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Abstract

Poisson’s equation plays a fundamental role as a tool for performance evaluation and optimization of
Markov chains. For continuous-time birth–death chains with possibly unbounded transition and cost rates
as addressed herein, when analytical solutions are unavailable its numerical solution can in theory be obtained
by a simple forward recurrence. Yet, this may suffer from numerical instability, which can hide the structure
of exact solutions. This paper presents three main contributions: (1) it establishes a structural result
(convexity of the relative cost function) under mild conditions on transition and cost rates, which is relevant
for proving structural properties of optimal policies in Markov decision models; (2) it elucidates the root
cause, extent and prevalence of instability in numerical solutions by standard forward recurrence; and (3) it
presents a novel forward–backward recurrence scheme to compute accurate numerical solutions. The results
are applied to the accurate evaluation of the bias and the asymptotic variance, and are illustrated in an
example.
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1 Introduction.

Consider a stochastic system whose state evolution is modeled by an ergodic continuous-time birth–death
Markov chain {X(t)}t>0 (see, e.g., [1, Ch. 6]) on the state space N0 , {0, 1, 2, . . .}, with birth and death rates
λn > 0 and µn > 0 for n ∈ N , {1, 2, . . .}, and λ0 > 0 = µ0, having steady-state probabilities pn. Costs accrue
at the state-dependent rates cn, satisfying

∞∑

n=0

|cn|pn < ∞, (1)

so that the mean steady-state cost ζ ,
∑∞

n=0 cnpn is well defined and finite.
In applications to queueing systems, the state n represents the number of jobs in the system, λn is the state-

dependent arrival rate, and µn can incorporate both service and abandonment rates. The cn model a possibly
nonlinear cost structure, which may account for different types of costs, such as holding or abandonment costs.
See the examples in Remark 1.1. There is an extensive literature on queueing models with costs, concerning
their optimal dynamic control. See, e.g., [2] and references therein.

Birth, death and cost rates may all be unbounded. Thus, the present setting is strictly more general than
a discrete-time one, as analysis of a discrete-time Markov chain can be reduced to that of a continuous-time
chain, whereas the reverse is only true for uniformizable chains, having bounded transitions rates.

This paper addresses the exact and approximate numerical solutions to the Poisson equation for such a
system, given by the second-order recurrence

λ0b1 − λ0b0 = ζ − c0, λnbn+1 − (λn + µn)bn + µnbn−1 = ζ − cn, n ∈ N. (2)

Note that (2) is a Poisson equation in the usage of this term in the Markov chain literature, where it plays
a fundamental role as a tool for performance evaluation and optimization. See, e.g., [3–5]. Ref. [6, pp. 458–
459] surveys wide-ranging applications in applied probability, statistics and engineering, including performance
bounds, analysis and variance reduction in simulation, Markov decision processes (MDPs) (see [7]), and pertur-
bation theory. Note that the iterative solution of the dynamic programming optimality (Bellman) equations of
an MDP model via Howard’s [8] policy improvement method entails solving Poisson equations corresponding to
stationary deterministic policies.

Concerning exact solutions, we aim to exploit explicit expressions to establish convexity of functions b : N0 →
R solving (2), under mild conditions on transition and cost rates. Note that a standard approach to prove
structural properties of optimal policies in MDP models relies on such a convexity property. See [9].

As for approximate numerical solutions, these are required when analytical solutions to (2) are unavailable.
When ζ is not representable by a machine number, due to finite-precision arithmetic, and is approximated by
ζ̂ 6= ζ, one may consider, ignoring other error sources, that the numerical recurrence actually solved is the
modified Poisson equation (with z = ζ̂)

λ0b1 − λ0b0 = z − c0, λnbn+1 − (λn + µn)bn + µnbn−1 = z − cn, n ∈ N. (3)

We will thus investigate (3), viewing z ∈ R as an input parameter, with the aim of elucidating how the

approximation error in ζ̂ is amplified into corresponding errors in the b̂n solving (3).
From the structure of (3), it is evident that there exists a solution b for any choice of z ∈ R, which can

be constructed by setting b0 arbitrarily, and generating the remaining bn by the second-order linear forward
recurrence

b1 =
z − c0

λ0
+ b0, bn+1 =

z − cn

λn
+

λn + µn

λn
bn − µn

λn
bn−1, n = 1, 2, . . . (4)

Clearly, for given z, the solutions b to (3) are unique up to an additive constant.
The present viewpoint contrasts with most work on Poisson’s equation, which has focused on the choice

z = ζ (see, e.g., [5]). A major reason for this is the following. Suppose that birth–death rates satisfy a Foster–
Lyapunov drift condition with weight function w : N0 → [1, ∞), and let Bw , {f : supn |fn|/wn < ∞} be the
Banach space of w-bounded functions. Then (see [10, Theorem 7.1] and [7, Prop. 7.11]): (i) the chain satisfies
a strong form of ergodicity (it is w-exponentially ergodic); (ii)

∑∞
n=0 wnpn < ∞; and (iii) for any c ∈ Bw, (3),
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seen as an equation in (z, b), has a unique solution in R × Bw, up to an additive constant for b. Furthermore,
this solution is of the form (z, b) = (ζ, β + a) with a ∈ R, where, writing as En[·] the expectation starting from
X(0) = n,

βn , En

[ ∫ ∞

0

(cX(t) − ζ) dt

]
(5)

is the bias or relative cost of starting from n rather than from steady state. Note that β is characterized as the
only b ∈ Bw solving (2) for which

∞∑

n=0

bnpn = 0. (6)

As for interpretation, if b with bm = 0 solves (2), then bn is the relative cost of starting from n rather than
m, so bn = E[

∫∞

0
(cXn(t) − cXm(t)) dt], for realizations {Xn(t)}t>0 and {Xm(t)}t>0 of the chain starting from n

and m.
We further consider the function ϕ : N0 → R defined by

ϕn , βn+1 − βn = bn+1 − bn, n ∈ N0, (7)

for any b solving (2). We will refer to ϕ as the marginal relative cost function, as ϕn is the relative cost of
starting from n + 1 rather than n. Note that ϕ is determined by the following first-order linear recurrence,
which reformulates (2):

λϕ0 = ζ, λϕn − µnϕn−1 = ζ − cn, n ∈ N. (8)

Similarly to (3), when (8) is solved numerically substituting z = ζ̂ for ζ, the recurrence that is actually solved
(ignoring other sources of error) is

λf0 = z, λfn − µnfn−1 = z − cn, n ∈ N. (9)

To illustrate, consider (cf. [11, §4.2]), the M/M/1+M queue with deadlines to the end of service, with λn , λ,
µn , µ+nθ and cn , nθ, where λ, µ, θ > 0 are the arrival, service and abandonment rates. From (9), we obtain
the recursion

f0 =
z

λ
, fn =

z − nθ

λ
+

µ + nθ

λ
fn−1, n = 1, 2, . . . (10)

Consider now the instance with λ = 0.9, µ = 1 and θ = 0.5, for which

ζ =
1

10

(
81

5e9/5 − 14
− 1

)
. (11)

Computing (11) with MATLAB gives the double-precision floating-point number (see [12, Ch. 2]) ζ̂ ≈ 0.398515613690624.

Table 1 shows, in the ϕ̂n column, the first thirty fn computed through (10) using z = ζ̂. After growing to 1 at
first, ϕ̂n diverges to minus infinity. The same behavior results when z is set to the next larger machine number,
ζ̂ + 2−54. Yet, when the following machine number, z = ζ̃ = ζ̂ + 2−53, is used, the resulting fn, written as ϕ̃n,
eventually diverge to plus infinity. Thus, approximate computation of the ϕn through (10), and hence of the
bn, suffers from an explosive numerical instability with respect to unavoidable errors in the approximation to
the input ζ.

Experimentation with other models reveals that such instability is not exceptional. Thus, e.g., [13] reports
numerical instabilities preventing accurate numerical solution of Poisson’s equation in the queueing models
considered there.

Table 1 further shows the probabilities pn, to gain insight on the relation between these and the magnitudes
of errors in the computed approximations to ϕn. The loss of significant digits of accuracy in the latter is evident
only for unlikely states, with such inaccuracies growing steeply as the pn get smaller. Note that the accurate
estimation of performance metrics associated to very low-probability states, corresponding to rare events, is of
considerable interest in a variety of areas, including computer-communication systems, reliability, finance, etc.,
and is the subject of major research attention. See, e.g., the survey [14].
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Table 1: Approximate numerical computation of ϕn = bn+1 − bn: explosive instability.

n pn ϕ̂n ϕ̃n n pn ϕ̂n ϕ̃n

0 5.0 × 10−1 0.44279513 0.44279513 15 1.9 × 10−11 0.9388453 0.9388507

1 3.0 × 10−1 0.62523145 0.62523145 16 1.9 × 10−12 0.9423595 0.9424134

2 1.4 × 10−1 0.72108723 0.72108723 17 1.8 × 10−13 0.9454791 0.9460477
3 4.9 × 10−2 0.77914855 0.77914855 18 1.6 × 10−14 0.9481179 0.9544357

4 1.5 × 10−2 0.81773474 0.81773474 19 1.4 × 10−15 0.9486149 1.0223229

5 3.7 × 10−3 0.84509690 0.84509690 20 1.1 × 10−16 0.9258667 1.8267420
6 8.4 × 10−4 0.86544800 0.86544800 21 8.9 × 10−18 0.6066468 1.2 × 101

7 1.7 × 10−4 0.88114626 0.88114626 22 6.6 × 10−19 −3.7 × 100 1.5 × 102

8 3.0 × 10−5 0.89360768 0.89360768 23 4.8 × 10−20 −6.4 × 101 2.1 × 103

9 5.0 × 10−6 0.90373094 0.90373094 24 3.3 × 10−21 −9.3 × 102 3.0 × 104

10 7.4 × 10−7 0.91211248 0.91211248 25 2.2 × 10−22 −1.4 × 104 4.5 × 105

11 1.0 × 10−7 0.91916304 0.91916304 26 1.4 × 10−23 −2.2 × 105 7.0 × 106

12 1.3 × 10−8 0.92517434 0.92517435 27 8.8 × 10−25 −3.5 × 106 1.1 × 108

13 1.6 × 10−9 0.93035909 0.93035915 28 5.3 × 10−26 −5.8 × 107 1.9 × 109

14 1.8 × 10−10 0.93487590 0.93487647 29 3.1 × 10−27 −1.0 × 109 3.2 × 1010

Regarding marginal relative costs ϕn, they are of direct interest in a major application of Poisson’s equa-
tion: the one-step policy improvement (OSPI) method to the design of scalable heuristic policies for certain
multidimensional MDPs, e.g., those concerning the optimal routing of a job stream to parallel service stations,
each with its own queue. One starts with a tractable static policy (state-independent) under which the queues
evolve independently. Then, a single step of Howard’s policy improvement algorithm (see [8]) for MDPs gives a
dynamic policy (state-dependent) with better cost performance.

The latter is an index policy, where the index for each station is precisely the marginal relative cost ϕn, and
each arrival is routed to a station of currently lowest index value. See, e.g., [11, 15–21].

Intuition would suggest that, if such a policy routes an arrival to a station in a given system state, it should
prescribe the same action if that station was less loaded, other things being equal. This would be ensured
if one could prove that ϕn is nondecreasing in n or, equivalently, that βn is convex. Note that, in Table 1,
the computed ϕn increase at first, but, when numerical instabilities set in, such a monotonicity is lost, raising
doubts on the behavior of the exact ϕn.

A related metric of interest is the asymptotic variance as t → ∞ of the average cost up to time t, C̄(t) ,

(1/t)
∫ t

0
cX(s) ds, which is defined by

σ2 , lim
t→∞

t Var
[
C̄(t)

]
.

Under the aforementioned drift condition, and provided that c2 ∈ Bw, σ2 is well defined and finite, being given
by (see [5, Theorem 4.4])

σ2 = 2

∞∑

n=0

bn(cn − ζ)pn = 2

∞∑

n=0

βncnpn (12)

for any b ∈ Bw solving (2), and C̄(t) satisfies the functional central limit theorem

√
t

C̄(t) − ζ

σ
=⇒ N(0, 1) as t → ∞,

where =⇒ denotes weak convergence and N(0, 1) is the standard normal distribution. This result can be used,
e.g., to set simulation run lengths to obtain confidence intervals for ζ. See, e.g., [13, 22, 23].

1.1 Goals and contributions

We address the following research goals: 1) identify mild conditions on transition and cost rates ensuring that
the ϕ solving (3) is nondecreasing (equivalently, the b’s solving (2) are convex); 2) elucidate the root cause,
extent and prevalence of numerical instability in computed solutions to Poisson’s equation due to substituting
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approximations ζ̂ for ζ; and 3) obtain means of computing accurate approximate solutions when analytical
solutions are not available.

Regarding the first goal, consider the following assumption, where we write dn , µn − λn and use the
backward difference notation ∆xn , xn − xn−1.

Assumption 1.1. (i) d is

(i.a) nondecreasing (∆dn > 0), with ∆d1 > 0; and

(i.b) concave (∆dn+1 6 ∆dn).

(ii) c is

(ii.a) nonnegative (cn > 0) and nondecreasing (∆cn > 0); and

(ii.b) convex (∆cn+1 > ∆cn).

We have the following result.

Theorem 1.2. Under Assumption 1.1, ϕ is nondecreasing (β is convex).

Remark 1.1. (a) Assumption 1.1 is mild and widely satisfied in birth–death queueing models. Thus, consider
the following broad m-server model with possible customer balking and abandonment, which encompasses
a variety of standard models: λn = λ(1 − αn), with 0 6 αn < 1 the state-dependent balking probability,
µn = min(m, n)µ + g(m, n)θ, where µ > 0 and θ > 0 are the service and abandonment rates, and
g(m, n) , (n − m)+ if customers can only abandon prior to entering service, while g(m, n) , n otherwise.
Further, cn = cabg(m, n)θ + ch

n, where cab > 0 and ch
n > 0 are the cost per abandonment and the holding

cost rate. It is readily verified that this model satisfies Assumption 1.1 if the following holds: (i) αn

is nondecreasing and concave; (ii) in the case that customers can only abandon before entering service,
θ 6 µ, i.e., the mean time to abandon (1/θ) is not shorter than the mean service time (1/µ); and (iii) ch

n

is nondecreasing and convex. These are all intuitively sound conditions.

(b) Theorem 1.2 is also relevant for birth–death models arising in population biology. Thus, consider the
classic linear birth–death model with immigration, with λn = nλ + α and µn = nµ. In the case of a
population whose size is costly, e.g., a pest population as in [24], one may take cn to be the cost of having
n individuals. Then, Assumption 1.1 clearly holds provided that c is nonnegative, nondecreasing and
convex.

(c) Note that the conditions in Assumption 1.1 were first formulated in [25, Ass. 7.1], though with a different
purpose: they were shown there to be sufficient conditions for existence of the Whittle index characterizing
optimal policies in a broad birth–death admission control model.

As for the second goal, we explicitly identify and analyze the error amplification factors (see, e.g., [26] for

early use of such a concept) that characterize how the error in the approximation ζ̂ to the input ζ propagates,

in the standard forward recurrence scheme, to produce errors in the computed approximations b̂n and ϕ̂n to
the bn and ϕn solving (2) and (8). See Proposition 5.1. Such results are further used to analyze the accuracy
of computed approximations to the bias β and the asymptotic variance σ2. See Proposition 5.5.

Concerning the third goal, we analyze the approximation errors resulting from a backward recurrence scheme,
which has not been previously considered for this model and has substantially improved accuracy for large
states. See Propositions 6.4 and 6.5. We further propose a novel mixed forward–backward recurrence scheme
that outperforms both forward and backward recurrence in terms of accuracy. See Propositions 7.1 and 7.3.
The effectiveness of the proposed approach is demonstrated for the motivating example above. See §8.

1.2 Organization of the paper

The remainder of the paper proceeds as follows. §2 reviews related work. §3 presents results on birth–death
chains, some of them new, that are required for subsequent analyses. §4 gives expressions for the exact solution
to Poisson’s equation, as well as new expressions for the bias and the asymptotic variance in terms of marginal
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relative costs; it further gives the proof of Theorem 1.2. §5 develops an error analysis of computed solutions
to Poisson’s equation through forward recurrence. §6 analyzes a backward recurrence scheme with improved
accuracy for large states. §7 presents a mixed forward–backward recurrence scheme, with improved accuracy
with respect to the pure schemes. §8 illustrates the results in an example. §9 concludes. Appendix A lays the
groundwork for the proof of Theorem 1.2.

Note that an early version of this work appeared in the proceedings [27].

2 Further related work

In addition to the work referred to in §1, we briefly review next two further related strands of research. The
first one focuses on the Poisson equation for discrete-time Markov chains. [28] reviews structural results from
a probabilistic interpretation viewpoint, while [29] establishes uniqueness of solutions to Poisson’s equation in
such a setting. Another line of work aims to elucidate the structure of solutions to Poisson’s equation for
discrete-time birth–death chains and extensions. See, e.g. [30, 31].

Another closely related relevant stream of work is the wide literature on numerical stability of computed
solutions to linear recurrences, both in general and applied to the evaluation of special functions. In a classic
study, Gautschi addressed in [26] the recursive numerical solution of a general first-order linear recurrence
relation, assuming that the only source of error is the approximation of the initial condition. He considered the
propagation of such an error to the computation of successive terms, as measured by relative error amplification
factors, under two recursive schemes, standard forward recurrence and backward recurrence. The paper, which
refers to earlier work on the effective use of the latter type of recurrence, elucidates in which cases each scheme
is more accurate. Note however that, although (8) is a first-order linear recurrence, the analysis in [26] does not
directly apply to it, as that paper considers that the source of error is in the initial condition, whereas here we
consider that it lies in the approximation to ζ in the right-hand side of the equation.

Early work on second-order linear recurrence relations, regarding “the possibility and the prevention of
numerical instability”, is reviewed in [32], which focuses on the homogeneous case, while, e.g., [33, 34] consider
the non-homogeneous case. In such papers, numerically stable schemes, including backward recurrence, for
accurately computing so-called minimal solutions are developed. Yet, again, such work does not directly apply
to the analysis of Poisson’s equation (3), since the source of error addressed here is in the right-hand sides,
which is not considered in the aforementioned papers.

For more recent work see, e.g., [35], which develops rounding-error bounds for the numerical solution of
higher-order linear recurrence relations.

Even though, for the reasons outlined above, such work does not appear to be directly applicable to the
recurrence relations herein, still, key ideas developed in that field such as error amplification factor analysis,
and the use of backward recurrence to overcome numerical instability, play a central role in this paper.

Yet, such general ideas need to be adapted to the present setting, by exploiting the rich special structure
and the probabilistic interpretation of the recurrences herein. To the best of the author’s knowledge, such an
analysis has not been undertaken before, and is hence a novel contribution of this work.

3 Required results on birth–death Markov chains

This section presents results that are required for the ensuing analyses, mostly known, but also some new
extensions (which the author has not found in the literature), on mean first-passage times and costs for birth–
death chains.

Consider a birth–death process {X(t)}t>0 with costs as outlined in §1. Its potential coefficients πn are the
unnormalized state probabilities,

π0 , 1, πn ,
λ0 · · · λn−1

µ1 · · · µn
, n ∈ N,

which satisfy the recurrence
π0 = 1, λn−1πn−1 = µnπn, n ∈ N. (13)
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We assume that
∞∑

n=0

1

λnπn
= ∞ and

∞∑

n=0

πn < ∞, (14)

which (see [36, Theorem 2(a)]) is a necessary and sufficient condition for the process to be uniquely determined
by its birth–death rates and ergodic. The following is a standard sufficient condition for (14), where ρn , λn/µn:

lim sup
n→∞

ρn < 1. (15)

The steady-state probabilities are given by

pn =
πn∑∞

j=0 πj
= πnp0, n ∈ N0. (16)

We will consider the functions

Pn ,

n∑

j=0

pj, Cn ,

n∑

j=0

cjpj and Zn ,
Cn

Pn
, n ∈ N0, (17)

which satisfy
Pn → 1, Cn → ζ and Zn → ζ as n → ∞. (18)

Thus, Pn is the cumulative distribution function of the pn. We also consider the corresponding tail functions
defined by

P̄n , 1 − Pn, C̄n , ζ − Cn and Z̄n , ζ − Zn, n ∈ N0. (19)

Letting τn , min{t > 0: X(t) = n} be the first-passage time to state n, let T +
n , En[τn+1] and T −

n ,
En[τn−1] be the mean first-passage times from n to n+1, and from n to n−1, and write as H+

n , En[
∫ τn+1

0
cX(s) ds]

and H−
n , En[

∫ τn−1

0 cX(s) ds] the corresponding mean costs. We further define

Z+
n ,

H+
n

T +
n

and Z−
n+1 ,

H−
n+1

T −
n+1

, n ∈ N0. (20)

The following recurrences follow from elementary probabilistic arguments:

λ0T +
0 = 1, λnT +

n − µnT +
n−1 = 1, n ∈ N, (21)

which is given in [37, Eq. (1.5a)] (see its derivation in [1, Ch. 6.3]) and

λ0H+
0 = c0, λnH+

n − µnH+
n−1 = cn, n ∈ N. (22)

In [37, Eq. (1.8)], it is shown that T +
n and Pn are linked by

T +
n =

Pn

λnpn
, (23)

and the same argument given there yields that

H+
n =

Cn

λnpn
. (24)

Note that it follows immediately from (23) that, as n → ∞,

T +
n → ∞ if and only if λnpn → 0, (25)

and
sup

n
T +

n = ∞ if and only if inf
n

λnpn = 0, (26)

so the T +
n are bounded if and only if the λnpn are bounded away from 0.

We next give a sufficient condition for T +
n → ∞ in terms of the ρn in (15).
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Lemma 3.1. Under condition (15), T +
n → ∞ as n → ∞.

Proof. Write ρ∗ , lim supn→∞ ρn. Pick ε > 0 such that ρ∗ + ε < 1, and let N be such that ρn < ρ∗ + ε for
n > N . Then

T +
n =

1

λn
+

T +
n−1

ρn
>

T +
n−1

ρ∗ + ε
, n > N,

from which it follows that T +
n → ∞ as n → ∞.

The following recurrences are also easily obtained:

µnT −
n − λnT −

n+1 = 1, n ∈ N, (27)

which is given in [37, Eq. (1.10)], and its counterpart for costs,

µnH−
n − λnH−

n+1 = cn, n ∈ N. (28)

Yet, unlike recurrences (21) and (22), which determine the T +
n and H+

n , (27) and (28) do not determine the T −
n

and H−
n , as they lack boundary conditions.

These are provided by the case n = 0 in the following result, which gives analogous relations to (23) and (24)
linking T −

n+1 to P̄n and H−
n+1 to C̄n. Note that the identity in Lemma 3.2(a) is given in [37, Eq. (1.11)]. Yet,

the argument outlined there bypasses a critical detail, as it entails summation of an infinite telescoping series,
which requires showing that λnpnT −

n+1 → 0 as n → ∞. We avoid this in the proof below by using instead an
induction argument, drawing on the theory of renewal reward processes (see, e.g., [1, Ch. 7]).

Lemma 3.2. For n ∈ N0,

(a) T −
n+1 =

P̄n

λnpn
;

(b) H−
n+1 =

C̄n

λnpn
.

Proof. (a) We use induction. For n = 0, consider the regenerative cycle starting from state 0 until the first return
to 0, and denote by T00 its mean duration. By the renewal reward theorem, and using that T00 = 1/λ0 + T −

1 ,
we have

p0 =
E[cost during a cycle]

E[duration of a cycle]
=

1/λ0

1/λ0 + T −
1

,

and hence T −
1 = P̄0/λ0p0. Suppose now that the result holds for n − 1, so that T −

n = P̄n−1/λn−1pn−1. Then,
using this and (27) we obtain

λnpnT −
n+1 = µnpnT −

n − pn = λn−1pn−1T −
n − pn = P̄n−1 − pn = P̄n,

which completes the induction.
(b) For n = 0, let H00 be the mean cost accrued over the cycle in part (a). By the renewal reward theorem,

and since H00 = c0/λ0 + H−
1 , we have

ζ =
E[cost during a cycle]

E[duration of a cycle]
=

c0/λ0 + H−
1

1/λ0 + T −
1

,

whence H−
1 = C̄0/λ0p0. Suppose now the result holds for n − 1, so that H−

n = C̄n−1/λn−1pn−1. Then, using
this and (28) gives, as required.

λnpnH−
n+1 = µnpnH−

n − cnpn = λn−1pn−1H−
n − cnpn = C̄n−1 − cnpn = C̄n.
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Remark 3.1. (a) From (23), (24) and Lemma 3.2 we obtain

PnT −
n+1 = P̄nT +

n and CnH−
n+1 = C̄nH+

n . (29)

(b) It follows from (23) and (24) that the Zn in (17) and Z+
n in (20) satisfy

Z+
n = Zn. (30)

(c) As for the Z−
n+1 in (20), from Lemma 3.2 and (67) we can write (see (19))

Z−
n+1 =

C̄n

P̄n

=
ζ − Cn

1 − Pn
= Zn +

Z̄n

P̄n

= ζ + Pn
Z̄n

P̄n

. (31)

Thus, Z−
n+1 − ζ is asymptotically equivalent to the tail ratio Z̄n/P̄n. Note that, typically, Z−

n+1 will not
converge to ζ as n → ∞.

Now, the aforementioned result that λnpnT −
n+1 → 0 as n → ∞, and the corresponding result for H−

n+1,
follow immediately from Lemma 3.2 and (18).

Corollary 3.3. As n → ∞,

(a) λnpnT −
n+1 → 0;

(b) λnpnH−
n+1 → 0.

We will also consider T0n , E0[τn], the mean first-passage time from 0 to n, Tn0 , En[τ0], the mean first-
passage time from n to 0, and the corresponding mean costs H0n , E0[

∫ τn

0
cX(s) ds] and Hn0 , En[

∫ τ0

0
cX(s) ds].

Note that

T0n =

n−1∑

j=0

T +
j =

n−1∑

j=0

Pj

λjpj
and H0n =

n−1∑

j=0

H+
j =

n−1∑

j=0

Cj

λjpj
, (32)

whereas

Tn0 =

n−1∑

j=0

T −
j+1 =

n−1∑

j=0

P̄j

λjpj
and Hn0 =

n−1∑

j=0

H−
j+1 =

n−1∑

j=0

C̄j

λjpj
. (33)

Remark 3.2. (a) From (23) and (32) we obtain

lim
n→∞

T0n =

∞∑

j=0

T +
j =

∞∑

j=0

Pj

λjpj
= ∞,

since the last series diverges by the limit comparison test (since Pj → 1 as j → ∞) using that
∑∞

j=0 1/λjpj =
∞ by (14).

(b) We will refer to T∞0 , limn→∞ Tn0 =
∑∞

j=1 T −
j , which is given by

T∞0 =

∞∑

n=0

P̄n

λnpn
. (34)

In Feller’s [38] classic boundary classification for birth–death processes, if T∞0 < ∞ the process is said to
have an entrance boundary at infinity, and is then exponentially ergodic. See [39, Theorem 8.1]. Otherwise,
the process is said to have a natural boundary at infinity. From [40, Eq. (6.5) and Theorem 6.4(ii)] it follows
that, under condition (15),

T∞0 < ∞ if and only if
∞∑

n=1

1

µn
< ∞. (35)

Note that, in most applied models, the rightmost series in (35) diverges.
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(c) For some results we will refer to the condition

Tp0 < ∞, (36)

where Tp0 , Ep[τ0] =
∑∞

n=1 pnTn0 is the mean first-passage time to 0 starting from steady state. Note that
from the identities for Tn0 in (33) we have

Tp0 =
∞∑

n=0

P̄ 2
n

λnpn
. (37)

See also [41, Eq. (6.6)] and [36, Theorem 4 and Eq. (3.6)]. Furthermore, [41, Theorem 6.1] shows that
satisfaction of (36) is equivalent to existence of the deviation matrix D = (dmn) of the Markov chain,
defined by

dmn ,

∫ ∞

0

(pmn(t) − pn) dt,

where pmn(t) , Pm{X(t) = n} and Pm is the probability starting from m. Note that the bias is given in
terms of D by βm =

∑
n dmncn, i.e., β = Dc.

(d) The quantities T∞0 and Tp0 are related by

T∞0 =

∞∑

n=0

P̄nT +
n + Tp0, (38)

which readily follows from (34), (37), (23) and Pn − P̄n = P 2
n − P̄ 2

n . In light of (38), we define

T∞p ,
∞∑

n=0

P̄nT +
n , (39)

which represents the mean first passage-time to steady state starting at ∞.

The following result shows that the ratios Tn0/T0n strictly decrease to 0.

Lemma 3.4.

(a)
P̄n

Pn
<

Tn+1,0

T0,n+1
<

Tn0

T0n
, for n ∈ N;

(b)
Tn0

T0n
ց 0 as n → ∞.

Proof. (a) Using (32), (33) and the mediant inequality (see (68)) we obtain

P̄n

Pn
<

Tn+1,0

T0,n+1
<

Tn0

T0n
if and only if

P̄n

Pn
<

Tn0

T0n
. (40)

We next show by induction that P̄n/Pn < Tn+1,0/T0,n+1 for n > 1. For n = 1,

T10

T01
=

P̄0

P0
>

P̄1

P1
,

whence the result follows by (40). Suppose now the result holds for n − 1. Then,

Tn0

T0n
>

P̄n−1

Pn−1
>

P̄n

Pn
, (41)

which, using (40), gives the result for n. This completes the induction. Now, part (a) follows since, by (40), it
is a consequence of (41).
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(b) Since

Tn0

T0n
=

∑n−1
j=0

P̄j

λj pj∑n−1
j=0

Pj

λj pj

,

with T0n strictly increasing and divergent and P̄n−1/Pn−1 → 0, the Stolz–Cesàro theorem (see [42, Theorem
1.22]) gives that Tn0/T0n → 0.

By analogy with expression (30) for Zn, we further define the cost ratios

Z0n ,
H0n

T0n
and Zn0 ,

Hn0

Tn0
, n ∈ N. (42)

Since Zn → ζ as n → ∞, this raises the question of whether Z0n and Zn0 converge to ζ. We will settle this in
the affirmative for Z0n. We need a preliminary result on invariance relations for certain ratios of mean costs to
mean times.

Lemma 3.5.

(a)
H+

n + H−
n+1

T +
n + T −

n+1

= ζ, for n ∈ N0;

(b)
H0n + Hn0

T0n + Tn0
= ζ, for n ∈ N.

Proof. (a) Using (23), (24) and Lemma 3.2, we have

H+
n + H−

n+1

T +
n + T −

n+1

=

Cn

λnpn
+ C̄n

λnpn

Pn

λnpn
+ P̄n

λnpn

= ζ.

(b) Using (32) and (33) we can write

H0n + Hn0

T0n + Tn0
=

∑n−1
j=0

Cj

λjpj
+
∑n−1

j=0
C̄j

λjpj

∑n−1
j=0

Pj

λjpj
+
∑n−1

j=0
P̄j

λjpj

=

∑n−1
j=0

ζ
λj pj∑n−1

j=0
1

λj pj

= ζ.

We can now prove the following result on the convergence of Z0n.

Lemma 3.6. Z0n → ζ as n → ∞.

Proof. Since

Z0n =
H0n

T0n
=

H+
0 + · · · + H+

n−1

T +
0 + · · · + T +

n−1

,

with T0n strictly increasing and divergent and H+
n−1/T +

n−1 = Zn → ζ, the Stolz–Cesàro theorem (see [42,
Theorem 1.22]) gives that Z0n → ζ.

Remark 3.3. From Lemma 3.5(b) and (66) we can write

ζ =
Hn0 + H0n

Tn0 + T0n
= Zn0 +

T0n

Tn0 + T0n
(Z0n − Zn0),

hence

Zn0 = ζ − T0n

Tn0
(Z0n − ζ). (43)

Thus, the asymptotic behavior of Zn0 depends on that of the scaled tail of Z0n in (43). See Lemmas 3.4(b) and
3.6. Typically, Zn0 will not converge to ζ.
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4 Exact solution: explicit expressions and properties

4.1 Explicit expressions for the solution to Poisson’s equation

We next derive explicit expressions for the exact solution to Poisson’s equation (3). We start by obtaining
expressions formulated in terms of the mean upward first-passage times and costs considered in §3.

Let b(z; a) be the solution to (3) for given z when b0 = a. To analyze b(z; a), consider the reformulation (9)
of (3). Note that

bn = b0 +

n−1∑

j=0

fj , n ∈ N. (44)

Let f(z) be the solution to (9), which is constructed by the forward recurrence

f0(z) =
z − c0

λ0
, fn(z) =

z − cn

λn
+

µn

λn
fn−1(z), n = 1, 2, . . . (45)

The following result represents fn(z) and bn(z; a) as affine functions of z.

Proposition 4.1. For n ∈ N0,

(a) fn(z) = T +
n z − H+

n = T +
n (z − Zn);

(b) bn(z; a) = a + T0nz − H0n = a + T0n(z − Z0n).

Proof. (a) Since T + and H+ satisfy (21) and (22), f = T +z − H+ satisfies (45), whence f(z) = T +z − H+ =
T +(z − Z), where we have also used (30).

(b) We have b0(z; a) = a. For n > 1, from (44), part (a), (32) and (42),

bn(z; a) = a +

n−1∑

j=0

fj(z) = a +

n−1∑

j=0

(T +
j z − H+

j ) = a + T0nz − H0n = a + T0n(z − Z0n).

From Proposition 4.1 we immediately obtain the following result, which gives expressions for the ϕn = fn(ζ)
and bn = bn(ζ; a) solving (8) and (2).

Corollary 4.2. For n ∈ N0,

(a) ϕn = T +
n (ζ − Zn);

(b) bn = b0 + T0n(ζ − Z0n).

Remark 4.1. (a) The identity in Corollary 4.2(a) was given in [15, Eq. (6)] for a particular queueing model,
the M/M/m queue with cn = n.

(b) Corollary 4.2(b) is consistent with known results for discrete-time Markov chains. See, e.g., [43, Prop.
A.3.1(ii)] and [20, Theorem 1].

The following result gives alternate expressions for the exact solution to Poisson’s equations (8) and (2),
which are formulated in terms of the mean downward first-passage times and costs considered in §3.

Proposition 4.3.

(a) ϕn = T −
n+1(Z−

n+1 − ζ), for n ∈ N0;

(b) bn = b0 + Tn0(Zn0 − ζ), for n ∈ N.

Proof. (a) From Corollary 4.2(a), (30), Lemma 3.5(a) and (31), we obtain

ϕn = T +
n (ζ − Zn) = T +

n ζ − H+
n = H−

n+1 − ζ T −
n+1 = T −

n+1(Z−
n+1 − ζ).

(b) From Corollary 4.2(b), (42), and Lemma 3.5(b), we obtain

bn − b0 = T0n(ζ − Z0n) = ζ T0n − H0n = Hn0 − ζ Tn0 = Tn0(Zn0 − ζ).
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4.2 Convexity of relative cost function

We next draw on the exact expressions derived above to obtain the practically relevant structural result of
solutions to Poisson’s equation (2) stated in Theorem 1.2. The short proof given next draws on substantial
preliminary groundwork, which is laid in Appendix A.

Proof of Theorem 1.2. From Corollary 4.2(a), we immediately obtain

∆ϕn = ζ∆T +
n − ∆H+

n ,

and hence, since ∆T +
n > 0 by Lemma A.3,

∆ϕn > 0 if and only if
∆H+

n

∆T +
n

6 ζ. (46)

Now, Lemmas A.6 and A.7 ensure that ∆H+
n /∆T +

n grows to ζ as n → ∞. In light of (46), this completes
the proof.

4.3 Bias and asymptotic variance: exact expressions in terms of ϕ

We next turn to exact evaluation of the bias β and the asymptotic variance σ2. The following result gives new
expressions in terms of the marginal relative cost ϕ. We assume that β is characterized by (6), and that σ2 is
well defined and finite, being given by (12). To ensure the validity of interchanging the order of summation in
certain series arising in the proofs, we further assume that cost rates cn are nonnegative and nondecreasing, so
that Assumption 1.1(ii.a) holds.

Proposition 4.4. Suppose that c satisfies Assumption 1.1(ii.a). Then

(a) β0 = −
∞∑

j=0

P̄jϕj , βn = β0 +
n−1∑

j=0

ϕj , n ∈ N;

(b) σ2 = 2
∞∑

n=0

λnpnϕ2
n.

Proof. (a) From (44) we have βn = β0 +
∑n−1

j=0 ϕj and, using (6), we can write

0 =

∞∑

n=0

βnpn =

∞∑

n=0

(β0 +

n−1∑

j=0

ϕj)pn = β0 +

∞∑

j=0

ϕj

∞∑

n=j+1

pn = β0 +

∞∑

j=0

P̄jϕj ,

where the interchange in the order of summation is justified by Tonelli’s theorem, since ϕ > 0 by Lemma A.1(b).
Therefore,

β0 = −
∞∑

j=0

P̄jϕj . (47)

(b) We can write

σ2 = 2

∞∑

n=0

βncnpn = 2

∞∑

n=0

(
β0 +

n−1∑

j=0

ϕj

)
cnpn

= 2β0ζ + 2

∞∑

j=0

ϕj

∞∑

n=j+1

cnpn = 2β0ζ + 2

∞∑

j=0

ϕjC̄j

= 2

∞∑

n=0

(C̄n − ζP̄n)ϕn = 2

∞∑

n=0

λnpn(H−
n+1 − T −

n+1)ϕn = 2

∞∑

n=0

λnpnϕ2
n,

using in turn (12), part (a), (18), Lemma 3.2 and Proposition 4.3(a), and the interchange in the order of
summation is justified as in part (a).
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5 Approximate numerical solution by forward recurrence

This section presents an error analysis of standard forward recurrence for the numerical solution of Poisson’s
equation. It further addresses how the resulting approximation errors in the computed solution affect the
accuracy of computed approximations to the bias β and the asymptotic variance σ2.

Given an approximation x̂ to a number x, we denote by Eabs(x̂) , x̂ − x and Erel(x̂) , Eabs(x̂)/x the
corresponding approximation errors in absolute and relative terms, respectively, provided that x 6= 0 in the
latter case.

Note that, typically, x̂ will be a floating-point approximation to x, and hence its relative error will be
bounded as (see, e.g., [12, Ch. 2])

|Erel(x̂)| < u, (48)

where u is the unit roundoff. Thus, in IEEE standard arithmetic, u = 2−24 ≈ 5.96 × 10−8 for single precision,
and u = 2−53 ≈ 1.11 × 10−16 for double precision.

5.1 Approximate numerical evaluation of ϕ and b: Error amplificaton factors

We start by addressing the approximate numerical evaluation of relative costs bn and marginal relative costs
ϕn, using an approximate input z = ζ̂ 6= ζ instead of z = ζ in (3) and (9), respectively. We will assume that to

be the only source of error, so the computed approximation to ϕ is ϕ̂ = f(ζ̂). See (45).

We next address how the approximation errors in the input ζ̂ are amplified to corresponding errors in the
computed outputs ϕ̂n and b̂n, where the latter are computed from ϕ̂ through (44) with b̂0 = b0 = a. The
following result identifies the corresponding error amplificaton factors.

Note that, as is standard in error analysis of numerical algorithms (see, e.g., [26]), we call An the absolute
(resp. relative) error amplification factor of a computed quantity, such as ϕ̂n, with respect to the error in the

approximate input, which is ζ̂ in our case, if Eabs(ϕ̂n) = AnEabs(ζ̂) (resp. Erel(ϕ̂n) = AnErel(ζ̂)).
We assume henceforth that relative errors are well defined, i.e., ζ, ϕn, bn 6= 0.

Proposition 5.1 (Error amplification factors).

(a) Eabs(ϕ̂n) = T +
n Eabs(ζ̂), for n ∈ N0;

(b) Erel(ϕ̂n) = ζ
T +

n

ϕn
Erel(ζ̂) =

ζ

ζ − Zn
Erel(ζ̂), for n ∈ N0;

(c) Eabs(̂bn) = T0n Eabs(ζ̂), for n ∈ N;

(d) Erel(̂bn) = ζ
T0n

bn
Erel(ζ̂) =

ζ

a/T0n + ζ − Z0n
Erel(ζ̂), for n ∈ N.

Proof. All parts follow straightforwardly from Proposition 4.1. Thus, e.g., for part (a), taking z = ζ̂ and z = ζ

in Proposition 4.1(a) gives ϕ̂n = T +
n (ζ̂ − Zn) and ϕn = T +

n (ζ − Zn), hence ϕ̂n − ϕn = T +
n (ζ̂ − ζ).

The following result elucidates the numerical instability phenomenon (cf. Table 1 in §1), by clarifying the
asymptotic behavior of the error amplification factors in Proposition 5.1. Note that sgn(x) ∈ {−1, 0, 1} denotes
the sign of x.

Corollary 5.2. As n → ∞,

(a.1) Eabs(ϕ̂n) → sgn(Eabs(ζ̂)) · ∞ if and only if λnpn → 0;

(a.2) supn Eabs(ϕ̂n) = ∞ if and only if infn λnpn = 0;

(b) |Erel(ϕ̂n)| → ∞;

(c) Eabs(̂bn) → sgn(Eabs(ζ̂)) · ∞;
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(d) |Erel(̂bn)| → ∞.

Proof. The results follow from (25), (26), Proposition 5.1, Lemma 3.1, (18), Remark 3.2(a) and Lemma 3.6.

Remark 5.1.

(a) Corollary 5.2(b, d) shows that forward recurrence is inherently numerically unstable, in that the mag-

nitudes of relative errors in the computed approximations ϕ̂n and b̂n to ϕn and bn diverge to infinity
as n → ∞, as they are inversely proportional to the asymptotically vanishing tails ζ − Zn and ζ − Zn0

(approximately so for b̂n when a 6= 0), respectively. Corollary 5.2(c) shows that such is also the case for

the approximation error of b̂n.

(b) It is of interest to consider how the relative approximation errors of ϕ̂n and b̂n grow asymptotically in

relation to 1/pn. From Proposition 5.1(b, d) it follows that pnErel(ϕ̂n) and pnErel(̂bn) are asymptotically
proportional to pn/(ζ −Zn) and pn/(ζ −Z0n), respectively. Note that the latter ratios might, e.g., converge
to a finite limit or diverge to infinity.

(c) The approximation error of ϕ̂n may be bounded or unbounded. Corollary 5.2(a.2) shows that it is bounded
if and only if λnpn is bounded away from 0. As an example where Eabs(ϕ̂n) is bounded, take λn , λρ−n−1

and µn , µρ−n−1, with ρ , λ/µ < 1. Then, pn = (1 − ρ)ρn, so λnpn ≡ µ − λ.

(d) If arrival rates λn are bounded above, so that λ̄ , supn λn < ∞, as is often the case in applied models,

Proposition 5.1(a) and (21) give that, for large n, |Eabs(ϕ̂n)| ≈ |Eabs(ζ̂)|/(λnpn) > |Eabs(ζ̂)|/(λ̄pn). In
such a case, ϕ̂n will substantially deviate from ϕn for unlikely states since, asymptotically, |Eabs(ϕ̂n)| will
grow at least inversely proportional to pn.

(e) Corollary 5.2(a.1) explains the opposite signs in the behavior for large n of the computed approximations
ϕ̂n and ϕ̃n in Table 1 (see §1).

The following result highlights the strikingly different asymptotic behavior of the computed ϕ̂n and b̂n com-
pared to the exact ϕn and bn. Note that the notation yn = Θ(xn) means that yn is asymptotically proportional
to xn.

Corollary 5.3. Let ζ̂ 6= ζ 6= 0. As n → ∞,

(a) If λnpn → 0, ϕ̂n = Θ(T +
n ) and ϕn = o(T +

n ), and hence ϕn = o(ϕ̂n);

(b) b̂n = Θ(T0n) and bn = o(T0n), and hence bn = o(̂bn).

Proof. (a) By Proposition 4.1(a), ϕ̂n = T +
n (ζ̂ − Zn) and ϕn = T +

n (ζ − Zn), which gives the result using that

Zn → ζ and T +
n → ∞ (see (18) and Lemma 3.1), since ϕ̂n/T +

n → ζ̂ − ζ 6= 0 and ϕn/T +
n → 0 as n → ∞.

(b) The result follows similarly as part (a) using Proposition 4.1(b) and that Z0,n+1 → ζ and T0,n+1 → ∞
(see Lemma 3.6 and Remark 3.2(a)).

5.2 Error analysis of bias and asymptotic variance computation

We next address how the approximation errors in the computed ϕ̂n resulting from errors in input ζ̂, as charac-
terized in Proposition 5.1, affect the accuracy of the computed bias β̂ and asymptotic variance σ̂2.

Specifically, we discuss next whether the expressions given in Proposition 4.4 for βn and σ2 are also valid to
approximately evaluate such quantities, substituting ϕ̂ for ϕ. We would thus obtain approximations β̂ and σ̂2

given by

β̂0 = −
∞∑

j=0

P̄jϕ̂j , β̂n = β̂0 +
n−1∑

j=0

ϕ̂j , n ∈ N,

σ̂2 = 2

∞∑

n=0

λnpnϕ̂2
n.

(49)
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Yet, Proposition 5.5 below shows that the expressions in (49) will typically be invalid, due to divergence of
the infinite series involved. We need a preliminary result. See Remark 3.2 and the expressions for T∞0 and T∞p

in (34) and (39).

Lemma 5.4.

(a)

∞∑

n=0

PnT +
n = ∞;

(b) T∞p = ∞ if and only if T∞0 = ∞;

(c)

∑N
n=0 Pnϕn∑N
n=0 PnT +

n

→ 0 as N → ∞.

Proof. (a) This part follows from
∑∞

n=0 T +
n = ∞ (see Remark 3.2(a)) and the limit comparison test, using that

Pn → 1 as n → ∞.
(b) By the limit comparison test, T∞p =

∑∞
n=0 P̄nT +

n = ∞ if and only if T∞0 =
∑∞

n=0 P̄n/λnpn = ∞, using
that, by (23), λnpnT +

n = Pn → 1 as n → ∞.

(c) This part follows from the Stolz–Cesàro theorem (see [42, Theorem 1.22]), since
∑N

n=0 PnT +
n ր ∞

strictly and ϕn/T +
n = ζ − Zn → 0 as n → ∞.

In practice, one would approximate the infinite series in Proposition 4.4 by truncation. Thus, let β0,N ,

−∑N
n=0 P̄nϕn and σ2

N , 2
∑N

n=0 λnpnϕ2
n, which converge to β0 and σ2 as N → ∞. Consider also the computed

approximations β̂0,N , −∑N
n=0 P̄nϕ̂n and σ̂2

N , 2
∑N

n=0 λnpnϕ̂2
n. The following result gives expressions for the

latter quantities and elucidates their asymptotic behavior.

Proposition 5.5. For N ∈ N0,

(a) β̂0,N = β0,N − Eabs(ζ̂)

N∑

n=0

P̄nT +
n ;

(b) if T∞0 = ∞ then |β̂0,N | → ∞; otherwise, β̂0,N → β0 − T∞pEabs(ζ̂);

(c) σ̂2
N = σ2

N + 4Eabs(ζ̂)

N∑

n=0

Pnϕn + 2E2
abs(ζ̂)

N∑

n=0

PnT +
n ;

(d) σ̂2
N → ∞ as N → ∞.

Proof. (a) From Proposition 5.1(a), i.e., ϕ̂n = ϕn + T +
n Eabs(ζ̂), we have

β̂0,N = −
N∑

n=0

P̄nϕ̂n = −
N∑

n=0

P̄nϕn − Eabs(ζ̂)

N∑

n=0

P̄nT +
n = β0,N − Eabs(ζ̂)

N∑

n=0

P̄nT +
n .

(b) The result follows by letting N → ∞ in part (a), using Lemma 5.4(b).
(c) Using Proposition 5.1(a) and (23), we obtain

σ̂2
N = 2

N∑

n=0

λnpnϕ̂2
n = 2

N∑

n=0

λnpn(ϕn + Eabs(ζ̂)T +
n )2

= σ2
N + 4Eabs(ζ̂)

N∑

n=0

λnpnT +
n ϕn + 2E2

abs(ζ̂)

N∑

n=0

λnpn(T +
n )2

= σ2
N + 4Eabs(ζ̂)

N∑

n=0

Pnϕn + 2E2
abs(ζ̂)

N∑

n=0

PnT +
n .

(50)

(d) The result follows from part (c) and Lemma 5.4(c).
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6 Approximate numerical solution by backward recurrence

Instead of computing the approximate solution to Poisson’s equation through standard forward recurrence, we
now consider using backward recurrence, which to the author’s knowledge has not been previously explored for
this model.

This approach is based on the observation that the fn(z) in §4.1 satisfy the backward recurrence (cf. (45))

fn−1(z) =
cn − z

µn
+

λn

µn
fn(z), n ∈ N. (51)

Given an approximation ζ̂ 6= ζ, fix a large integer N and set ϕ̂N
N to an approximation to ϕN , which we

require to satisfy the asymptotic condition

λN pN ϕ̂N
N → 0 as N → ∞. (52)

One could use an asymptotic expansion to ϕN , or just set ϕ̂N
N to an arbitrary value, e.g., 0. Note that ϕN does

satisfy (52), since, by Corollary 4.2(a), (23) and (18), λN pN ϕN = PN (ζ − ZN ) → 0. Hence, condition (52) is
equivalent to

λN pN Eabs(ϕ̂
N
N ) → 0 as N → ∞. (53)

Then, compute ϕ̂N
N−1, . . . , ϕ̂N

0 by the backward recurrence (cf. (51))

ϕ̂N
n−1 =

cn − ζ̂

µn
+

λn

µn
ϕ̂N

n , n = N, N − 1, . . . , 1. (54)

Note that, setting z = ζ in (51), the ϕn satisfy

ϕn−1 =
cn − ζ

µn
+

λn

µn
ϕn, n ∈ N. (55)

As for the approximate relative costs b̂N
n , they are computed by (cf. (44))

b̂N
0 = b0, b̂N

n = b0 +

n−1∑

j=0

ϕ̂N
j , n = 1, . . . , N. (56)

6.1 Error analysis of backward recurrence scheme

We next turn to analyzing the approximation errors of the computed ϕ̂N
n and b̂N

n . We need the following
preliminary result.

Lemma 6.1. For n = 0, 1, . . . , N,

λnpnfn(z) =

N∑

j=n+1

cjpj − z

N∑

j=n+1

pj + λN pN fN(z). (57)

Proof. We use backward induction on n. The case n = N follows trivially. Suppose (57) holds for some
1 6 n 6 N . Then

λn−1pn−1fn−1(z) = λn−1pn−1
cn − z

µn
+ λn−1pn−1

λn

µn
fn(z)

= pn(cn − z) + λnpnfn(z)

= pn(cn − z) +
N∑

j=n+1

cjpj − z
N∑

j=n+1

pj + λN pN fN(z)

=

N∑

j=n

cjpj − z

N∑

j=n

pj + λN pN fN(z),

using in turn (51), λn−1pn−1 = µnpn and (57), which completes the induction.
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The next result follows readily from Lemma 6.1 by taking z = ζ and z = ζ̂.

Corollary 6.2. For n = 0, 1, . . . , N − 1,

(a) λnpnϕn =

N∑

j=n+1

cjpj − ζ

N∑

j=n+1

pj + λN pN ϕN ;

(b) λnpnϕ̂N
n =

N∑

j=n+1

cjpj − ζ̂

N∑

j=n+1

pj + λN pN ϕ̂N
N .

The next result gives expressions for the errors Eabs(ϕ̂
N
n ) and Eabs(̂b

N
n ).

Lemma 6.3.

(a) λnpnEabs(ϕ̂
N
n ) = λN pNEabs(ϕ̂

N
N ) − (PN − Pn)Eabs(ζ̂), 0 6 n < N ;

(b) Eabs(̂b
N
n ) = λN pN Eabs(ϕ̂

N
N )

n−1∑

j=0

1

λjpj
− Eabs(ζ̂)

n−1∑

j=0

PN − Pj

λjpj
, 1 6 n 6 N.

Proof. (a) This part follows straightforwardly from Corollary 6.2, by subtracting the expressions given there for
λnpnϕ̂N

n and λnpnϕn.
(b) Using (44), (56) and part (a), we obtain

Eabs(̂b
N
n ) =

n−1∑

j=0

Eabs(ϕ̂
N
j ) = λN pN Eabs(ϕ̂

N
N )

n−1∑

j=0

1

λjpj
− Eabs(ζ̂)

n−1∑

j=0

PN − Pj

λjpj
.

The following result is the counterpart of Proposition 5.1 for the backward recurrence scheme. It relates
the approximation errors in the computed ϕ̂N

n and b̂N
n to those in the input ζ̂, by identifying the corresponding

asymptotic error amplificaton factors as N → ∞.

Proposition 6.4 (Asymptotic error amplification). For each n, as N → ∞,

(a) Eabs(ϕ̂
N
n ) → −T −

n+1Eabs(ζ̂);

(b) Erel(ϕ̂
N
n ) → −ζ

T −
n+1

ϕn
Erel(ζ̂) =

ζ

Z−
n+1 − ζ

Erel(ζ̂);

(c) Eabs(̂b
N
n ) → −Tn0Eabs(ζ̂);

(d) Erel(̂b
N
n ) → −ζ

Tn0

bn
Erel(ζ̂) = − ζ

b0/Tn0 + Zn0 − ζ
Erel(ζ̂).

Proof. (a) From Lemma 6.3(a), (52), (53), Lemma 3.2(a) and (29), we obtain

Eabs(ϕ̂
N
n ) =

λN pN

λnpn
Eabs(ϕ̂

N
N ) − PN − Pn

λnpn
Eabs(ζ̂)

→ − P̄n

λnpn
Eabs(ζ̂) = −T −

n+1Eabs(ζ̂) as N → ∞.

(b) This part follows from part (a) and Proposition 4.3(a).
(c) This part follows by letting N → ∞ in Lemma 6.3(b) and using (33).
(d) The result follows using part (c) and Proposition 4.3(b).
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Thus, Proposition 6.4(a, c) ensures that, for a fixed state n, the computed ϕ̂N
n and b̂N

n are asymptotically
related to the exact ϕn and bn by

ϕ̂N
n → ϕn − T −

n+1Eabs(ζ̂) and b̂N
n → bn − Tn0Eabs(ζ̂) as N → ∞. (58)

How does this compare to the quality of approximations ϕ̂n and b̂n computed by forward recursion in §5?
The next result shows that the backward recurrence approximations ϕ̂N

n and b̂N
n are asymptotically much more

accurate, in that Eabs(ϕ̂
N
n )/Eabs(ϕ̂n) ≈ 0 and Eabs(̂b

N
n )/Eabs(̂bn) ≈ 0 for large n and N > n.

Proposition 6.5 (Relative accuracy of backward versus forward recurrence).

(a) lim
n→∞

lim
N→∞

Eabs(ϕ̂
N
n )/Eabs(ϕ̂n) = 0;

(b) lim
n→∞

lim
N→∞

Eabs(̂b
N
n )/Eabs(̂bn) = 0.

Proof. (a) From Propositions 5.1(a) and 6.4(a), and the leftmost identity in (29) we have, for each n,

lim
N→∞

Eabs(ϕ̂
N
n )

Eabs(ϕ̂n)
= −T −

n+1

T +
n

= − P̄n

Pn
.

The result now follows since P̄n/Pn ց 0 as n → ∞.
(b) From Propositions 5.1(c) and 6.4(c), we have, for each n,

lim
N→∞

Eabs(̂b
N
n )

Eabs(̂bn)
= −Tn0

T0n
.

The result now follows since Tn0/T0n ց 0 as n → ∞ by Lemma 3.4(b).

7 A mixed forward–backward recurrence scheme

The results in §6.1 show that backward recurrence gives more accurate computed solutions to Poisson’s equation
than forward recurrence for large states, whereas it gives less accurate results for small states. This insight leads
us to propose a novel mixed forward–backward recurrence scheme that keeps the pros and avoids the cons of the
pure schemes.

In light of Propositions 5.1 and 6.4, let us define, for a given large integer N and for states n < N , the
approximate marginal relative costs

ϕ̃N
n ,

{
ϕ̂n, if Pn 6 P̄n

ϕ̂N
n , otherwise,

noting that Pn 6 P̄n if and only if Pn 6 1/2, and the approximate relative costs

b̃N
n ,

{
b̂n, if T0n 6 Tn0

b̂N
n , otherwise.

Remark 7.1. Since both P̄n/Pn and Tn0/T0n strictly decrease to 0 as n → ∞ (see Lemma 3.4), letting m ,
min{n > 0: P̄n/Pn < 1} and M , min{n > 1: Tn0/T0n < 1}, we have Pn 6 P̄n if and only if n < m, and
T0n 6 Tn0 if and only if n < M . Note that it must be the case that m 6 M by Lemma 3.4(a).

Now, letting m and M be as in Remark 7.1, define

An ,

{
T +

n , if n < m

−T −
n+1, otherwise,

and Bn ,

{
T0n, if n < M

−Tn0, otherwise.

In the following result, we assume that relative errors are well defined.
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Proposition 7.1 (Asymptotic error amplification). For each n, as N → ∞,

(a) Eabs(ϕ̃
N
n ) → AnEabs(ζ̂);

(b) Erel(ϕ̃
N
n ) → ζAn

ϕn
Erel(ζ̂);

(c) Eabs(̃b
N
n ) → BnEabs(ζ̂);

(d) Erel(̃b
N
n ) → ζBn

bn
Erel(ζ̂).

Proof. The result follows directly from Propositions 5.1 and 6.4.

The following result shows that forward–backward recurrence is asymptotically more accurate than either
of the pure recurrence schemes.

Corollary 7.2. For each n,

(a) lim
N→∞

|Eabs(ϕ̃
N
n )| = min{|Eabs(ϕ̂n)|, lim

N→∞
|Eabs(ϕ̂

N
n )|};

(b) lim
N→∞

|Eabs(̃b
N
n )| = min{|Eabs(̂bn)|, lim

N→∞
|Eabs(̂b

N
n )|}.

Proof. The result follows directly from Propositions 5.1, 6.4 and 7.1.

7.1 Error analysis of bias and asymptotic variance computation

Let β0,N and σ2
N be as in §5.2, which we assume satisfy β0,N → β0 = −∑∞

n=0 P̄nϕn and σ2
N → σ2 =

2
∑∞

n=0 λnpnϕ2
n as N → ∞ (cf. Proposition 4.4), and consider the computed approximations β̃0,N , −∑N

n=0 P̄nϕ̃N
n

and σ̃2
N , 2

∑N
n=0 λnpn(ϕ̃N

n )2. The next result shows that, unlike the β̂0,N and σ̂2
N in §5.2, β̃0,N and σ̃2

N have
bounded approximation errors as N → ∞, for which explicit expressions are given, provided that Tp0 < ∞ (see
Remark 3.2(c)) and ϕ̂N

N satisfies more stringent asymptotic accuracy requirements than (53).
We consider the following conditions on the quality of approximation ϕ̂N

N :

λN pN TN0 Eabs(ϕ̂
N
N ) → 0 as N → ∞, (59)

λN pNHN0 Eabs(ϕ̂
N
N ) → 0 as N → ∞, (60)

and
λN pN

√
T0N Eabs(ϕ̂

N
N ) → 0 as N → ∞. (61)

Proposition 7.3. Suppose that Tp0 < ∞. Then,

(a) under (59), Eabs(β̃0,N ) → (Tp0 − Tm0)Eabs(ζ̂) as N → ∞;

(b) under (59), (60) and (61),

Eabs(σ̃
2
N ) → 4βmEabs(ζ̂) + 2(Tp0 + T0m − Tm0)E2

abs(ζ̂) as N → ∞.

Proof. (a) From Proposition 5.1(a) and Lemma 6.3(a) we have, for N > m + 2,

Eabs(β̃0,N ) = −
N−1∑

n=0

P̄nEabs(ϕ̃
N
n ) = −

m−1∑

n=0

P̄nEabs(ϕ̂n) −
N−1∑

n=m

P̄nEabs(ϕ̂
N
n )

= −Eabs(ζ̂)

m−1∑

n=0

P̄nT +
n − λN pNEabs(ϕ̂

N
N )

N−1∑

n=m

P̄n

λnpn

+ Eabs(ζ̂)

N−1∑

n=m

P̄n

λnpn
(PN − Pn).
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Now, from the above identity we obtain, as N → ∞,

Eabs(β̃0,N ) →
( ∞∑

n=m

P̄ 2
n

λnpn
−

m−1∑

n=0

PnP̄n

λnpn

)
Eabs(ζ̂)

=

( ∞∑

n=0

P̄ 2
n

λnpn
−

m−1∑

n=0

P̄n

λnpn

)
Eabs(ζ̂) = (Tp0 − Tm0)Eabs(ζ̂),

where we have used (23), (33), (59), and (37).
(b) We have

σ̃2
N = 2

N−1∑

n=0

λnpn

(
ϕ̃N

n

)2
= 2

m−1∑

n=0

λnpnϕ̂2
n + 2

N−1∑

n=m

λnpn

(
ϕ̂N

n

)2
.

Now, on the one hand, using Proposition 5.1(a) and (23) gives

m−1∑

n=0

λnpnϕ̂2
n =

m−1∑

n=0

λnpn

(
ϕn + T +

n Eabs(ζ̂)
)2

=

m−1∑

n=0

λnpnϕ2
n + 2Eabs(ζ̂)

m−1∑

n=0

Pnϕn + E2
abs(ζ̂)

m−1∑

n=0

P 2
n

λnpn
.

On the other hand, using Lemma 6.3(a),
∑N−1

n=m λnpn

(
ϕ̂N

n

)2
equals

N−1∑

n=m

λnpn

(
ϕn +

λN pN

λnpn
Eabs(ϕ̂

N
N ) − PN − Pn

λnpn
Eabs(ζ̂)

)2

=
N−1∑

n=m

λnpnϕ2
n + 2

N−1∑

n=m

ϕn

(
λN pN Eabs(ϕ̂

N
N ) − Eabs(ζ̂)(PN − Pn)

)

+

N−1∑

n=m

1

λnpn

(
λN pN Eabs(ϕ̂

N
N ) − (PN − Pn)Eabs(ζ̂)

)2

=

N−1∑

n=m

λnpnϕ2
n + 2λN pNEabs(ϕ̂

N
N )

N−1∑

n=m

ϕn

− 2Eabs(ζ̂)

N−1∑

n=m

(PN − Pn)ϕn +
(
λN pN Eabs(ϕ̂

N
N )
)2

N−1∑

n=m

1

λnpn

− 2Eabs(ζ̂)λN pNEabs(ϕ̂
N
N )

N−1∑

n=m

PN − Pn

λnpn
+ E2

abs(ζ̂)
N−1∑

n=m

(PN − Pn)2

λnpn
,

and hence we have, as N → ∞,

N−1∑

n=m

λnpn

(
ϕ̂N

n

)2 →
∞∑

n=m

λnpnϕ2
n − 2Eabs(ζ̂)

∞∑

n=m

P̄nϕn + E2
abs(ζ̂)

∞∑

n=m

P̄ 2
n

λnpn
,

as the other terms vanish under the assumptions. Thus,

λN pN Eabs(ϕ̂
N
N )

N−1∑

n=m

ϕn = λN pN (βN − βm)Eabs(ϕ̂
N
N )

≈ λN pN (HN0 − ζTN0)Eabs(ϕ̂
N
N ) → 0 as N → ∞,
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where we have used Propositions 4.4(a) and 4.3(b), and then (59) and (60).
Also, as N → ∞,

(
λN pN Eabs(ϕ̂

N
N )
)2

N−1∑

n=m

1

λnpn
≈
(
λN pN Eabs(ϕ̂

N
N )
)2

(T0N + TN0)

=
(

λN pNEabs(ϕ̂
N
N )
√

T0N + TN0

)2

→ 0,

where we have used (32), (33), (59) and (61).
Further, from (33) and (59) we have, as N → ∞,

λN pN Eabs(ϕ̂
N
N )

N−1∑

n=m

PN − Pn

λnpn
≈ λN pN TN0Eabs(ϕ̂

N
N ) → 0.

It follows from the above that, as N → ∞, Eabs(σ̃
2
N ) converges to

4

(
m−1∑

n=0

Pnϕn −
∞∑

n=m

P̄nϕn

)
Eabs(ζ̂) + 2

(
m−1∑

n=0

P 2
n

λnpn
+

∞∑

n=m

P̄ 2
n

λnpn

)
E2

abs(ζ̂)

= 4

(
m−1∑

n=0

ϕn −
∞∑

n=0

P̄nϕn

)
Eabs(ζ̂) + 2

(
m−1∑

n=0

P 2
n − P̄ 2

n

λnpn
+

∞∑

n=0

P̄ 2
n

λnpn

)
E2

abs(ζ̂)

= 4βmEabs(ζ̂) + 2(T0m − Tm0 + Tp0)E2
abs(ζ̂),

using Proposition 4.4(a), (32), (33), P 2
n − P̄ 2

n = Pn − P̄n, and (37).

8 An example

This section illustrates the application of the above results to the M/M/1+M queueing model with deadlines
to the end of service considered in §1.

For this model the steady-state probabilities are given by (see [44, p. 89])

pn =
e−κ

P(α, κ)

κα+n

Γ(α + n + 1)
, n ∈ N0, (62)

where α , µ/θ and κ , λ/θ. Note that Γ(a) is the gamma function, γ(a, x) ,
∫ x

0 ta−1e−t dt and Γ(a, x) ,∫∞

x ta−1e−t dt are the lower and upper incomplete gamma functions, and P(a, x) , γ(a, x)/Γ(a) and Q(a, x) ,
Γ(a, x)/Γ(a) are the lower and upper normalized gamma functions, respectively. See [45, §8.2].

The mean steady-state cost has the evaluation

ζ = λ − µ(1 − p0) = λ − µ

(
1 − θκαe−κ

µγ(α, κ)

)
= λ − µ +

θκαe−κ

γ(α, κ)
, (63)

and the cumulative steady-state probabilities are given by

Pn = 1 − P(α + n + 1, κ)

P(α, κ)
, n ∈ N0. (64)

From (64), expressions for the mean first-passage times and costs considered in the above analyses are readily
obtained. From these, and using Corollary 4.2, the following analytical expression for the marginal relative cost
is obtained:

ϕn = 1 − γ(α + n + 1, κ)

γ(α, κ) κn+1
= 1 − κα−1

γ(α, κ)

∫ κ

0

(t/κ)α+ne−t dt, n ∈ N0. (65)
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Now, it is evident from the rightmost expression in (65) that ϕn ր 1 as n → ∞.
Recall that Table 1 in §1 illustrated the explosive numerical instability of the approximate solution to

Poisson’s equation by standard forward recurrence. We now consider the same instance, but approximate the
marginal costs ϕn by the ϕ̃N

n calculated by the forward–backward recurrence scheme presented in §6. To test
the accuracy of results, the values obtained were compared to the computed values of the ϕn using (65), which
we denote by fl(ϕn), where fl(x) denotes the floating-point approximation of a number x. Computations were
done in Matlab with standard double-precision arithmetic, so the relative error of fl(x) is bounded above by
the unit roundoff u = 2−53 ≈ 1.1 × 10−16. We thus consider that the approximation to ζ computed by Matlab
is ζ̂ = fl(ζ).

We found that taking N = 42 and ϕ̂N
N = 0 suffices to obtain extremely accurate approximations to ϕn for

the values of n in Table 1 in which inaccuracies were evident, i.e., n larger than 11. Table 2 shows the results.
The ϕ̃N

n column shows the evaluations of such quantities with 15 significant digits, which precisely match those
of the fl(ϕn). The column labeled ζAn/ϕn evaluates the theoretical asymptotic relative-error amplification
factors in Proposition 7.1(b). The results there show that the relative error of ϕ̃N

n is, in theory, substantially

reduced with respect to that of ζ̂. The next column, labeled 253|Erel(ϕ̃
N
n )|, evaluates the ratio of the absolute

value of the actual relative error of ϕ̃N
n (evaluated as |ϕ̃N

n − fl(ϕn)|/fl(ϕn)) to that of ζ̂, which is taken equal
to the unit roundoff u. The results differ slightly from the theory, but they show that the relative error of ϕ̃N

n

is near u in the worst case.
The values shown in the last two columns, labeled T −

n+1 and T +
n , explain the vastly improved accuracy

of forward–backward recurrence with respect to forward recurrence. Recall from Proposition 7.1(a) that the
absolute approximation error of ϕ̃N

n , for large n and N , is approximately proportional to T −
n+1, while Proposition

5.1(a) shows that the absolute approximation error of ϕ̂n is proportional to T +
n . These columns show that the

T −
n+1 are very small and vanish as n grows, while the T +

n quickly grow to infinity.

Table 2: Accurate numerical computation of ϕn by forward–backward recurrence.

n ϕ̃N
n ζAn/ϕn 253|Erel(ϕ̃N

n )| T −

n+1
T +

n

12 0.925174342237504 6.47 × 10−2 0 0.150 8.4 × 107

13 0.930359089413224 6.00 × 10−2 0 0.140 7.0 × 108

14 0.934875921107126 5.57 × 10−2 1.07 0.131 6.2 × 109

15 0.938845492334662 5.21 × 10−2 0 0.123 5.9 × 1010

16 0.942361160780650 4.89 × 10−2 0 0.116 5.9 × 1011

17 0.945496267896444 4.61 × 10−2 1.06 0.109 6.2 × 1012

18 0.948309214061184 4.36 × 10−2 1.05 0.104 6.9 × 1013

19 0.950847068147842 4.13 × 10−2 1.05 0.099 8.4 × 1014

20 0.953148181463212 3.93 × 10−2 0 0.094 9.8 × 1015

21 0.955244111686174 3.75 × 10−2 0 0.090 1.3 × 1017

22 0.957161059916347 3.58 × 10−2 1.04 0.086 1.7 × 1018

23 0.958920958494403 3.42 × 10−2 1.04 0.082 2.3 × 1019

24 0.960542304575400 3.28 × 10−2 0 0.079 3.4 × 1020

25 0.962040806065022 3.15 × 10−2 1.04 0.076 5.0 × 1021

26 0.963429887334373 3.03 × 10−2 0 0.073 7.8 × 1022

27 0.964721088932251 2.92 × 10−2 1.04 0.071 1.3 × 1024

28 0.965924386304869 2.82 × 10−2 0 0.068 2.1 × 1025

29 0.967048446017873 2.72 × 10−2 0 0.066 3.6 × 1026

We now turn to application of the results in §5.2. It is easily shown that the conditions (59)–(61) hold for

this model. Using the same N as above we obtain β̃0,N ≈ −0.417521221604055, which coincides in all digits

shown with fl(β0), evaluated as −∑N
n=0 P̄nfl(ϕn). Since Tp0 ≈ 0.761 and T10 ≈ 1.117, Tp0 − T10 ≈ −0.356,

and hence, from Proposition 7.3(a) one can argue heuristically that

|Eabs(β̃0,N )| ≈ |(Tp0 − T10)Eabs(ζ̂)| ≈ ζ̂ |(Tp0 − T10)Erel(ζ̂)| < 0.143 u,

and hence |Erel(β̃0,N )| ≈ |Eabs(β̃0,N )/β̃0,N | < 0.34 u.
As for the asymptotic variance, we have σ̃2

N ≈ 0.589053281069282, which matches fl(σ2), evaluated as
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2
∑N

n=0 λnpnfl(ϕn)2, in all 15 digits. Furthermore, using Proposition 7.3(b) and β1 ≈ 0.025, one can argue that

|Eabs(σ̃
2
N )| ≈ 4|β1Eabs(ζ̂)| ≈ 4ζ̂ |β1Erel(ζ̂)| < 0.04 u,

and hence |Erel(σ̃
2
N )| ≈ |Eabs(σ̃

2
N )/σ̃2

N | < 0.07 u.

9 Conclusions

While there is extensive work on the numerical instability analysis of linear recurrences, to date there is a
dearth of research on its application to recurrences arising in applied probability, such as the Poisson equation
considered herein. In this paper, the rich structure of this equation has been exploited to develop an error
analysis elucidating the instability phenomenon in its numerical solution, as well as a means of overcoming it.
It would be interesting to extend these results beyond the present scope to general continuous-time Markov
chains.
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A Groundwork for the proof of Theorem 1.2

This appendix lays the groundwork for the proof of Theorem 1.2 given in §4.2. Recall from §1 that we write
dn , µn − λn and ∆xn , xn − xn−1.

We use below the following identities: for a, b, c, d ∈ R with b, d 6= 0,

a + c

b + d
=

a

b
+

d

b + d

(
c

d
− a

b

)
(66)

and
c

d
+

b

b − d

(
a

b
− c

d

)
=

a − c

b − d
=

a

b
+

d

b − d

(
a

b
− c

d

)
. (67)

We will further use the following inequalities: if b, d > 0,

a

b
6

a + c

b + d
6

c

d
if and only if

a

b
6

c

d
, (68)

which is the classic mediant inequality. Further, if b > d > 0,

a

b
6

a − c

b − d
if and only if

c

d
6

a

b
. (69)

Note that, in both (67) and (69), the leftmost inequalities are strict if and only if the rightmost inequalities are
strict.

Lemma A.1. Under Assumption 1.1(ii.a),

(a) Zn is nondecreasing;

(b) ϕn is nonnegative.

Proof. (a) Let n > 1. Then, using (30), (21), (22), and (68), we obtain

∆Zn =
µnH+

n−1 + cn

µnT +
n−1 + 1

− H+
n−1

T +
n−1

=
cn − Zn−1

µnT +
n−1 + 1

. (70)
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It now follows that ∆Zn > 0 since, by (17), (30), and Assumption 1.1(ii.a),

Zn−1 =

∑n−1
j=0 cjpj
∑n−1

j=0 pj

6 cn.

(b) The result follows by part (a), Corollary 4.2(a) and (18).

Lemma A.2.

(a)

λn∆H+
n =

{
∆c1 + H+

0 ∆d1, n = 1

∆cn + µn−1∆H+
n−1 + H+

n−1∆dn, n > 2

= ∆cn + (µn−1 + ∆dn)∆H+
n−1 + H+

n−2∆dn, n > 2;

(b)

λn∆T +
n =

{
T0∆d1, n = 1

µn−1∆T +
n−1 + T +

n−1∆dn, n > 2

= (µn−1 + ∆dn)∆T +
n−1 + T +

n−2∆dn, n > 2.

Proof. (a) From (22) we obtain
λn∆H+

n = cn + dnH+
n−1, n > 1, (71)

For n = 1, using (71) and c0 + d0H+
0 = 0 (cf. (22)), we obtain

λ1∆H+
1 = c1 + d1H+

0 = c1 + H+
0 ∆d1 + d0H+

0 = ∆c1 + H+
0 ∆d1.

For n > 2, using twice (71) yields

λn∆H+
n = cn + dnH+

n−1 = ∆cn + H+
n−1∆dn + cn−1 + dn−1H+

n−1

= ∆cn + H+
n−1∆dn + cn−1 + dn−1H+

n−2 + dn−1∆H+
n−1

= ∆cn + H+
n−1∆dn + λn−1∆H+

n−1 + dn−1∆H+
n−1

= ∆cn + µn−1∆H+
n−1 + H+

n−1∆dn.

(b) From (21) we readily obtain

λn∆T +
n = 1 + dnT +

n−1, n > 1. (72)

This part follows as part (a) using (72) and 1 + d0T0 = 0 (cf. (21)).

Lemma A.3. Under Assumption 1.1(i.a, ii.a),

(a) H+
n is nondecreasing;

(b) T +
n is increasing.

Proof. (a) This part follows immediately by induction using Lemma A.2(a) and Assumption 1.1(i.a, ii.a), which
yields H+

n−1 > 0 and ∆H+
n > 0 for n > 1.

(b) This part follows similarly using Lemma A.2(b) and Assumption 1.1(i.a), which yields ∆T +
n > 0 for

n > 1.

Lemma A.4. Under Assumption 1.1(i.a, ii.a), Zn 6 ∆H+
n /∆T +

n .
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Proof. We have, using (67), (69), and Lemmas A.1 and A.3,

∆H+
n

∆T +
n

=
H+

n

T +
n

+
T +

n−1

∆T +
n

(
H+

n

T +
n

− H+
n−1

T +
n−1

)
>

H+
n

T +
n

= Zn. (73)

Lemma A.5. Under Assumption 1.1(i, ii),
(

∆H+
n

∆T +
n

− H+
n−1

T +
n−1

)
∆dn 6

∆cn

T +
n−1

, n > 1 (with equality for n = 1.) (74)

Proof. We prove the result by induction. For n = 1, using Lemmas A.2 and A.3(b), and Assumption 1.1(i.a),
it follows that (74) holds with equality:

∆H+
1

∆T +
1

=
H+

0 ∆d1 + ∆c1

T0∆d1
=

H+
0

T0
+

∆c1

T0∆d1
. (75)

Now, suppose that (74) holds for some n > 1. If ∆dn+1 = 0, then it trivially holds for n+1, since ∆cn+1 > 0
by Assumption 1.1(ii.a).

So consider the case ∆dn+1 6= 0. Then 0 < ∆dn+1 6 ∆dn by Assumption 1.1(i). Using Lemmas A.2 and
A.3(b), and (66), we can write

∆Hn+1

∆Tn+1
=

H+
n ∆dn+1 + µn∆H+

n + ∆cn+1

T +
n ∆dn+1 + µn∆T +

n

=
H+

n

T +
n

+
µn∆T +

n

λn+1∆Tn+1

(
µn∆H+

n + ∆cn+1

µn∆T +
n

− H+
n

T +
n

)
.

Hence, we can reformulate the required result that (74) holds for i + 1 as

µn∆T +
n

λn+1∆Tn+1

(
µn∆H+

n + ∆cn+1

µn∆T +
n

− H+
n

T +
n

)
6

∆cn+1

T +
n ∆dn+1

. (76)

In turn, we can reformulate the latter inequality as follows:

T +
n ∆dn+1

λn+1∆Tn+1

(
µn∆H+

n + ∆cn+1 − µn∆T +
n

H+
n

T +
n

)
6 ∆cn+1,

i.e.,
T +

n ∆dn+1

λn+1∆Tn+1

(
∆cn+1 + µn∆T +

n

(
∆H+

n

∆T +
n

− H+
n

T +
n

))
6 ∆cn+1,

i.e., using again Lemma A.2(b),

T +
n ∆dn+1µn∆T +

n

λn+1∆Tn+1

(
∆H+

n

∆T +
n

− H+
n

T +
n

)
6

µn∆T +
n

λn+1∆Tn+1
∆cn+1,

i.e.,
∆H+

n

∆T +
n

− H+
n

T +
n

6
∆cn+1

T +
n ∆dn+1

. (77)

To prove (77), we write, using (66),

H+
n

T +
n

+
∆cn+1

T +
n ∆dn+1

=
H+

n ∆dn+1 + ∆cn+1

T +
n ∆dn+1

=
(∆H+

n )∆dn+1 + H+
n−1∆dn+1 + ∆cn+1

(∆T +
n )∆dn+1 + T +

n−1∆dn+1

=
∆H+

n

∆T +
n

+
T +

n−1

T +
n

(
H+

n−1

T +
n−1

+
∆cn+1

T +
n−1∆dn+1

− ∆H+
n

∆T +
n

)
,
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whence

H+
n

T +
n

+
∆cn+1

T +
n ∆dn+1

− ∆H+
n

∆T +
n

=
T +

n−1

T +
n

(
H+

n−1

T +
n−1

+
∆cn+1

T +
n−1∆dn+1

− ∆H+
n

∆T +
n

)

>
T +

n−1

T +
n

(
H+

n−1

T +
n−1

+
∆cn

T +
n−1∆dn

− ∆H+
n

∆T +
n

)
> 0,

where the first and second inequalities follow by Assumption 1.1(i.b, ii.b) and the induction hypothesis (74),
respectively. Therefore, (77) holds, and hence so does (76), which completes the induction proof.

Lemma A.6. Under Assumption 1.1(i, ii),
∆H+

n

∆T +
n

is nondecreasing.

Proof. Fix n > 1. We can write, using Lemma A.2,

∆Hn+1

∆Tn+1
=

(µn + ∆dn+1)∆H+
n + ∆cn+1 + H+

n−1∆dn+1

(µn + ∆dn+1)∆T +
n + T +

n−1∆dn+1

. (78)

We need to distinguish two cases. If ∆dn+1 = 0, the latter identity gives

∆Hn+1

∆Tn+1
=

µn∆H+
n + ∆cn+1

µn∆T +
n

=
∆H+

n

∆T +
n

+
∆cn+1

µn∆T +
n

>
∆H+

n

∆T +
n

,

as required, using Lemma A.3(b) and Assumption 1.1(ii.a).
If ∆dn+1 6= 0, it must be ∆dn+1 > 0 by Assumption 1.1(i.a). We have

∆Hn+1

∆Tn+1
=

∆H+
n

∆T +
n

+
T +

n−1∆dn+1

λn+1∆Tn+1

(
∆cn+1

T +
n−1∆dn+1

−
(

∆H+
n

∆T +
n

− H+
n−1

T +
n−1

))

>
∆H+

n

∆T +
n

+
T +

n−1∆dn+1

λn+1∆Tn+1

(
∆cn+1

T +
n−1∆dn+1

− ∆cn

T +
n−1∆dn

)
>

∆H+
n

∆T +
n

,

using (78), (66), Lemmas A.2(b), A.3(b) and A.5, and Assumption 1.1(i.b, ii.b).

Lemma A.7.
∆H+

n

∆T +
n

→ ζ as n → ∞.

Proof. We can write

∆H+
n

∆T +
n

− H+
n

T +
n

=
T +

n−1

∆T +
n

∆Zn =
T +

n−1

∆T +
n

1

1 + µnT +
n−1

(cn − Zn−1)

=
T +

n−1

λn∆T +
n

cn − Zn−1

T +
n

=
T +

n−1

1 + dnT +
n−1

cn − Zn−1

T +
n

,

where we have used in turn (30), (73), (70), (21), and (72).
Now, we have

T +
n−1

1 + dnT +
n−1

=
1

1/T +
n−1 + dn

→ 1

1/T +
∞ + d∞

< ∞ as n → ∞, (79)

where 0 < T +
∞ 6 ∞ and 0 < d∞ 6 ∞ are the limits, possibly infinite, of T +

n and dn as n → ∞. See Lemma
A.3(b) and Assumption 1.1(i). Note that Assumption 1.1(i.a) and ergodicity ensure that d∞ > 0. Otherwise, it
would be µn 6 λn for all n, and the chain would not be ergodic.

Furthermore, using (70) and (18) gives

cn − Zn−1

T +
n

= ∆Zn → 0 as n → ∞.

27



Therefore we obtain, as required,

lim
n→∞

∆H+
n

∆T +
n

= lim
n→∞

H+
n

T +
n

= ζ.
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