[14], that are very relevant to our contribution which we bring to the reader’s

attention. A greedy algorithm proposed by Hochbaum [12] can be adapted

to solve the system problem with iterates remaining feasible at all times and

without full knowledge of the utility functions at the network side. Though

the algorithm circumvents the issues highlighted above, it works only when

the set of feasible flows forms the “independent set of a polymatroid”. This

is the case when the network has, for example, a single source and multiple

sinks or when the network has multiple sources but a single sink.

Mo and Walrand [13] proposed a window-based rate control mechanism

that converges to the solution to Network(A, c; p) for a fixed p. The win-

dow update rule of [13] uses only delay information provided to the user

(propagation and round-trip delays).

La and Anantharam [14] proposed two algorithms that solve the system
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problem using the decomposition of Kelly et al. [1]. The first algorithm

incorporates the solution to the user problem into the window update rule

of [13]. The second algorithm of La and Anantharam [14] explicitly finds

the solution to the user problem and the network problem in each iteration.

Although their simulations showed the convergence of the algorithm for

general networks, a rigorous proof was given only for the case of a network

with a single link. Their algorithm additionally imposes more stringent

conditions on the utility functions than those assumed in this paper.

1.4. Our main result

In this paper, we propose a discrete-time algorithm (see Algorithm 1

below) that (1) remains feasible at all times, (2) converges to the desired

global maximum of System(w,A, c) (rather than to global maximum of a re-

laxed problem), and (3) therefore avoids spurious traps. The corresponding

continuous time dynamics also shares the same properties. In comparison

to [14], our algorithm applies to more general networks and a larger class of

objective functions.

We now set up the notation to describe the algorithm. For a set of

flows, abusing notation, write pe(x(e)) := x(e) ·w′e(x(e)) as per (5), and set

p(x) = (pe(x(e)), e ∈ [n]). Write

T (x) := arg max
y∈A

n∑
e=1

pe(x(e)) log(y(e)) (8)

for the solution to Network(A, c; p(x)). If pe(x(e)) = 0 for some e, then the

objective function in (8) is not strictly concave over A. The optimization

problem (8) may then have multiple solutions, and so T (x) is to be viewed

as a set-valued mapping whose values are convex and compact subsets of A.

Define ak := 1
k+1 , k = 0, 1, 2, . . ..

Algorithm 1. 1. Initialize x(0) ∈ A such that x(0)(e) > 0, e ∈ [n].
Initialize k = 0.

2. User update:

p(k)e = x(k)(e) · w′e(x(k)(e)), e ∈ [n]. (9)
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3. Network update:

Find a point v ∈ T (x(k)) and set:

x(k+1) = x(k) + ak+1(v − x(k)). (10)

4. Set k ← k + 1 and go to step 2.

Our main result is the following theorem.

Theorem 1. Assume that A has an interior feasible point. The iterates x(k)

of Algorithm 1 converge to x?, the optimal solution to the system problem,
i.e., x(k) → x? as k →∞.

1.5. The three issues are now resolved

Recall that our objective is to address the three main issues in the dy-

namics of (5)-(7), viz., the non-feasibility of the iterates, their convergence

to a different solution – the solution to some relaxed problem, or their con-

vergence to local maxima traps on one of the facets. We now argue that

these issues disappear for Algorithm 1.

Observe that, in Algorithm 1, the users exhibit the same fast adaptation

as in the dynamics (5). But in the network update, iterate x(k+1) is a

convex combination of x(k) and v ∈ T (x(k)) which, by induction, remains

in the feasible set for all k. This resolves the feasibility issue that plagues

the dynamics (5)-(7). In the proof we will argue that the iterates track the

differential inclusion

d

dt
x(t) ∈ T (x(t))− x(t); (11)

we will in fact see that the solution to this differential inclusion also remains

feasible at all times.

Theorem 1 asserts that the iterates converge to the global optimum of

the system problem. This resolves the issue that the dynamics (5)-(7) con-

verge to the solution to a relaxed problem different from the original system

problem.

The assertion that there is convergence to the global optimum resolves

the third issue as well of avoidance of spurious rest points on the facets. This

is particularly interesting since there is no stochasticity in our algorithm. See

Figure 2. We must however start in the interior, but any arbitrary interior

feasible point will work.
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x(2)

x(1)

x(3)

Figure 2: Dynamics of Algorithm 1. Even if we start close to the facet, so long as the

initial point is on the interior, there is convergence to the global optimum.

1.6. Nontriviality of our contribution

1) Slowdown is essential: It is worthwhile to ask whether the convergence

of Algorithm 1 could be sped up using a constant step size ak ≡ γ, where

0 < γ < 1, in the network update. In fact, Hou and Kumar [15] proposed a

variant of Algorithm 1 with constant step size in the network update rule.

This was done in the context of delay constrained throughput maximization

in wireless networks. Step sizes determine the sizes of exploration. Larger

step sizes involve faster exploration but also increased variance. In Appendix

A, we provide a counterexample to show that the algorithm of Hou and

Kumar with a constant step size may not converge. The choice of step sizes

is therefore a delicate matter. A sufficient condition on step sizes ak, k ≥ 1,

for the algorithm to converge is the usual conditions typical in stochastic

approximation literature.

lim
k→∞

ak = 0, and
∞∑
k=1

ak →∞. (12)

The second condition ensures that there is enough exploration while the first

condition gradually brings the exploration or learning rate to 0.

2) Technical issues in the proof of convergence: The main technical is-

sues to surmount in showing the convergence of Algorithm 1 are (a) the

dynamics in (11) also have multiple fixed points and it is nontrivial to show
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convergence to the global optimum; (b) T (x) is not necessarily a continuous

function of x; see Section 2.2 and Appendix B. One must then study a

differential inclusion, and the solution space may not be unique in general.

An additional issue is the lack of stochasticity. We must then show that

local maxima traps can yet be escaped. The main technical contribution

is that these issues can be surmounted at least in this NUM problem with

sufficient convexity structure.

3) Wide applicability: Iterative procedures for network utility maximiza-

tion have wide applicability. Road traffic control, software defined network

controllers with strict service level guarantees, offloading of data-traffic to

WiFi providers and femto cell providers ([4] and [5]) with strict call handling

requirements, and smart grid energy routing [6] are all settings where feasi-

bility should be met at all times and where convergence to global optimality

is desirable. Our algorithm is applicable in all these settings.

4) Decentralized implementation: At first glance, Algorithm 1 appears

to need a central entity that computes the solution to Network(A, c; p), i.e.

T (x), and Section 3 describes algorithms to compute T (x) efficiently for

some class of networks. However, the central entity is not essential because

we can use Mo and Walrand’s algorithm [13] to find T (x) for a fixed p; that

algorithm uses only the information available at the user end. The p can

then be adapted (user updates) at a slower time scale. This enables the

potential use of Algorithm 1 in a distributed setting in large scale networks.

1.7. Organization

The rest of the paper is organized as follows. In Section 2, we prove

Theorem 1. In Section 3, we address the complexity of identifying the pro-

portionally fair solution point for the network problem. We provide an

example of a network where flows aggregate into a ‘main branch’, reminis-

cent of traffic from the suburbs flowing into an arterial highway leading to

the downtown of a large city, for which the complexity to solve the net-

work problem is O(n). We also argue that this complexity is manageable

(O(n log n) plus computations for feasibility checks) in situations where the

feasible set is a polymatroid, for example, when all flows either originate or

terminate at a single vertex. We also see in simulations that the dynamics
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in (11) converge to the equilibrium at a faster rate than the dynamics of

(5)-(7) for identical speed parameters κ. In Section 4, we end the paper

with some concluding remarks.

2. Proof of Convergence

The update equation in step 3 of Algorithm 1 is a standard stochastic

approximation scheme but without the stochasticity. A common method to

analyze the asymptotic behavior of such schemes is the dynamical systems

approach based on the theory of ordinary differential equations (ODE). But

T (x) being a set valued map necessitates the use of differential inclusions.

The outline of the proof is as follows. We will first characterize the

fixed points of the mapping T . We will then argue that the system optimal

point is one of the finitely many fixed points of the mapping T . We will

next show that the solution to the differential inclusion in (11) models the

asymptotic behavior of the iterates x(k). Following this, We will show that

every solution to the differential inclusion converges to one of the fixed points

of T via Lyapunov theory. Finally, though there may be many fixed points,

we will prove that the fixed point to which the solution to the differential

inclusion converges as t→∞ is the system optimal point.

2.1. Characterization of the fixed points of T (x)

Definition 1. A point x is a fixed point of the set valued map T if x ∈ T (x).

Let S ⊂ [n]. Let A|S be the subset of A whose points have support

contained within S. Define a subproblem of the system problem as

Subsystem(w,A, c, S) : max
y∈A|S

∑
e∈S

we(y(e)). (13)

Lemma 1. Let x be a fixed point of the mapping T . Let S = {e : x(e) > 0}.
Then x is the unique optimal solution to the Subsystem(w,A, c, S).

Proof We have x(e) = 0 for all e ∈ Sc. If limx(e)↓0 x(e) · w′e(x(e)) > 0 for

some e ∈ Sc, then any element y ∈ T (x) has y(e) > 0 which contradicts
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the fact that x is a fixed point. Hence pe(x(e)) = x(e) · w′e(x(e)) = 0 for all

e ∈ Sc, and we may write

x ∈ T (x) = arg max
y∈A

∑
e∈S

pe(x(e)) log(y(e)). (14)

Since x ∈ A|S ⊂ A, we also have that x maximizes (14) over A|S , i.e.,

x = arg max
y∈A|S

∑
e∈S

pe(x(e)) log(y(e)). (15)

Let µl, l ∈ [m] and ηe, e ∈ [n] be the optimal dual variables for the network

subproblem (15). Its Karush-Kuhn-Tucker (KKT) conditions are

pe(x(e))

x(e)
=
∑
l:l∈e

µl − ηe, e ∈ S, (16)

µl ·
(∑
e:e3l

x(e)− c(l)
)

= 0, l ∈ [m], (17)

ηe · x(e) = 0, e ∈ [n], (18)

ηe ≥ 0, e ∈ S, µl ≥ 0, l ∈ [m] and x ∈ A|S . (19)

Since pe(x(e))
x(e) = w′e(x(e)), it is easy to see that equations (16-19) are the

KKT conditions of Subsystem(w,A, c, S) as well. Since x/2 is an interior

feasible point of A|S , KKT conditions are sufficient for optimality in (13)

and x is the optimal solution to Subsystem(w,A, c, S). Uniqueness follows

from the strict concavity of we, e ∈ S. �

Observe that there are only a finite number of sub-problems of the form

Subsystem(w,A, c, S), S ⊂ [n]. As a consequence of Lemma 1, every fixed

point of T is the unique optimal solution to Subsystem(w,A, c, S) for some

set S ⊂ [n]. Hence there are only finitely many fixed points of T , each

corresponding to a sub-problem Subsystem(w,A, c, S) for some S ⊂ [n].

Is every solution to Subsystem(w,A, c, S) a fixed point of the mapping

T? The possibility that limx(e)↓0 x(e) · w′e(x(e)) > 0 for an e ∈ Sc and the

first step of the proof of Lemma 1 says this is not always true. However, we

can assert the following.

Lemma 2. The global maximum of the system problem, x?, is a fixed point
of the mapping T .
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Proof x? solves the system problem. Let S = {e : x?(e) > 0}. S can be

a proper subset of [n]. Let µl, l ∈ [m] and ηe, e ∈ [n] be the optimal dual

variables of the system problem. We then have

w′e(x
?(e)) =

∑
l:l∈e

µl − ηe, e ∈ S, (20)

w′e(0) =
∑
l:l∈e

µl − ηe, e ∈ Sc, (21)

µl ·
(∑
e:e3l

x?(e)− c(l)
)

= 0, l ∈ [m], (22)

ηe · x?(e) = 0, e ∈ [n], (23)

ηe ≥ 0, e ∈ [n], µl ≥ 0, l ∈ [m] and x? ∈ A. (24)

Observe that w′e(0) is finite for an e ∈ Sc; otherwise a small increase in x?(e)

and a corresponding decrease in x?(i) for a suitable i ∈ S (which has finite

w′i(x
?(i))) will result in a feasible flow that has a larger objective function

value. Hence pe(x
?(e)) = 0 for e ∈ Sc. Since w′e(x

?(e)) = pe(x?(e))
x?(e) for all

e ∈ S, it follows from (20)-(24) that x?, (µl, l ∈ [m]), (η̃e = ηe, e ∈ S) and

(η̃e = ηe + w′e(0), e ∈ Sc) satisfy the KKT conditions of the problem (8).

Hence x? ∈ T (x?). �

The above result provides a motivation to search for the global maximum

by setting up a dynamics that will converge to a fixed point of T .

2.2. Need for the theory of differential inclusions

We now describe the issues that make it necessary to use differential

inclusions to study the asymptotic behavior of x(k). T (x) is the set of points

that solve (8). If pe(x(e)) = 0 for some e at a point x ∈ A, then the

objective function in (8) is not strictly concave. Hence there can be multiple

points that solve (8). A continuous selection3 from T (x) allows the use of

differential equations to analyze the stochastic approximation scheme in

(10). A natural question that arises is whether there is such a continuous

3A continuous selection f from the set-valued map T is a continuous function f : A → A
with f(x) ∈ T (x) for each x ∈ A.
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selection from T (x). We give an example in Appendix B showing that such

a selection is not always possible.

2.3. Differential Inclusions: Preliminaries

In this section, we define a differential inclusion and state relevant results

from [16] that are used to show the convergence of Algorithm 1. Let F :

Rn → Rn be a set valued map. Consider the following differential inclusion:

dx

dt
∈ F (x). (25)

A solution to the differential inclusion in (25) with initial condition x0 ∈ Rn

is an absolutely continuous function x : R→ Rn that satisfies (25) for almost

every t ∈ R. The following conditions are sufficient for the existence of a

solution to the differential inclusion (25):

1. F (x) is nonempty, convex and compact for each x ∈ Rn.

2. F has a closed graph.

3. For some K > 0, for all x ∈ Rn, F satisfies the following condition

sup
z∈F (x)

||z|| ≤ K(1 + ||x||). (26)

The stochastic approximation scheme with iterates in Rn is given as

yk+1 ∈ y(k) + ak+1(F (y(k)) + U (k+1)), (27)

where ak satisfy the usual conditions:

lim
k→∞

ak = 0,

∞∑
k=1

ak →∞, (28)

and U (k) ∈ Rn are deterministic or random perturbations.

Let t(0) = 0, t(k) =
∑k

i=1 ai. Let ry : R+ → Rn be a continuous piece-

wise linear function formed by the interpolation of y(k) as in

ry(t) = y(k) +
y(k+1) − y(k)
t(k + 1)− t(k)

· (t− t(k)), ∀ t ∈ [t(k), t(k + 1)). (29)
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Definition 2. (A perturbed solution to (25)). Let U : R+ → Rn be locally
integrable function such that

lim
t→∞

sup
0≤v≤T

∣∣∣∣∣∣∣∣∫ v

t
U(s)ds

∣∣∣∣∣∣∣∣ = 0.

Let δ : [0,∞)→ R be a function such that δ(t)→ 0 as t→∞. Define

F ε(x) = {y ∈ Rm : ∃z : ||z − x|| < ε, d(y, F (z)) < ε}, (30)

where d(y, F (z)) = inf{||y − q|| : q ∈ F (z)}. An absolutely continuous
function y : [0,∞) → Rn is a perturbed solution to (25) if there exists
U : R+ → Rn and δ : R+ → Rn as above such that

dy

dt
− U(t) ∈ F δ(t)(y(t)). (31)

for almost every t ∈ R+.

The following lemma, taken from [16], gives conditions on y(k) and U (k) for

ry to be a perturbed solution to (25).

Lemma 3. [16, Prop. 1.3] Suppose y(k) is bounded, i.e., supk ||y(k)|| <
M <∞, and for all T > 0,

lim
s→∞

sup

{∣∣∣∣∣
∣∣∣∣∣
i−1∑
k=s

ak+1U
(k+1)

∣∣∣∣∣
∣∣∣∣∣ : i = s+ 1, s+ 2, . . . ,m(t(s) + T )

}
= 0, (32)

where m(t) = sup{m : t(m) ≤ t}. Then ry(t) is a perturbed solution of the
differential inclusion (25).

Definition 3. A compact set L is an internally chain transitive set if for
any x, y ∈ L and every ε > 0, T > 0, there exists l ∈ N, solutions x1, x2, . . . , xl
to (25) and ti > T, ∀ i, that satisfy the following.

1. xi(t) ∈ L for all 0 ≤ t ≤ ti and for all i ∈ [l],

2. ||xi(ti)− xi+1(0)|| ≤ ε for all i ∈ [l − 1],

3. ||x1(0)− x|| ≤ ε and ||xl(tl)− y|| ≤ ε.

We shall call the sequence (x1, x2, . . . , xl) as an (ε, T ) chain in L from x to
y.

The following lemma, again taken from [16], characterizes the limit set of a

perturbed solution.

Lemma 4. [16, Thm. 3.6] Let r be a perturbed solution to (25). Then the
limit set of r(·) L(r) :=

⋂
t≥0{r(s) : s ≥ t} is internally chain transitive.
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2.4. Convergence analysis

We proceed to prove the convergence of x(k), the iterates put out by

Algorithm 1, to the optimal solution to the system problem. Observe that

T maps points in A to itself. We show that x(k) asymptotically tracks the

solution to the differential inclusion

dx

dt
∈ F (x), (33)

where

F (x) := T (PA(x))− x, (34)

for x ∈ Rn. PA(x) is the projection of x onto the set A. We then find

a Lyapunov function for the dynamics in (33) to show its convergence to

the system optimal point x?. The following lemma establishes that the set-

valued map F defined in (34) has some good properties; it turns out that

these are sufficient for the differential inclusion (25) to have a solution.

Lemma 5. For each x ∈ Rn, F (x) is nonempty, convex and compact. Fur-
thermore, F has the closed graph property and satisfies (26).

Proof The objective function of the network problem is continuous and the

constraint set A is compact. The maximum exists due to the Weierstrass

theorem. Also, the set of maximizers is closed and convex. Thus T (PA(x))

is nonempty, convex and compact, and hence so is F (x).

We next prove the closed graph property of F . A function has the

closed graph property if it is upper hemicontinuous. The objective function

in (8),
∑n

e=1 pe(x(e)) log(y(e)), is jointly continuous4 in x and y. Also, the

constraint set of the network problem does not vary with x. By Berge’s max-

imum theorem [17, p. 116], T (x) is upper hemicontinuous. Since PA(x), the

projection onto the convex set A, is continuous, the composition T (PA(x))

is upper hemicontinuous. Consequently, F (x) is upper hemicontinuous and

4Here we may take log(y(e)) to be continuous at y(e) = 0 with log 0 := −∞ because

then limx(e)↓0 log(y(e)) = log 0 and this sequential continuity is all that is needed to apply

Berge’s maximum theorem [17, p. 116]
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hence has the closed graph property. Finally,

sup
z∈F (x)

||z|| = sup
z∈T (PA(x))

||z − x|| ≤ sup
z∈A
||z − x|| ≤ sup

z∈A
||z||+ ||x||

≤ K + ||x|| ≤ K(1 + ||x||), where K > max{sup
z∈A
||z||, 1}.

Lemma 6. Let rx(t) be obtained by the linear interpolation of x(k) as given
in (29). Then rx(t) is a perturbed solution to the differential inclusion (25)
with F defined as in (34).

Proof We first show that x(k) ∈ A. Observe that x(0) ∈ A. Assume

x(k−1) ∈ A. Since T (x(k−1)) ∈ A and x(k) is a convex combination of x(k−1)

and T (x(k−1)), we have x(k) ∈ A. It follows that

F (xk) = T (PA(x(k)))− x(k) = T (x(k))− x(k).

We now see that the update equation in (10) is the same as the stochastic

approximation scheme in (27) with U (k) = 0 for all k. Observe that x(k) is

bounded because x(k) ∈ A for all k and A is compact; since U (k+1) = 0,

the condition in (32) is trivially satisfied. Hence, by Lemma 3, rx(t) is a

perturbed solution. �

We restrict our attention to solutions of (25) with initial condition x(0) ∈ A.

Since T (x) ∈ A, x(t) lies in A for all t. Define

Φt(x0) := {x(t) : x solves (25), x(0) = x0}.

Definition 4. Let Λ be a subset of A. Let V : A → R be a continuous
function such that V (y) < V (x), y ∈ Φt(x), x ∈ A\Λ and V (y) ≤ V (x), y ∈
Φt(x), x ∈ Λ. Then V is called a Lyapunov function for Λ.

Define V : A → R as

V (x) :=
n∑
e=1

we(x
?(e))−

n∑
e=1

we(x(e)). (35)

Lemma 7. Let Λ be the set of fixed points of T . The function V in (35) is
a Lyapunov function for Λ.



Network Utility Maximization 18

Proof Let x ∈ A and v ∈ T (x). We have, from the definition of T (x) in

(8), that

n∑
e=1

pe(x(e)) log(v(e)) ≥
n∑
e=1

pe(x(e)) log(x(e)) (36)

because v ∈ T (x) maximizes the network problem.

If pe(x(e)) > 0 for all e, then the network problem has unique solution.

Therefore, equality holds in (36) if and only if v = x, i.e, x is a fixed point

of the mapping T . Thus we have

0 ≤
n∑
e=1

pe(x(e)) log
v(e)

x(e)

(a)

≤
n∑
e=1

pe(x(e))

(
v(e)

x(e)
− 1

)

=
n∑
e=1

w′e(x(e))(v(e)− x(e)) = ∇W (x) • (v − x), (37)

where (a) uses the inequality log y ≤ y − 1.

More generally, let pe(x(e)) > 0 for e ∈ S ⊂ [n] and pe(x(e)) = 0

for e ∈ Sc; in particular, x(e) = 0 for e ∈ Sc. Define ṽ to be ṽ(e) =

v(e)1S(e), e ∈ [n].

The value of the objective function in (8) evaluated at v and ṽ are equal.

Hence ṽ ∈ T (x),∑
e∈S

pe(x(e)) log(ṽ(e)) ≥
∑
e∈S

pe(x(e)) log(x(e)), (38)

and ṽ must be the unique solution to the problem defined in (15). Therefore,

(38) holds with equality if and only if ṽ = x. Following the steps leading to

(37), we have ∑
e∈S

w′e(x(e))(ṽ(e)− x(e)) ≥ 0 (39)

which is a strict inequality if ṽ 6= x. Since v(e) − x(e) ≥ 0 for e ∈ Sc, this

along with (39) yields

∇W (x) • (v − x) ≥ 0; (40)

since w′e(x(e)) = w′e(0) > 0 for e ∈ Sc, equality holds in (40) if and only if

v = x. Hence

dV (x(t))

dt
= −∇W (x(t)) • (v − x(t)) ≤ 0, ∀ v ∈ T (x(t)). (41)
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The inequality in (41) holds with an equality if and only if v = x. Therefore

V is a Lyapunov function for Λ. �

Lemma 8. Let Λ be the set of fixed points of T . Every internally chain
transitive set for F in (34) is a singleton that is a subset of Λ.

Proof By Lemma 1, there are at most finitely many fixed points of the

mapping T . Hence the cardinality of the set Λ is finite and V (Λ) has empty

interior. Also, by Lemma 7, V is a Lyapunov function for Λ. Proposition

3.27 of [16] states that if V is a Lyapunov function for Λ and if V (Λ) has an

empty interior, then every internally chain transitive set is a subset of Λ.

Choose ε small enough so that open balls of radius ε centered at each of

the finite points Λ are disjoint. Fix T ≥ 0. Since any (ε, T ) chain involves

remaining in Λ for all time and jumps of size at most ε to another point

in Λ, by the disjointedness of the ε-balls covering Λ, there can be no (ε, T )

chain in Λ joining two of its distinct points. It follows that the internally

chain transitive subsets of Λ are singletons. �

Lemma 9. The iterates x(k) converges to a fixed point of the mapping T .

Proof In Lemma 6, we showed that rx(t) is a perturbed solution to (25).

By Lemma 4, the limit set of rx(t) is internally chain transitive. By Lemma

8, L(rx) is a singleton and L(rx) ⊂ Λ. Let x̂ ∈ L(rx). Since A is compact

and x̂ is the only limit point of the sequence x(k), every subsequence of x(k)

has a further subsequence that converges to x̂. Hence x(k) converges to x̂.

�

In the rest of this section, we show that the iterates converge to x?, the

optimal solution to the system problem.

Let the dual variables of the optimization problem Network(A, c; p) be

µl, l ∈ [m]. Kelly et al. [1] simplified the dual to this problem to be:

Dual(p,A, c) :

min
µl≥0,l∈[m]

(
n∑
e=1

pe · log
1∑

l:l∈e µl
+

m∑
l=1

µlc(l)

)
. (42)

We now argue that the search for the optimal µl, l ∈ [m] may be restricted

to a compact set.
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Lemma 10. The optimization problem in (42) with pe = pe(x(e)) is equiv-
alent to the following optimization problem. For any x ∈ A,

max
0≤µl≤2P/c(l)

n∑
e=1

pe(x(e)) · log

(∑
l:l∈e

µl

)
−

m∑
l=1

µlc(l), (43)

where P := maxx∈A
∑n

e=1 x(e) · w′e(x(e)) <∞.

Proof Define R(µ) to be the objective function in (43). For any µl >

2P/c(l), by reducing µl, we increase the objective function’s value. To see

this, it suffices to show that ∂R(µ)
∂µl

< 0 for any µl > 2P/c(l). But this is

easily checked as follows:

∂R(µ)

∂µl
=
∑
e:e3l

pe(x(e))
1∑

l′:l′∈e µl′
− c(l) ≤

∑
e:e3l

pe(x(e))
1

µl
− c(l)

≤ 1

µl

n∑
e=1

pe(x(e))− c(l) ≤ 1

µl

[
max
x∈A

n∑
e=1

pe(x(e))

]
− c(l)

=
P

µl
− c(l) < 0, (44)

where the last inequality follows if µl > 2P/c(l). �

Lemma 11. Let x(k) converge to x̂, a fixed point of the mapping T . Then
x̂ = x?, the optimal solution to the system problem.

Proof Let v(k+1) solve problem (8) with pe = pe(x
(k)(e)), and so v(k+1) ∈

T (x(k)) satisfies the KKT conditions

pe(x
(k)(e))

v(k+1)(e)
−
∑
l:l∈e

µ
(k)
l + η(k)e = 0, e ∈ [n], (45)

µ
(k)
l ·

(∑
e:e3l

v(k+1)(e)− c(l)
)

= 0, l ∈ [m], (46)

η(k)e · v(k+1)(e) = 0, e ∈ [n], (47)

η(k)e ≥ 0, e ∈ [n], µ
(k)
l ≥ 0, l ∈ [m]. (48)

Let us first claim that x(k) > 0 for all k ≥ 0. This holds for k = 0, the initial

point, in Algorithm 1. If, for some k, x(k) > 0, then pe(x
(k)(e)) > 0 for all

e and so, v(k+1) > 0 and consequently, x(k+1) being a convex combination

of x(k) and v(k+1) also satisfies x(k+1) > 0. The claim follows by induction.
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Since x(k)(e) > 0, we have v(k+1)(e) > 0, and so, by (47), η
(k)
e = 0, e ∈ [n].

Thus (45) simplifies to

pe(x
(k)(e))

v(k+1)(e))
=
∑
l:l∈e

µ
(k)
l . (49)

Since we also have pe(x
(k)(e)) > 0, and v(k+1)(e) > 0 in (49), we have∑

l:l∈e µ
(k)
l > 0. Hence

v(k+1)(e) =
pe(x

(k)(e))∑
l:l∈e µ

(k)
l

=
x(k)(e) · w′e(x(k)(e))∑

l:l∈e µ
(k)
l

. (50)

Suppose x̂(e) = 0. Observe that x(k)(e) > 0 for all k. Hence v(k+1)(e) <

x(k)(e) infinitely often, which is the same as saying

x(k)(e)w′e(x
(k)(e))∑

l:l∈e µ
(k)
l

< x(k)(e) (51)

occurs infinitely often. This implies

w′e(x
(k)(e)) <

∑
l:l∈e

µ
(k)
l (52)

infinitely often. Consider the subsequence that satisfies (52). Henceforth,

let x(k) denote that subsequence. We now make the following observations.

In Lemma 10, we showed that µ
(k)
l takes values on a compact set, and so we

can find a further subsequence such that µ
(kτ )
l → µ?l for some µ?l , but for all

l ∈ [m]. Since (52) holds for k = kτ , by letting τ →∞, we have

w′e(x̂(e)) ≤
∑
l:l∈e

µ?l , ∀ e such that x̂(e) = 0 (53)

w′e(x̂(e)) =
∑
l:l∈e

µ?l , ∀ e such that x̂(e) > 0; (54)

the latter follows by letting τ → ∞ in (50) and from x(k+1) = x(k) +

ak(v
(k+1) − x(k)). Choose

η?(e) = 0 if x̂(e) > 0, (55)

η?(e) =
∑
l:l∈e

µ?l − w′e(x̂(e)) if x̂(e) = 0. (56)
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Thus, from (53),

η?(e) · x̂(e) = 0 ∀ e ∈ [n] and η?(e) ≥ 0 ∀ e ∈ [n]. (57)

Since (46) and (48) are true for indices kτ , taking limit as τ →∞, we get

µ?l ·
(∑
e:e3l

x̂(e)− c(l)
)

= 0, l ∈ [m], (58)

µ?l ≥ 0, ∀ l. (59)

Equations (53)-(59) are the KKT conditions for the system problem. Hence

x̂ = x?, the optimal solution to the system problem. �

Proof of Theorem 1: Theorem 1 follows from Lemma 11. �

3. Algorithmic Complexity and Speed of Convergence

In this section, we remark on the complexity of Algorithm 1. Each

iteration of the algorithm has 1) a user update which adapts the amount a

user is willing to pay to the network, and 2) a network update which adapts

the rates allocated to the users.

Since we is known at the user end, w′e is easy to obtain either numerically

or analytically. Hence the user update (9) can be implemented by each user

in O(1) steps.

The network update consists of solving the network problem (8). Its

complexity depends on the network structure. We indicate the complexity

of the network update for the following simple networks: a polymatroidal

network with a single source and multiple sinks or multiple sources and a

single sink; a flow aggregating network with the structure in Figure 3.

Polymatroidal network: Consider a network with a single source and n

sinks. The source sends flows at a rate x(1), x(2), . . . , x(n) to the sinks.

Megiddo [18] showed that the set of feasible flows (x(e), e ∈ [n]) forms the

independent set of a polymatroid. Therefore, the network problem is a sepa-

rable concave maximization over the independent set of a polymatroid. The

fastest known algorithm that solves this optimization problem is a scaling

based greedy algorithm proposed by Hochbaum [12]. The algorithm obtains
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T
· · ·x(1)

c(1) c(2) c(n)

x(n)x(3)x(2) x(n− 1)

c(i) = α(1) + α(2) + · · ·+ α(i)

c(n− 1)

Figure 3: Flow aggregating network.

an “ε-optimal” solution to the network problem in O
(
n(log n+ F ) log B

nε

)
where F is the complexity to check whether a certain increase in one of the

components of (x(e), e ∈ [n]) would make the flow infeasible. B is the total

amount of resource to be allocated and is O(n).

Flow aggregating network: Let (x(e), e ∈ [n]) denote the flow through

the network in Figure 3. The flow constraints of the network are

x(e) ≥ 0, e ∈ [n],

x(1) ≤ α(1),

x(1) + x(2) ≤ α(1) + α(2),

...

x(1) + x(2) + · · ·+ x(n) ≤ α(1) + α(2) + · · ·+ α(n).

(60)

where α(e) ≥ 0 for all e. The constraints in (60) are referred to as linear

ascending constraints. This problem arises as the core optimization problem

in several wireless communication problems (Padakandla and Sundaresan

[19], Viswanath and Anantharam [20], Lagunas et al. [21], Sanguinetti et al.

[22]) and operations research problems (Clark and Scarf [23], Wang [24]).

See [25] for a survey and a discussion of several algorithms. The network

problem is the maximization of a so-called d-separable concave function over

the linear ascending constraints. Veinott Jr. [26] mapped this problem to

the geometrical problem of finding the “concave cover” of the set of points

(
∑i

e=1 α(e),
∑i

e=1 pe), i ∈ [n], in R2. The “string algorithm” of Muckstadt

and Sapra [27] finds the concave cover of a set of points in R2 in O(n) steps.

See [25] for details.

Simulations: We now discuss some simulation studies investigating the
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Figure 4: (a) Error dynamics for (5)-(7) denoted (“KMT”) with κ = 1, 2, 10, 50, 100; error

dynamics for (61) denoted “Algorithm 1” with κ = 1 is also plotted for comparison. (b)

The roles of (5)-(7) and (61) are swapped.

speed of convergence of the ODE that our proposed algorithm will track.

But we caution the reader that the ODE convergence rate does not give

the full picture of convergence rate since the timescale is dictated by the

step sizes. In the plots, the solid curves correspond to the error plots of the

system

d

dt
x(t) ∈ κ · (T (x(t))− x(t)) . (61)

The dashed curves correspond to the error plots of the system (5)-(7). The

differential inclusion (61) has scaling factor κ when compared with (11) and

corresponds to a scaled version of Algorithm 1. The scaling is to enable

comparison of (61) with the system (5)-(7) which already has the scaling

factor κ in (6).

All figures are for the flow aggregating network with n = m = 10 and

link capacities c(l) = 10 × l, l ∈ [m]. The utility functions are chosen as

(1/β(e)) · xβ(e), for e ∈ [n] with β(e) = .09 · e. The initial point for both

differential inclusions is always the lexicographically maximal point5. This

is the most natural starting point when the network does not know the

5The lexicographically maximal point is one where the minimum allocation (across
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Figure 5: Comparison of error dynamics for the systems (5)-(7) (“KMT” curve) and (61)

(“Algorithm 1” curve). Subplot (a) has κ = 1, (b) has κ = 10, (c) has κ = 50, and (d)

has κ = 100. Note that the time axis is scaled differently in each of the subfigures. The

inset picture in (d) shows an enlarged view of the error. The “KMT” curve settles at a

small but positive error.

users’ utility functions and considers all users to be equal. While we report

the results only for this particular β and c, we have simulated several other

settings, and the results are qualitatively the same. We do not repeat them

here for brevity.

Figure 4(a) shows that as κ scales up, the speed of convergence of the

system (5)-(7) increases. For comparison, we have included the solid curve

for (61) with κ = 1.

Figure 4(b) shows that as κ scales up, the rate of convergence of (61)

also increases similarly. Again, for comparison, we have included the dashed

curve for (5)-(7) with κ = 1.

These two subfigures show that convergence can be sped up similarly in

the two systems, (5)-(7) and (61), by simply increasing κ.

users) is maximized among all feasible points; further the second minimum is maximized

among all points with equal minimum allocation, and so on.



Network Utility Maximization 26

Figures 5(a)-5(d) compare (5)-(7) directly with (61) for identical κ. The

speeding up parameter κ equals 1, 10, 50 and 100 in Figures 5(a), 5(b),

5(c), and 5(d) respectively. These figures demonstrate that convergence

speed of (61) is comparable to that of (5)-(7) as long κ is identical for the

two systems. We saw the same qualitative behavior across several randomly

chosen problem parameters.

The inset in Figure 5(d) shows an enlarged view of the error plots after

the algorithms’ settlement close to their respective limiting values. We see

that the error plot of system (5)-(7) settles at a small but positive value. This

is consistent with the observation that KMT algorithm solves a relaxation

of the original system problem.

Figure 6 reproduces the plots in Figure 5(a) but with abscissa values

restricted to time interval [0, 15]. The dash-dotted line plots the iterates

put out by Algorithm 1 with the kth iterate plotted at time instant

tk =
k∑
i=1

ai. (62)

As expected, we see that the iterates trace the error plot of the ODE (61)

for κ = 1. This justifies the comparison between the system (5)-(7) and the

ODE (61).

We also compare our algorithm with a benchmark interior point algo-

rithm, the projected gradient algorithm [28, Sec. 2.3]. The projected gra-

dient descent algorithm is not distributed because the step-size selection

according to Armijo-Goldstein rule would require the knowledge of utility

functions. Hence the comparison is made in the following two ways.

We first compare the case when the stepsize is ak = 1/(k + 1) as for

stochastic approximation. With these fixed stepsizes, the projected gradient

descent can also be implemented in a distributed fashion, similar to ours.

The network asks all users to send flows according to x(k) and invites these

users to send gradients of their private utility functions at these points. The

users follow this. With the gradient information, the network identifies a

new location by employing gradient descent, projects it on the feasible set,

and then asks users to send flows according to this projected x(k+1). The

procedure then repeats.
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Figure 6: This figure is generated using the same problem parameters used to generate

Figure 5(a). The curve KMT corresponds to system (5)-(7) and curve Alg1 (DI) plots the

ODE (61) for κ = 1. Alg1 (discrete) plots the iterates of Algorithm 1 at timeinstants tk

given by (62).

We next compare the case when the stepsizes are according to the Armijo-

Goldstein rule. This cannot be done in a distributed fashion since the

improvement comparisons require knowledge of the private utility func-

tions. So, for fair comparison, we too use stepsizes according to the Armijo-

Goldstein rule to get a centralized variant of Algorithm 1.

As can be seen from the two new plots in Figures 7(a) and 7(b), in both

cases, our algorithm does much better than projected gradient descent. In

Figure 7(b), our algorithm is very close to the axes. This is quite reassuring.

4. Conclusion

We considered the network utility maximization problem in a distributed

framework where the users do not know the network structure or utility

functions of other users and the network does not know the users’ utility

functions. We decomposed the system problem into user subproblems and



Network Utility Maximization 28

Iterations k

0 1000 2000 3000

E
rr

or

0

10

20

30

40

50

60

70
(a)

PGD

Algorithm 1

Iterations k

0 1000 2000 3000

E
rr

or
0

10

20

30

40

50

60

70
(b)

PGD

Algorithm 1

Figure 7: Figure compares the performance of Algorithm 1 with the projected gradient

descent algorithm. The plot in Figure 7(a) corresponds to the case when step-size for both

algorithms is calculated using Armijo-Goldstein rule whereas for the plots in Figure 7(b)

step-size ak = 1
k+1

is used.

a network subproblem following the methodology of [1]. Unlike the dual

decomposition iterative methods of [7], [1], [8], etc., the iterations proposed

in Algorithm 1 ensure feasibility at every step. The convergence of the

algorithm was shown using the theory of differential inclusions. The iter-

ates avoid local maxima traps on the facets. Efficient methods to solve the

network problem for some special networks were also described. Finally,

sample simulations show that, in several examples, Algorithm 1’s associated

differential inclusion (11) converges faster to the system optimal point when

compared with the iterates arising from the ODE (5)-(7). The ODE conver-

gence rate however does not give the full picture of convergence rate of the

iterates since the timescale is dictated by the step sizes. For the convergence

rate of the iterates, a natural approach is to use the method of Borkar [29,

Ch. 4] to get sample complexity bounds. However they do not directly ap-

ply since the ODE dynamics is not necessarily Lipschitz, which is a crucial

assumption in [29, Ch. 4]. See Appendix B for a discontinuous T mapping.

A more intricate analysis of convergence rates is therefore required and is

left as future research.
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Appendix A. Counterexample to the Algorithm of Hou et al. [15]

In this section, we provide an example where Algorithm 1 does not con-

verge for a constant step size ak = γ, γ ∈ (0, 1). Consider a two user single

link network. The system problem for the case is

Maximize w1(x(1)) + w2(x(2))

subject to x(1) + x(2) = B,

where B is the capacity of the link. Let d = (d1, d2) be the initial flow

through the link. Let f = (f1, f2) be defined as

f = d+ γ(T (d)− d), (A.1)

the flow allocated in the first iteration of Algorithm 1. Without loss of

generality, choose

d1 < f1 < T1(d) < B. (A.2)

Also, choose

T1(f) = d1 + f1 − T1(d) (A.3)

The flow allocated to user 1 in the second iteration is

f1 + γ(T1(f)− f1)
(a)
= f1 + γ(d1 − T1(d))

(b)
= d1 + γ(T1(d)− d) + γ(d− T1(d))

= d1, (A.4)

where (a) and (b) are due to (A.3) and (A.1) respectively. Equations (A.1)

and (A.4) imply that the flows put out by the algorithm oscillates from d to

f and vice versa. It remains to be shown that there exists w1 and w2 that

is consistent with the choices made in (A.2) and (A.3).

We have, by the definition of T (.),

d1w
′
1(d1)

d1w′1(d1) + d2w′2(d2)
=
T1(d)

B
, (A.5)

f1w
′
1(f1)

f1w′1(f1) + f2w′2(f2)
=
T1(f)

B
. (A.6)
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Figure A.8: Figure shows lines l1 and l2. w′1(d1) and w′1(f1) are plotted on the horizontal

axis. w′2(d2) and w′2(f2) are plotted on the vertical axis.

We rewrite the equations (A.5) and (A.6) as

d1(1−
T1(d)

B
)w′1(d1)− d2

T1(d)

B
w′2(d2) = 0, (A.7)

f1(1−
T1(f)

B
)w′1(f1)− f2

T1(f)

B
w′2(f2) = 0. (A.8)

We now view (A.7) and (A.8) as linear equations in w′1(d1), w
′
2(d2) and

w′1(f1), w
′
2(f2) respectively. Lines l1 and l2 in Figure A.8 plot (A.7) and

(A.8) respectively. Since d1 + d2 = f1 + f2 = B, d1 < f1 implies d2 > f2.

Also, from (A.4) and the fact that d1 < f1, we have T1(f) < d1. Hence, by

(A.2), T1(f) < T1(d). Since d1 < f1, d2 > f2 and T1(f) < T1(d), the slope

of l1 is smaller than the slope of l2.

Since d1 < f1 and d2 > f2, by the strict concavity of w1 and w2, we must

have

w′1(f1) < w′1(d1) and w′2(d2) < w′2(f2). (A.9)

Figure A.8 shows how to choose w′1(d1), w
′
2(d2), w

′
1(f1) and w′2(f2) sat-

isfying (A.2),(A.3),(A.7) and (A.8).

Appendix B. An Example of a Discontinuous T mapping

In this Appendix, we show that there is no selection from within T (x)

that could make the selection a single continuous mapping. Consider a



Network Utility Maximization 31

special case of T (x) as defined below. Take we(·) = w(·) for some increasing

and strictly concave w(·). Let

T (x) = arg max
y

3∑
e=1

pe(x(e))· log(y(e)) (B.1)

subject to y(1) ≤ c,
y(1) + y(2) ≤ 2c,

y(1) + y(2) + y(3) ≤ 3c.

where pe(x(e)) = x(e)·w′(x(e)), e = 1, 2, 3. Let w(·) satisfy x(e)·w′(x(e))|x(e)=0 =

0. Consider T (x) at x = (c, 0, 0). We have

T (c, 0, 0) = {(c, r, s) : r ∈ [0, c], s ∈ [0, 2c] : r + s ≤ 2c}.

Consider a sequence y(k) → x such that y(k)(1) = c, y(k)(2) = 0, y(k)(3) > 0

for each k and limk→∞ y
(k)(3) = 0. It is easy to see that T (y(k)) = {(c, 0, 2c)}

for each k, and so we must select (c, 0, 2c) at x = (c, 0, 0).

Now, consider another sequence z(k) → x. Let z(k)(1) = c, z(k)(2) =

z(k)(3) > 0 for each k and limk→∞ z
(k)(2) = limk→∞ z

(k)(3) = 0. We then

have T (z(k)) = {(c, c, c)} for each k, and so we must now select (c, c, c) at

x = (c, 0, 0). Since these two selections do not match, T cannot be made

continuous at (c, 0, 0) by a choice of a value in T (c, 0, 0).

So T has to be dealt with as a set valued mapping, which brings us to

differential inclusions.
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