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We investigate the performance of the concurrency mechanisms available on NVIDIA’s new Ampere GPU
microarchitecture under deep learning training and inference workloads. In contrast to previous studies that
treat the GPU as a black box, we examine scheduling at the microarchitectural level. We find that the lack of
fine-grained preemption mechanisms, robust task prioritization options, and contention-aware thread block
placement policies limits the effectiveness of NVIDIA’s concurrency mechanisms. In summary, the sequential
nature of deep learning workloads and their fluctuating resource requirements and kernel runtimes make
executing such workloads while maintaining consistently high utilization and low, predictable turnaround
times difficult on current NVIDIA hardware.

1 INTRODUCTION
Hazelwood et al. observed that at Facebook data centers, variations in user activity (e.g. due to
diurnal load) resulted in low utilization periods with large pools of idle resources [9]. To make
use of these resources, they proposed using machine learning training tasks. Analagous low-
utilization periods have also been observed at the scale of individual GPUs when using both
GPU-based inference [7] and training [27]. The proposed solution to this latter problem was
colocating additional inference or training tasks on a single GPU. We go a step further than these
previous studies by considering the GPU at the microarchitectural level rather than treating it as a
black box. Broadly, we consider the following question: are current GPU application- and block-level
scheduling mechanisms sufficient to guarantee predictable and low turnaround times for latency-
sensitive inference requests, while also consistently making use of unoccupied resources for best-
effort training tasks? To answer this question, we explore both NVIDIA’s concurrency mechanisms
and the characteristics of the workload itself. Complicating our analyses, the NVIDIA scheduling
hierarchy is proprietary and some mechanisms (e.g., time-slicing) are not well-documented, so
their behavior must be reverse-engineered from empirical observation.

We focus on three application concurrency mechanisms currently offered by NVIDIA devices on
the new Ampere microarchitecture: priority streams, time-slicing, and multi-process service (MPS).
We find that all three have important limitations. For example, when using priority streams, the
kernels of the higher-priority inference task frequently experience compounded delay as they are
forced to wait behind blocks of training task kernels for GPU resources. Time-slicing disallows
separate applications from being executed on the GPU simultaneously, making it difficult to improve
utilization from a serial execution case. MPS makes it possible to assign a proportional share of
resources to each application, but it is not possible to assign a scheduling priority to a task.

With these limitations in mind, we conclude that a fine-grained block-level preemption mecha-
nism, if implemented, would improve turnaround time and utilization for concurrent deep learning
workloads. Such a mechanism would allow the GPU to preempt any particular subset of thread
blocks during their execution to be resumed at a later point in time. This ability to preempt at the
thread-block level could be used in conjunction with thread block placement policies to improve
predictability when servicing inference requests, e.g., by choosing placements which minimize
resource contention. We additionally demonstrate that there are many opportunities to hide the
cost of fine-grained preemption.
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Our efforts differ from much prior work in that the analysis presented in this work is specifically
tailored to the use case of concurrent deep learning workloads, where the inference tasks are
latency-sensitive and the training tasks are best-effort. We observed that such workloads have
fluctuating resource requirements, variable kernel runtimes, and sequential kernel launches, and
unpredictable arrival times. Previously proposed thread-block-level scheduling policies [2, 12,
20, 25, 28, 29] focus only on more generic workloads which do not possess such characteristics.
Finally, we add to previous understandings of the CUDA scheduling hierarchy and its concurrency
mechanisms [3, 6, 16, 23]. For example, our observations suggest that resources such as shared
memory and registers are not transferred on and off the SM between time slices, potentially to
reduce the overhead of context-switching.

The remainder of this paper is structured as follows. Section 2 provides a description of the CUDA
programming model, as well as introductions to the three concurrency techniques examined in
this work. Our measurement methodology and workload characteristics are described in Section 3.
We analyze the performance of the three concurrency techniques available on NVIDIA devices in
Section 4. In Section 5, we detail a number of key observations which demonstrate the potential
utility of features such as fine-grained preemption on NVIDIA GPUs. We discuss related work in
Section 6, and we conclude in Section 7.

2 BACKGROUND
The following section provides a brief overview of the CUDA programming model for GPU comput-
ing on NVIDIA devices of the Ampere [1] microarchitecture. It also explains our choice of the three
techniques currently available for executing multiple applications concurrently on the NVIDIA
Geforce RTX 3090 GPU: priority streams, time-slicing, and MPS.

2.1 CUDA Programming Model
We limit our description of the programming model to only those details necessary to understand
concurrent application execution and any performance implications thereof.

Kernels, Thread Blocks, Grids, and Warps. A kernel in CUDA programming is the term for
the code which is executed on the GPU. For example, an inference task is actually a sequence of
thousands of kernels executing serially; one kernel might compute a single fast-fourier transforma-
tion. A kernel is comprised of a logical array (i.e., a grid) of independent thread blocks, that each
execute the same block of code in parallel on different subsets of data. A warp is a group of 32
threads within a block that execute in parallel on the GPU, and instructions are issued per warp.

Streaming Multiprocessors. To execute a kernel, its thread blocks are scheduled to the GPU’s
streaming multiprocessors, or SMs, which are its hardware units of computation. Each SM in a GPU
from the Ampere architecture has four warp-scheduler units, which can each issue instructions to
a warp every two cycles [1]. SMs additionally have a fixed set of computational resources such as
threads, shared memory, and registers. The total resource requirements of all blocks scheduled to
an SM during execution cannot exceed the hardware limit for any one of these available resources.
An SM is considered to be saturated if it can schedule no further blocks due to a lack of the required
resources. We consider two blocks to be colocated if they are executing concurrently on the same
SM.

Memory Hierarchy. Discrete GPUs use a memory hierarchy consisting of registers, shared
memory, L1/L2 cache, and global memory. Discrete here means that the GPU is a separate device,
often connected to the CPU via PCIe. Global memory is GDDR6X DRAM. It is roughly equivalent
to CPU main memory, but it is physically located on the GPU. The L2 cache is shared among the
SMs, while the L1 cache, registers, and shared memory are SM-specific resources.
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Streams. A stream is a sequence of commands that is executed in the order they were issued.
These includes all operations performed on the GPU, such as data transfers and kernel launches.
Multiple streams can exist simultaneously within one CUDA context. For our purposes, a CUDA
context can be thought of as analogous to a CPU process and it contains all resources and actions
performed within the CUDA driver API. All operations from separate streams are asynchronous
and independent from each other, and streams only interact with each other from within the
same context. When a kernel dispatch command is issued to a stream, it launches that kernel to be
transferred, scheduled, and executed on the GPU.

NVIDIA Scheduling Hierarchy. When more than one application is being concurrently exe-
cuted on a single GPU, there are multiple levels of scheduling decisions that occur to determine the
final execution schedule. Application-level scheduling includes the order in which work (such as
kernel execution or memory transfers) from each application will be computed on the GPU, while
the thread block scheduler determines the placement of thread blocks onto SMs. For each SM, the
warp scheduler executes thread blocks in groups of 32 threads.

Thread Block Scheduler. Once a kernel arrives at the GPU, its thread blocks are assigned to
SMs by the hardware thread block scheduler. A new block is assigned to an SM as soon as it has
enough resources available to satisfy that block’s resource requirements; which block it chooses to
schedule next is determined by the leftover policy [3, 16], while the SM it chooses to place the next
block on is chosen by the most-room policy [8].

2.2 NVIDIA Concurrency Mechanisms
We refer to executing two independent applications simultaneously on one GPU as concurrent
application execution. We examine three concurrencymechanisms that NVIDIA offers for supporting
concurrent applications: priority streams, time-slicing, and multi-process server (MPS). We describe
each mechanism in detail and characterize them for deep learning workloads in Section 4.
We make a distinction between the term application and the OS notion of a process. Most

commonly, each application is contained within its own process. However, sometimes it may be
advantageous to place logically-separate applications into the same process because it allows for
the developer to have limited control over scheduling priorities. This is the case when using priority
streams. In contrast, when using time-slicing or MPS, the applications are in separate processes.

When kernels from separate applications are executed at the same time on a single GPU, this is
referred to as concurrent kernel execution. Concurrent application execution can include concurrent
kernel execution but does not necessarily. In particular, MPS and priority streams allow for the
possibility of concurrent kernel execution, but time-slicing does not.
NVIDIA also offers a fourth technique for application concurrency known as Multi-Instance

GPU, which partitions a single GPU into up to seven unique and isolated instances for separate
applications. However, because this feature is not available on the Geforce RTX 3090 Ampere GPU
that we used for this study, so we forgo analysis of it here.

3 WORKLOAD DESIGN AND CHARACTERIZATION
We considered a concurrent workload consisting of a single deep learning training task and
sequence of inference tasks. These workloads were designed to resemble the scenario of an inference
server responding to user requests while training models with spare resources. We measured
three performance metrics: (i) average turnaround time of the inference requests, (ii) variation in
turnaround time, and (iii) the execution time of the training task as a proxy metric for utilization.
The characteristics of the deep learning models we examined are outlined in Table 1. All tests were
performed on the NVIDIA Geforce RTX 3090 GPU of the Ampere microarchitecture, which has
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82 SMs, and each SM has a limit of 1536 threads, 16 thread blocks, 64 KB in registers, 1024 KB of
shared memory, 24 GB DRAM, and 6144 KB L2 cache.

3.1 Methodology
We examined models from two sources, the first of which was the Tensorflow models from the
MLPerf training and inference benchmark suites [22].1 To maintain benchmark integrity, we
restricted ourselves from making any modifications to the MLPerf benchmark models. However,
this created two additional challenges. The first was that we were unable to get some models to
build for our platform, so we do not include those models in our study. The second was that we
could not test priority streams, as that would require non-trivial modifications to the benchmarks
in order to run both tasks from within the same process. Thus, we supplemented these results
with five Pytorch example models [21]. Having both Tensorflow and Pytorch models allowed us to
characterize two popular deep learning model frameworks and model used for a variety of purposes
including image recognition, speech recognition, and natural language processing (NLP).

For each experiment, we ran one training task and one inference task concurrently. We configured
the training task to run for the entire duration of the experiment, and the batch sizes we used were
the maximum possible before encountering an out-of-memory error. We used two request patterns
for the inference tasks. First, we used a pattern where the request arrival times followed a Poisson
process (i.e., MLPerf’s server mode). Second, we used a pattern where one request immediately
followed the previous (i.e., MLPerf’s single stream mode). We used 500 requests for the former and
5000 requests for the latter so that the inference task would take a comparable amount of time
regardless of what request pattern was used. For the supplemental CNN models, we only used the
single-stream distribution.
We ran both inference and training without any other concurrent tasks as a baseline for com-

parison. For the Pytorch models, each model was run as both the training and inference task for
each experiment, while for the MLPerf Tensorflow models, RNNT was the training task for both
BERT and ResNet-34. The only modifications necessary were for evaluating priority streams with
the Pytorch models, as this required some small changes to the models so that the training and
inference tasks were launched from the same process on different CUDA streams.

3.2 Workload Characteristics
Whether we are considering training or inference, a deep learning model consists of a sequence of
kernels that are launched onto the GPU serially to perform computations on subsets of the data. In
Table 1, we summarize some of the main properties of the kernels that comprised each training
and inference task we examined. Note that the individual kernels in terms of both execution time
and required resources. We labeled a kernel as long-running if it took longer than 1ms to run when
executed on the GPU in isolation. Another important characteristic of each kernel is how many
GPU resources it requires. We define a kernel as large if it has a grid of blocks that cannot all fit
onto the GPU’s SMs at the same time. This situation occurs when all of SMs reach a resource limit
while some of the kernel’s blocks remain unscheduled. In other words, once one resource on an
SM is exhausted, no more blocks of that kernel can be scheduled to that SM, even if there are other
resources remaining. The first resource to run out is known as the limiting resource for a kernel [8].

Long-running kernels occupy GPU resources for a significant amount of time, and so mechanisms
that lack the ability to interrupt thread blocks mid-execution must wait for them to finish before
reassigning those resources. Large kernels may inefficiently occupy GPU resources by preventing

1Specifically, we used v1.0 git commit 8b58587c93af2a5ee67722064f2540a2db15d42f for the inference suite and v0.7 git
commit 96ef5cabfccfe06e34e54b6484dd3f6b39293b31 for the training suite.
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Task Backend Batch Total Long-Running Large
Size Kernels Kernels Kernels

(items) (% of (% of
runtime) kernels)

ResNet-50 [10] Image Rec Pytorch
Training 128 212999 56.63 43.71
Inference 1 1011603 — 15.85

ResNet-152 [10] Image Rec Pytorch
Training 64 2187832 6.72 41.63
Inference 1 2843433 — 7.75

AlexNet [14] Image Rec Pytorch
Training 256 29402 3.28 57.85
Inference 1 220303 — 2.28

VGG-19 [24] Image Rec Pytorch
Training 64 370612 41.60 70.64
Inference 1 463274 — 48.68

DenseNet-201 [11] Image Rec Pytorch
Training 64 3336809 6.76 35.93
Inference 1 3625505 — 21.55

ResNet-34 [22] Image Rec Tensorflow 1 1850691 — 2.65
BERT [22] NLP Tensorflow 1 645000 — 60.23
RNNT [22] Speech Rec Tensorflow 1024 9409063 10.21 0.80

Table 1. The deep learning models analyzed, along with their relevant attributes to concurrent performance.
Note that the long-running column shows the proportion of execution time spent on executing long-running kernels,
while the large kernels columns show the proportion of large kernels to total kernels. Long-running inference
kernels were omitted because they involved a negligible number of such kernels. The MLPerf models were only run
as either an inference (ResNet-34, BERT) or training task (RNNT).

further thread blocks from being scheduled and making use of the non-limiting resources. We
provide examples of these issues in the next section.
Overall, Table 1 shows that a significant portion of the runtime of these workloads was spent

on executing large kernels from either the training or inference tasks. For some models, such as
VGG-19 and AlexNet, it is also the case that the majority of the training task’s runtime consisted of
executing long-running kernels. These observations, along with those made in the next section,
lead to our discussion of preemption-based scheduling in Section 5. However, there was also a
significant amount of kernels that were small and/or short-running; somemodels, such as ResNet-34
and RNNT, have almost no large kernels at all. Therefore, there are a number of opportunities to
improve utilization by colocating blocks of the two applications.

Importantly, as a single training (or inference) task consists of a sequence of kernels and each of
those kernels has resource requirements and runtimes, this means that the resource requirements
of the task will fluctuate over the course of its execution as kernels of different sizes and runtimes
are launched.

4 CHARACTERIZING APPLICATION CONCURRENCY MECHANISMS
In this section, we empirically examine and characterize the performance of priority streams, time-
slicing, andMPS for running concurrent deep learning workloads on NVIDIA GPUs, presenting both
their strengths and weaknesses. As described in the previous section, we ran two tasks concurrently:
an inference task which was a series of inference requests, and a training task. The ideal outcome
for concurrency would be low and predictable turnaround times for the inference task with high
utilization of the GPU. We use a proxy metric for utilization, which is the execution time of the
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Separate Processes Colocation Priorities

Priority Streams No. All applications must be
launched from within the same
process to make use of priority
streams.

Yes. Kernels launched from
separate CUDA streams can
be scheduled to the same SM.
However, this will only oc-
cur when the kernel from the
highest-priority stream has no
blocks left to schedule.

Yes. Priority streams have
three separate priority levels,
and the thread block scheduler
will always choose to schedule
blocks of the kernel from the
highest priority stream first at
any given time.

Time-Slicing Yes. Two applications
launched as separate pro-
cesses to the same NVIDIA
GPU will be scheduled using
time-slicing by default.

No. When utilizing time-
slicing, two kernels from
separate processes are never
executed on the GPU at the
same time.

No. Time-slicing provides no
methods for prioritizing the ex-
ecution of one application over
another, such as specifying the
time slice length or frequency
for any application.

MPS Yes. Once an MPS server is set
up for the target GPU, the two
applications are launched as
separate processes.

Yes. While applications are
launched from separate pro-
cesses, the MPS server is able
to schedule any kernels’ blocks
to the same SM, and to exe-
cute them on the GPU simluta-
neously.

No. While it is possible to
limit the maximum number of
threads utilized by each ap-
plication, there is no method
for prioritizing the execution of
one process over another.

Table 2. A comparison of the main attributes of each concurrency mechanism: their ability to be used on
kernels from separate processes, the possibility of colocating blocks from different tasks, and whether or not
prioritization of a specific task is possible.

(a) Average Turnaround Time for Inference (b) Average Execution Time for Training

Fig. 1. The average turnaround times and utilization for each of the three mechanisms on five different
models. Note that the turnaround times are the averages of 5000 inference requests in milliseconds, and the
measurement of training execution time is the average of 10 runs in seconds. The baseline is the time taken when
run in isolation.

best-effort training task, and we discuss this choice further in Section 5. Table 2 summarizes the
distinguishing characteristics of each concurrency mechanisms, although these are discussed in
more detail below.

4.1 Priority Streams
When using priority streams, the kernels of the two applications are launched from within the
same process on different streams using threads. Streams can be assigned one of three priorities
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(a) Priority Streams

(b) Time-Slicing (c) MPS

Fig. 2. The variance of the turnaround times for the ResNet-50 model. Other models’ variance results were
omitted for space, but resemble these.

ranging from -2 to 0. The thread block scheduler will always pick blocks from the highest-priority
stream first when scheduling, but it will not interrupt any thread blocks currently being executed
on the GPU. We implemented application-level concurrency by putting both applications within
the same OS process, but launching them onto separate CUDA streams, with the kernels of the
inference task being on higher-priority streams than those of the training task.

Observation 1 (O1). Priority streams cannot preempt executing thread blocks in the middle of
execution, and this resulted in compounded delay and resource contention leading to high and less
predictable turnaround times.

When a kernel from a higher-priority stream arrives at the GPU, its thread blocks will take
precedence over any unscheduled blocks of any lower-priority kernels. However, the high priority
kernel cannot interrupt the execution of a lower priority kernel’s already-executing thread blocks.
In other words, the higher-priority kernel must wait for any currently-executing blocks from a
lower-priority stream to finish.
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(a) Average Turnaround Times (b) Average Utilization

Fig. 3. The average turnaround times and utilization for each of the three mechanisms on the MLPerf models.
Note that the turnaround times are the averages of 5000 consecutive inference requests in milliseconds in the
single-stream (ss) scenario, and 500 requests which arrive via a Poisson process in the server mode. Additionally,
the measurement of training execution time is the average of 10 runs in seconds. The baseline is the time taken
when run in isolation.

(a) Time-Slicing (b) MPS

Fig. 4. The variance of the turnaround times for the ResNet-34 model, in the consecutive 5000 inference
requests scenario. Other models’ variance results were omitted for space, but resemble these.

(a) Time-Slicing (b) MPS

Fig. 5. The variance of the turnaround times for the ResNet-34 model, in the MLPerf server scenario. Other
models’ variance results were omitted for space, but resemble these.

This led to a phenomenon we term compounded delay.2 As described in the previous section, all
of our examined models were structured as a sequence of consecutive kernels. In our experiments,
when a high priority kernel finished executing, there was a window of time before the next kernel
could reach the GPU. In this timeframe, there were no inference kernels ready to execute, so the
2Compounded delay as we have described it here can be though of as an instance of the convoy effect [4].
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lower-priority training kernel would resume executing and fill the GPU with its thread blocks.
Shortly after resuming the training kernel, the next inference kernel would arrive. As the priority
streams mechanism does not support preemption of executing thread blocks, the inference kernel
had to wait for the currently-executing training blocks to finish.

We can see the effects of this delay in the results from the ResNet-50, ResNet-152, VGG-19, and
DenseNet-201 models in Figure 1a, where the turnaround times were approximately 2X, 3X, 4X, and
1.75X compared to the baseline, respectively. The impact of the compounded delay was dependent
on the characteristics of the training kernels. For example, the ResNet models and VGG-19 saw
some of the worst turnaround times as the inference task, as these models spent about half of
their training task’s time on executing large or long-running kernels. Intuitively, long-running
kernels resulted in more compounded delay. In effect, we can see that compounded delay essentially
canceled out any benefits one might expect to gain from placing the inference kernels on a higher-
priority stream. In particular, priority streams’ turnaround times were comparable to that of MPS
in almost all cases, despite MPS having no notion of priorities. Compounded delay also reduced
the predictability in turnaround time as seen in Figure 2a. We observed spikes in turnaround time
during the time the training epochs were executing on the GPU, as the kernels of the inference
task are interacting with and being delayed by those of the training task.

It is additionally worth noting that some of the performance degradation can be explained by the
effects of resource contention when the thread blocks of the two applications are colocated on the
same SM. For example, the blocks from the two kernels may contend for the SM’s warp scheduler.
Official documentation does not describe how the warp scheduler interacts with priority streams.
If the warp scheduling policy does not prioritize the blocks from the higher priority stream, such
as if the warp scheduler uses a greedy-then-oldest or loose round-robin policy [23], then the warp
scheduler would effectively de-prioritize the higher priority thread blocks.

4.2 Time-Slicing
When two applications are run as separate processes and MPS is not being used, the CUDA
application-level scheduler will alternate between the processes over time, yielding the GPU’s
computational resources (e.g., the warp scheduler and computational units) completely to one
process for the duration of a time-slice [6, 23]. Only one application’s kernels are executing on the
GPU during any given time slice. We implemented application-level concurrency by launching
each application as a separate process.

Observation 2 (O2). Time-slicing tended to exhibit predictable and low turnaround times for
models with relatively low baseline turnaround times (unless there is memory transfer contention;
see Observation 4), due to a lack of interference from the training task. This came at the cost of poor
utilization, as the two tasks never actually executed on the GPU at the same time.

As demonstrated in Figure 2b, time-slicing offers the most predictable performance of the three.
We attribute this high predictability to two factors. The first is that the training and inference tasks
never execute at the same time, so there is no contention for SM resources during block execution.
Second, executing blocks can be preempted (although this preemption is coarse-grained and yields
the entire GPU to the preempting task), so the inference kernel does not need to wait for any blocks
of the training task to finish executing before being scheduled to the GPU, i.e. compounded delay
is not a problem.
The primary factor that influences turnaround time is the number of other GPU applications

that are being executed concurrently, as this changes the amount of time that any one job must
wait for access to the GPU’s resources. The reason for this is that time slices are a fixed size and
are assigned round-robin to each process. The precise behavior of the time-slicing mechanism
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is not well-documented. However, we determined in our empirical setup that time slices were
fixed-length and assigned round-robin across processes. Empirically, we determined that the time
slice length is fixed to approximately 2ms. These observations are consistent with those made in
previous work about the earlier Turing microarchitecture [6, 23]. As far as we could determine, the
time slice size and priority assigned to each process cannot be configured.3 This means that there
is no way for one application to be prioritized over another, either by extending an application’s
time on the GPU or the frequency with which their time slices are scheduled.
Therefore, the trade-off inherent in using time-slicing is predictability at the cost of utilization,

whichwas frequently theworst of the three surveyedmechanisms. In particular, extra computational
GPU resources remain idle during each time slice. For kernels which do not fully occupy the GPU
in terms of threads, registers, shared memory, and grid size, time-slicing does nothing to occupy
those resources.
The lack of spatial sharing is the major limitation of time-slicing, as it does not truly solve the

GPU resource utilization problem being addressed by concurrently executing training and inference
tasks. For the ResNet models and particularly for DenseNet-201, the training time increased to over
100 seconds more than the baseline in Figure 1a. The reason VGG-19 and AlexNet did not see such
an increase is due to the shorter lengths of their inference tasks; they completed earlier, allowing
the training task to then utilize the GPU resources in isolation.

Observation 3 (O3). Time-slicing is limited by the fact that the two tasks can only be launched
together if the sum total of the resources required by both is less than the total available on the GPU,
despite the fact that they never execute on the GPU at the same time.

While the inference task is the only application executing during its time slice, our observations
suggest that it still has to share certain resources such as registers and shared memory with the
other process. We determined empirically that the resource requirements of any tasks being run
simultaneously as separate processes cannot together exceed the resource limitations of the GPU, or
an error will be thrown. For instance, the GPU had 64KB of registers per SM.When we launched two
applications that each used 40KB of registers per block, with exactly enough blocks for one per SM,
it caused the second process to reach the GPU for scheduling to crash with an out-of-memory error.
We empirically observed similar behavior for shared and global memory, as well. We hypothesize
that this is the case because resources such as shared memory, registers, and global memory that
are used by a process are not transferred on and off the GPU between time slices, and we suspect
the reason is to avoid prohibitively high context-switching overheads when swapping between
applications across time slices.
This has performance implications for the training task, which had to be scaled down from its

maximum batch size in order to allow space for the inference task. In other words, despite the
fact that the two tasks never execute on the GPU at the same time, neither task can fully utilize
the GPU during their time slice without running into this error. The implication is that we have
to be conservative when setting the batch size for the training task, as that is what determines
how many resources each individual kernel is going to use. Since it cannot be known a priori
which inference kernels will be running alongside which training kernels, it must be based on the
worst-case scenario.

This problem is compounded by the fact that in some systems, it may be difficult to know ahead
of time precisely how many resources the inference task will require. Given that the rate at which
inference requests will be received will be unknown, we can either perform inference for a single
image at a time, choose a fixed batch size to use for performing inference, or perform inference using

3Jetson devices do allow time slice configuration [6].
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(a) ResNet-34 Kernel and Transfer Times (Base-
line)

(b) ResNet-34 Kernel and Transfer Times (Time-
Slicing)

Fig. 6. Kernel execution times (red) and memory transfer operation times (blue) for the ResNet-34 inference
task in both the baseline and time-slicing scenarios.

(a) DenseNet-201 Kernel and Transfer Times
(Baseline)

(b) DenseNet-201 Kernel and Transfer Times
(Time-Slicing)

Fig. 7. Kernel execution times (red) and memory transfer operation times (blue) for the DenseNet-201
inference task in both the baseline and time-slicing scenarios.

variable-sized batches. Single image inference has predictable resource usage, so an out-of-memory
error can be avoided; however, this will add queueing delay (i.e., one image now has to wait for
the previous request to be serviced first). Fixed batch sizes also have predictable resource usage as
they are just the generalized case of single-image inference, so we can tune the training task to
accommodate that while minimizing queueing delay. However, if we do not fill up the batch for a
particular run, then we will have even lower utilization.

Observation 4 (O4). Contention due to memory transfers can adversely impact predictability and
turnaround time.

Time-slicing performed much worse with the RNNT training task for both BERT and ResNet-34
than it did with the Pytorch training and inference combinations, as seen in Figure 3. One reason for
this is that time-slicing tends to perform worse when the tasks take longer due to having to perform
more context switches overall, and all three of these tasks were longer-running than the PyTorch
models were on average. However, in addition to this, ResNet-34 possessed some attributes that
would increase execution times by greater amounts when run concurrently with another application.
The ResNet-34 inference task spent orders of magnitude more time on memory transfers than other
models performing inference did. Figure 6 shows the kernel execution times and memory operation
times of the Resnet-34 inference task in both the baseline and time-slicing cases, and Figure 7
shows the same for the DenseNet-201 inference task. ResNet-34 showed a significant increase in the
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amount of time spent on memory transfer tasks during the time-slicing case, while DenseNet-201
did not, suggesting that memory transfer interference contributed to its higher turnaround times.
These results align with previous findings that applications run as separate processes on NVIDIA
devices can experience interference from memory transfer commands, despite being isolated as
separate processes [23]. Like Observation 3, this is another way in which time-slicing does not
actually isolate the two processes from each other.

4.3 Multi-Process Service
MPS allows applications run as separate processes to execute on a GPU at the same time. An
MPS server is responsible for scheduling kernels from each process to the GPU. This differs from
time-slicing in that the thread blocks of kernels from separate processes can spatially share the
GPU, i.e., execute on the GPU at the same time, possibly even sharing an SM. While spatial sharing
is also possible when using priority streams, MPS allows the kernels to be from separate processes4
but does not include any notion of task prioritization. Instead, the MPS server can be configured to
limit the number of threads that can be used by any one application; for example, the MPS server
can be set so that each client can use no more than 50% of the total amount of threads offered by the
GPU. NVIDIA recommends that this limit be set to 100%/0.5n, where n is the number of clients to
allow the GPU to potentially colocate kernels from separate applications on the same SM whenever
there are idle resources. MPS is perhaps best suited to cases where the kernels utilize less than the
total available resources of the GPU. We implemented application-level concurrency by launching
an MPS server and then launching both the inference and training tasks as separate MPS client
processes.
In our experiments, we set the thread limit for both applications to 100%. In addition to this

being the recommended setting, limiting the training application to only using some portion of the
threads at any given time would defeat the purpose of using the training task to utilize spare GPU
resources whenever they are available.

Observation 5 (O5). While MPS increased utilization overall, it also caused intra-SM resource
contention that added to the execution times of both the training and inference tasks.

MPS saw consistent results in terms of utilization, as measured by the training execution time
in Figure 1b. The additional 5000 inference requests increased the time it took to train the model,
usually by 20-30 seconds. In contrast, using priority streams frequently increased the training task
execution time by 30-40 seconds and using time-slicing by up to 50 seconds. MPS can achieve good
utilization primarily because it makes it possible to colocate blocks from different kernels. Priority
streams was also able to colocate blocks, but it still took longer for the training task to complete
because the inference task would be prioritized.

MPS additionally performs better when potential contention due to colocation is low. Colocation
of blocks from different applications allows for finer-grained resource assignment, but it can
also create contention for resources when the blocks that are sharing an SM require the same
resource, leading to significant performance degradation. Furthermore, unless it is clear what effects
contention will have on the runtimes of the kernels, it is challenging to predict the performance of
colocated kernels [8, 28]. The increases in turnaround times compared to time-slicing observed in
Figure 1a are partially explained by the presence of this resource contention. Minimizing contention
is thus important for MPS to achieve increased utilization with less significant degradation in
turnaround times.

4To be more precise, they are launched from separate CUDA contexts.
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Observation 6 (O6). MPS balances between the progress of the training and inference tasks, but it
is unable to adequately prioritize one over the other. More of the degradation is seen on the part of the
inference task due to the scheduling policies used.

While MPS can allow two kernels to spatially share the GPU, it is not able to explicitly prioritize
the execution of one application over another. Thus, both the training and inference tasks are likely
to make progress that is more balanced between the two applications than with priority streams.
This is the main reason that the MPS training task execution times in Figure 1 are typically better
than the priority streams times. Given that at least half of all of the models’ inference and training
kernels are small, MPS can employ this load-balancing during a significant portion of the tasks’
execution, and there are frequently enough leftover resources from one application to share with
the second.

The extent to which the GPU can be shared between applications is limited by the thread block
scheduling policy. Kernels are still scheduled on essentially a first-come, first-served basis (up
to the thread limit for each process). More specifically, our experiments suggest that the blocks
are scheduled according to the leftover policy, which dictates that all of the blocks from the most
recently-arrived kernel must first be dispatched and executed on the GPU before any other kernels’
blocks can be scheduled [3]. Unlike priority streams, all of the blocks of the current kernel will
be scheduled, and a later-arriving kernel is not able to schedule any before that. This presents a
problem for the kernel that arrives at the GPU later, especially if that kernel is from the inference
task, as the running time of the second task is needlessly throttled.
Due to these issues, MPS causes a greater degree of degradation for the inference tasks than

the training tasks in Figure 1. For instance, ResNet-152 saw the turnaround time increase 2X, but
the training task execution time only increased by a few seconds, which was the shortest training
task time observed for the three mechanisms. The DenseNet-201 training and inference tasks
both had, on average, smaller proportions of long-running kernels with larger grid sizes. This was
the model where MPS performed the best in terms of both turnaround time, with an increase of
9.6ms, and utilization, which increased by only 11 seconds. For the other four Pytorch models that
averaged longer-running training and inference kernels, the inference task was more often starved
for resources, forced to make progress with what was leftover.
Unlike the Pytorch training tasks examined, RNNT had virtually no large kernels during its

runtime, meaning that there was almost always space on the GPU for other tasks to use more of
the resources. This is one reason why MPS tended to perform more consistently well in terms
of turnaround time than with the Pytorch models, which consisted of training tasks that more
frequently occupied the GPU with large kernels. However, RNNT’s execution time increased more
drastically than the Pytorch training tasks’ execution times did using MPS, as seen in Figure 3, due
to the high amount of large kernels and the longer runtimes of the inference tasks.
Note that MPS’s resource assignment issue is distinct from the compounded delay problem

discussed in Section 4.1. The latter is caused by the gap between kernel launches where the training
kernel uses the free resources. However, with a 100% thread limit, the compounded delay problem is
also an issue for MPS. Thus, colocation and compounded delay also caused variance in turnaround
time, as seen in Figure 2c. This variance was not as large as that observed in the priority streams
case, as inference request satisfaction is partially dependent on the degree to which the training
task is utilizing the GPU’s resources.

5 DISCUSSION
Observation 7 (O7). For concurrent deep learning workloads, GPU utilization and predictability

could be improved with fine-grained preemption of thread blocks.
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Region A                   Region B

Fig. 8. ResNet-152 Kernel Trace. A subset of the sequence of kernels executed during the ResNet-152 inference
task. The larger points are large kernels (in terms of their resource requirements on the GPU, they cannot fit
their entire grid on the GPU at once), while the smaller points are small kernels.

Kernels which do not leave enough space for other kernels to be co-located alongside it often leave
non-limiting resources unoccupied. Frequently, they prevent further blocks from being scheduled
without actually utilizing all of the GPU’s resources, when a different arrangement of thread blocks
on the GPU would result in fewer of them being left idle.
Consider a case such as that of ResNet-152. For its training task, most of its large kernels were

limited by threads. When such a training kernel is scheduled, the thread block scheduler places as
many blocks as possible onto the GPU, but there will still be unused registers and memory resources.
The ResNet-152 inference task, in contrast, consists almost entirely of small, short-running kernels.
Replacing even one block of the training kernel would leave room for a number of these smaller and
less resource-intensive thread blocks. The combination of blocks from the training and inference
kernels would use up an equivalent number of threads, but fit more blocks onto each SM and make
better use of the registers and memory resources.

However, even when a given training kernel is small enough to leave space for the newly-arrived
inference kernel to fit onto the GPU alongside it without waiting, resource contention will still
incur delays that will push back further kernel launches in the sequence. There are two major issues
to be solved here. First, the stochastic nature of the inference requests causes both unpredictability
and inefficient utilization due to being unable to rearrange or interrupt thread blocks when they
are already on the GPU. Second, resource contention also increases the unpredictability even when
blocks are colocated on the GPU to improve utilization. Solving these problems requires flexible
scheduling mechanisms; in particular, approaches which treat the GPU as a black box and make
only application-level scheduling decisions will not be sufficient.
Future GPU architectures could potentially address the above utilization and predictability

challenges with a new thread-block-level scheduling mechanism we term fine-grained preemption.
Specifically, we define fine-grained preemption as the ability of the thread block scheduler to
interrupt an arbitrary set of thread blocks at any point during the blocks’ execution and relaunch
those blocks at a later time.
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Observation 8 (O8). For the specific case of concurrent deep learning workloads, the cost of
fine-grained block-level preemption could be offset by the potential benefits.

Current NVIDIA GPUs do not support fine-grained block-level preemption. As discussed in
Section 4, while using priority streams does allow for one kernel to interrupt another kernel that is
in the middle of being executed on the GPU, it does not actually preempt any of the blocks currently
on the GPU, instead waiting for them to finish execution before scheduling any blocks of the new
kernel. MPS similarly has no mechanism for interrupting the execution of a block, and instead
schedules on a first-come, first-served basis; this lack of block-level preemption is one cause of the
performance degradation seen in Section 4. The compounded delay incurred as a result caused the
priority stream turnaround times to be comparable to that of MPS, which has no notion of priorities
at all. Time-slicing, while able to preempt blocks in the middle of their execution, can only do so
in a course-grained way. It is only able to clear the entire GPU of all currently-executing thread
blocks, with no ability to partially preempt the GPU or prioritize one application over another.

Fine-grained preemption would complement priority streams and MPS, and could address many
of these issues which appear in the examined deep learning workloads. For instance, if enough
blocks could be preempted as soon as an inference kernel arrived, none of the large or long-running
training kernels would cause compounded delay. In addition, fine-grained preemption would allow
MPS to prioritize the inference task over the training task. With the ability to clear a specific amount
of space on the GPU at any time, MPS could include a setting to specify a minimum resource usage
requirement for each application, and preempt blocks to meet that threshold when the kernel
arrives. Fine-grained preemption would also vastly improve predictability over the priority streams
and MPS approaches if it were used in conjunction with a contention-aware scheduling policy, as
the effects of compounded delay and the leftover policy could be eliminated.

The performance cost of fine-grained preemption depends on the implementation. For instance,
a reasonable estimate for the cost of a full context-switch would consist of the time it would
take to move the entirety of a kernel’s context into global memory before the preempting kernel
begins executing. This is because saving state is likely to be the dominating factor in preemption
time. Using the methodology of prior work [6, 20], we estimate the cost for saving state when
context-switching is 38𝜇s. If all data from all 82 SMs on the GPU need to be transferred to global
memory, this would include 64 KB of constant memory, 10496 KB of L1/shared memory, a 20992 KB
register file, and 6144 KB of L2 cache data. With a total of 37696 KB to transfer to global memory,
and a memory bandwidth of 936 GB/s [1], saving state would take approximately 38𝜇s to complete.
Further, as global memory for the target GPU is 24 GB, the storage size overhead is negligible.
It is not the case, however, that fine-grained preemption will necessarily involve saving the

state of the entire GPU. For a single SM, the context that needs to be saved includes 64 KB of
constant memory, 128 KB of L1/shared memory, and a 256 KB register file, for a total of 448 KB.
Assuming that an SM only has use of its fair portion of the bandwidth, it would have 11.4 GB/s of
bandwidth to use. This results in a total of approximately 37𝜇s. This is only 1𝜇s less than the time
it would take to save the state of all SMs. Note that this estimate does not take into account factors
such as maintenance of L2 cache coherence, memory transfer bandwidth interference from other
applications, or the performance degradation likely to occur after switching due to reduced cache
effectiveness.
Another method for estimating the cost of fine-grained preemption would be to examine the

existing time-slicing mechanism. We conducted a simple experiment to estimate the amount of time
between the last thread executed in time slice 𝑛 and the first thread executed in time slice 𝑛 + 1. We
launched two kernels as separate applications, with one thread block per SM each. Consequently,
these kernels executed in alternating time slices. One thread in each thread block wrote the contents
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of the global timer register to local memory repeatedly, and we compared these time stamps across
the two kernels to ascertain the amount of time between time slices. We observed an average
time of approximately 145𝜇s between recorded values; assuming half that time is spent saving the
context of one kernel and the other half is spent resuming the context of the other, the time to save
state is 73𝜇s.

Finally, we note that the existing time-slicing mechanism might serve well as the foundation for
the proposed fine-grained preemption implementation. For example, it might be possible to reuse
some of the same hardware for fine-grained preemption, reducing hardware costs. Further, time-
slicing may already include techniques, such as only saving partial state, to reduce the performance
cost of preemption. As we hypothesized in Observation 3, the NVIDIA RTX 3090 GPU does not
appear to transfer shared memory and registers when switching between contexts.

Observation 9 (O9). The cost of fine-grained block-level preemption can be hidden by taking
advantage of the fact that the deep learning tasks are a sequence of kernels. Preemption can be
overlapped with transfer delay and the execution of prior kernels in the sequence.

The trade-off for this lower and more predictable turnaround time is that the best-effort training
task will take longer, by adding the overhead of preemption. However, the sequential nature of the
kernels provides frequent opportunities to hide the cost of preemption amidst transfer delay and
the execution of other latter kernels. For example, data transfers from host to device take place
periodically over the course of the applications’ runtimes. Preemption for the kernels following
such transfers can be hidden by performing some or all of the preemption during this transfer
latency.
Preemption latency can also often be hidden for later kernels in the sequence when a larger

kernel follows a smaller one. While a smaller kernel is being executed on the GPU, since it is known
that a larger kernel which requires more resources will be following it, preemption cost can be
hidden by preempting some of the blocks of the training task during the execution of the smaller
kernel. This will guarantee that there will be enough space available to schedule the large kernel as
soon as it arrives. One such example is illustrated in Figure 8, in the region labeled Region B. The
first kernel only consists of 32 blocks of 64 threads each, while the second kernel has 512 blocks of
64 threads each. As the first kernel is being executed on the GPU, it will only take up 64 threads on
32 of the 82 SMs, and the training task will use the rest of the resources. In order to make sure there
is already room for the 512-block kernel when it arrives, the training task can have enough blocks
preempted during the execution of the first kernel. The second kernel only takes 2𝜇s to execute;
on its own, preemption could vastly increase the execution time of the kernel. However, the first
kernel takes about 137𝜇s to execute, so it is able to hide most of the delay that would be incurred if
preemption occurs during its execution instead of after.
Preemption latency can also be avoided for the latter kernel in the same sequence by simply

leaving the space on the GPU open as the first kernel finishes, instead of filling it back up with
training kernel blocks. An example where this could be done can be seen in the region labeled
Region A in Figure 8. Both of the highlighted kernels are small, meaning that they can fit their
entire grid on the GPU at one time; the first kernel has only 136 blocks of 256 threads each, while
the second one has only 112 blocks of 32 threads each. However, the first kernel takes about 400𝜇s
to run, while the proceeding kernel only takes around 6𝜇s. This second kernel would be subsumed
by the amount of time preemption would take; If the block placement of the first kernel is not
ideal for the second kernel, so replacing the blocks would result in an undesirable block placement
for the second kernel, the first kernel is also still long enough to hide the latency of preempting a
subset of training task blocks to create the ideal placement for the second kernel.
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Observation 10 (O10). Utilization is difficult to define, but the execution time of the best-effort
task is a good proxy metric.

NVIDIA has a number of profiling tools available that offer different measures of utilization. For
instance, NSight Systems can report metrics such as SM ooccupancy and thread occupancy [17],
and nvidia-smi and the NVML API report utilization as the percentage of the last one second where
a kernel was running on the GPU [18]. Attempts to measure utilization with a single number often
run the risk of over-simplifying the actual state of resource usage due to both the number and
variety of resources available. For example, if the current set of scheduled blocks uses all of the
available threads, this does not necessarily imply total saturation, as the amount of shared memory
and registers in use could still be quite low. Measuring utilization as the execution time of the
training task avoids this issue by taking into account how much useful work is being done by the
background task with the resources it is occupying.

Take, for example, a single kernel from the ResNet-152 training task which has 100% utilization
based on thread usage as a metric: its grid consists of 200704 blocks, while each block consists of
256 threads. Thus, for our evaluation GPU, only 6 blocks can fit on each SM at a time, for a total
of 492 blocks. The blocks of this particular kernel also use 32 registers per thread, for a total of
only 49152 registers, meaning that the registers are being underutilized even when the GPU is fully
occupied (as in, no more blocks can be scheduled because no more threads are available).
Now consider another example that also has 100% utilization in terms of thread usage, but

more completely saturates other GPU resources. The average ResNet-152 inference kernel uses
2-3 warps per block; a typical example which comes up quite frequently during execution would
be a convolutional implicit SGEMM kernel with 64 threads per block and 80 registers used per
thread. Removing even one 256-thread block of the training task from an SM would make space for
four blocks of this inference kernel, and register usage would now be at 61440. This is much closer
to the limit of 64KB per SM, and the total number of blocks per SM is increased by 3, while the
thread usage still remains the same. Thus, we can see that a GPU having no more room to place
another block does not mean that its resources are being utilized effectively, and that by merely
rearranging the blocks and co-locating blocks from separate kernels, total resource usage can often
be increased.

Both of these examples have 100% utilization by the simple thread-based utilization metric, but
one utilizes more of the GPU’s resources than the other. We do not necessarily solve this issue, but
we find that the execution time of the best-effort task is a good proxy measure to account for this
situation.

6 RELATEDWORK
We divide our discussion of prior work into categories consisting of those studies which focus on
reverse-engineering NVIDIA hardware, improving concurrency using spaital multiplexing, and
improving concurrency using temporal multiplexing. Principally, we extend this prior work by
evaluating the performance of deep learning workloads under the existing methods for concurrent
application execution NVIDIA GPUs.

Reverse-Engineering Hardware. Previous work has characterized concurrency on NVIDIA
hardware in terms of individual components of the NVIDIA scheduling hierarchy for general-
purpose workloads. For instance, previous work reverse-engineered the behavior of the hardware
thread block scheduler [3, 16] and investigated the performance implications of the observed thread
block scheduling policies [8]. For example, Xu et al. observed the thread block scheduler uses
a leftover policy, where blocks from a later-arriving kernel are only scheduled once all earlier-
arriving kernels’ blocks have been scheduled first [28]. The authors concluded this policy was
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often inefficient for concurrent application execution and performed very similarly to running two
kernels in succession. We also observed issues with the leftover policy in Section 4.
Other work focuses on the higher levels of the scheduling hierarchy. Olmedo et al. discuss

multiple levels of the NVIDIA scheduling hierarchy [23], and the time-slicing application scheduler
for the Tegra architecture similar to the one observed in this work is detailed by Capodieci et al [6].
The authors of the latter paper found the application-level scheduler to be lacking in the flexibility
necessary to sufficiently prioritize latency-sensitive real-time tasks, and although their work was
specific to an integrated architecture, we identify similar issues on the Ampere microarchitecture
in Section 4.

Spatial Multiplexing. Spatial multiplexing improves GPU utilization by efficiently dividing GPU
resources between kernels. Adriaens et al. proposed assigning each concurrent kernel exclusive
access to a subset of the SMs [2]. In contrast, Xu et al. propose techniques that allow concurrent
kernels to share SMs and attempt to optimize the placement of thread blocks from different
kernels [28]. The authors compare the performance of this technique directly to both the assignment
of SM subsets to kernels and the leftover scheduling policy used by actual NVIDIA hardware when
using streams. Pai et al. alternatively propose elastic kernels which allow for fine-grained control
over the resources required by a kernel, and show its relative performance gains compared to
CUDA streams with the leftover policy [19]. The above techniques assume a task set that is fixed
and that all tasks are ready to be scheduled immediately. However, our work considers a stochastic
deep learning workload in which the arrival times of the inference requests are unpredictable. An
interesting direction for future work would be investigating how fine-grained preemption could be
used in conjunction with the above spatial-multiplexing policies. In particular, with fine-grained
preemption, the scheduler can make the spatial-multiplexing decisions dynamically as new tasks
arrive.

Temporal Multiplexing. Temporal multiplexing improves the turnaround time of GPU applica-
tions rather than improving the utilization of GPU resources. Tanasic et al. proposed two forms of
preemption for concurrent application execution on GPUs: context-switching and SM-draining [25].
The latter is similar to priority streams in that it allows any currently-executing thread blocks
to finish before replacing them with a different application’s blocks. Park et al. propose a third
technique, SM-flushing, in which blocks are interrupted and do not save their state, i.e., when
resuming execution these blocks must start over from the beginning [20]. In addition, the authors
built a scheduling framework that switches between these three preemption techniques dynamically.
Capodieci et al. propose changes to the time-slicing mechanism on the embedded NVIDIA Tegra
architecture that would enable real-time task prioritization [6].
All of the above techniques require hardware modification. In contrast, others have proposed

higher-level methods to enable temporal multiplexing, such as kernel modifications to make GPU
applications preemptable [26]. Others have examined reordering kernels or reordering memory
transfer and kernel launch commands of an application [5, 15].

Deep Learning Workloads. Most of the above works also only consider general purpose GPU
workloads. However, Xiao et al. examined a workload consisting of deep learning training jobs.
They proposed a scheduler for GPU server clusters which dynamically scales the memory and com-
putational resources assigned to these jobs as their demand for them fluctuates and then schedules
high-priority jobs and best-effort jobs cooperatively in the cluster through over-provisioning [27].
However, this approach does not consider the microarchitectural interactions of the NVIDIA sched-
uling hierarchy such as the thread block scheduler which, as we have demonstrated, impact the
performance of concurrent workloads.
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Preliminary work conducted by Jain et al. on deep learning inference-only workloads suggests
that combining spatial and temporal multitasking may outperform both in isolation [12]. We
discussed this possibility further in Section 5.

7 CONCLUSIONS
In summary, we have characterized three existing mechanisms for executing concurrent workloads
currently available on NVIDIA GPUs—priority streams, time-slicing, and MPS—and their perfor-
mance for handling concurrent deep learning workloads consisting of a best-effort training task
and sequence of latency-sensitive inference tasks. We considered their ability to provide predictable
and low turnaroaund times, while still maintaining high utilization, and found that they each pos-
sessed certain drawbacks that made this difficult. Priority streams and MPS are both vulnerable to
unpredictabile performance penalties incurred by resource contention and higher turnaround times
due to the effects of compounded delay, while time-slicing lacked the spatial-sharing capabilities
to improve utilization significantly and showed evidence that memory transfer contention can
sometimes interfere with maintaining low turnaround times.
We then argued that it is insufficient to consider only application-level scheduling, and the

kernel- and block-level scheduling techniques such as fine-grained preemption would be necessary
to efficiently execute concurrent deep learning workloads. We showed that the deep learning work-
loads being examined have characteristics which make such a preemption mechanism necessary,
including sequential kernel launches, fluctuating resource requirements, and stochastic arrival
times. We additionally demonstrated how these features present frequent opportunities to hide the
cost of fine-grained preemption, and also how such a mechanism could be used to complement
the existing ones to increase utilization, turnaround time, and predictability. While the proposed
preemption mechanism shows promise, testing fine-grained preemption on actual hardware will
require modification to proprietary NVIDIA components and, as such, cooperation from the NVIDIA
corporation. One potential direction for future work is to build on these findings by analyzing the
performance of fine-grained preemption using a GPU simulator such as Accel-Sim [13].
We intend for this work to catalyze the creation of more robust and efficient techniques for

concurrent deep learning workloads in the future. It is likely that such mechanisms should involve
both efficient preemption mechanisms and contention-aware block placement policies to achieve
greater concurrent workload performance. We also expect this work to serve as a baseline for
comparison for work on concurrency mechanisms on NVIDIA devices. Additionally, we hope to
see the proposed fine-grained preemption mechanisms implemented in future NVIDIA devices.
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