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Routers have packet buffers to reduce packet drops during times of congestion. It is important to correctly
size the buffer: make it too small, and packets are dropped unnecessarily and the link may be underutilized;
make it too big, and packets may wait for a long time, and the router itself may be more expensive to build.
Despite its importance, there are few guidelines for picking the buffer size. The two most well-known rules
only apply to long-lived TCP Reno flows; either for a network carrying a single TCP Reno flow (the buffer
size should equal the bandwidth-delay product, or BDP) or for a network carrying 𝑛 TCP Reno flows (the
buffer size should equal BDP/

√
𝑛). Since these rules were introduced, TCP Reno has been replaced by newer

algorithms as the default congestion control algorithm in all major operating systems, yet little has been
written about how the rules need to change. This paper revisits both rules. For the single flow case, we
generalize the BDP rule to account for changes to TCP, such as Proportional Rate Reduction (PRR), and the
introduction of new algorithms including Cubic and BBR. We find that buffers can be made 60-75% smaller for
newer algorithms. For the multiple flow case, we show that the square root of 𝑛 rule holds under a broader
set of assumptions than previously known, including for these new congestion control algorithms. We also
demonstrate situations where the square root of 𝑛 rule does not hold, including for unfair flows and certain
settings with ECN. We validate our results by precisely measuring the time series of buffer occupancy in a
real network, and comparing it to the per-packet window size.

1 INTRODUCTION
Internet routers have packet buffers which reduce packet loss during times of congestion. Sizing
the router buffer correctly is important: if a router buffer is too small, it can cause high packet
loss and link under-utilization. If a buffer is too large, packets may have to wait an unnecessarily
long time in the buffer during congested periods, often up to hundreds of milliseconds. While an
operator can reduce the operational size of a router buffer, the maximum size of a router buffer
is decided by the router manufacturer, and the operator typically configures the router to use all
the available buffers. Without clear guidance about how big a buffer needs to be, manufacturers
tend to oversize buffers and operators tend to configure larger buffers than necessary, leading to
increased cost and delay.

This paper revisits two widely used rules of thumb for sizing router buffers in the internet. The
two rules cover two different cases:
Case 1: When a network carries a single TCP Reno flow. Van Jacobson observed in 1990 [1]
that a bottleneck link carrying a single TCP Reno flow requires a router buffer of size 𝐵 ≥ BDP, the
bandwidth-delay product, in order to keep the link fully utilized.
Case 2: When a network carries multiple TCP Reno flows. Appenzeller, Keslassy, and McK-
eown argued in 2004 [2] that a bottleneck link carrying 𝑛 long-lived TCP Reno flows requires a
buffer of size 𝐵 ≥ BDP/

√
𝑛 in order to keep the link highly utilized.

Much has changed since these rules were first introduced, and it is not clear whether these
rules still apply in modern networks. The behavior of TCP Reno has changed; most notably when
Rate-Halving [3, 4] and PRR [5] were introduced. New types of congestion control have become
widespread, such as Cubic [6] (default in Linux, Android, and MacOS), and more recently BBR
(deployed by Google for YouTube) [7] and BBRv2 [8]. Given that the analysis underlying both buffer
sizing rules depends on the specific way in which TCP Reno halves the congestion window when
losses are detected, there is no particular reason for either rule to still hold in today’s internet.
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Existing rules of thumb help us pick the buffer size to achieve full link utilization, and do not
predict behavior if the buffer is made smaller. Thus, theory falls short for recent congestion control
algorithms (e.g. BBR and BBRv2) which no longer aim to keep a bottleneck link running at 100%
utilization. Instead, they rely on short periods of under-utilization to keep queueing delay low and
to estimate propagation delay.

In light of these changes, this paper examines buffer sizing for modern TCP algorithms. We show
that the two rules still allow TCP Reno to fully utilize a link, despite changes due to Rate-Halving
and PRR. We show that TCP Cubic, Scalable TCP, and BBR allows us to reduce buffer sizes.

We extend our analysis for the case when link utilization is less than 100%, and we show that very
small buffers can still allow high (but not 100%) link utilization. More generally, this paper sheds new
light on how to size buffers for a given congestion control algorithm and desired link utilization, under

a very broad set of conditions. In doing so, we also show how future congestion control algorithms
can be designed to further reduce buffer requirements.
Throughout the paper, we will illustrate and validate our results using measurements drawn

from a physical network in our lab. This is challenging: while Linux can capture per-packet
measurements in the end-host TCP stack, it is not normally possible to capture the full time series
of buffer occupancy at the switch. Our measurement setup uses a P4-programmable Tofino switch
which we program to report the precise time evolution of its buffer, to approximately 1 nanosecond
resolution. This lets us precisely compare the evolution of the congestion window and the buffer
size and validate our theoretical results. We start in Section 2 by describing this experimental setup.
In Section 3, we revisit case #1: a single TCP flow. Specifically, we show theoretically and

experimentally that despite the introduction of PRR to TCP Reno, the 𝐵 ≥ BDP result still holds.
We also show that with TCP Cubic we can reduce the buffer size to 0.4BDP for a single flow, and
for BBR we can reduce it further to 0.25BDP and still achieve full link utilization. We also describe
how link utilization behaves when buffers are below these values.
Next, in Section 4, we examine case #2: multiple TCP flows. We prove that algorithms which

respond to full queues (via losses or marks) create standing queues with particular properties during
times of congestion. We show that the square root of 𝑛 rule is a consequence of this behavior:
if queues are always close to full for any buffer size, then intuitively the buffers can be shrunk
without impacting utilization. Another, perhaps surprising, consequence is that link utilization
is not a “cliff” function. We show that if the buffer is slightly too small for full utilization, then
utilization still remains high. Specifically, we show that even with very small buffers, the utilization
percent is at least Ω(1 − 1/

√
𝑛). We also show that design choices in BBR allow for a square root of

𝑛 rule essentially without assumptions.
In Section 5 we support our results with fine-grained measurements from lab experiments. We

show that the square root of 𝑛 rule holds in our experiment, and show how loss-based algorithms
keep queues full during congestion. We verify the square root of 𝑛 result for BBR, and find experi-
mentally that a BDP/𝑛 rule may be more accurate, allowing for even smaller buffers. We show that
buffer sizes depend on how flows synchronize and whether they are fair. We describe how to check
the assumptions in our theorems, and show that they hold in the lab. We also caution that enabling
ECN can increase synchronization in certain cases, resulting in a larger required buffer, and show
lab results to support our analysis.

In Section 6, we discuss measurements of large-scale production networks which show that RTTs
are persistently elevated during times of congestion [9–11]. Our results explain why congestion
control algorithms create these persistently full queues, and suggest that these queues can be made
smaller. We also discuss the implications of our results on other situations when it may be more
difficult to measure congestion.
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Min. Buffer Size Additional assumptions beyond Section 3.3 Citation
BDP Reno, silence after loss [1, 12]
BDP Reno [13], Section 3.5
(1/𝑏 − 1)BDP Multiplicative decrease by b, silence after loss [14–16]
(1/𝑏 − 1)BDP Multiplicative decrease by b Section 3.5
3
7BDP Cubic [15], Section 3.5
1
7BDP Scalable TCP Section 3.5
1
4BDP BBR during the probe bandwidth phase, with loss Section 3.5
Θ(𝐵𝐷𝑃/

√
𝑛) Reno, windows are i.i.d. uniform random variables [2]

𝑂 (BDP/
√
𝑛)

√
𝑛 +𝑂 (𝑛2/𝐵𝐷𝑃) almost fair flows see loss Theorem 6

𝑂 (BDP/
√
𝑛) Almost fair BBR flows in probe bandwidth phase Theorem 8

𝑂 (𝑝 · BDP − 𝑛 + 𝑛𝑝) A 𝑝 fraction of fair flows see losses [13]
𝑂 (𝑠 · BDP/𝑛) At most 𝑠 + 𝑛2/𝐵𝐷𝑃 almost fair flows see loss. Section 4.6
𝑂 (1) Reno, bounded window size, Poisson pacing [17]
𝑂 (1)

√
𝑛 + 𝑂 (𝑛2/𝐵𝐷𝑃) almost fair flows see loss, uti-

lization is Ω(1 − 1/
√
𝑛)

Theorem 7

Table 1. Minimum buffer sizes required for full link utilization, our new results highlighted in gray.

In Section 7 wemake recommendations to network operators who are interested in running buffer
sizing experiments, and describe how our results can be used to easily design these experiments.
We also give recommendations to designers of new congestion control algorithms who would like
to ensure small buffer requirements. We discuss related work in Section 8 and conclude in Section 9.
Contributions: The main contributions of this paper are:
(1) Single flow case: A simple proof of TCP’s required buffer size, applicable to the latest versions

of TCP Reno, as well as other algorithms including Cubic, Scalable TCP, and BBR.
(2) Multiple flow case: A new, more general model of how buffer size is impacted by fairness

and the amount of worst-case packet drops, and square root of 𝑛-style rules for TCP Reno
and other algorithms.

(3) A better understanding of how congestion control algorithms interact with buffers, including
how utilization depends on buffer size, how algorithms can reduce buffer requirements, and
how current congestion measurement techniques rely on certain algorithmic behavior.

(4) A new measurement platform allowing precise observation of TCP and the router buffer.

2 EXPERIMENT METHODOLOGY
Throughout the paper, we will use measurements from our physical testbed to illustrate and validate
our results. We have built a platform on programmable hardware which allows us to easily run
experiments where TCP flows share a congested link, and observe how TCP and queues behave at
a packet-by-packet level.
While working on this paper, we were frequently baffled by experimental results that didn’t

match our understanding of TCP. Almost always, when we dug into the measurements, we found
that TCP’s actual behavior did not match our understanding. We hope that by including our
measurements, we can make TCP’s behavior (and our results) more understandable.
Setup Our test network consists of two servers with 32 2.4Ghz cores and 32 GB of RAM each,
connected by a Barefoot Tofino switch and use up to 2 MB of buffers. The servers run Linux 5.5.0,
each with an Intel 82599ES 10Gb/s NIC. Each NIC is connected to a port of a 6.5Tb/s Barefoot
Tofino switch via 100G to 4 × 10Gb/s breakout cables. The sender server is connected to the Tofino
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with two 10G cables. The interfaces are bonded and packets are equally split between them, which
ensures that congestion happens at the switch (otherwise we only see congestion at the sender
NIC). We set MTUs to 9000 bytes so the servers can sustain a 10Gb/s rate. We add 1ms of delay
at the sender using Linux’s traffic controller tc, and use iperf3 to generate TCP traffic. We used
congestion control algorithms available in Linux 5.5.0, including TCP Reno, Cubic, BBR (v1), and
Scalable TCP. We also used Google’s alpha release of BBR2 [8].
Measuring TCP Since 2017, Linux has had a tracing system which reports the congestion window,
smoothed RTT, and other important information for each received acknowledgement [18]. We
used this system to observe TCP’s behavior in our experiments, and have created a small open
source tool to make them easier to work with: https://github.com/brucespang/tcp_probe.
Measuring Buffers It is usually hard to precisely measure a switch’s buffer occupancy over time.
We wrote a P4 program running on the Barefoot Tofino switch, to measure (and report) the time
series of the packet buffer occupancy. Each time the switch receives a packet it sends a small UDP
packet (often called a “postcard”) to a collector which includes the current buffer occupancy and
some packet metadata. At the collector, we record these postcards and match them with the TCP
trace samples. Our ability to measure the complete time-series of a buffer is not novel (e.g. [19–23]).
We believe this sort of fine-grained measurement should be a standard part of any TCP experiment.
Datasets and Source CodeWe have released our P4 code, infrastructure for collecting TCP traces,
and the traces we collected online at https://github.com/brucespang/ifip21-buffer-sizing.

3 SIZING BUFFERS FOR A SINGLE FLOW
Since the 1990s, it has been known that a network carrying a single TCP Reno flow requires
a buffer size of one BDP in order to keep the bottleneck link fully utilized. However, TCP has
changed dramatically since then, with Proportional Rate Reduction [5] and new congestion control
algorithms like Cubic [6] and BBR [7]. It is not clear whether the buffer requirements for a single
TCP flow have also changed.

In this section, we revisit the classic rule of thumb that a buffer should be at least one BDP for
a single TCP connection. Some of the results in this section have been shown by prior authors,
and we revisit their results to verify that they still hold experimentally, and as a warm-up for later
sections. We find that despite the changes to the Linux kernel, the BDP rule still holds for TCP
Reno. We find that a BDP is an overestimate of the buffering required for Cubic and BBR.

More specifically, we will
(1) Show that the BDP rule still holds for a modern implementation of TCP Reno.
(2) Show that Cubic requires a buffer of only 3

7BDP and BBR requires a buffer of only 1
4BDP.

(3) Show how link utilization changes when buffers are smaller than required for 100% utilization.
(4) Show that BBR2 does not fully utilize a link, but instead aims for high link utilization.
(5) Show how the usual proof of the BDP rule depends on outdated TCP behavior, and give a

simpler and more general proof.

3.1 The original BDP rule
The original BDP rule, attributed to Jacobson [1] and Villamizar and Song [12], states that for a
single TCP Reno flow to fully utilize a link with a drop-tail buffer, the buffer must be at least the
capacity of the link 𝐶 times the RTT. This is the bandwidth delay product, BDP = 𝐶 · 𝑅𝑇𝑇 .
Fact (BDP Rule). TCP Reno fully utilizes a link if and only if 𝐵 ≥ BDP.

Most proofs of the BDP rule [1, 2] rely on TCP halving its window size𝑊 on a loss, and then
waiting to send another packet until it receives𝑊 /2 acknowledgements so that the number of
packets in-flight drops below the newwindow size. But this is not howmodern TCP implementations

https://github.com/brucespang/tcp_probe
https://github.com/brucespang/ifip21-buffer-sizing 
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Fig. 1. Per-packet window size (from kernel) and queue depth (from switch), for one TCP Reno flow with a

BDP sized buffer. PRR keeps sending packets after a loss, but the queue still drains.

work. For example, TCP Cubic decreases its window by less than a half on a loss. Even TCP Reno no
longer stops sending packets on a loss. Instead it behaves according to Proportional Rate Reduction
(PRR) [5], introduced by Dukkipati et al. in 2011, which supplanted Rate-Halving, proposed by Hoe
[3] in 1995 and as an RFC by Mathis et al. [4] in 1999. Both algorithms gradually lower the size of
the window after receiving a loss. When PRR decides to decrease the congestion window from𝑤 to
𝑤 ′, it sends a new packet for every𝑤/𝑤 ′ packets acknowledged. For TCP Reno, this means a new
packet is sent for every two packets acknowledged. Most deployments of TCP Reno now use PRR.

3.2 Does the BDP rule still hold experimentally?
Our measurement infrastructure allows us to observe the behavior of PRR after a loss, which is
shown in Figure 1 for TCP Reno (with PRR) and buffer size 𝐵 = BDP. The figure is zoomed in to
show what happens when a packet is dropped by the switch at about the 1ms marker. The TCP
source detects the loss about 1.5ms later, and begins to gradually decrease its window over the next
2ms. After 2ms (about 2 RTTs), the window size has been halved and the queue is nearly empty.

Without PRR, TCP Reno stops sending packets as soon as the drop is detected and remains silent
until the window is reduced by half. Even though TCP with PRR never stops sending, the queue
almost completely drains, which suggests that a BDP worth of buffering is still necessary. In what
follows, we prove this.

3.3 Technical Preliminaries
In order to prove that 𝐵 ≥ BDP is still necessary with PRR, we need an argument that does not
rely on TCP stopping sending after a loss. To this end, we set up some definitions that will help us
prove our results throughout the paper. These are standard assumptions in the TCP and the buffer
sizing literature, and apply to the common case when 𝑛 TCP flows share a drop-tail queue.

Throughout the paper, we will refer to a TCP flow in theorem statements, and use it to mean the
following set of assumptions and definitions, plus commonly known TCP behavior.

Definition. A packet is in-flight if it has been sent, but the acknowledgement has not yet been received

by the sender. Let𝑊 (𝑡) be the aggregate window, or the number of in-flight packets at time 𝑡 .

For the case of 𝑛 flows sharing a link, let𝑤𝑖 (𝑡) be the window of flow 𝑖 , i.e. the number of in-flight

packets for flow 𝑖 at time 𝑡 . Therefore the aggregate window is𝑊 (𝑡) = ∑𝑛
𝑖=1𝑤𝑖 (𝑡).

Throughout the paper, we will heavily use the following behavior of TCP Reno: when TCP Reno
successfully sends a packet and receives an acknowledgement, it increases its window from𝑤𝑖 to
𝑤𝑖 + 1. When it detects a congestion signal (e.g. a dropped packet or an ECN mark), it decreases the
window from𝑤𝑖 to𝑤𝑖/2.

Note that our definition of the window of flow 𝑖 is the number of in-flight packets, which is not
necessarily the same as the congestion window (cwnd). For example, when TCP Reno reduces its
congestion window in response to a loss, the number of in-flight packets may briefly exceed the
congestion window.
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Definition. The RTT at time 𝑡 is the time taken from when a packet is sent at time 𝑡 until we receive

its acknowledgement. Our results assume that all flows have the same RTT.

Definition. The sending rate of flow 𝑖 at time 𝑡 is 𝑥𝑖 (𝑡) = 𝑤𝑖 (𝑡)/𝑅𝑇𝑇 (𝑡). The aggregate sending rate
is 𝑥 (𝑡) =𝑊 (𝑡)/𝑅𝑇𝑇 (𝑡).

Links have queues to store packets before they are sent. We will also call them buffers. Packets
are put into these queues as they arrive, and are later sent from the link. Queues have a length at
any point in time, which we call the queue length, and a maximum number of packets they can fit
before they need to drop packets, which we call the maximum queue length or buffer size.

Definition. Let 𝑄 (𝑡) be the length of the queue at time 𝑡 .

A link with capacity 𝐶 sends one packet from the queue every 𝐶−1 seconds, provided the queue
is not empty. While some links, such as wireless links, have variable capacity, we only consider
fixed data-rate links that send a packet every 𝐶−1 seconds.

We will care about the utilization of these links.

Definition. For a link with departure rate 𝐷 (𝑡) and capacity𝐶 , the link utilization is 𝜇 (𝑡) = 𝐷 (𝑡)/𝐶

A work-conserving queue will be fully utilized at time 𝑡 if and only if 𝑄 (𝑡) > 0. While it may
seem counter-intuitive, dropping packets does not necessarily reduce link utilization. If packets are
dropped from the tail of the queue (i.e. an arriving packet doesn’t fit, so it is dropped), then packets
are lost before the bottleneck link. If a work-conserving link always has a non-empty queue, it is
fully utilized no matter how many packets are dropped.

Definition. The bandwidth-delay product of a flow crossing a link of capacity 𝐶 with round-trip

time 𝑅𝑇𝑇 is BDP = 𝐶 · 𝑅𝑇𝑇 .

We will use the following standard assumption about how the size of the queue relates to the
number of in-flight packets [2, 13, 15, 24, 25].

Assumption 1. Let 𝐵 be the maximum buffer size, 𝑡 be some time, and𝑊 (𝑡) be the number of

in-flight packets at time 𝑡 . We assume that at time 𝑡 , the queue size is

𝑄 (𝑡) =


0 if 𝑊 (𝑡) ≤ BDP

𝑊 (𝑡) − BDP if 0 <𝑊 (𝑡) < 𝐵 + BDP

𝐵 if 𝑊 (𝑡) ≥ 𝐵 + BDP

Our results use this assumption heavily, and so it merits some discussion. It is a strong assumption,
designed to let us compare our results to existing work. Consider the queue at some time 𝑡 when
there are𝑊 (𝑡) packets in-flight. Over the previous RTT, if the bottleneck link is fully-utilized it
will (by definition of BDP) send exactly one BDP worth of packets spaced 𝐶−1 seconds apart. Our
assumption is essentially that the congestion control algorithm will closely match this behavior;
i.e. it will also send packets spaced 𝐶−1 seconds apart. In the case of TCP, this is the ACK clocking
mechanism; packets sent from the bottleneck queue lead to a stream of ACKs at the sender, spaced
𝐶−1 seconds apart, which pace out the sent packets.

Assumption 1 holds for the results in this paper because of ACK clocking, and is validated by
our experimental results. If we were to model new congestion control algorithms, we would need
to first check that this assumption holds. If, to pick an extreme example, a new congestion control
algorithm required the sender to remain silent for a long time and then suddenly send a burst
of packets, then the assumption would not hold. Fortunately, this is not how currently deployed
congestion control algorithms work.
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We could relax this assumption if needed, provided we kept some relationship between queue
length 𝑄 (𝑡) and BDP. As an example, we observed some amount of variability in the queue depth
in our measurements (e.g. Figure 1), which we believe is due to packet bursts from the sender. We
could model this variability by assuming that (1 − 𝜀) (𝑊 (𝑡) − BDP) ≤ 𝑄 (𝑡) ≤ (1 + 𝜀) (𝑊 (𝑡) − BDP)
for some constant 𝜀 > 0. We could then derive similar results. For instance, the 𝐵 ≥ BDP rule for
TCP Reno would become 𝐵 ≥ (1 + 𝜀)BDP. We have not carried this parameter through our results
since it makes our theorems harder to understand and compare with existing work, and 𝜀 = 0
captures the general behavior we observe in our measurements.

With this assumption, we can prove the following well-known lemma which is key to showing
all the buffer sizing results in this paper.

Lemma 2. For TCP flows sharing a link at time 𝑡 , the utilization 𝜇 (𝑡) = min(𝑊 (𝑡)/BDP, 1).

Proof. If𝑊 (𝑡) > BDP, then applying Assumption 1 we get 𝑄 (𝑡) = min(𝑊 (𝑡) − BDP, 𝐵) > 0.
We assume queues are work conserving, so 𝜇 (𝑡) = 1. If𝑊 (𝑡) ≤ BDP then during RTT 𝑡 we send
𝑊 (𝑡) packets at a rate of 𝑥 (𝑡) = 𝑊 (𝑡)/RTT. By Assumption 1, 𝑄 (𝑡) = 0, so the departure rate
𝐷 (𝑡) = 𝑥 (𝑡). Therefore the utilization is 𝜇 (𝑡) = 𝐷 (𝑡)/𝐶 =𝑊 (𝑡)/BDP. □

Lemma 2 is simultaneously obvious and a bit surprising. In words, if the number of in-flight
packets ever falls below a BDP, then we will lose utilization. One might imagine that if the queue is
full and the arrival rate is slightly less than 𝐶 (which happens if𝑊 (𝑡) is slightly less than a BDP),
the queue would only drain a little bit. But by Assumption 1 (and perhaps because of the way TCP’s
in-flight mechanism works), this means the sender will only send at a rate of at most𝑊 (𝑡)/𝑅𝑇𝑇
packets, which is slightly less than 𝐶 .
Finally, we will need the following assumption about when losses happen.

Assumption 3 (Loss). Let 𝐵 be the maximum buffer size. We assume that TCP loses packets at time

𝑡 if and only if 𝑄 (𝑡) ≥ 𝐵, which by Assumption 1 is equivalent to𝑊 (𝑡) ≥ BDP + 𝐵.

Lemma 2 is easiest to usewhen a congestion control algorithm decreases its window in response to
a full queue (e.g. a lost or marked packet), since Assumption 3 gives us a direct relationship between
the buffer size and the number of in-flight packets upon a loss (or mark). In our experiments, Reno,
Cubic, BBR, and Scalable TCP all decrease their windows in response to a loss or mark. Modeling
other congestion control algorithms might require additional assumptions to determine a lower
bound on the number of in-flight packets.

3.4 Settings Where Our Assumptions Do Not Hold
Our results only apply when our assumptions hold. These assumptions are used by existing work
on buffer sizing, so we are confident that our results are comparable to existing work.

Our results rely on the assumption that if the bottleneck queue is always non-empty, it will send
exactly BDP packets every RTT. This is a simple consequence of a work-conserving queue and
a constant egress line-rate. If instead we wanted to model a packet scheduling algorithm at the
bottleneck link (e.g. strict precedence service, where our flows are low precedence), then we would
need to determine how many packets are sent when the queue is non-empty. We could substitute
that value into Assumption 1 and most of our results would apply.

There are other interesting settings for buffer sizing, especially links using AQM (e.g. [15, 26–28]).
We believe that our techniques would help prove buffer sizing results for AQM policies, given
good models of how different AQM policies interact with TCP. We believe this would be a very
interesting direction for future work.
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3.5 Rules of thumb for Reno, Cubic, BBR, and Scalable TCP
Lemma 2 makes it easy to prove rules of thumb for buffer sizing. As a demonstration, here we use
it to prove rules for TCP Reno and other common congestion control algorithms.
Our strategy will be to find the minimum window size and apply Lemma 2 to measure link

utilization. Loss based algorithms only decrease their windows on a loss, so wewill use Assumption 3
(or a similar assumption for BBR) to relate the link utilization to the buffer size.
Reno: Fix some time 𝑡 when Reno experiences a loss and let 𝑠 be the next RTTwhen𝑊 (𝑠) =𝑊 (𝑡)/2.
By Assumption 3,𝑊 (𝑠) ≥ 1

2 (BDP + 𝐵). So the utilization of the link is 𝜇 (𝑠) ≥ min
( 1

2
(
1 + 𝐵

BDP
)
, 1

)
.

If we would like the link to be fully utilized (i.e. 𝜇 (𝑠) = 1), this result requires that 𝐵 ≥ BDP. For
smaller buffers, every 1% reduction in utilization results in a 2% reduction in required buffer size.
So for 90% utilization, we only need 𝐵 ≥ 0.8BDP. Provided our assumptions were to hold without a
buffer, Reno would still have a link utilization of at least 𝐶/2.

This result was shown for full utilization by [1], and for full utilization using these assumptions
by [13]. We are unaware of prior results for less than full utilization.
Decrease by 𝛽 on a loss: Suppose a new congestion control algorithm sets its window to𝑊 ′ = 𝛽𝑊

on a loss, and never decreased its congestion window otherwise. Let 𝑡 be the time just before a
loss, and 𝑠 the time when𝑊 (𝑠) = 𝛽𝑊 (𝑡). In this case, we would have𝑊 (𝑡) ≥ BDP + 𝐵, and by
Lemma 2, 𝜇 (𝑠) ≥ min (𝛽 (1 + 𝐵/BDP) , 1).
For full link utilization 𝜇 (𝑠) = 1, we would need 𝐵 > (𝛽−1 − 1)BDP. This matches observations

made by [14–16].
Cubic: On a loss, Cubic decreases its window by constant factor “beta_cubic,” in Linux this constant
is 717/1024 ∼ 7/10. Using the above result, Cubic requires 𝐵 ≥ (10𝛾/7 − 1)BDP. For full link
utilization 𝛾 = 1, Cubic requires a buffer of size 3

7BDP. This result was shown by [15]. For 90%
link utilization, Cubic requires a smaller buffer of size 0.28BDP. Without a buffer, Cubic gets a
utilization of 70%.
Scalable: On a loss, Scalable TCP decreases its window to 7/8. It therefore requires a buffer size of
𝐵 ≥ (8/7𝛾 − 1)BDP For full link utilization, this requires 𝐵 ≥ 1

7BDP. For 90% utilization, it requires
a very small buffer of just 𝐵 ≥ 0.03BDP. Without a buffer, Scalable gets a utilization of 87.5%. We
do not know of any prior publications of this result, but it is an easy corollary.
BBR: BBR (v1) alternates between phases where it probes for bandwidth and probes for the
minimum RTT. We will focus on the required buffer size for full utilization during the bandwidth
probing phase. BBR may behave differently in other settings, but this model characterizes the
behavior we see in our experiments.

While probing for bandwidth, BBR cycles through a series of pacing rates which limit the number
of packets in flight. It picks a pacing rate of 𝑅 and sends at 5

4𝑅 for an RTT, 3
4𝑅 for an RTT, and 𝑅

for six RTTs. In our experiments, BBR encounters loss during the 5
4𝑅 phase. After seeing loss, it

decreases its rate to 3
4𝑅 in response [29, Section 4.3.4].

Suppose BBR picks a pacing rate of 𝑅 ∼ 𝐶 . When a loss occurs, the number of packets in-
flight is at least BDP + 𝐵 by Assumption 3. During the next RTT, the bottleneck queue drains at
a rate of 𝐶 − 3

4𝐶 = 1
4𝐶 . After one RTT, the number of packets in-flight decreases by 1

4𝐶 · 𝑅𝑇𝑇
so𝑊 (𝑠) = 3

4𝐵𝐷𝑃 + 𝐵. By Lemma 2, 𝜇 (𝑠) = min
( 3

4 + 𝐵/BDP, 1
)
. For full link utilization, we need

𝐵 ≥ 1
4BDP. For 90% link utilization, we need a buffer of size 𝐵 ≥ 0.15BDP.

We do not know of prior publications of this result. Recently there has been work showing that
BBR has higher loss and is unfair to other algorithms in smaller buffers [30–34]. Our results instead
focus only on the buffer size needed to keep the link fully utilized.
BBRv2: Google is developing a second version of BBR, and recently released an alpha implementa-
tion. We want to apply our analysis to BBRv2 as soon as the algorithm is described in sufficient
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Fig. 2. Queue occupancy versus time for one Reno, Cubic, BBR, and Scalable TCP flow with 𝐵 = BDP. The

buffer is (just) large enough for Reno to keep the queue non-empty and the link fully utilized. The buffer is

oversized for Cubic, BBR, and Scalable TCP which keeps the queue persistently occupied.

(a) Reno (b) Cubic (c) BBR (d) BBRv2

Fig. 3. Link utilization for one TCP flow across a range of congestion control algorithms and buffer sizes.

detail for us to model it correctly (we assume a technical report or paper will describe the alpha
code). We do, however, include its behavior in our experimental setup using the alpha code. What
we know so far is that instead of keeping the queue full and responding to losses (like all other
algorithms we tested), BBRv2 keeps the queue close to empty and responds quickly to increases in
delay. One consequence of this is that BBRv2 keeps the link highly utilized, but not quite 100%.
Hence, buffer sizing for BBRv2 is very different than for a loss-based algorithm, and BBRv2 is

able to get good performance across a range of buffer sizes, while keeping the link utilization a
little shy of 100%. This motivates us, later in this paper, to study buffer sizes that achieve high link
utilization, but not quite 100%.

3.6 Experimental validation
Measurements from our physical network confirm the buffer sizing rules for TCP Reno, Cubic,
BBR, and Scalable TCP in Section 3.5. For example, Figure 2 shows the queue occupancy, at the
moment the window is decreased. As expected, if we set the buffer size to a BDP of 165 packets,
TCP Reno allows the queue to drain by a full BDP and (almost) go empty. TCP Cubic allows the
queue to drain by about 60-70%. BBR allows the queue to drain by about 25%. Scalable TCP drains
the queue to within the range 11-25% of the BDP. The ranges we observe are consistent with the
theory in Section 3.5.

The queue depth variability in our measurements is because the sending kernel transmits bursts.
Except for BBR, which uses its own pacing algorithm to reduce burstiness.
We measure link utilization in our experiments by recording iperf’s aggregate throughput

every 10ms, and report the 1st percentile value. Figure 3 shows the link utilization as a function of
buffer size. Utilization is well-predicted by our models above a queue depth of about twenty packets.
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(a) Buffer size: 1BDP. (b) Buffer size: 0.5BDP. (c) Buffer size: 0.25BDP.

Fig. 4. Queue depth distributions for TCP Reno with decreasing buffer sizes. As the number of flows increases,

the queue stays close to its maximum value (the right-most dotted line). The square root of 𝑛 rule predicts

that queues will not fall below a certain threshold, which is shaded in grey. The non-shaded region between

them shows the required buffer size for our experiments: they are a good estimate, and hold as buffer sizes

decrease.

Below twenty packets utilization falls off quickly, which appears to be caused by burstiness (bursts
cause the queue size to vary by about twenty packets); i.e., burstiness can cause loss with a smaller
window than Assumption 3. Note that BBR, which has very little burstiness, has no utilization
“cliff” below 20 packets.

4 SIZING BUFFERS FOR MULTIPLE FLOWS
In [2], Appenzeller et al. argue that when 𝑛 TCP Reno flows share a connection, and 𝑛 is large, a
much smaller buffer of 𝐵𝐷𝑃/

√
𝑛 is sufficient to keep the bottleneck link highly utilized. In particular,

they prove the following theorem.

Theorem 4 (Sqare root of 𝑛 rule). If for all times 𝑡 , the windows of 𝑛 TCP Reno flows are

independent uniform random variables in the range

(
1 ± 1

3
)
BDP+𝐵

𝑛
, and if 𝐵 ≥ BDP/

√
𝑛, then in the

limit as 𝑛 → ∞, P (𝜇 (𝑡) < 1) ≤ 0.02.

Appenzeller et al. show experimental evidence that the square root of 𝑛 rule holds for TCP
Reno, and the result has held up in later experiments [20]. However, Theorem 4 makes the strong
assumptions that: (1) flows are TCP Reno, and (2) windows are independent uniform random
variables in the range [ 2

3
𝐵𝐷𝑃+𝐵

𝑛
, 4

3
𝐵𝐷𝑃+𝐵

𝑛
]. The rule does not apply to modern congestion control

algorithms, and because of the strong assumptions it is not obvious whether a new or modified
algorithm will satisfy it.

In this section, we show that the square root of 𝑛 result holds more broadly than for TCP Reno.
We start, in Section 4.1, by showing that with much weaker assumptions, the aggregate window
stays high when 𝑛 TCP Reno flows share a link. This is depicted visually in Figure 4, showing how
the queue depth distribution “concentrates” with increasing 𝑛. The square root of 𝑛 result for TCP
Reno (and other multiplicative-decrease algorithms) is an immediate consequence of this, which
we show in Section 4.2. Basically, if the aggregate window stays above BDP + 𝐵 − BDP/

√
𝑛, and

𝐵 > 𝐵𝐷𝑃/
√
𝑛, then the queue never goes empty. More broadly, we will use this effect to analyze

other congestion control algorithms.
We also prove results in Section 4.3 for the required buffer size when link utilization is below

100%. In particular, we show that utilization is Ω(1 − 1/
√
𝑛) even with a constant size buffer. As a

perhaps surprising example, if more than 1,000 flows share a link, utilization is at least 97% even
with a constant size buffer. For the same link utilization, the square root of 𝑛 result of [20] requires
a buffer of size BDP/

√
𝑛.
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Finally, in Section 4.4 we extend our results to other congestion control algorithms. We show
that because BBR incorporates some randomness by design, we are able to prove a square root
of 𝑛 result with only an assumption about fairness. Using these ideas, we propose a modification
for multiplicative decrease algorithms that provably guarantees that a small buffer is sufficient,
provided fairness holds.

4.1 How Reno keeps links and queues full
TCP Reno tends to keep links and buffers full, especially as more flows use a network. Figure 4
shows the distribution of queue depths in our experiments. As the number of flows increases, TCP
Reno keeps the queue depth distribution high. In this section, we will prove this.
In order to prove some sort of square root of 𝑛 rule, we will need some concept of how the

aggregate window is split across multiple flows. If windows are extremely imbalanced, we cannot
hope for a square root of 𝑛 rule. For instance, if the aggregate window is made up of only one
flow, we are in the setting of the single flow case in Section 3 and cannot expect a square root of 𝑛
rule. Furthermore, in our experiments in Section 5, we find that the required buffer size gradually
increases as flows become less fair.
To deal with this dependence on fairness in our theoretical results, we will define a concept of

almost fairness for TCP windows. Almost fairness has a parameter Δ, which relates to how far
the window sizes are from equal. We will prove our results using this parameter, which gives us a
convenient relationship between unfairness and buffer size.

Definition (Δ-almost fair). Consider 𝑛 TCP flows sharing a link. Let𝑤𝑖 (𝑡) be the number of in-flight

packets for flow 𝑖 at time 𝑡 . Let Δ ≥ 1. Flow 𝑖 is Δ-almost fair if for all time 𝑡 ,

Δ−1 BDP

𝑛
≤ 𝑤𝑖 (𝑡) ≤ Δ

BDP

𝑛
. (1)

Δ-almost fairness is a property of a congestion control algorithm. The closer an algorithm keeps
its windows to equal, the smaller value of Δ it will have. This may or may not be desirable behavior
for a congestion control algorithm, but we will be able to prove smaller buffer requirements for
smaller values of Δ. We can easily measure and calibrate this parameter in our experiments, and
we report the results of this in Section 5.6. We are unaware of prior uses of this fairness metric. We
could use other ways of measuring fairness, for instance Jain’s fairness index [35], but Δ-almost
fairness is convenient for our proofs and easy to measure in our experiments.

It may feel somewhat unnatural that we have not defined Δ-almost fairness as𝑤𝑖 (𝑡) ≤ Δ(BDP +
𝐵)/𝑛, since the aggregate window is at most BDP + 𝐵 and is divided among 𝑛 flows. However, we
are thinking about the regime where 𝐵 = 𝑂 (BDP), and can account for the dependence on 𝐵 by
increasing the value of Δ in our definition. Doing so makes our results significantly easier to prove
and interpret, and the cost of a slightly looser bound on buffer size.
With this definition, we can prove our main result which relates the aggregate window after a

loss to buffer size, fairness, and the number of flows. We will spend the rest of the section discussing
its interpretation.

Theorem 5. Consider 𝑛 Δ-almost fair TCP Reno flows sharing a link with window size𝑤𝑖 (𝑡) ≥ 2.
Fix two times 0 ≤ 𝑡1 ≤ 𝑡2. If at most

𝑛2

ΔBDP +
√
𝑛 flows decrease their windows between 𝑡1 and 𝑡2, then

for all 𝑡1 ≤ 𝑡 ≤ 𝑡2

𝑊 (𝑡) ≥ BDP + 𝐵 − ΔBDP
√
𝑛

.

Proof. See Appendix A. □
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We have stated Theorem 5 for TCP Reno to make the theorem statements more direct, but as in
Section 3, it is easy to adapt to other congestion control algorithms. Suppose a congestion control
algorithm decreases by 𝛽𝑤𝑖 on a loss and otherwise increases by at least 𝛼 . We would need to add
a condition to Theorem 5 that the smallest window𝑤𝑖 ≥ 𝛼/(1 − 𝛽). This affects Equation (4) in the
proof, but the overall result does not change.

4.2 Buffer size required for full link utilization
With Theorem 5, we can easily find the minimum buffer size required for full link utilization.

Theorem 6. Consider 𝑛 Δ-almost fair TCP Reno flows sharing a link with window size𝑤𝑖 (𝑡) ≥ 2.
Fix two times 0 ≤ 𝑡1 ≤ 𝑡2. If at most

𝑛2

ΔBDP +
√
𝑛 flows decrease their windows between 𝑡1 and 𝑡2, and

𝐵 ≥ ΔBDP
√
𝑛

then 𝜇 (𝑡) ≥ 1 for all 𝑡1 ≤ 𝑡 ≤ 𝑡2.

The key condition in Theorem 5 is that at most 𝑛2

ΔBDP +
√
𝑛 decrease their in-flight packets. This

expression is unusual, and deserves some explanation.
The first term 𝑛2

ΔBDP is related to the number of fair flows which must decrease windows for
the aggregate window to decrease. Suppose only one TCP Reno flow with a fair window size of
BDP/𝑛 sees a loss and halves its window. If BDP/𝑛 < 𝑛 − 1, then the remaining flows will each
increase their windows by one and the aggregate window will increase despite the loss. Appendix C
formalizes this intuition.
The second term

√
𝑛 is the number of additional flows which decrease their in-flight packets

over and above this minimum, and measures the amount of synchronization. In Section 5, we show
that this is the number of additional flows which decrease their windows in our experiments. Our
results also gracefully degrade as the amount of synchronization increases. We will discuss these
and more modifications to Theorem 5 in Section 4.6

Theorem 6 helps us determine the correct value of 𝑛 to use when sizing a buffer. Prior work has
noted that Theorem 4 assumes all flows are active and contributing to the buffer size, whereas
in practice they might not [36–38], making it difficult to size the buffer correctly. Consider, for
example, an application that starts and stops every second; should its flows be counted, or only if
it recently had packets in the buffer? Theorem 6 uses the number of flows which see packet loss
during an RTT, allowing us to size the buffer accordingly.

4.3 Link utilization when 𝑛 TCP Reno flows share a link
Prior buffer sizing work has looked for the smallest buffer required for full link utilization. Using
Theorem 5, we can also understand what happens if the buffer becomes even smaller.

Theorem 7. Consider 𝑛 Δ-almost fair TCP Reno flows sharing a link with window size𝑤𝑖 (𝑡) ≥ 2.
Fix two times 0 ≤ 𝑡1 ≤ 𝑡2. If at most

𝑛2

ΔBDP +
√
𝑛 flows decrease their windows between 𝑡1 and 𝑡2, then

for all 𝑡1 ≤ 𝑡 ≤ 𝑡2 and 𝐵 ≥ 0

𝜇 (𝑡) ≥ 1 − Δ
√
𝑛
.

This suggests that even with very small buffers, as 𝑛 grows TCP Reno approaches full link
utilization quite quickly, at a rate of 𝑂 (1/

√
𝑛). For instance if 𝑛 = 10, 000 and Δ = 2, then the link

will always be at least 98% utilized—independent of buffer size.
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This is a worst-case bound on instantaneous utilization, not on average utilization. This bounds
theminimumutilization immediately after a loss. As TCP increases its window after a loss, utilization
will increase and the longer term utilization will be higher.

Intuitively, the square root of 𝑛 result says that TCP Reno will not decrease the aggregate window
too far on a loss. If the buffer is fairly large, this means the buffer will tend to remain very full. If
the buffer is very small, this means that link utilization will remain high.

4.4 BBR guarantees a
√
𝑛 rule

Our square root of 𝑛 results so far require assumptions about how TCP flows behave. For example,
Theorem 5, assumes only a limited number of flows decrease their windows in each RTT.

We can also prove a square root of 𝑛 rule for BBR (v1), based on how it probes for available
bandwidth. If BBR detects a loss, while probing for bandwidth, it randomly decides whether or
not a flow should decrease its window, which in turn desynchronizes the flows sufficiently for the
square root of 𝑛 rule to hold. Our proof requires no assumption on the number of flows seeing a
loss at the same time. Essentially by incorporating some randomness, BBR is able to guarantee a
square root of 𝑛 result with minimal assumptions.

Theorem 8. Consider 𝑛 Δ-almost fair BBR flows in the “probe bandwidth” phase sharing a link.

Fix two times 0 ≤ 𝑡1 ≤ 𝑡2. If

𝐵 >
ΔBDP
√

2𝑛

√︁
ln 1/𝛿, (2)

then P(𝜇 (𝑠) < 1) ≤ 𝛿 for all 𝑡1 ≤ 𝑡 ≤ 𝑡2.

Proof. See Appendix B. □

We believe Theorem 8 could be much stronger. Figure 6b shows that BBR’s queue depths are
much more tightly concentrated than for other algorithms, and more tightly concentrated than
Theorem 8. While the number of flows experiencing a loss may be about the same as with TCP Reno,
fewer of them decrease their windows in BBR. We see no reason why a buffer size of 𝑂 (BDP/𝑛)
would not be more appropriate for BBR, but have not been able to prove or disprove it.

Finally, there are still many open questions about BBR’s buffer behavior for future work. We
have only considered BBRv1. We show BBRv2’s experimental behavior in Figure 6c, but have
not analyzed it. We do not yet have a rule for BBR in the case when it decreases its window size
when there is no packet loss. The main obstacle is that we do not observe this behavior in our
experimental setup.

4.5 Guaranteeing a
√
𝑛 rule for a modified TCP Reno

Inspired by BBR, imagine that we added randomness to TCP Reno to reduce its buffer requirements
(and increases its link utilization with small buffers). We are not arguing that TCP Reno should
necessarily be changed; we are conducting a thought experiment to see how much it would reduce
buffer requirements.
When our imagined algorithm detects a loss, it halves its window size 𝑤 (𝑡) with probability

𝑝 = 1/𝑤 (𝑡). This could be done either by randomly ignoring lost packets, or by randomly marking
packets with a suitable ECN policy. Let’s assume that this does not interfere with Δ-almost fairness,
so that Δ−1BDP/𝑛 ≤ 𝑤 (𝑡) ≤ ΔBDP/𝑛, and 𝑝 ≤ 1/(Δ−1BDP/𝑛). The number of flows that randomly
decide to decrease their windows in the same RTT is a sum of independent random variables, and
we can use the following simple Chernoff bound to estimate the sum.
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(a) Buffer size required for full link utilization across

all our experiments.

(b) Utilization as a function of number of flows for a

20 packet buffer.

Fig. 5. Buffer size and link utilizations behave according to a square root of 𝑛 rule in our experiments

Lemma 9. Let 𝐷𝑖 (𝑡) be independent and identically distributed Bernoulli random variables, with

E𝐷𝑖 = 𝑝 ≤ 1
Δ−1

BDP/𝑛 . Let 𝐷 (𝑡) = ∑𝑛
𝑖=1 𝐷𝑖 (𝑡) Then

P

(
𝐷 (𝑡) > 𝑛2

Δ−1
BDP

+
√
𝑛

)
≤ exp(−1/2).

Proof. See Appendix D □

This bound essentially meets the conditions for Theorem 5, with the small caveat that we would
need to adapt the proof to using Δ−1 instead of Δ. Doing so would give us a square root of 𝑛 result
without needing to make assumptions about which flows see a loss.

4.6 Desynchronized flows reduce buffer requirements
Before Theorem 5, we knew the required buffer size for two extreme cases. When all the flows
are perfectly synchronized, they lose packets simultaneously and we need a BDP of buffering. At
the other extreme, when flows are not synchronized, Theorem 4 tells us that the buffer size can be
decreased by a factor of

√
𝑛.

We can extend Theorem 5 to the intermediate case when 𝑛2

ΔBDP + 𝑠 flows see a loss. In this case

𝑊 (𝑡) ≥ BDP + 𝐵 − 𝑠
ΔBDP
𝑛

. (3)

In other words, Equation 3 tells us:
• If flows are slightly but not perfectly synchronized, then the buffer size can be made smaller
than BDP. For some small constant 𝑐 , if only 𝑠 = 𝑐𝑛 extra flows lose packets, then the required
buffer size is 𝑐BDP which is below a BDP.

• If only a constant number of additional flows 𝑠 see each loss, then a buffer of size𝑂 (BDP/𝑛) is
possible. This is tantalizing, because, of course BDP/𝑛 < BDP/

√
𝑛. For example, if 10,000 flows

share a link, and 𝑠 = 1, then we can further reduce the square root of 𝑛 buffer requirement by
another 100-fold. To be clear, our experiments do not exhibit this degree of desynchronization,
but we see it as an exciting opportunity for a new congestion control algorithm.

5 EXPERIMENTS WITH THE
√
𝑛 RULE

We evaluated Theorem 5 in our physical network, using our per-packet measurement infrastructure
described in Section 2. Our experiments show that Theorem 5 holds in our network, and build
intuition on which factors impact buffer sizes.



Updating the Theory of Buffer Sizing 15

(a) Cubic (b) BBR (c) BBRv2

Fig. 6. Queue depth distribution for various congestion control algorithms and buffer size 0.8BDP. The
non-shaded area corresponds to a buffer size of 2BDP/

√
𝑛, which tends to overestimate the required buffer.

5.1 The
√
𝑛 rule holds when algorithms respond to full queues.

The square root of 𝑛 rule holds in our experiments for multiple congestion control algorithms
(TCP Reno, Cubic, Scalable TCP, and BBR), despite the introduction of PRR. Figure 5a shows the
minimum queue depth required for full link utilization in our experiments. Each experiment lasted
one thousand RTTs. Wemeasured minimum utilization by recording iperf’s aggregate throughput
over ten consecutive RTTs. We report the 1st percentile throughput.
In each experiment we found the smallest buffer size for which 99% of packets (or more) ex-

perienced a non-empty queue. The buffer requirement follows a square-root of 𝑛 rule for TCP
Reno. Other congestion control algorithms have similar buffer requirements for a large numbers
of flows (and smaller buffer requirements for smaller numbers of flows). Theorem 6 requires that
𝐵 ≥ ΔBDP/

√
𝑛, and our experimental results suggest it is an overestimate.

Theorem 7 predicts that utilization will grow at a rate of 1/
√
𝑛 when the buffer is too small for

full link utilization. Figure 5b shows the utilization as a function of the number of flows for a 20
packet buffer. Utilization increases at a rate of 1/

√
𝑛. It is slightly underpredicted by Theorem 7,

and again we believe that the constants may be slightly looser than necessary.

5.2 Algorithms keep queues full, as predicted by the
√
𝑛 rule.

The square root of 𝑛 rule is primarily used to predict the minimum required buffer to keep the link
utilized, as in Theorem 6. But Theorem 4 also predicts how far the queue occupancy will deviate
from full if the buffer is larger than we need. Figure 4 shows the distribution of queue occupancy
for different numbers of flows (and different buffer sizes). For example, with 𝐵 = BDP in Figure 4(a),
the distribution of queue occupancy narrows as the number of flows increase. The shaded area to
the left of the distribution is unused (and therefore unnecessary) buffer; we could use a smaller
buffer and shift the distribution to the left. The remaining graphs show this as we decrease the
buffer size.

We have seen that non-Reno congestion control algorithms also follow a square root of 𝑛 rule in
our experiments, and Figure 6 shows the distribution of queue depths for these algorithms. As with
Reno, the distributions concentrate tightly around a full buffer.

5.3 The
√
𝑛 rule holds with non-uniform window distributions.

Figure 7 shows the distribution of windows for 16 TCP Reno flows over one second, when 𝐵 = BDP.
The distributions are clearly not uniform (and we observe windows in the ranges of 0-10 and 40-60
packets, outside the 3

4 and 5
4 range). This suggests that the uniform window size assumption in [2]

does not hold in practice.
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Fig. 7. Distribution of window sizesmeasured for each

received acknowledgement for 16 TCP Reno flows

over one thousand RTTs with a BDP sized buffer.

Fig. 8. Queue occupancy over time for 16 TCP Reno

flows sharing a queue. Packets are dropped or marked

when the queue exceeds one BDP. In the ECN trace,

more flows are marked when the queue is exceeded

and flows become more synchronized.

Figure 7 also shows the degree to which flows are treated fairly, in the sense that the the average
window size for each flow is close to (BDP + 𝐵)/𝑛. It is not surprising that they are similar, since
one of the goals of a congestion control algorithm is to fairly share a bottleneck link. However, we
can see that the flows do not have identical window size distributions, with some average window
sizes two to three times larger than the fair share of (BDP + 𝐵)/𝑛, and some half the size. This is
why we have defined Δ-almost fairness.

5.4 The
√
𝑛 rule does not hold when losses are synchronized.

Theorem 5 requires flows to be desynchronized, in that not too many flows can respond to loss
at the same time. This is a necessary requirement and we would not expect the square root of
𝑛 rule to hold when flows are synchronized. In the extreme, suppose all flows experience a loss
between times 𝑡1 and 𝑡2. In the worst case𝑊 (𝑡2) =

∑𝑛
𝑖=1

1
2𝑤𝑖 (𝑡1) = 1

2𝑊 (𝑡1). As pointed out in prior
work [2, 13], we are back in the same situation as for one flow and require a BDP of buffering.

While larger numbers of TCP Reno flows tend to be less synchronized in our experiments, this is
not the case for all algorithms or in all settings. As a stark illustration, we describe an experiment
in which synchronization caused a larger buffer requirement. Our experiment compared dropping
packets to a specific way of ECN marking: we dropped or marked packets whenever the queue
depth exceeded a fixed threshold.
We ran this experiment for sixteen TCP Reno flows. Figure 8 shows the queue depth over time

during this experiment, comparing TCP Reno with ECN (blue line) and with dropped packets
(orange line). It is clear that with ECN marking, the queue depth fluctuates much more, hence
requiring a much larger buffer. With ECN the queue regularly overshot its marking threshold, so
more packets were marked in the same RTT, which led to a synchronized reduction in window size.

We would like to emphasize that this experiment should not be taken as a general statement about
buffer sizing with ECN, since ECN is often used in conjunction with an AQM policy (e.g. RED [26]).
However, ECN is used in this way for BBRv2 [8], DCTCP [24], and in other settings [39, 40].

5.5 The
√
𝑛 result does not hold when flows are too unfair.

Theorem 5 requires windows to be almost fair, and this is a necessary requirement. Figure 9
illustrates how unfairness between flows can affect the required buffer size. Consider the trace of
four TCP Reno flows sharing a link, particularly the large red window and the two smaller purple
windows (superimposed). When the small purple windows experience losses simultaneously at
725ms, both halve their windows from 80 to 40 packets and the buffer occupancy drops by 65
packets. Yet, on its own, the larger red window causes the buffer to drop by the same amount when
it halves its window size – this is because it starts from a larger size. In general, bigger windows
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Fig. 9. Windows and queue depths over time for four TCP Reno flows sharing a link. A loss for a flow with

an unfairly large window results in the same queue depth decrease as for two fair flows, and half as large a

decrease as a loss for all flows.

have a disproportionately larger effect on the buffer occupancy. In the extreme, imagine one flow
used all of the link capacity, and the remaining 𝑛 − 1 flows used none. Such extreme unfairness
means we are back in the single flow setting, and we can not do better than the BDP rule.

5.6 Checking theorem conditions in our experiments.
Theorem 5 depends on the value of Δ-almost fairness, and the number of flows which see a loss in
a RTT. These are not well known values, and so we use our experimental setup to measure them
and give a sense of their magnitude.

First, we will check whether the number of additional flows which see a loss is about
√
𝑛. This is

a strong assumption in general, but it appears to be a loose upper bound in our experiments. We
ran a number of experiments with a buffer size of 1 BDP and increasing numbers of TCP Reno
flows. We split each experiment into RTTs, and for each RTT where there was one loss, counted
the number of flows which saw a loss in each RTT. Figure 10 shows the average number of flows
that observed a loss in that RTT. The bound 𝑛2

2BDP +
√
𝑛 of Theorem 5 is also plotted. It appears to

be a good estimate for a small number of flows, and an overestimate for larger numbers of flows.
Next, we check the values of Δ-almost fairness in our experiment. To measure Δ-almost fairness,

we find the 1st and 99th percentile window sizes for all flows in an experiment. We calculate BDP/𝑛
from the experiment parameters. We then find the smallest value of Δ so that the definition of
Δ-almost fair is satisfied between the 1st and 99th percentile window sizes.
We first look at how Δ depends on the number of flows. Figure 11a shows that both Δ−1 and Δ

slowly increase with the number of flows. We next look at how changing the buffer size impacts
fairness. We look at all experiments with sixteen flows, to avoid confounding with the dependence
on the number of flows. We find that Δ−1 slowly decreases with buffer size, and approaches 0.5. For
Cubic, Reno, and Scalable, Δ is about 4. For BBR, it is about 10. Δ does not depend on the buffer
size for any of these algorithms.

6 SUPPORTING EVIDENCE FROM REAL-WORLD MEASUREMENTS
Square root of 𝑛 results hold because the occupancy of router queues "concentrates" during times
of congestion, leading to persistently occupied standing queues. This phenomenon has been widely
observed outside of buffer sizing work. For example, Lee et al. [41] report that operating a link at
100% utilization resulted in a persistent 30-50ms increase in queueing delay. In [42], Täht and Reed
report on an outage where they observed a 400ms increase in RTTs. In [43], Chandrasekaran et al.
report 20ms increases in RTTs over congested links in the internet core.
Recent measurement work uses these increases in RTT to measure congestion. Luckie et al.

propose TSLP [9], which measures RTTs periodically and uses a persistent increase in RTT as an
indicator of congestion. Their figures show that congestion can elevate minimum RTTs by tens of
milliseconds. In [10], Fanou et al. use TSLP to measure congestion in the African IXP substrate,
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Fig. 10. Fraction of TCP Reno flows which see a loss during loss events, for various numbers of simultaneous

flows. Each point shows the mean number of flows seeing a loss during each RTT, and the line shows the

bound of
𝑛2

2BDP +
√
𝑛 from Theorem 5.

(a) Varying numbers of flows (b) Varying buffer size in packets

Fig. 11. Worst-case Δ-almost fairness in our experiments.

and find links with elevated minimum RTTs during congestion. Sundaresan et al. classify flows
with a tightly concentrated RTT during slow-start as flows experiencing congestion [44]. In [11],
Dhamdhere et al. measure the minimum RTT over a period of five and fifteen minutes to identify
links experiencing persistent congestion.
In [45], Spang et al. report on buffer experiments run at Netflix. They show that large buffers

can increase RTT for all traffic sharing a link. They run an experiment where a subset of Netflix
traffic is randomly assigned to two routers, one with a 500MB buffer and one with a 50MB buffer.
They observe that the minimum RTT increase by hundreds of milliseconds for all flows; and gets
worse with larger buffer sizes. This suggests the queue remains relatively full for the entire hour.

Our results explain why congestion control algorithms that respond to full queues (via losses or
marks) create standing queues during times of congestion. Our experiments in Section 5.2 show
the same persistent standing queues, especially as the number of flows increases.
All of the measurements described above show evidence of concentration. While they do not

prove that the concentration is of the order BDP/
√
𝑛, our results suggest that all these buffers could

be shrunk without impacting link utilization. Our results also suggest that link utilization would
remain high in these cases, even with a very small buffer.
It is natural to ask whether concentration relies on current congestion control algorithms, and

whether a new congestion control algorithm might break it. For instance, if a few large sources
of traffic switched to BBR, would congestion on the internet look very different? Our results in
Section 4, especially the ones for BBR, suggest it would not. But we cannot rule out some other,
future congestion control algorithm with very small queues during congestion.
Finally, our results suggest intriguingly that there might be "dark congestion" in the internet,

which current measurement techniques that look for persistent standing queues cannot detect.
There might be routers that cause a large amount of synchronization, for instance by marking
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packets as in Section 5.4. This would lead to wildly varying queue occupancy, making it hard to
detect congestion.

7 RECOMMENDATIONS
7.1 Recommendations for Operators
The networking community as a whole, both industry and academia, knows surprisingly little
about buffer size requirements, and tends to oversize buffers in the WAN. We believe there might
be big benefits to network operators if they run experiments to determine the required buffer size
in their network. Consider, for example, the difference in required values for a network with a BDP
of 100𝑚𝑠 × 100𝐺𝑏/𝑠 = 1010 bits carrying 10,000 TCP Reno flows. If we adopt the single flow rule,
we need a 10Gbit buffer; if Theorem 5 applies we might need only 100Mbit buffers. BBR only needs
a 100Mbit buffer, and BBRv2 might require even less. If we were happy with an instantaneous
utilization higher than 99%, the buffer could be reduced a few tens of packets. This could make it
possible to use simpler, cheaper routers with on-chip buffering.
We should point out that this paper focuses exclusively on the relationship between sizing

a buffer and link utilization. Buffers can also have a large impact on application performance
[13, 45–49], and it is important to consider these factors. More experiments would benefit operators
(and the broader networking community) by improving our understanding of how buffers impact
application performance.
Theorem 6 may be easy to verify in practice. If end hosts can be instrumented, one could

measure the total decrease in windows over a short period to estimate the required buffer size. With
fine-grained metrics from the switch, it would be possible to count the number of unique flows
dropped during congestion events (e.g. by forwarding all lost packets to a collector), estimating
the bandwidth of these flows (e.g. using coarse netflow statistics), and size the buffer accordingly.
This could be done manually, or automated and be done periodically. If only loss statistics are
available, it would be possible to estimate the number of flows which see simultaneous loss using
simple probability calculations. Then Equation (3) could be used to size the buffer. Note that it is
not necessary to measure the total number of flows to apply our results, which avoids the problems
pointed out in [36–38].

7.2 Recommendations for Congestion Control Algorithm Designers
To someone working on congestion control, this paper may feel a bit backwards. As argued by [50],
instead of sizing buffers based on unintended artifacts of TCP Reno (i.e. as in the single flow rule),
we could instead design congestion control algorithms that work well for all queue sizes. If we
want full link utilization and a small buffer, the congestion control algorithm only needs to prevent
the aggregate window from dropping below a BDP.

In Section 3, we showed that smaller reductions inwindow size lead to smaller buffer requirements.
In Section 4.4 and Section 4.5, we showed how adding a small amount of randomness to a congestion
control algorithm can reduce its buffer requirements. We encourage congestion control algorithm
designers to use these techniques to reduce buffer requirements. Our experimental results suggest
that BBRv2 is a good first step in this direction. With a bit of work, new algorithms can be more
friendly to buffers, and the people operating them.

8 RELATEDWORK
There have been many papers published about buffer sizing in the past twenty years. We will focus
on work most closely related to our results, for broader surveys see [36, 51].
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The rule of thumb for sizing router buffers with a single TCP Reno flow is attributed to [1, 12].
The rule was extended to multiplicative-decrease algorithms by [14, 15]. The proof of the BDP rule
by [13] did not depend on silence after a loss. We believe our discussion of PRR and BBR are new.
For multiple flows [2] introduced the square root of 𝑛 rule, which was tested experimentally

by [20] in the Level 3 backbone. [13] described a rule incorporating a model of loss, and includes
similar style of analysis as Theorem 5. [25] show that number of flows which see a loss is important
for whether a square root of 𝑛 rule applies.

TCP’s tendency to observe loss simultaneously and synchronize has been observed in simulation
since the 1980s [52–57]. More recently, [15] observed synchronization using physical hardware.
Although we only observe a small amount of synchronization in our experiments, our buffer size
results can handle larger amounts. We think it is an interesting open question why it seemed to be
more common in the 80s and 90s, and why it only sometimes appears today.

In the early 2010s, [58] revisited the question of buffer sizing, observing that the oversized buffers
in cable modems cause massive delays and standing queues during congestion, often referred to as
bufferbloat. Bufferbloat usually refers to home networks where a small numbers of flows typically
share the buffer, while we are more focused on backbone routers with a large number of flows; but
we view this work as complimentary. We discuss how our results are related to standing queues in
Section 6, albeit for larger numbers of flows, and our results may shed light on other parts of the
Internet where “Dark Buffers” lurk.
Our work focuses on the relationship between buffer size and link utilization. A separate, very

interesting line of work has explored other impacts of buffer sizing. [13, 46] discuss impacts on
TCP such as increased loss and throughput variability. A recent line of work [30–34] has shown
that BBR can have large loss and worse fairness in small buffers. [47] describes a test-bed study
showing that buffer sizing can cause a significant change in application QoE. [45] reports on
production buffer sizing experiments at Netflix, and show that buffer size has a large impact on
video performance. [48] reports on buffer experiments at Facebook, including impacts on flow
completion time. [49] shows an example where shrinking the buffer size of a home WiFi router can
degrade video performance.

9 CONCLUSION
The main takeaways from this paper are new results on buffer sizing; in particular, a better
understanding of the relationship between link utilization and buffer size, and how congestion
control algorithms can impact this relationship. Prior work suggested that buffers can be reduced
by a factor of square root 𝑛, offering dramatic buffer reductions in networks carrying many flows.
However, the result required TCP Reno, did not make clear how we determine 𝑛, or what happens
when windows are not independent. Our results clarify that 𝑛 is the number of flows that reduce
their window size in the same RTT, removes the need for independence, and holds for a broader
class of congestion control algorithms. Our results explore what happens when buffers are sized
too small for full link utilization. Our results make it easier to run buffer sizing experiments, which
should give much more confidence that the results apply broadly.

There remains work to be done. For instance, we assumed that RTTs are the same for all flows,
yet clearly this is not true in practice. Variance among RTTs should only reduce synchronization,
and hence further reduce the buffer requirement, but we have not been able to prove it. We still do
not understand the underlying causes of synchronization, or how to reduce it in drop-tail queues.
We believe our BBR result can be improved, and that BBR may allow a very small buffer. We have
focused on sizing the buffer for the worst-case behavior over a relatively long period of time, and it
may be possible to dynamically adjust the buffer size on a much shorter timescale.
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More generally, though, we still have only a rudimentary understanding of buffer size, despite
its potentially big impact on application performance. Even if we know all the traffic using a link,
we don’t know how to predict the best buffer size. We encourage further experimentation and
measurement with real applications.
Finally, we believe that future congestion control algorithms can significantly reduce buffer

requirements. With small modifications, existing algorithms can reduce buffer requirements, or
increase link utilization with small buffers. If packet arrivals can be managed perfectly, buffers can
be made smaller or even eliminated all together. We see no reason why a future congestion control
algorithm would need anything more than a very small buffer.
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window𝑤 ′ is

𝑤 ′ = 𝑤 −
∑︁
𝑖∈𝐷

1
2
𝑤𝑖 (𝑡1) +

∑︁
𝑖∈𝐷̄

1.

By a union bound,

𝑤 ′ ≥ 𝑤 − 1
2
|𝐷 | max

𝑖∈𝐷
𝑤𝑖 (𝑡1) + 𝑛 − |𝐷 |.

Let𝑤∗ = ΔBDP
𝑛

. By Δ-almost fairness, max𝑖∈𝐷 𝑤𝑖 (𝑡1) ≤ 𝑤∗. Substituting and simplifying we have,

𝑤 ′ ≥ 𝑤 + 𝑛 − |𝐷 | (1 +𝑤∗/2) , (4)

Since𝑤𝑖 (𝑡) ≥ 2,𝑤∗ ≥ 2, and so 1 +𝑤∗/2 ≤ 𝑤∗ . Therefore,

𝑤 ′ ≥ 𝑤 + 𝑛 − |𝐷 |𝑤∗ .

By the conditions of the theorem |𝐷 | ≤ 𝑛2

ΔBDP +
√
𝑛 =

𝑛+
√
𝑛𝑤∗

𝑤∗ . Substituting, we have

𝑤 ′ ≥ 𝑤 −
√
𝑛𝑤∗ .

Expanding the definition of𝑤∗, this becomes

𝑤 ′ ≥ 𝑤 − Δ
BDP
√
𝑛
.

By Assumption 3,

𝑤 ′ > BDP + 𝐵 − Δ
BDP
√
𝑛
.

□

B PROOF OF THEOREM 8
The proof of a square root of 𝑛 rule for BBR takes a slightly different path from the usual AIMD
proof. In particular, we don’t need to assume that the number of flows which see a loss is limited.
During the probe bandwidth phase, BBR picks a pacing rate of 𝑅 and sends at pacing rates

{ 5
4𝑅,

3
4𝑅, 𝑅, 𝑅, 𝑅, 𝑅, 𝑅, 𝑅} for an RTT each. It begins this cycle at a random point (which is not 3

4𝑅).
When BBR experiences a loss, it only decreases its rate if it is sending at a pacing rate of 5

4𝑅 [29,
Section 4.3.4]. In expectation, if flows were equally split between all the pacing rates, we would
only expect about 𝑛/8 flows to decrease their rates by 1/4. And even better, another 𝑛/8 flows
would increase their rates by 1/4 over the next RTT and the total change would be small.

Proof. In the worst case, all BBR flows see a loss at time 𝑡 . Consider some flow 𝑖 , and let 𝑅𝑖 (𝑡)
be the rate of flow 𝑖 at time 𝑡 , and 𝑋𝑖 (𝑡) = 𝑅𝑖 (𝑡) · RTT − 𝑅𝑖 (𝑡1) · RTT. Because of the random order
of pacing rates, the 𝑋𝑖 (𝑡) are independent and identically distributed according to

𝑋𝑖 (𝑡) =


− 1

4𝑅𝑖 (𝑡1) · RTT with probability 1
8

+ 1
4𝑅𝑖 (𝑡1) · RTT with probability 1

8
0 with probability 6

8

Our goal will be to bound
∑𝑛

𝑖=1 𝑋𝑖 (𝑡) and apply the usual argument with Lemma 2.
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Note that E𝑋𝑖 (𝑡) = 0. Let 𝑐𝑖 = |𝑋𝑖 (𝑡) − E𝑋𝑖 (𝑡) | = |𝑋𝑖 (𝑡) | = 𝑅𝑖 (𝑡1) · RTT/4. By Δ-almost fairness,
𝑐𝑖 is at most ΔBDP

4𝑛 . Applying Azuma-Hoeffding,

Pr

(
𝑛∑︁
𝑖=1

𝑋𝑖 (𝑡) < 𝑡

)
≤ exp

(
− 𝑡2

2
∑𝑛

𝑖=1 𝑐
2
𝑖

)
,

≤ exp
(
− 𝑡22𝑛
Δ2BDP2

)
.

Fix some 𝛿 > 0. If 𝑡 = ΔBDP
√

ln 1/𝛿√
2𝑛

, then

Pr

(
𝑛∑︁
𝑖=1

𝑋𝑖 (𝑡) < 𝑡

)
≤ 𝛿.

By definition of 𝑋 (𝑡),𝑊𝑖 (𝑡) = BDP + 𝐵 −𝑋 (𝑡). We have just shown that with probability at least
1 − 𝛿 ,𝑊𝑖 (𝑡) ≥ BDP + 𝐵 − 𝑡 . Therefore by Lemma 2, if 𝐵 > 𝑡 then 𝑄 (𝑡) > 0 with probability at least
1 − 𝛿 . □

C MINIMUM NUMBER OF FLOWSWHICH MUST DECREASE WINDOWS
Many of our results have a condition on the number of flows which decrease their windows that
includes an expression like 𝑛2

ΔBDP . This is related to the number of flows which must decrease their
windows in order for𝑊 (𝑡 + 1) to be lower than𝑊 (𝑡).

To see this, let 𝐷 (𝑡) be the set of Reno flows which decrease their windows during RTT 𝑡 . Then
the window in the next RTT is

𝑊 (𝑡 + 1) =𝑊 (𝑡) − 1
2

∑︁
𝑖∈𝐷 (𝑡 )

𝑤𝑖 (𝑡) + 𝑛 − |𝐷 (𝑡) |.

Let𝑤− be the smallest window in 𝐷 (𝑡). By a union bound, we have

𝑊 (𝑡 + 1) ≤𝑊 (𝑡) − 1
2
|𝐷 (𝑡) |𝑤− + 𝑛 − |𝐷 (𝑡) |.

In order for𝑊 (𝑡 + 1) ≤𝑊 (𝑡), we need

|𝐷 (𝑡) | ≥ 𝑛

1 +𝑤−/2
.

If we let𝑤+ = ΔBDP
𝑛

, the condition we have on |𝐷 (𝑡) | in the theorem statements is

|𝐷 (𝑡) | ≥ 𝑛

𝑤+ .

There are two differences between the two. Since we want a lower bound on𝑊 (𝑡 + 1) to bound the
minimum buffer size, the condition has 𝑤+ instead of 𝑤−. We also chose to use a slightly looser
bound of (1 +𝑤+/2) ≤ 𝑤+ in (4) to simplify the required buffer size.

D PROOF OF LEMMA 9
The proof of Lemma 9 is a standard application of a Chernoff bound.

Proof. First, we calculate E𝐷 (𝑡),

E𝐷 (𝑡) = 𝑛𝑝 ≤ 𝑛2

ΔBDP
(5)
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Note that 𝐷 (𝑡) − E𝐷 (𝑡) is the sum of independent random variables, and each term is at most 1 in
absolute value since

|𝐷𝑖 (𝑡) − E𝐷𝑖 (𝑡) | ≤ max(1 − 𝑝, 𝑝) ≤ 1.
Applying Azuma-Hoeffding, for 𝜀 > 0 we have

P (𝐷 (𝑡) − E𝐷 (𝑡) > 𝜀) ≤ exp
(
− 𝜀2

2𝑛

)
.

Plugging in (5) and 𝜀 =
√
𝑛, we have the desired result:

P

(
𝐷 (𝑡) > 𝑛2

BDP
+
√
𝑛

)
≤ exp

(
− 𝑛

2𝑛

)
,

≤ exp(−1/2) .
□

We could get a higher probability bound, for instance for any 𝛿 > 0, by increasing the upper
bound on 𝐷 (𝑡) to 𝑛2

ΔBDP +
√︁

2𝑛 ln(1/𝛿). This would change the assumption in Theorem 5, and one
could adapt the proof of Theorem 5 accordingly.
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