
ar
X

iv
:2

01
0.

09
26

3v
1

 [
cs

.P
F]

 1
9

O
ct

 2
02

0

Trade-off between accuracy and tractability of

network calculus in FIFO networks

Anne Bouillard

anne.bouillard@huawei.com

Huawei Technologies France,

20 quai du Point du Jour,

92100 Boulogne-Billancourt

October 20, 2020

Abstract

Computing accurate deterministic performance bounds is a strong

need for communication technologies having strong requirements on la-

tency and reliability. Beyond new scheduling protocols such as TSN, the

FIFO policy remains at work within each class of communication.

In this paper, we focus on computing deterministic performance bounds

in FIFO networks in the network calculus framework. We propose a new

algorithm based on linear programming that presents a trade-off between

accuracy and tractability. This algorithm is first presented for tree net-

works. In a second time, we generalize our approach and present a linear

program for computing performance bounds for arbitrary topologies, in-

cluding cyclic dependencies. Finally, we provide numerical results, both

of toy examples and real topologies, to assess the interest of our approach.

1 Introduction

The aim of new communication technologies is to provide deterministic services,
with strong requirements on buffer occupancy, latency and reliability. An exam-
ple of such a standard under discussion is Time-Sensitive Networking (TSN),
which is part of the 802.1 working group [1] and has potential applications
to industrial and automotive networks. In this new communication paradigm,
critical traffic (having strong delay and reliability requirements) and best-effort
traffic can share switches and routers. Even if scheduling policies have been de-
fined to cope with these heterogeneous traffic classes, it is a necessity to develop
tools for accurately dimensioning the bandwidth allocated to each class.

Properly dimensioning a network relies on the ability to compute accurate
performance bounds (delay or buffer occupancy) in networks. As far as de-
terministic performance bounds are concerned, one popular theory is network
calculus, which is based on the (min, plus) semi-ring. Elements of the net-
work, such as the traffic flows and switches, are described by curves, and upper
bounds of the performances (delay, buffer occupancy) are computed from this
description. This theory has already been successfully applied to various types

1

http://arxiv.org/abs/2010.09263v1

of networks. One can cite switched network [2], Video-on-Demand [3], AFDX
(Avionics Full Duplex) networks [4], TSN/AVB [5, 6].

Different solutions have recently been proposed to analyze these types of
networks with network calculus. It is first required to give a precise modeling
of the scheduling policy (priorities, processor sharing scheduling such as DRR
(Deficit Round Robin) [7], WRR (Weighted Round Robin), to deduce network
guarantees for flows scheduled in the same class, where the FIFO (First In First
Out) policy is at work. Being able to compute accurate performance bounds is
FIFO networks is then crucial.

Recent work focus on the analysis of FIFO networks, and their main goal
is to reduce the computational cost for deriving performance guarantees (upper
bounds of worst-case delay). For example, Mohammadpour et al. propose in [8]
propose a modeling of TNS, and the insertion of regulators [9] to control the
arrival processes at each router; Thomas et al. compare in [10] the analysis with
partial insertion regulators (from complete to none) using TFA++ (total flow
analysis) proposed in [11]. These analyses have a very low complexity, which
allow the analysis of large-scale networks, but can have pessimistic bounds.

Other works focus on the accuracy of the bounds computed, in order to get
the tightest result possible. From the first paper on network calculus, phenom-
ena such as the pay burst only once and the pay multiplexing only once have
been exhibited, and each time they led to improvements of the performance
bounds. More recently, algorithms based on linear programming have been pro-
posed in [12, 13] to compute tight bounds in FIFO networks, but the complexity
of these algorithms is too high to be used in most of the networks.

Nevertheless, some networks are not so large that they require very low
complexity performance bounds. For example the linear programming method
can be used to improve the computation of the performance bounds in smaller
networks, such as industrial networks. For example, the TSN industrial network
presented in [14] has less than 20 nodes, where every flows cross at most 5
routers. The performances of these network could benefit from a more precise
analysis at a small computational cost, even if this would be out of reach for
larger networks.

Objective and contributions. The objective of this paper is to explore a
solution in-between these two extreme, that could be both tractable and lead
to accurate bounds. We introduce a new polynomial size linear programming
to compute performance bounds in FIFO networks, which could present a good
trade-off between complexity and accuracy to analyze medium-size networks.
Furthermore, we compare this algorithm with different network calculus meth-
ods. More precisely, our contributions are the following.

1. We first propose a simplified model (regarding that of [12]) for a linear
program computing bounds in FIFO trees. This model can also take into
account the shaping of transmission links. While losing some accuracy,
this algorithms is more tractable, and achieve better performances bounds
than the other methods in the literature.

2. We generalize the linear programming algorithms to network with cyclic
dependencies, improving the stability region of the other existing methods.

2

3. We compare our algorithms against the literature in both toy examples
(tandems and rings) and real-world use-cases.

The rest of the paper is organized as follows. First, the network calculus
framework and our network model are briefly recalled in Section 2. The state
of the art on network calculus for FIFO networks is described in Section 3. In
Section 4, we present the first contribution of the paper, that is, a new linear
programming proposition to compute performance bounds in FIFO tree net-
works, in polynomial time. This approach is generalized in Section 5 and 6
respectively to the case of feed-forward networks and networks with cyclic de-
pendencies. Finally, we compare the new algorithm with the state of the art in
several examples in Section 7 before concluding.

2 Network calculus framework

In this section, we recall the network calculus framework and present the basic
results that will be used in the next parts of the paper. More details about the
framework can be found in [15, 16, 17].

We will use the following notations: R+ is the set of non-negativea reals, for
all n ∈ N, Nn = {1, . . . n}, and for all x ∈ R, (x)+ = max(0, x).

2.1 Arrival and service curves

2.1.1 Data processes and arrival curves.

Flows of data are represented by cumulative processes. More precisely, if A
represents a flow at a certain point in the network, A(t) is the amount of data of
that flow crossing that point during the time interval [0, t), with the convention
A(0) = 0. The cumulative processes are non-decreasing, left-continuous and
null at zero. We denote by F the set of such functions.

A flow A is constrained by the arrival curve α, or is α-constrained, if

∀s, t ∈ R+ with s ≤ t, A(t) −A(s) ≤ α(t− s).

In the following we will mainly consider token-bucket functions: γb,r : 0 7→ 0; t 7→
b + rt, if t > 0. The burst b can be interpreted as the maximal amount of data
that can arrive simultaneously and the arrival rate r as a maximal long-term
arrival rate of data.

2.1.2 Servers and service curves.

An n-server S ⊆ Fn×Fn (illustrated for n = 1 in Figure 1) is a relation between
n arrival processes (Ai)

n
i=1 and n departure processes (Di)

n
i=1 such that Ai ≥ Di

for all i ∈ Nn. The latter inequality models the causality of the system (no data
is created inside the system).

SA D

Figure 1: Server model.

3

The role of a service curve is to constrain the relation between the inputs of
a server and its outputs.

We say that β ∈ F is a service curve for 1-server S if

∀(A,D) ∈ S, A ≥ D ≥ A ∗ β, (1)

where ∗ is the (min,plus) convolution: for all t ≥ 0, A ∗ β(t) = inf0≤s≤t A(s) +
β(t− s). In the following we will use

• the rate-latency service curves: βR,T : t 7→ R(t− T)+, where T and R can
be roughly interpreted as T is the latency until the server becomes active
and R is its minimal service rate after this latency;

• the pure delay service curve: δd : t 7→ 0 if t ≤ d; t 7→ +∞ if t > d. We
have A ∗ δd(t) = A((t − d)+)

Service curve An n-server S offers a service curve β if it offers the ser-
vice curve β for the aggregated flows: for all ((Ai), (Di)) ∈ S, (

∑m
i=1 Ai) ≥

(
∑m

i=1 Di) ∗ β. We call the flow with arrival process
∑m

i=1 Ai the aggregate
process of flows 1, . . . , n.

FIFO service curve In this paper, we assume that the service policy in this
system in FIFO (First-In-First-Out): data are served in their arrival order. It
is possible to find service guarantees for individual flows.

Theorem 1 ([16, Proposition 6.2.1]). Consider a FIFO server with service
curve β, crossed by two flows with respective arrival curves α1 and α2. For all
θ ≥ 0, βθ is a residual service curve for the first flow, with

βθ = [β − α2 ∗ δθ]+ ∧ δθ.

One can notice that the service curves computed when θ is varying are not
comparable, and lead to different performances.

Greedy shapers In most networks, the transmission rate is physically limited
by the capacity of a wire or a channel, which limits the quantity of data that can
be transmitted to the next server. This phenomenon is taken into account by
greedy shapers. Let B be a cumulative process, crossing a leaky-bucket greedy
shaper σ : t 7→ L+Ct. The output process is D = B ∗σ. Here C represents the
maximum capacity of the server, and L can represent a packet length, hence
take into account the packetization effect.

A server whose transmission rate is limited by a token-bucket greedy shaper
can then be modeled by a system that is composed of a server β and a greedy
shaper σ, as depicted on Figure 2. We will always assume that σ ≥ β, which
is not a restriction since the service offered to a flows is limited by the physical
limitations of the server.

Consider a system consisting in a 1-server with service curve β followed by
a greedy-shaper σ. The departure process then satisfies:

D = B ∗ σ ≥ (A ∗ β) ∗ σ = A ∗ (β ∗ σ) = A ∗ β,

where the last equality comes from β ≤ σ.
As a consequence, the whole system still offers β as service curve.

4

β σA
B

D

Figure 2: Shaping of the output process.

2.1.3 Output arrival curve

Departure process are also characterized by an arrival curve. Such an arrival
curve can be computed in function of the arrival curve of the arrival process
aand the shaping and service curves of the server.

Theorem 2 ([15, Theorem 5.3]). Suppose that A is α-constrained and crosses a
server offering the service curve β and with greedy shaper σ. Then the departure
process D is α ⊘ β ∧ σ-constrained, where ⊘ is the (min, plus)-deconvolution:
α⊘ β(t) = supu≥0 α(t+ u)− β(u).

In case of token-buckets arrival curve and greedy-shaper, the departure pro-
cess then has two token-bucket constraints: α⊘ β and σ.

In the case of a token-bucket arrival curve α = γb,r and rate-latency service
curve β = βR,T with R > r, one has α⊘ β = γb+tT,r.

2.2 Performance guarantees in a server

Backlog and delay Let S be a 1-server and (A,D) ∈ S. The backlog of
that server at time t is b(t) = A(t) − D(t). The worst-case backlog is then
bmax = supt≥0 b(t).

We denote bmax(α, β) the maximum backlog that can be obtained for an α-
constrained flow crossing a server offering the service curve β. It can be shown
to be the maximum vertical distance between α and β. For example, we have
bmax(γb,r, βR,T) = b + rT if r ≤ R.

The delay of data exiting at time t is d(t) = sup{d ≥ 0 | A(t − d) −D(t)}.
The worst-case delay is then dmax = supt≥0 d(t).

We denote dmax(α, β) the maximum delay that can be obtained for an α-
constrained flow crossing a server offering the service curve β. It can be shown
to be the maximum horizontal distance between α and β. For example, we have
dmax(γb,r, βR,T) = T + T

R if r < R.
Backlog and delay are illustrated on Figures 3a and 3b.

time

da
ta A

D

t

b
(
t
)

d(u)

u

(a) Processes

t

da
ta

α

βdmax

b m
a
x

ℓmax

(b) Performances

Figure 3: Processes and worst-case performances.

5

From performances to output arrival curves It is also possible to com-
pute alternative arrival curves of the output processes using delay and backlog
upper bounds of the servers.

Theorem 3 ([15, Theorem 7.4]). Consider a FIFO server crossed by an α-
constrained flow. Suppose that d is an upper bound of the delay for this flow.
Then α⊘ δd is an arrival curve for the departure process.

Theorem 4. Consider an α-constrained flow crossing a system, with α = γb,r.
Assume that the last server of the system crossed by the flow offers a continuous
service curve βn and that α is the only constraint for the flow. If B is the
maximum backlog in the whole system for this flow, then α′ = γB,r is an arrival
curve for the departure process.

Proof. A similar result has already been proved in [18] in a slightly different
setting (strict service curves). For the sake of completeness, we give the proof
here, but it follows the lines of the previous proof.

Let us denote by A the cumulative arrival process of the flow and D its
departure process. Fix s and t such that s ≤ t. One wants to show that
D(t)−D(s) ≤ B + rt.

Let us first transform the arrival process A in A′ so that A′(u) = A(u) for
all u ≤ s and A′(u) is maximized for all u > s. As α is the only constraint for
the flow, there exists H ≥ 0 such that for all u > t, A′(u) = A(s)+H+r(u−s).

If D(s) = D(s+) (the departure process is right-continuous at s), then the
backlog at time s+ with the modified arrival process A′ is A′(s+) −D(s+) =
A′(s) +H −D(s) ≤ B. Consequently,

D(t)−D(s) ≤ A(t)−D(s) ≤ A′(t)−D(s) ≤ A(s)+H+r(t−s)−D(s) ≤ B+r(t−s).

In the case D is not right-continuous at time s, one needs to modify the
departure process to finish the proof. Let An (resp. Dn) be the aggregated
arrival (resp. departure) process of the last server visited by the flow of in-
terest. There exists v ≤ s such that Dn(t) ≥ An(v) + βn(s − v). As βn

is continuous, Dn can be modified from time s so that is continuous: take
D′

n(u) = min(Dn(u), An(v)+βn(s−v)). Remark that as v ≤ s, An(v) = A′
n(v),

so this new departure process is admissible and continuous on an interval [s, s+ǫ]
with ǫ > 0. As D′

n is continuous on [s, s+ ǫ], the individual flows are also con-
tinuous, and in particular, D′(s+) = D(s) ≤ D(s+). We can then write

D(t)−D(s) ≤ A′(t)−D′(s+) ≤ A(s) +H + r(t− s)−D(s) ≤ B + r(t− s).

2.3 Network model

Consider a network N composed of n servers numbered from 1 to n and crossed
by m flows named f1, . . . , fm, such that

• each server j guarantees a service curve βj and has a greedy shaper σj .
The service policy is FIFO;

• each flow fi is αi-constrained and circulates along an acyclic path πi =
〈πi(1), . . . , πi(ℓi)〉 of length ℓi.

6

We will always assume in the following that arrival curves and greedy shapers
are token-bucket and the service curves rate-latency. We will use the following
additional notations:

• F
(j)
i ∈ F is the cumulative process of flow i entering server j. The depar-

ture process after the last server crossed by flow fi is be denoted F
(n+1)
i ;

• the arrival curve of F
(j)
i is denoted α

(j)
i : t 7→ b

(j)
i + rit. In particular,

F
(π(1))
i is α-constrained and b

(π(1))
i = bi;

• the service curve of server j is βj : t 7→ Rj(t−Tj)+ and the shaping curve
is σj : t 7→ Lj + Cjt;

• for a server j, we define Fl(j) = {i | ∃ℓ, πi(ℓ) = j} the set of indices of
the flows crossing server j and Fl(h, j) = {i | ∃ℓ, (πi(ℓ), πi(ℓ+1) = (h, j)}
the set of indices of the flows crossing servers h and j in sequence;

• for all flows fi, for j ∈ π(i), we denote by succi(j) is the successor of server
j in flow fi. If j = π(ℓi), then succi(j) = n+ 1. For all servers j, prec(j)
is the set of predecessors of server j.

We call the family of cumulative (F
(j)
i)i∈Nm,j∈πi∪{n+1} a trajectory of the

network, and an admissible trajectory if it satisfied all the network calculus
constraints described above: arrival, service shaping and FIFO constraints.

The induced graph GN = (Nn,A) is the directed graph whose vertices are
the servers and the set of arcs is

A = {(πi(k), πi(k + 1)) | i ∈ Nm, k ∈ Nℓi−1}.

As we will focus on the performances in server n or of a flow ending at server
n, we can assume without loss of generality that the network is connected and
has a unique final strictly connected component, which contains n.

• If the induced graph GN is a line, we say that the network is a tandem
network;

• if the induced graph GN is a tree, we say that the network is a tree
network (as the network is assumed to be connected and have a unique
final component, all maximal paths end at node n, that is the unique sink
of the network);

• if the induced graph GN is acyclic, we say that the network is feed-forward;

• if the induced graph GN contains cycles, we say that the network has
cyclic dependencies (or is not feed-forward).

Stability We will also be interested in the network stability.

Definition 1 (Global stability). A network is globally stable if the backlogged
periods of each server are uniformly bounded.

7

Deciding if a network is stable is an open problem in general, and only partial
results exist. A necessary condition is that the arrival rate in each server is less
than the service rate, but this condition is not sufficient: it has been shown
in [19] that there exists networks with arbitrary small local load that can be
unstable.

Local stability refers to the arrival rate being less than the service rate
in every server of the network. In the following, we will always assume local
stability. In our setting, this means that for all server j,

∑
i∈Fl(j) ri ≤ Rj .

3 State of the art on computing bounds in FIFO

networks in NC

We only describe techniques for feed-forward networks. For cyclic dependencies,
those techniques must be used with the fix-point for example. This latter point
will be developed in Section 6.

3.1 TFA (Total flow analysis) and TFA++

TFA and TFA++ as described here can be used exclusively for FIFO networks.
It is based on Theorem 3 and the fact that the worst-case delay in a FIFO server
is the same for all flows crossing it.

Algorithm 1: TFA analysis: delay of flow i

1 begin

2 foreach server j in the topological order do

3 b←
∑

i∈Fl(j) b
(j)
i ;

4 dj ← Tj +
b
Rj

;

5 b
(succi(j))
i ← b

(j)
i + ridj

6 return
∑

j∈πi
dj

TFA++ is similar to TFA except that it is taking into account the maximum
service rate (as a greedy-shaper) of the preceding servers. It has first been
introduced in Grieux’s PhD thesis [20] and then popularized under the name
TFA++ in [11]. In short, between Algorithm 1 and 2, lines 3 and 4 differ.
The case with cyclic dependencies is studied in [10], and will be commented in
Section 6.

Algorithm 2: TFA++ analysis: delay of flow i

1 begin

2 foreach server j in the topological order do

3 α←
∑

h∈prec(j) min(σh,
∑

i∈Fl(h,j) αi) +
∑

i | πi(1)=j αi;

4 dj ← dmax(α, βj);

5 b
(succi(j))
i ← b

(j)
i + ridj

6 return
∑

j∈πi
dj

8

3.2 SFA (Separated flow analysis)

SFA is the technique that uses the pay burst only once phenomenon through
the use of (min, plus) operators. We give here a possible algorithm when the
network is FIFO, by choosing a particular value of θ in Theorem 1. This choice is
locally optimal: from Theorem 4, the backlog bound characterizes the maximum
burst of the output arrival curves, so θ is chosen so as to minimize the backlog
bound for each flow at each server.

Corollary 1 (of Theorem 1). Consider a FIFO server with service curve β :
t 7→ R(t − T)+, crossed by two flows f1 and f2 with respective arrival curves
α1 : t 7→ b1 + r1t and α1 : t 7→ b1 + r1t. A residual service curve for flow f1 is

β′ : t→ (R − r2)(t− (T + b2/R)+.

The output arrival curve is α′
1 = α1 + (T + b2/R)r1.

This is Theorem 1 with θ = T + b2/R.
Algorithm 3 describes the procedure to compute the delay of a flow with the

SFA method.

Algorithm 3: SFA analysis: delay of flow i0

1 begin

2 foreach server j in the topological order do

3 foreach flow i ∈ Fl(j) do

4 b←
∑

k∈Fl(j)−i b
(j)
k ;

5 b
(succi(j))
i ← b

(j)
i + (Tj + b/Rj)ri;

6 T
(j)
i ← (Tj + b/Rj)ri;

7 Rj
i ← Rj −

∑
k∈Fl(j)−i rk

8 return
∑

j∈πi0
T

(j)
i0

+ bi0/(minj∈πi0
Rj

i0
)

3.3 Deborah

Deborah(DElay BOund Rating AlgoritHm) [21] is a software designed to com-
pute delay bounds in FIFO tandem networks. It is based on the optimization of
θ parameters that appear in Theorem 1 for each server. These parameters can
in particular be optimized when the flows are nested (each flow is contained,
contains and is disjoint from any other flow) or for sink-trees. It is showed in [22]
that the delay bounds are tight for sink trees, and in [23] that even for very small
networks, the bound is not tight for other tandem topologies. The general case
of tandems can be tackled by cutting flows to make is nested [24, 25].

The tool requires token-bucket arrival curves and rate-latency service curves,
and does not take into account the shaping effect of a maximal service curve.
The aim of this paper is to study general topologies and the shaping effect. This
is why we will not include this tool in our comparisons. Comparisons with linear
programming methods can be found in [12].

9

3.4 Linear programming

The linear programming approach developed in [12, 13] consists in writing the
network calculus constraints as linear constraints. If the arrival curves are piece-
wise linear concave and the service curves piece-wise linear convex, then the
exact worst-case bounds can be computed by a MILP (Mixed-integer linear
program). However this solution is very costly as the number of variables is
exponential and there are integer variables. The MILP can be relaxed by re-
moving the integer variables and there corresponding constraints. While this
relaxation gives accurate bounds (better that other methods), the number of
constraints is still too high to be able to compute bounds in large network.

In the following, we will compare our contribution with the TFA++, SFA and
linear programming (LP). We call tractable or scalable TFA++ ans SFA, as their
complexity enables the analysis of large networks, whereas we call untractable
LP, due to its (super)-exponential complexity.

4 A polynomial-size linear program with for tree

networks

In this section, we propose to modify the linear program of [12] to keep the num-
ber of constraints and variables polynomial in the size of the network, for a tree
network. Simply removing constraints can make the bounds more pessimistic
than SFA or TFA, and we will then propose to incorporate these bounds to
improve the tightness of our new bound. We also adapt the linear program so
that it can take into account the shaping of the cumulative processes due to the
link capacities.

4.1 A linear program to compute upper bound delays

This paragraph describes the linear program obtained from the simplification
of the linear program presented in from [12]. We write the variables in bold
letters. To give the intuition of these variables and constraints, we apply the
construction on the small network for Figure 4. The linear program is given in
Table 1.

1 2f0

f1 f2

Figure 4: Toy network for the linear program description.

For the general description of the linear program, we assume a tree-network,
and that the flow we are interested in computing the delay (flow of interest)
ends at the sink of the tree.

Each server j has a unique successor that we denote succ(j), except node n
that is a sink, for which we set succ(n) = n+ 1. To simplify the notations, we

will use F
(succ(πi(ℓi)))
i instead of F (n+1)

i for the departure processes of the flows.
Let us denote d(j) the depth of server j. We set the depth of the sink d(n) = 1,
and d(j) = d(succ(j)) + 1.

10

Time variables and constraints: We introduce one variable t0 represent-
ing the departure time of the bit of interest. For each server j, we reserve
d(j) + 1 variables representing dates tk for k ∈ [umin(j), . . . , umax(j)]. The
sets [umin(j), . . . , umax(j)] are disjoint. We set the following constraints (to be
explained with the FIFO and service constraints):

• for all k ∈ [umin(j), . . . , umax(j)− 1], tk ≥ tk+1;

• for all k ≤ umax(j) − umin(j) − 1, and with h = succ(j), tk+umin(j) ≤
tk+umin(h).

The total number of time variables is then at most (n+2)(n+1)/2 and the
number of time constraints is at most n(n+ 1). The worst case is obtained for
the tree with maximal depth, that is the tandem networks.

Example 1. In our example, we have 6 time variables: t0 for the exit time of
the bit of interest, t1 and t2 are defined for server 2, and t3, t4, t5 are defined
for server 1.

Process variables: Now he have introduced the dates variables, we can in-
troduce variables of type F

(i)
j (tk) for the cumulative processes. This corre-

sponds to the value of the arrival cumulative process of flow fi at server j

and at time tk. The variable F
(j)
i (tk) exists if j ∈ πi ∪ {succ(πi(ℓi))} and

k ∈ [umin(j), . . . , umax(j)].
For each flow, there is at most one process variable per time variable, so the

number of constraints is at most m(n+2)(n+1)/2 (this is the worst case where
all flows cross all servers).

FIFO constraints For each time t, there exists a date s ≤ t such that all
data exited by time t have arrived by time s. The FIFO policy ensures that
this is also true for all flows crossing that server. When applied at the specific
dates, we obtain the following constraints: for all server j, and h = succ(j), for
all k ≤ umax(h)− umax(h),

• tk+umin(j) ≤ tk+umin(h) (as mentioned above);

• for all i ∈ Fl(j), F(j)
i (tk+umin(j)) = F

(h)
i (tk+umin(h)).

For a flow crossing server a server of depth d, there are d FIFO constraints.
Then there are in total at most mn(n+ 1)/2 FIFO constraints.

Service constraints This is the point where the simplification is done com-
pared to [12]. We introduce only one constraint per server, at time tumax(succ(j)):

we apply the formula
∑

i∈Fl(j) F
(succ(j)) ≥

∑
i∈Fl(j) F

(j)
i ∗βj, and obtain by def-

inition of the (min, plus)-convolution: for all server j, denoting h = succ(j),

•
∑

i∈Fl(j) F
(h)
i (tumax(h)) ≥

∑
i∈Fl(j) F

(j)
i (tumax(j)) and

•
∑

i∈Fl(j) F
(h)
i (tumax(h)) ≥

∑
i∈Fl(j) F

(j)
i (tumax(j))+Rj(tumax(h)−tumax(j))−

RjTj.

11

These constraints, together with the FIFO constraints and the monotony
of the cumulative processes also impose an order on the dates: for all k ∈
[umin(j), . . . , umax(j)− 1], tk ≥ tk+1.

There are two service constraints per server, so 2n in total.

Arrival constraints For all flow fi one can add the constraints built from its
arrival curve. Let j be the first server crossed by flow fi. for all umin(j) ≤ u <
v ≤ umax(j), we have

F
(j)
i (tu)− F

(j)
i (tv) ≤ bi + ri(tu − tv).

If a flow arrives at a server of depth d, it induces d(d + 1)/2 constraints.
There are then at most mn(n+ 1)/2 arrival constraints.

Monotony constraints We havw defined an total order for the dates of the
cumulative arrival process for each flow (arriving at its first server). The arrival
processes are non-decreasing, and we can translate this into linear constraints.
Due to the FIFO constraints and service constraints, there is no need to write
these types of constraints them for the arrival processes at each server. For each
flow fi, let j be the first server it crosses, for all k ∈ [umin(j), umax(j) − 1], we
have

F
(j)
i (tk) ≥ F

(j)
i (tk+1).

For each flow crossing a server of depth d, there are d monotony constraints,
so mn(n+ 1)/2 in total.

Delay objective To obtain an upper bound of the worst-case delay of flow
fi ending at server n is max : t0 − tumin(j) where j is the first server crossed by
flow fi.

Backlog objective Alternatively, to obtain an upper bound of the worst-case
backlog of flow fi starting at server j and ending at server n in the network,
one introduces the following constraints and objective:

• for all umin(j) ≤ u ≤ umax(j), F
(j)
i (t0)− F

(j)
i (tu) ≤ bi + ri(t0 − tu);

• max : F
(j)
i (t0)− F

(n+1)
i (t0).

Theorem 5. 1. Let D be a solution of the linear program described above
and d be the worst-case delay of the flow of interest. Then D ≥ d.

2. Let B be a solution of the linear program described above and b be the
worst-case backlog of the flow of interest. Then B ≥ b.

Proof. The linear program just described above has a subset of constraints of
the one described in [12] for computing the exact worst-case delay, with the same
objective. Then the results of our linear constraint is then an upper bound of
it, hence the result.

12

Compared to the approach of [12], we removed most of the service constraints
(only one is kept per server). The number of time variables is then reduces from
2n+1 − 1 for a tandem with n servers to (n + 1)(n + 2)/2 variables, and the
number of constraints is now O(mn2). Moreover, all the time variables related
to one server are naturally ordered with the FIFO and service constraints. As
a consequence, there is no need to introduce Boolean variables to ensure the
monotony of the processes. However, the following example shows that the
performances can get too pessimistic compared to the scalable methods.

Maximize: t0 − t3

such that t3 ≤ t1 ≤ t0

(Time t4 ≤ t2

constraints) t2 ≤ t1

t5 ≤ t4 ≤ t3

(FIFO F
(1)
0 (t3) = F

(2)
0 (t1) = F

(3)
0 (t0)

constraints) F
(1)
0 (t4) = F

(2)
0 (t2)

F
(1)
1 (t3) = F

(2)
1 (t1)

F
(1)
1 (t4) = F

(2)
1 (t2)

F
(2)
2 (t1) = F

(3)
2 (t0)

(Service F
(2)
0 (t2) + F

(2)
1 (t2) ≥ F

(1)
0 (t5) + F

(1)
1 (t5) +R1(t2 − t5)−R1T1

constraints) F
(2)
0 (t2) + F

(2)
1 (t2) ≥ F

(1)
0 (t5) + F

(1)
1 (t5)

F
(3)
0 (t0) + F

(3)
2 (t0) ≥ F

(2)
0 (t2) + F

(2)
2 (t2) +R2(t0 − t2)−R2T2

F
(3)
0 (t0) + F

(3)
2 (t0) ≥ F

(2)
0 (t2) + F

(2)
2 (t2)

(Arrival F
(1)
0 (t3)− F

(1)
0 (t4) ≤ b0 + r0(t3 − t4)

constraints) F
(1)
0 (t4)− F

(1)
0 (t5) ≤ b0 + r0(t4 − t5)

F
(1)
0 (t3)− F

(1)
0 (t5) ≤ b0 + r0(t3 − t5)

F
(1)
1 (t3)− F

(1)
1 (t4) ≤ b1 + r1(t3 − t4)

F
(1)
1 (t4)− F

(1)
1 (t5) ≤ b1 + r1(t4 − t5)

F
(1)
1 (t3)− F

(1)
1 (t5) ≤ b1 + r1(t3 − t5)

F
(2)
2 (t1)− F

(2)
i (t2) ≤ b2 + r2(t1 − t2)

(Monotony F
(1)
0 (t3) ≥ F

(1)
0 (t4) ≥ F

(1)
0 (t5)

constraints) F
(1)
1 (t3) ≥ F

(1)
1 (t4) ≥ F

(1)
1 (t5)

F
(2)
2 (t1) ≥ F

(2)
2 (t2)

Table 1: Linear program from the simplification of [12] for the toy example of
Figure 4.

Example 2. Consider the example of Figure 4, with arrival curves α : t 7→ 1+t
for all flows and service curves β : t → 4(t − 1)+ for both servers. Assume
moreover that server 1 has the maximum service curve βu

1 : t 7→ 4t.
The delay obtained with the SFA or LP method is 2.83, with TFA++, 2.95

and with this new linear program is 3.25. The reason for this is that a service
constraint for the first server has been removed compared to the linear program
of [12]: the time variable t1, used to describe the flows entering the second server
appears only as a FIFO constraints in server 1, and is not involved in a service
constraint. In this linear program, it is set to t0, inducing a larger delay. We

13

see that t1 = t0. All data have been served for flow 2 before serving flow 0, as if
server 2 gave the priority to flow 2.

Figure 5 shows the trajectories computed by the linear program.

1

1

0
t3 = t4 = t5

1.25
t2

3.25
t0 = t1

F
(1)
1

F
(2)
1

F
(2)
2

F
(3)
2

Figure 5: Trajectory reconstructed from the toy example. (blue) cumulative
processes of flow 1 at server 1; (green) cumulative processes of flow 2 at server
2;(red) cumulative addition of the processes of flow 0. At time 0, the burst of
size 1 arrives. It is transmitted at time 1.25, and served until time 3.25.

4.2 Adding SFA, TFA++ and shaping constraints

We have just seen an example where the linear program just described computes
performance bounds that are more pessimistic than with the SFA or TFA++.
In this paragraph, we will see that adding more constraints computed with the
SFA and TFA++ can drastically improve the bounds. Moreover, we show that
we can also incorporate shaping constraints in our linear program.

TFA++ and SFA constraints The intuition is the following: compared to
the linear program of [12], we have removed many service constraints, that were
necessary to retrieve the exact worst-case delay. The idea here is to replace these
service curve constraints by pure delay curves using Theorem 3. SFA delays for
each flow can also generalize this idea for a sequence of servers.

The TFA++ algorithm from [11] computes for each server j an upper bound
of its delay dTFA

j , that is satisfied for each flow (as the service policy is FIFO).
One can replace each FIFO constraint setting an order between dates tk+umin(j) ≤

tk+umin(h) by tk+umin(j) ≤ tk+umin(h) ≤ tk+umin(j) + dTFA
j .

We add as many constraints as FIFO constraints, that is at most mn(n +
1)/2.

The SFA algorithm computes the delay for each flow. Let dSFA
i be the

delay of flow fi computed with this method. Let j and h be respectively the
first server and the successor of the last server crossed by flow i. For all k ∈
[umin(h), umax(h) − 1], by using successive FIFO constraints, we have

F
(h)
i (tumin(h)+k) = F

(j)
i (tumin(j)+k).

As these represent the arrival and departure in/from the system of a bit of data

14

of flow fi. One can add the constraint

tumin(h)+k − tumin(j)+k ≤ dSFA
i .

We add at most n constraints per flow, that is a total of at most mn.

Shaping constraints From Theorem 2, we now that the aggregate process
at the departure of node j is constrained by the token-bucket σj . One can
then add the following constraints: for each server j, let h = succ(j). For all
umin(h) ≤ u < v ≤ umax(h),

∑

i∈Fl(j)

F
(h)
i (tu)−

∑

i∈Fl(j)

F
(h)
i (tv) ≤ Lj + Cj(tu − tv).

The number of additional variables is d(d + 1)/2 for a node of depth d, so
there are at most n2(n+ 1)/2 variables.

The additional variables for the toy example of Figure 4 is given in Table 2.

such that t1 − t3 ≤ dTFA
1

(TFA++ t2 − t4 ≤ dTFA
1

constraints) t0 − t1 ≤ dTFA
2

(SFA t0 − t3 ≤ dSFA
0

constraints) t1 − t3 ≤ dSFA
1

t2 − t4 ≤ dSFA
1

t0 − t1 ≤ dSFA
2

(Greedy-shaper F
(1)
0 (t1)− F

(1)
0 (t2) ≤ L1 + C1(t1 − t2)

constraints)

Table 2: Additional linear program for incorporating TFA++, SFA and greedy-
shaper constraints for the toy example of Figure 4.

Theorem 6. The objective of the linear program with the additional constraints
is an upper bound of the worst-case delay (resp. backlog) of the flow of interest.

Proof. The proof is similar to the proof in [12, 13] (upper bound part). Let

(F
(j)
i)i,j be an admissible trajectory for the network. Let t0 be the departure

date (at server n) of the bit of data satisfying the worst-case delay (or backlog)
of the flow of interest. In the whole proof, we write h = succ(j). We have
umin(n+1) = umax(n+1) = 0. If tu are defined for u ∈ [umin(h), umax(h)], for some

server j, one can define s such that i ∈ Fl(j), F (j)
i (s) = F

(h)
i (tu). This is possible

since the policy is FIFO. We denote s = tu+1−umin(h)+umin(j)
. Moreover, there

exists s such that
∑

i∈Fl(j) F
(h)
i (tumin(h)

) ≥
∑

i∈Fl(j) F
(j)
i (s)+βj(tumin(h)

−s). We
define tumin(j)

as the minimum value of s satisfying this service constraint. The
minimum exists due to the continuity of βj and left-continuity of the processes.

Let us now fix the variables of the linear program:

• for all u, tu = tu;

• for all i ∈ Fl(n), F(n+1)
i (t0) = F

(n+1)
i (t0).

15

• for all j and all i ∈ Fl(j), for all k ≤ umax(h) − umax(h), F
(j)
i (tumin(j)+k) =

F
(h)
i (tumin(h)+k);

• for all j and all i ∈ Fl(j), F(j)
i (tumin(j)

) = F
(j)
i (tumin(j)

).

One can remark, due to possible discontinuities of the cumulative processes
that where defined, F(j)

i (tu) ∈ [F
(j)
i (tu), F

(j)
i (tu+)].

Now, one only need to check that the variables set this way satisfy all the
linear constraints. By construction, the FIFO and service constraints are satis-
fied.

As the system is causal, that is, F (j)
i ≥ F

(h)
i , and the cumulative processes

are non-decreasing, the time and monotony constraints are satisfied.
For all i, let us denote j = πi(1) the first server crossed by flow i, for

all umin(j) ≤ u < v ≤ umax(j), F
(j)
i (tu) − F

(j)
i (tv) ≤ F

(j)
i (tu+) − F

(j)
i (tv) ≤

bi + ri(tu − tv). The arrival constraints are then satisfied.
Similarly, consider server j and its departure processes F (h)

i . For all umin(h) ≤
u < v ≤ umax(h),

∑

i∈Fl(j)

(F
(h)
i (tu)− F

(h)
i (tv)) ≤

∑

i∈Fl(j)

(F
(h)
i (tu+)− F

(h)
i (tv)) ≤ Lj + Cj(tu − tv),

and the shaping constraints are satisfied.
Let us focus on the TFA++ constraints. For each FIFO constraintF(j)

i (tu) =

F
(h)
i (tv), we have

F
(j)
i (tu) ≤ F

(j)
i (tu) = F

(h)
i (tv) ≤ F

(h)
i (tv+),

so tv − tu ≤ dTFA
j and then the constraint tv − tu ≤ dTFA

j is satisfied.
Similarly, for each flow i, let j the first server it crosses and h the successor

of the last server it crosses. For all tv where F
(h)
i is defined, and tu such that

F
(j)
i (tu) = F

(h)
i (tv) (by transitivity) we have

F
(j)
i (tu) ≤ F

(j)
i (tu) = F

(h)
i (tv) ≤ F

(h)
i (tv+),

so tv − tu ≤ dSFA
i and then the constraint tv − tu ≤ dSFA

i is satisfied.

5 Linear programs for feed-forward networks

The method proposed above strongly relies on the tree-topology of the network.
In this section, we show how to extend the linear programming approach to
feed-forward network. The first method is the more accurate and consists in
unfolding the network in order to transform it into a tree. Unfortunately, the
size of the tree might become exponential compared to the size of the original
network. We then propose alternative constructions to reduce this complexity.
For example the decomposition of the network into smaller pieces. These two
constructions can of course be combined to optimize the trade-offs between
accuracy and tractability, but this is out of the scope of this paper.

16

5.1 Unfolding a feed-forward network into a tree

Intuitively, this is equivalent to introducing FIFO and service date indepen-
dently for each predecessor of servers. So if a servers has two successors, FIFO
and service dates for this server be will be introduced twice and independently.
The unfolding of the network of Figure 6 is depicted in Figure 7.

0

1

2

3f0

f1

Figure 6: Toy feed-forward network.

〈0, 1, 3〉

〈0, 2, 3〉

〈1, 3〉

〈2, 3〉

〈3〉

f0, π0

f1, 〈1, 2, 3〉

f1, π1

f0, 〈0, 2, 3〉

Figure 7: Unfolding of the network of Figure 6. For example, the original
flow following the path 〈0, 1, 3〉, leads to two flows in the unfolding: paths
〈〈0, 1, 3〉, 〈1, 3〉, 〈3〉〉 and 〈〈0, 1, 3〉〉.

The unfolding construction Consider a network N . Assume that this net-
work is feed-forward, and that the servers are numbered such that if (j, h) is an
arc, then j < k, and that server n is the only sink of the network.

The unfold-net of N is denoted U and defined as follows:

• let Π be the set of paths in N ending at n. Then Π is the set of servers of
U , server 〈j1, j2, . . . , n〉 offers a service curve βj1 .

• for all node π = 〈j1, j2, . . . , n〉 and all flow fi, let π′ = 〈j1, j2, . . . , jk〉 the
maximum common prefix of both πi and π. If this prefix is not empty,
then there is a flow (i, π) from node π to 〈jk, . . . , n〉 with arrival curve αi.
If flow fi is ending at server n, we call the flow from π to 〈n〉 the copy for
flow fi.

One can easily check the following lemmas:

Lemma 1. If π 6= π′, the two flows (i, π) and (i, π′) do not share any common
sub-path.

Lemma 2. For each server π = 〈j, . . . , n〉 of U , for all i ∈ Fl(j) in N , there
exists a flow (i, π′) such that (i, π′) ∈ Fl(π) in U .

17

Theorem 7. Let N be a feed-forward network and U be its unfolding. Let fi a
flow of N ending at server n. Let dNi be the worst-case delay of flow fi in N
and dUi that of the copy of flow i in U . Then dNi ≤ dUi .

Proof. Let (F
(j)
i) be an admissible trajectory for network N . Let us build

a trajectory for U . For each flow (i, π) of U , where π = 〈j1, j2, . . . , n〉, if
π′ = 〈j1, j2, . . . , jk〉 is the maximum common prefix of both πi and π, we set

F
(〈jx,...,n〉)
i,π = F

(jx)
i , and F

(n+1)
i,π = F

(jk+1)
i . We now need to check that this

trajectory is admissible for U .

• First, the arrival processes F
(π)
i,π = F

(πi(1))
i so it is αi-constrained.

• Second, consider a server 〈j, h, . . . , n〉. The processes arriving to (resp

departing from) this server are F (〈j,h,...,n〉)
i,π = F

(j)
i (resp. F (〈h,...,n〉)

i,π = F
(h)
i

or F (n+1)
i,π = F

(h)
i) if i ∈ Fl(j) and 〈j, h, . . . , n〉 is a prefix of π. The arrival

and departure processes are then the same as in server j of N , so the
service, shaping and FIFO constraints are all satisfied.

As a consequence, the trajectory is admissible in U . In addition, if we consider
the copy (i, π) of flow fi, we have F

(π)
i,π = F

(π(1))
i and F

(n+1)
(i,π) = F

(n+1)
i , so the

delay for the copy of fi in U is the same as the delay of flow fi in N .
For all admissible trajectory of N , we have built an admissible trajectory in

U with the same worst-case delay for flow i, which means that dNi ≤ dUi .

A similar result holds for the backlog bounds. This unfilding procedure
can also be used for any methods defined on tree topologies, such as linear
programming for blind multiplexing [26] or ad-hoc algorithms [18].

5.2 Decomposition into a tree network by splitting flows

Another solution to split flows into smaller pieces in order to obtain a tree, or a
forest (collection of trees), and compute the arrival curves at places flows have
been cut. The splitting procedure has been described in [15], and we briefly
recall it here.

Consider GN = (Nn,A) the graph induced by N , and define Ar ⊆ A such
that (Nn,A−Ar) is a tree or a forest. A flow fi i then transformed into flows Ki

flows (fi, k) with paths 〈πi(h
i
k), . . . , πi(h

i
k+1− 1)〉 in (Nn,A−Ar), where hi

1 = 1
and (πi(h

i
k), πi(h

i
k + 1)) ∈ Ar for 1 < k ≤ Ki. The transformation is illustrated

in Figure 8.

0

1

2

3(f0, 1)
(f1, 1)

(f1, 2)

Figure 8: Decomposition of a network into a tree. Example of the network in
Figure 6 .

Our aim is to compute a new network NF such that:

18

• its induced graph is the forest (Nn,A− Ar);

• its servers offer the same guarantees as those of N ;

• its flows are {(fi, k) | k ∈ {i, . . . ,Ki}. The arrival curve of (fi, k) is an
arrival curve for fi at server πi(h

i
k + 1);

• the arrival processes are shaped: for all (j, j′) ∈ A
r, flows {(fi, k +

1) | (πi(h
i
k), πi(h

i
k + 1)) = (j, j′)} are shaped by the curve σj .

The arrival curves of the flows remain to be computed. As the network is
feed-forward, the edges removed can be sorted in the topological order, and the
computations be done according to this order, as described in Algorithm 4.

Algorithm 4: Network analysis for feed-forward network by flow split-
ting

1 begin

2 Sort Ar in the topological order in N accoring to the first
coordinate;

3 foreach arc (j, j′) in the topological order do

4 foreach flow (fi, k + 1) starting at with k > 0 starting at server
j′ do

5 Compute an arrival curve for flow (fi, k + 1)

To compute of the arrival curve for flow (fi, k+1), we will use Theorem 4. In
short, to compute the arrival curve of flow (fi, k+1), one just have to compute
the maximum backlog of flow (fi, k − 1). Consider flows (fi, k) and (fi, k + 1),
j the first server crossed by flow (fi, k). There are two possibilities:

• either we do not take into account the greedy shaper of server j, and The-
orem 4 can be applied directly. But not taking into account the shaping
effect could lead to pessimistic bounds;

• or we take into account the greedy-shaper of server j. If done directly,
Theorem 4 cannot be applied, as it assumes that the arrival curve must
be the only constraint of the flow.

We propose to slightly transform the network so that the shaping effect
can be taken into account for flows except flow (fi, k). The transformation is
illustrated in Figure 9.

N

σ2

σ1

Nns

σ2

σ1

Figure 9: System transformation: (left) the flow of interest (in red and blod) is
shaped with two other flows (in blue) by the greedy-shaper σ1; (right) the flow
of interest is not shaped anymore. The rest of the network is not modified.

More precisely, let us consider N(fi,k) the sub-network obtained from NF by
keeping only the predecessors of the last node visited by flow (fi, k) and Nns

(fi,k)

19

the same network, except the shaping of the arrival processes becomes: for all
(j, j′) ∈ Ar, flows {(fi′ , k′ + 1) | (πi′ (h

i′

k′), πi′ (h
i′

k′ + 1)) = (j, j′)} \ {(fi, k)} are
shaped by the curve σj .

Lemma 3. If α is an arrival curve for the departure process of flow (fi, k) in
Nns

(fi,k)
, then its is also an arrival curve for the departure process of that flow in

N(fi,k).

Proof. If flow (fi, k) was not shaped then the two networks are the same and
there is nothing to show. Otherwise, let us denote I the set of flows shaped
together with flow (fi, k) by σj in N(fi,k). Let (F (j)

z) be an admissible trajectory
in N(fi,k). It is then also an admissible trajectory in Nns

(fi,k)
. To prove this, it

is enough to check that
∑

z∈I\{(fi,k)}
F

(j)
j is σ1-constrained: ∀s ≤ t,

∑

z∈I\{(fi,k)}

F (j)
z (t)−

∑

z∈I\{fi,k)}

F (j)
z (s) ≤ σ1(t−s)−(F

(j)
(fi,k)

(t)−F
(j)
(fi,k)

(s)) ≤ σ1(t−s),

since F
(j)
(fi,k)

is non-decreasing.
Then the set of possible departures processes of (fi, k) inN(fi,k) is included in

those of (fi, k) in Nns
(fi,k)

, meaning that if α is an arrival curve for the departure
process in Nns

(fi,k)
, it is also one for those in N(fi,k).

According to Theorem 4, the arrival curve of flow fi(i, k) can then be com-
puted according to Algorithm 5, where the backlog bound can be computed
with the linear program given in Section 4.

Algorithm 5: Arrival curve for flow (fi, k + 1)

1 begin

2 if k = 1 then return αi;
3 Compute B a backlog bound for flow (fi, k) in Nns

(fi,k)
;

4 return γB,ri

6 Network with cyclic dependencies

In this section, we study the case of networks with cyclic dependencies. For this,
we will apply the fix-point analysis, that has already been described several times
in [17, 16, 15], to the analysis described in Section 5.2: edges are removed, so
that the induced graph becomes a forest and flows are split accordingly. Because
of the cyclic dependencies, removed edges cannot be sorted in the topological
order, and the fix-point on the arrival curves of all splited flows has to be
computed.

We will first show in Section 6.1 that the fix-point can be computed using a
linear program, and the uniqueness of this fix-point. In Section 6.2, we will also
apply this result to the TFA++ analysis for network with cyclic dependencies
developed in [10].

20

6.1 A linear program formulation for the fix-point analysis

We formulate the fix-point equation with linear program. More precisely, we
prove that the fix-point is obtained by extracting some variables from the opti-
mal solution of a linear program.

We use the same notations as in Section 5.2, and denote Z = {(fi, k), i ∈
{1, . . . ,m}, k ≤ Ki} the set of flows in the network. As we will use Theorem 4,
all the arrival curves computed for a flow (fi, k) will have arrival rate ri, we
only focus of the burst of the flows, that we denote x(fi,k) to enforce that it is
a variable.

For all x = (xz)z∈Z , and all z ∈ Z let us define Lz(x) as the backlog bound
computed by Algorithm 5, when the burst parameter of flow z′ is bz′ for all
z′ ∈ Z and L(x) = (Lz(x))z∈L. Theorem 8 gives a sufficient condition for the
stability of the network and the arrival curves of the split flows.

Theorem 8 ([15, Theorem 12.1]). If the maximal solution x∗ of C = {x ≤ L(x)}
is finite x∗, then N is globally stable and the burst of the arrival curve of flow
z is x∗

z.

Generic formulation for the fix-point equation of linear program Let
us now focus on some properties of Lz(x). The variables of this linear program

are the time tu and process variables F(j)
i (tu) described in Section 4. The burst

parameters only appear in the arrival curve constraints as F(j)
i (tv)−F

(j)
i (tu) ≤

xi + ri(tv − tu). So if xi becomes a variable, the program remains linear.
Then, there exists vectors a line-vectorAz a column vector Cz and a matrix

Bz such that

Lz(x) = max{Az(x, y)
t | Bz(x, y)

t ≤ Cz, (x, y) ≥ 0},

where vector y represents the time and function variables, and x the burst
parameters of the flows, and (x, y)t is the transposition of the line vector (x, y).

This linear program has the following properties (note that they only concern
coefficient that relates to the variables x and not to the variables y).

(P1) For all constraint c, for all z′, (Bz)c,z′ ≤ 0 and [(Bz)c,z′ < 0 ∧ (Bz)c,z′′ <
0] =⇒ z′ = z′′. In other words, there is at most one variable of type xz′

in each constraint, and these variables appears as upper bounds.

(P2) For all z′, (Az)z′ ≥ 0: the objective is increasing with the burst parameters
xz′ .

Our aim is then to solve

sup{x | x ≤ L(x)} = sup{x | xz ≤ max{Az(x, y)
t | Bz(x, y)

t ≤ Cz, (x, y) ≥ 0}}.
(2)

We now show that this problem is equivalent to extracting the burst param-
eters of the following linear program:

max{
∑

z

xz | xz ≤ Az(x, yz)
t, Bz(x, yz)

t ≤ Cz, (x, y) ≥ 0, for all z ∈ Z}. (3)

Note that the set of variables yz are disjoint for each linear program. We
call a solution of (3) a vector x for which their exists ((yz)z∈Z) satisfying the

21

constraints of (3), and we call the solution optimal if it maximizes the sum of
its coefficients.

Lemma 4. The optimal solution of (3) is unique.

Proof. Suppose that (x, (yz)z∈Z) and (x′, (y′z)z∈Z) are two different optimal
solutions. The equality

∑
z xz =

∑
z x

′
z then holds and x 6= x′.

We will show that there exists another solution (x̃, (ỹz)z∈Z) with x̃ = max(x, x′)
where the maximum is coordinate-wise. In that case,

∑
z x̃z >

∑
z xz , which is

in contradiction with the optimality of (x, yz) and ends the proof.
From Property (P1), for all c, (Bi(x̃, yz))c ≤ (Bi(x, yz))c ≤ (Cz)c, so the

constraints are still satisfied when x is replaced by x̃, and similarly for x′.
For all z ∈ Z, as x̃z = max(xz , x

′
z), we either have x̃z = xz ≤ Az(x, yz) or

x̃z = x′
z ≤ Az(x

′, y′z). From Property (P2), Az(x, yz) ≤ Az(x̃, yz), so if x̃i = xi,
one can choose ỹz = yz, and otherwise choose ỹz = y′z. All constraints are
satisfied, so (x̃, (ỹz)z∈Z) is a solution of (3).

Theorem 9. The two following statements are equivalent.

1. x is the maximal solution of (2).

2. x is the vector of variables extracted from the optimal solution of (3).

Proof. If we show that any solution of (2) is a solution of (3) and conversely,
then the uniqueness of the maximal/optimal solutions to the two problems is
enough to conclude.

Let x be a solution of (2), and (x, yz) be a solution of the sub-problem z.
Then (x, (yz)z∈Z) is a solution to (3). Conversely, if (x, (yz)z) is a solution to (3),
(x, (yz)) is a solution to sub-problem x of (2) and x is a solution of (2).

Uniqueness of the fix-point We just exhibited a linear program whose op-
timal solution is the largest solution fix-point of {x ≤ L(x)}. It might be seen as
pessimistic as the intuition would be that the smallest fix-point will also give an
admissible solution for the cyclic network. This has been proved in the TFA++
analysis in [10] and in many classical cases, the fix point is unique, because the
considered system is linear.

In this paragraph, we show that the solution of the fix-point with Properties
(P1) and (P2) is unique. In this paragraph, we assume that the maximal solution
of (2) is finite.

Lemma 5. For all z ∈ Z, Lz is concave and non-decreasing.

Proof. To prove the result, let us rewrite function Lz(x) using the duality of the
linear program. First, we separate variables x and y. From Property (P1), one
can transform Bz(x, y)

t ≤ Cz into B′
zy

t ≤ C′
z(x), where now the coefficients of

C′
i depend on x. Property (P1) tells us that the coefficients of C′

z(x) are linear
and non-decreasing in each variable of x. From Property (P2), one can rewrite
Az(x, y)

t as A′
zy

t +A′′
zx

t, where all the coefficients of A′′
z are non-negative.

We then have Lz(x) = max{A′
zy

t | B′
zy

t ≤ C′
z(x)} + A′′

zx
t. As function

Lz represents the computation of a maximum backlog in a stable feed-forward

22

neworks (variables x represent the burst parameters), the linear problem in-
volved in Lz(x) has an optimal solution. The dual problem then has the same
optimal solution, and we can express Lz(x) as

Lz(x) = min{C′
z(x)

twt | B
′t
z w

t ≥ A
′t
z }+A′′

zx
t.

The polyhedron defined by B
′t
z w

t ≥ A
′t
z does not depend on x. The optimal

solution is obtained at a vertex of this polyhedron, and there is a finite number
of vertices. Then Lz(x) is the minimum of non-decreasing linear functions (the
coefficients of x are all non-negative). Then Lz(x) is non-decreasing and concave.

To prove the uniqueness of the fix-point, we will follow the lines of the
proof of [27], where the result is proven for strictly concave functions and strict
quasi-increasing function. These assumptions do not hold as functions Lz are
piece-wise linear. We then adapt the proof in the case where Lz(0) > 0 for
concave and quasi-increasing functions. The adaptation in straightforward, but
for sake of completeness, let use write it, and then comment on the additional
hypothesis Lz(0) > 0.

Definition 2. A function g = (g1, . . . , gn) : R
n
+ → Rn

+ is quasi-increasing if for
all i, for all x, y, such that y ≥ x and xi = yi, gi(y) ≥ gi(x).

In our case, as L in non-decreasing, L − Id is quasi-increasing, where Id is
the identity function.

Lemma 6. Let F be a function from Rn
+ to Rn

+, that is concave and such that
F − Id is quasi-increasing and Fi(0) > 0 for all i ≤ n. If F has a fix-point, then
this fix-point is unique.

Proof. Suppose x and y are two fix-points of F : F (x) = x and F (y) = y. Define
γ = minj≤n(

xj

yj
) = xr

yr
. If γ ≥ 1, then x ≥ y. Suppose now that γ < 1 and define

w = γy. On the one hand, wi < yi for all i. So by concavity of F , we have
Fi(w) ≥ (1− γ)Fi(0)+ γFi(y) > γFi(y) = γyi = wi. In particular, Fr(w) > wr.

On the other hand, w ≤ x and wr = xr. Indeed, wj = γyj ≤
xj

yj
yj = xj , and

the inequality becomes an equality when i = r. As F − Id is quasi-increasing,
then Fr(x) − xr ≥ Fr(w)− wr .

But x is a fix-point, so combining the obtained inequalities, we get 0 =
Fr(x)−xr ≥ Fr(w)−wr > 0, which is a contradiction. So one must have x ≥ y.

By inverting x and y, we also obtain x ≤ y, and finally x = y and enables
to conclude regarding the uniqueness of the fix-point.

Back to our case, the uniqueness of the fix-point is granted if Lz(0) > 0 for all
z ∈ Z. This might not always be the case. For example, when the initial bursts
and the latencies of the servers are all null. However, in the general case, this
assumption should hold. As we do not shape the flows of interest to compute the
burst, we have the following properties: consider a flow with arrival curve γb,r
crossing a server with service curve βR,T . The maximal backlog in the server
is b+ rT , so if either b or T is non-null, the backlog bound transmitted for the
bound of the next flow is non-null. Then there exists k such that Lkz(0) > 0 for
all z, where F k is the k-th iteration of the composition of F . Here, for example,
k can be chosen as maxi Ki. Because L is non-decreasing and concave, so is Lk.
Then Lemma 6 can be applied to Lk. As a fix-point of L is necessary a fix-point
of Lk, this proves the uniqueness of the fix-point of L.

23

6.2 Application to TFA++

Before giving the linear program for the FIFO linear programming with cyclic
dependencies, let us give an alternate formulation of the solution with TFA++
given in [10]. In that paper, the authors compute performances in cyclic network
using the TFA++ method for each server.

Two limitations can be overcome by using the linear programming approach.

1. The authors assume that they take into account the shaping only when
the shaping rates exceed some given value. The reason for this seems to
be the simplification of the computation of maximum delay, and more
precisely the place where the horizontal distance between the aggregate
arrival curve and the service curve is maximized. With the linear pro-
gramming approach, this place is not directly computed but given as the
solution of a linear program. It also allows more complex service curves
than rate-latency.

2. The method chosen to compute the fix-point is iteration from 0. The au-
thors show that the least fix-point is indeed a valid solution for computing
the performance bounds, which is an improvement compared to [15] that
states this result for the greater fix-point. As we showed the uniqueness
of the fix-point, so the two previous approaches were in fact similar. Here,
the linear program avoids the iteration whose raw output would be a lower
approximation of the fix-point (the iterated are lower bounds of the fix
point) and thus require additional (yet simple) computations to obtain
upper bounds.

Linear program for the TFA++ method Table 3 gives the linear con-
straints for each server j to compute the maximum horizontal distance between
the arrival and the departure processes. We use the notation A

(j)
i (resp. D

(j)
i)

for the arrival (resp. departure) process of flow fi at server j. As the analysis
is TFA, the linear programs are local to each servers, except the delays, so we
do note enforce the equality between the departure process at a server and the
arrival process at its successors. The dates sj and tj are respectively the arrival
and departure time of the bit of data suffering the largest delay in server j.

7 Experimental results

In the first part of the experimental result, we use very simple topologies for
the comparisons, that is tandem networks and the ring topology. In the second
part, we use networks topologies met in real applications.

The algortihm presented in this paper have been implemented in Python 3.
The linear programs methods are solved in two steps. First a linear program is
generated (with a Python script), and then solves with the open-source linear
programming solver lp_solve. This implementation is not optimal for at least
two reasons. First commercial like Cplex and Gurobi and other open source
can solve linear programs more than 100 times faster [28]. Second, there exists
solutions to use lp_solve directly inside Python code. We chose this way
of doing this to be able to obtain readable linear programs and be able to
interpret more simply the solution. This being said, the comparison of the

24

Maximize
∑

j dj

such that for all server j
0 ≤ sj ≤ tj time constraints

∀i ∈ Fl(j) A
(j)
i (sj) ≤ x

(j)
i + risj arrival constraints

∀h
∑

i∈Fl(h,j) A
(j)
i (sj) ≤ Lh + Chsj shaping constraints

∑
i∈Fl(j) D

(j)
i (tj) ≥ Rjtj −RjTj service constraint

∑
i∈Fl(j) D

(j)
i (tj) ≥ 0

A
(j)
i (sj) = D

(j)
i (tj) FIFO constraint

dj = tj − sj delay at server j

∀i ∈ Fl(j) x
(succ(j))
i = x

(j)
i + ridj burst propagation

for all flow fi

x
(πi(0))
i = bi initial bursts

Table 3: Linear program for TFA++ with cyclic dependencies: server j

computation times between non-LP solutions and LP solutions can be unfair,
but the comparison between LP solutions is still valid.

We first test our algorithms on toy examples, like tandems and rings, and
then on real cases.

7.1 Toy examples

We will compare 4 methods we introduced in this paper: TFA++, SFA, LP (lin-
ear program from [12]), PLP (polynomial-size linear program from Section 4),
and the performances obtained when the network has regulators after each
server [9]. Regulators regulate the flows according to their arrival curve. It
is shown that the delays induces by them is not modified, but the end-to-end
delays are computed in a way similar to the TFA algorithm recalled in Algo-
rithm 1, except that in line 5, b(succi(j))i remains b(j)i . When we mentionned the
delay bounds with regulators, it is the bounds computed this way, and not the
worst-case delay bounds when inserting regulators.

7.1.1 Tandem networks

A tandem network with n servers is a network whose underlying graph is a line.
By convention, we number the servers from 1 to n in the topological order. We
assume uniform networks: each server has offers a service curve β : R(t− T)+,
a maximum service curve βu : t 7→ ηRt, with η ≥ 1 and each flow is constrained
by the arrival curve α : t 7→ b+ rt.

We fix T = 0.001s, b = 1Kb and R = 10Mbps. The arrival r will vary to
study the network at different load, and η vary in order to study the sentitivity
of TFA++ and PLP to the maximum service rate.

The flow of interest (f.o.i.) crosses all servers and we will study two different
configurations: two-hop cross-traffic, and source-sink networks.

Two-hop cross-traffic There are n− 1 interfering flows, with path 〈i, i+ 1〉
for all 1 ≤ i < n as depicted on Figure 10 for 4 servers.

25

If the arrival rate is r, than the load of the network is U = 3r/R.
Figure 11a shows the delay bound obtained when the number of servers

varies from 1 to 25, when η = 1 and U = 0.5. The LP method is computed only
up to 7 servers. One can check that the linear programming give the tightest
bound, followed by the PLP bound, which confirms to our results.

The regulators also allow to obtain slightly better bounds for tandems longer
than 15, which seems also intuitive as the bursts cannot propagate in the net-
work, and regulating the flows has then more effect on longer networks. More
surprisingly, one can see that the SFA method, that does not take into account
the shaping effect of the maximal service curve behaves almost like TFA++, spe-
cially for long network. For the tandem of length 25, the gain between TFA++
and PLP is 28% and between SFA and PLP 29%.

Figure 11b compares the execution time of the two linear programming meth-
ods. One can verify that the PLP method, whose execution time is below 5 sec-
onds for 25 servers, scales much better than the LP method, whose execution
time is already 10 seconds for 7 servers.

Figure 12a shows the delay bounds obtained for a network of 10 servers in
function of the load. We discard the LP method. One can observe that TFA++
is outperformd by SFA for high loads. Indeed, when the arrival rate is exactly
equal to the service rate in a FIFO server, there can be no benefit from the
shaping. One can also see that when U > 0.7, the delay computed with PLP
method grows faster. This is due to the fact that the TFA++ constraints do not
enable to improve the delay bounds anymore (they are two pessimistic). Finally,
Figure 12b show the sensitivity of the delay to the maximum service rate. We
here compare the servers for maximum service rates ηR, for η ∈ {1, 1.2, 2}.
Already when η = 1.2. TFA++ is outperformed by SFA (for a load above 0.3).
While TFA++ seems very sensitive to the maximum serice rate, the delays
computed with PLP do not vary much. This shows the effectiveness of PLP
approach when the maximum service rate does not equal the service rate.

Source-sink network We call source-sink tandem a tandem with n servers
and 2n − 1 flows. Each flows either starts at server 1 or send at server n. In
the uniform case, there is one flow per possible path, as depicted in Figure 13
with n = 4. There are n flows crossing each server, so the load of the network
is nr/R.

Figure 14a depicts the worst-case delays computed by each method when the
length of the tandem grows from 1 to 25 when η = 1 and U = 0.5. One can still
check that thee linear programming methods still give the best delay bounds.
Here, the gap between the LP and PLP methods is very small. The TFA++ also
performs very well, the gain for 25 severs is 13%. These three bounds are below
the bound obtained with regulators. SFA is completely outperformed. Indeed,
at each server, n − 1 flows continue to the next server. Then the shaping has
a very strong effect on the performances. Figure 14b compares the execution

1 2 3 4f1
f2

f3

f4

Figure 10: Two-hop tandem network.

26

10 20
0

2

4

·10−2

Number of servers

D
el

ay
of

th
e

f.
o.

i
(s

) TFA++

SFA

PLP

LP

Regulators

(a) Delay

10 20

100

101

Number of servers

E
xe

cu
ti
on

ti
m

e
(s

) PLP

LP

(b) Execution time

Figure 11: Comparisons of different methods for two-hop cross-traffic when
varying the number of servers.

0 0.2 0.4 0.6 0.8 1

10−1.5

10−1

Load of the network

D
el

ay
of

th
e

f.
o.

i
(s

) TFA++

SFA

PLP

Regulators

(a) Delay in function of the load

0 0.2 0.4 0.6 0.8 1

10−1.5

10−1

Load

D
el

ay
of

th
e

f.
o.

i.
(s

)

SFA

TFA++ η = 1

PLP η = 1

TFA++ η = 1.2

PLP η = 1.2

TFA++ η = 2

PLP η = 2

(b) Shaping effect

Figure 12: Comparisons of different method for two-hop cross-traffic when vary-
ing the load.

1 2 3 4
f0

Figure 13: Source-sink tandem of length 4.

27

times of LP and PLP. Again we see the tractability improvement of this new
approach.

10 20
0

2

4

6

8

·10−2

Number of servers

D
el

ay
of

th
e

f.
o.

i.
(s

) TFA++

SFA

PLP

LP

Regulators

(a) Delay

10 20

10−1

100

101

Number of servers

E
xe

cu
ti
on

ti
m

e
(s

) PLP

LP

(b) Execution time

Figure 14: Comparisons of different method for source-sink networks when vary-
ing the number of servers.

Figure 15a show how the delay bounds grow with the load of a tandem of
length 10. When the load is small, TFA++ and PLP are similar, but the gap
between the two grows exponentially. For example, the gain between TFA+
and PLP is 12% improvement for a load of 0.5 and 51% for a load of 0.8. PLP
outperforms the delay bound with regulators until a load of 0.95.

Figure 15b compares the delay bounds for several maximum service rates,
with η ∈ {1, 2, 3}. Again, the PLP method is not very sensitive to this param-
eter, and the bounds for η = 2 and η = 3 are very similar, contrary to the
TFA++ method. TFA++ and SFA are comparable when η = 3.

0 0.2 0.4 0.6 0.8 1

10−1

100

Load of the network

D
el

ay
of

th
e

f.
o.

i.
(s

) TFA++

SFA

PLP

Regulators

(a) Delay in function of the load

0 0.2 0.4 0.6 0.8 1

10−1

100

Load

D
el

ay
of

th
e

f.
o.

i.
(s

) SFA

TFA++ η = 1

PLP η = 1

TFA++ η = 2

PLP η = 2

TFA++ η = 3

PLP η = 3

(b) Shaping effect

Figure 15: Comparisons of different method for source-sink networks when vary-
ing the load.

7.1.2 Mesh network

We consider the mesh network of Figure 16. There is one flow per path from
server 0 or 1 to server 8, which represents a total of 16 paths. Servers 0 to 7

28

have the same characteristics as above, and server 8’s service rate is 2R, as there
are twice as much flows crossing it compared to the other servers. We also keep
the same characteristics as above for the flows.

0

1

2

3

4

5

6

7

8

Figure 16: Mesh network.

Figures 17 compares the delays obtained for TFA++, SFA and the two differ-
ent methods introduced for analyzing feed-forward networks: network unfolding
and flow splitting. Due to its computation time, we do not compare with the
exponential LP method. Figure 17a depicts the delays when η = 1 and Fig-
ure 17b when η = 5. Similarly to the previous cases, TFA++ is very accurate
when η = 1 and the load is small, but becomes pessimistic when η is larger
or when the load is large. It is not a surprise that the unfold method leads
to tighter delay bounds than the split method. Indeed, splitting a flow lead to
some over-approximations. But the unfold network’s size being exponential in
the size of the original network, this method is not scalable. We notice that the
gap between the two methods is not very large, specially when η = 1.

0 0.2 0.4 0.6 0.8 1
0

2

4

·10−2

Load

D
el

ay
of

th
r

f.
o.

i.
(s

) SFA

TFA++

PLP split

PLP unfold

(a) Delay in function of the load

0 0.2 0.4 0.6 0.8 1
0

2

4

·10−2

Load

D
el

ay
of

th
e

f.
o.

i.
(s

) SFA

TFA++

PLP split

PLP unfold

(b) η = 5

Figure 17: Comparisons of different method for a mesh network.

7.1.3 Ring network

We now consider a ring network, such as depicted on Figure 18 for n = 4. For
a ring of length n, there are n flows of length n. If the arrival rate is r, than
the load of the network is U = nr/R. Figure 19a shows the worst-case delay
bound for the different methods when the number of servers grows from 2 to
10 (and to 4 for the LP method). The load of the network is 0.5 and η = 1.
One can see that the bounds found for PLP and TFA++ are really close from

29

1

2

3

4
f1

f2
f3

f4

Figure 18: Ring network with n = 4.

one another and the gap with LP is larger than with the other topologies. Here
again, SFA gives very inaccurate bounds. This in inline with the example of
the source-sink tandem: at each server n − 1 flows are shaped together, which
makes the TFA++ method very efficient. The execution time of LP and PLP is
depicted in Figure 19b. One can see that PLP takes longer to compute, because
the fix-point requires to solve a linear program a much larger linear program.

Figure 20a compares the different approches (except LP) when the load of
the network grows from 0 to 1, for a ring network of 7 servers. Similarly to the
other examples, when the load becomes large, the PLP method computes much
tighter bounds than TFA++, and has a larger stability region (local stability).
The influence of TFA++ on PLP is also more visible: when the TFA++ de-
lay bounds become infinite, the delay bounds of PLP increases more. Again,
Figure 20b shows how the performances evolve when the maximum service rate
of the servers grows, for η ∈ {1, 2, 5}. When η = 5, the delays of TFA++ are
comparable with SFA. With TFA++, the stability region also decreases with η:
the sufficient conditions for the stability computed by TFA++ for η = 1, 2, 5 are
respectively U < 0.85, U < 0.55 and U < 0.38, whereas PLP seems to ensure
stability under the local stability hypothesis in all cases.

2 4 6 8 10
0

0.5

1

1.5

2
·10−2

Number of servers

D
el

ay
of

th
e

f.
o.

i.
(s

)

TFA++

SFA

PLP

LP

Regulators

(a) Delay

2 4 6 8 10
10−1

100

101

Number of servers

E
xe

cu
ti
on

ti
m

e
(s

) PLP

LP

(b) Execution time

Figure 19: Comparisons of different method for the ring network when varying
the number of servers.

30

0 0.2 0.4 0.6 0.8 1

10−2

10−1

Load of the network

D
el

ay
of

th
e

f.
o.

i.
(s

) TFA++

SFA

PLP

Regulators

(a) Delay in function of the load

0 0.2 0.4 0.6 0.8 1

10−2

10−1

Load

D
el

ay
of

th
e

f.
o.

i.
(s

)

SFA

TFA++ η = 1

PLP η = 1

TFA++ η = 2

PLP η = 2

TFA++ η = 5

PLP η = 5

(b) Shaping effect

Figure 20: Comparisons of different method for the ring network when varying
the load.

S

S

S

S

S

S

SS

Figure 21: Carrier network with three types of paths: direct paths (red), one-
ring path (blue), two-ring path(green).

7.2 Real examples

7.2.1 Carrier networks

Consider the network of Figure 21. It is made of two bidirectional rings. There
are 8 flows departing from each router, 4 of them going to each of the neighbors
(except the two central nodes that are not considered as neighbors). Two flows
by a direct path (path of length 1) and one by a path along one ring and and the
last path along the two rings, as depicted on Figure 21. Links are bidirectional,
so Figure 21 is not the exact representation of the network, that we do not give
for the sake of readability. In the example, all packets have length L = 128B
and are periodically sent for each flow at period P = 125µs. Then each flow is
constrained by the arrival curve α : t→ B+ tT/P . The service rate guaranteed
each link is β : R(t− L/R). The maximum service curve, to take into account
the packetization at each router is βu : t 7→ Rut+L. The problem is to find the
rate R to allocate to these flows so that a maximum delay bound is satisfied for
all flows. Let us assume that the target delay is 75µs.

Table 4 shows the rates to be allocated in two scenarios: first when hard
slicing is at work, that is Ru = R, and the other when soft slicing is at work,
that is Ru = 10Gb/s is the total capacity of the links.

One can observe that in the case of hard-slicing, the improvement of LPL
cmpared to TFA++ is very small (less than 6%). This can be explained because

31

TFA++ PLP LP
R = Ru 690Mb/s (0.166s) 650Mb/s (112s) 510Mbps (24min)
R, Ru = 10Gb/s 1.350Gb/s (0.2s) 1.0Gb/s (130s) 540Mbps (10min)

Table 4: Service rate required to guarantee the maximum delay of 75µs, with
different methods.

to obtain a delay bound as small as 75µs, the load of the network is small
(approximately 15%). But the gain obtained with LP is 26%. In this scenario,
a 24 minute computation might not be considered too costly given the gain on
the bandwidth. In the case of soft slicing, PLP improves the TFA++ bound by
more than 25%, and between TFA++ and LP the improvement is 60%.

7.2.2 Smart-Campus network

In this example, the network topology is a sink tree. Four classes of flows are
circulating in the network, from the leaves to the root, as depicted in Figure 22,
every class of traffic has flows following all paths, and the service policy is FIFO
per class. Among the class the DRR scheduling is at work, and each flow is
offered the same guarantee, that is 25% of the service rate, and the quantum
assigned to each class is Q. If a network element has service curve β = βR,0, we
assume in a simplified model that the service curve βDRR = βR/4,3Q/R is offered
to each class. The service rate of each server is given (in Gbps) on Figure 22 and
we take Q = 16kb. The characteristics of each class of flow is given in Table 5.
Moreover, there is a shaping for each class of flow (separately) at the entrance
of the network, at rate 1Gbps. The shaper is then t 7→ 109t+ ℓ, where ℓ is the
maximum packet size of the flow of interest.

Class burst arrival rate packet size
Electric protection 42.56 kb 8.521 Mbps 3040b
Virtual reality game 2.16Mb 180 Mbps 12kb
Video conference 3.24Mb 162Mbps 12kb
4K video 7.2Mbps 180Mbps 12kb

Table 5: Characteristics of the 4 classes of flows.

Table 6 summarizes the delay found for each class and each method. In
order to make all methods compute the delays faster and more accurate, we
concatenate servers that are crossed by the same sets of flows. This enables the
LP method to compute the delays fast (which would not be possible otherwise).

Because the shaping rate at each server is four times larger than the service
rate, TFA++ is outperformed by all the other methods (although slightly by
SFA). The delays are divided by approximately 2 between SFA and PLP, and
again by 2 between LP and PLP. We also see that the LP method provides
a good approximation of the actual worst-case: the last column of Table 6
represents the delay obtained when the newtork is simulated and the maximum
traffic arrived from time 0. The gap can also be explained by the fact that the
DRR service curve can be pessimistic and that this trajectory may not be the
one maximizing the delays.

32

1G

1G

1G

1G

5G

5G

5G 5G 5G 5G

5G 5G 5G

10G 10G

Figure 22: Smart campus network: four classes of traffic arrive according to
every path drawn.

class TFA++ (µs) SFA (µs) PLP (µs) LP (µs) simulation (µs)
EP 156 157 129 112 33
VR 7970 6890 3700 2454 1911
VC 11679 10260 5395 3563 3171
4KV 26481 22881 12084 7986 7147

Table 6: Delays with for the four classes of traffic with the different methods,
and the simulation of a candidate trajectory for the worst-case delay.

8 Conclusion

In this paper, we have proposed a new linear program technique for the analysis
of FIFO networks, that offers a good trade-off between accuracy of the bounds
and tractability. This algorithm does not lead to performance bounds as accu-
rate as the previous ones, but it can be performed in polynomial time, which
enables to use it in larger networks from real cases. This new algorithm also
improves the performances bounds compared to the other methods from the
literature.

We also presented a linear programming solution to deal with cyclic net-
works. Although presented for FIFO networks, this solution is valid for the
other LP methods used in network calculus. This method improves both the
delay bounds and the stability region.

Comparison with other scalable methods (TFA++, SFA) also enables to
have a more precise knowledge of when these bounds are accurate. While SFA
is never accurate, we could exhibit cases where TFA++ can provide accurate
performance guarantees. It is when the load of the network is small or medium
and the maxumum and minimum service rates coincide.

Through the example of TFA, we saw that the use of the shaping was very
important to reduce the performance bounds computed. One research direction
would also be to see if SFA can be adapted to take into account the shaping effect
into a SFA++ method. Some work has already been done in this direction [29],
and the improvement computed when only the flow of interest is shaped. It

33

would be interesting to see if the shaping of the cross-traffic can improve the
bound for SFA.

Concerning the accuracy/tractability trade-off, many questions remain open
to move from tractability to scalability. First, the PLP algorithm is tractable,
but it might not yet be usable for large network. One step to scalability could
be to decompose the network into smaller sub-networks, and recombine these
sub-networks for performance computations. Many issues would then have to
be solved: what is a good decomposition? In particular, what can be the size
of the sub-networks: medium size with PLP, small size with LP?

References

[1] Time-sensitive networking task group, http://www.ieee802.org/1/pages/tsn.html
(2017).

[2] R. Cruz, Quality of service guarantees in virtual circuit switched networks,
IEEE Journal on selected areas in communication 13 (1995) 1048–1056.
doi:10.1109/49.400660.

[3] J. M. McManus, K. W. Ross, Video-on-demand over ATM: Constant-rate
transmission and transport, IEEE J.Sel. A. Commun. 14 (6) (1996) 1087–
1098. doi:10.1109/49.508280.

[4] M. Boyer, N. Navet, X. Olive, E. Thierry, The PEGASE project:
precise and scalable temporal analysis for aerospace communication
systems with network calculus, in: ISOLA’10, 2010, pp. 122–136.
doi:10.1007/978-3-642-16558-0_13.

[5] E. Mohammadpour, E. Stai, M. Mohiuddin, J. L. Boudec, Latency and
backlog bounds in time-sensitive networking with credit based shapers and
asynchronous traffic shaping, in: 30th International Teletraffic Congress,
ITC, 2018, pp. 1–6. doi:10.1109/ITC30.2018.10053.

[6] L. Zhao, P. Pop, Z. Zheng, H. Daigmorte, M. Boyer,
Latency analysis of multiple classes of AVB traffic in TSN with standard credit behavior using network calculus,
CoRR abs/2005.08256 (2020). arXiv:2005.08256.
URL https://arxiv.org/abs/2005.08256

[7] M. Boyer, G. Stea, W. M. Sofack,
Deficit round robin with network calculus, in: B. Gaujal, A. Jean-
Marie, E. A. Jorswieck, A. Seuret (Eds.), 6th International ICST
Conference on Performance Evaluation Methodologies and Tools, Cargese,
Corsica, France, October 9-12, 2012, ICST/IEEE, 2012, pp. 138–147.
doi:10.4108/valuetools.2012.250202.
URL https://doi.org/10.4108/valuetools.2012.250202

[8] E. Mohammadpour, E. Stai, J. L. Boudec,
Improved credit bounds for the credit-based shaper in time-sensitive networking,
CoRR abs/1901.04957 (2019). arXiv:1901.04957.
URL http://arxiv.org/abs/1901.04957

34

http://www.ieee802.org/1/pages/tsn.html
https://doi.org/10.1109/49.400660
https://doi.org/10.1109/49.508280
https://doi.org/10.1007/978-3-642-16558-0_13
https://doi.org/10.1109/ITC30.2018.10053
https://arxiv.org/abs/2005.08256
http://arxiv.org/abs/2005.08256
https://arxiv.org/abs/2005.08256
https://doi.org/10.4108/valuetools.2012.250202
https://doi.org/10.4108/valuetools.2012.250202
https://doi.org/10.4108/valuetools.2012.250202
http://arxiv.org/abs/1901.04957
http://arxiv.org/abs/1901.04957
http://arxiv.org/abs/1901.04957

[9] J.-Y. Le Boudec, A theory of traffic regulators for deterministic networks with application to interleaved regulators,
IEEE/ACM Trans. Netw. 26 (6) (2018) 2721–2733.
doi:10.1109/TNET.2018.2875191.
URL https://doi.org/10.1109/TNET.2018.2875191

[10] L. Thomas, J. L. Boudec, A. Mifdaoui,
On cyclic dependencies and regulators in time-sensitive networks, in:
IEEE Real-Time Systems Symposium, RTSS 2019, Hong Kong,
SAR, China, December 3-6, 2019, IEEE, 2019, pp. 299–311.
doi:10.1109/RTSS46320.2019.00035.
URL https://doi.org/10.1109/RTSS46320.2019.00035

[11] A. Mifdaoui, T. Leydier, Beyond the accuracy-complexity tradeoffs of com-
positional analyses using network calculus for complex networks, in: 10th
International Workshop on Compositional Theory and Technology for Real-
Time Embedded Systems (co-located with RTSS 2017), 2017, pp. 1–8.

[12] A. Bouillard, G. Stea, Exact worst-case delay for fifo-multiplexing tandems,
in: B. Gaujal, A. Jean-Marie, E. A. Jorswieck, A. Seuret (Eds.), 6th
International ICST Conference on Performance Evaluation Methodologies
and Tools, Cargese, Corsica, France, October 9-12, 2012, ICST/IEEE,
2012, pp. 158–167. doi:10.4108/valuetools.2012.250090.
URL https://doi.org/10.4108/valuetools.2012.250090

[13] A. Bouillard, G. Stea, Exact worst-case delay in fifo-multiplexing feed-forward networks,
IEEE/ACM Trans. Netw. 23 (5) (2015) 1387–1400.
doi:10.1109/TNET.2014.2332071.
URL https://doi.org/10.1109/TNET.2014.2332071

[14] J. Zhang, L. Chen, T. Wang, X. Wang,
Analysis of TSN for industrial automation based on network calculus,
in: 24th IEEE International Conference on Emerging Technologies and
Factory Automation, ETFA 2019, Zaragoza, Spain, September 10-13,
2019, IEEE, 2019, pp. 240–247. doi:10.1109/ETFA.2019.8869053.
URL https://doi.org/10.1109/ETFA.2019.8869053

[15] A. Bouillard, M. Boyer, E. Le Corronc, Deterministic Network Calculus:
From Theory to Practical Implementation, ISTE, 2018.

[16] J.-Y. Le Boudec, P. Thiran, Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet, Vol. LNCS 2050, Springer-Verlag, 2001,
revised version 4, May 10, 2004. doi:10.1007/3-540-45318-0.

[17] C.-S. Chang, Performance Guarantees in Communication Networks, TNCS,
Springer-Verlag, 2000.

[18] A. Bouillard, Stability and performance bounds in cyclic networks using network calculus,
in: É. André, M. Stoelinga (Eds.), Formal Modeling and Analysis
of Timed Systems - 17th International Conference, FORMATS 2019,
Amsterdam, The Netherlands, August 27-29, 2019, Proceedings, Vol.
11750 of Lecture Notes in Computer Science, Springer, 2019, pp. 96–113.
doi:10.1007/978-3-030-29662-9_6.
URL https://doi.org/10.1007/978-3-030-29662-9_6

35

https://doi.org/10.1109/TNET.2018.2875191
https://doi.org/10.1109/TNET.2018.2875191
https://doi.org/10.1109/TNET.2018.2875191
https://doi.org/10.1109/RTSS46320.2019.00035
https://doi.org/10.1109/RTSS46320.2019.00035
https://doi.org/10.1109/RTSS46320.2019.00035
https://doi.org/10.4108/valuetools.2012.250090
https://doi.org/10.4108/valuetools.2012.250090
https://doi.org/10.4108/valuetools.2012.250090
https://doi.org/10.1109/TNET.2014.2332071
https://doi.org/10.1109/TNET.2014.2332071
https://doi.org/10.1109/TNET.2014.2332071
https://doi.org/10.1109/ETFA.2019.8869053
https://doi.org/10.1109/ETFA.2019.8869053
https://doi.org/10.1109/ETFA.2019.8869053
https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1007/978-3-030-29662-9_6
https://doi.org/10.1007/978-3-030-29662-9_6
https://doi.org/10.1007/978-3-030-29662-9_6

[19] M. Andrews, Instability of FIFO in the permanent sessions model at arbi-
trarily small network loads, ACM Trans. Algorithms 5 (2007) 33:1–33:29.

[20] J. Grieu, Analyse et évaluation de techniques de commutation ethernet pour l’interconnexion des systèmes avioniques
(September 2004).
URL https://oatao.univ-toulouse.fr/7385/

[21] L. Bisti, L. Lenzini, E. Mingozzi, G. Stea, Deborah: A tool for worst-case
analysis of fifo tandems, in: T. Margaria, B. Steffen (Eds.), Leveraging
Applications of Formal Methods, Verification, and Validation, Vol. 6415 of
LNCS, Springer, 2010, pp. 152–168.

[22] L. Lenzini, L. Martorini, E. Mingozzi, G. Stea, Tight end-to-end per-flow
delay bounds in FIFO multiplexing sink-tree networks, Performance Eval-
uation 63 (9-10) (2006) 956–987.

[23] L. Bisti, L. Lenzini, E. Mingozzi, G. Stea, Estimating the worst-case delay
in fifo tandems using network calculus, in: ValueTools ’08, 2008, pp. 67:1–
67:10.

[24] L. Lenzini, E. Mingozzi, G. Stea, End-to-end delay bounds in FIFO-
multiplexing tandems, in: Proceedings of the 2nd International Conference
on Performance Evaluation Methodologies and Tools (Valuetools’07), 2007,
pp. 1–10.

[25] L. Lenzini, E. Mingozzi, G. Stea, A methodology for computing end-to-
end delay bounds in FIFO-multiplexing tandems, Performance Evaluation
65 (11-12) (2008) 922–943.

[26] A. Bouillard, L. Jouhet, E. Thierry,
Tight performance bounds in the worst-case analysis of feed-forward networks,
in: INFOCOM 2010. 29th IEEE International Conference on Computer
Communications, Joint Conference of the IEEE Computer and Commu-
nications Societies, 15-19 March 2010, San Diego, CA, USA, IEEE, 2010,
pp. 1316–1324. doi:10.1109/INFCOM.2010.5461912.
URL https://doi.org/10.1109/INFCOM.2010.5461912

[27] J. Kennan, Uniqueness of positive fixed points for increasing concave func-
tions on rn: An elementary result, Review of Economic Dynamics 4 (2001)
893–899.

[28] J. L. Gearhart, K. L. Adair, J. D. Durfee, K. A. Jones, N. Martin, R. J.
Detry, Comparison of open-source linear programming solvers (2013).

[29] M. Boyer, Half-modeling of shaping in FIFO net with network calculus,
in: 18th International Conference on Real-Time and Network Systems,
Toulouse, France, 2010, pp. 59–68.
URL https://hal.archives-ouvertes.fr/hal-00544502

36

https://oatao.univ-toulouse.fr/7385/
https://oatao.univ-toulouse.fr/7385/
https://doi.org/10.1109/INFCOM.2010.5461912
https://doi.org/10.1109/INFCOM.2010.5461912
https://doi.org/10.1109/INFCOM.2010.5461912
https://hal.archives-ouvertes.fr/hal-00544502
https://hal.archives-ouvertes.fr/hal-00544502

	1 Introduction
	2 Network calculus framework
	2.1 Arrival and service curves
	2.1.1 Data processes and arrival curves.
	2.1.2 Servers and service curves.
	2.1.3 Output arrival curve

	2.2 Performance guarantees in a server
	2.3 Network model

	3 State of the art on computing bounds in FIFO networks in NC
	3.1 TFA (Total flow analysis) and TFA++
	3.2 SFA (Separated flow analysis)
	3.3 Deborah
	3.4 Linear programming

	4 A polynomial-size linear program with for tree networks
	4.1 A linear program to compute upper bound delays
	4.2 Adding SFA, TFA++ and shaping constraints

	5 Linear programs for feed-forward networks
	5.1 Unfolding a feed-forward network into a tree
	5.2 Decomposition into a tree network by splitting flows

	6 Network with cyclic dependencies
	6.1 A linear program formulation for the fix-point analysis
	6.2 Application to TFA++

	7 Experimental results
	7.1 Toy examples
	7.1.1 Tandem networks
	7.1.2 Mesh network
	7.1.3 Ring network

	7.2 Real examples
	7.2.1 Carrier networks
	7.2.2 Smart-Campus network

	8 Conclusion

