
ar
X

iv
:1

00
7.

33
36

v2
 [

cs
.N

I]
 6

 F
eb

 2
01

3

Active Topology Inference using Network Coding

Pegah Sattaria, Christina Fragoulib, Athina Markopouloua

aCalit2 Building, Suite 4100, UC Irvine, Irvine, CA 92697-2800, United States
bEPFL IC ARNI, Building BC, Station 14, CH - 1015 Lausanne, Switzerland

Abstract

Our goal is to infer the topology of a network when (i) we can send probes between sources and
receivers at the edge of the network and (ii) intermediate nodes can perform simple network coding
operations, i.e., additions. Our key intuition is that network coding introduces topology-dependent
correlation in the observations at the receivers, which can be exploited to infer the topology. For
undirected tree topologies, we design hierarchical clustering algorithms, building on our prior work
in [24]. For directed acyclic graphs (DAGs), first we decompose the topology into a number of
two-source, two-receiver (2-by-2) subnetwork components and then we merge these components to
reconstruct the topology. Our approach for DAGs builds on prior work on tomography [36], and
improves upon it by employing network coding to accurately distinguish among all different 2-by-2
components. We evaluate our algorithms through simulation of a number of realistic topologies
and compare them to active tomographic techniques without network coding. We also make
connections between our approach and alternatives, including passive inference, traceroute, and
packet marking.

Keywords: Network Tomography, Network Coding, Topology Inference

1. Introduction

Knowledge of network topology is important for network management, diagnosis, operation,
security and performance optimization. Depending on the context, one may be interested in
the topology at different layers, such as the Internet’s router-level topology, an overlay network
topology, the topology of an ad-hoc wireless network, etc.

There is a large body of prior work on measurements and inference of network topology. One
family of techniques assumes the cooperation of nodes in the middle of the network, and uses
traceroute measurements to collect the ids of nodes along paths and use them to reconstruct the
topology. Another family of techniques, referred to as network tomography, assumes no coopera-
tion from internal nodes and relies on end-to-end probes to infer internal network characteristics,
including topology. More specifically, multicast or unicast probes are sent/received between sets
of sources/receivers at the edge of the network, and the topology is inferred based on the number
and order of received probes.

In this paper, we revisit the problem of topology inference using end-to-end probes, in networks
where intermediate nodes are equipped with simple network coding capabilities. We show how to
exploit these capabilities in order to perform active topology inference in a more accurate and
efficient way than existing tomographic techniques.

Email addresses: psattari@uci.edu (Pegah Sattari), christina.fragouli@epfl.ch (Christina Fragouli),
athina@uci.edu (Athina Markopoulou)

1

http://arxiv.org/abs/1007.3336v2

Our key intuition is that network coding introduces topology-dependent correlation in the
content of packets observed at the receivers, which can then be exploited to reverse-engineer the
topology. For example, a coding point (that combines multiple incoming packets into one or more
outgoing packets) introduces correlation between packets coming from different sources, in a similar
way that multicast introduces correlation in the packets sent by the same source and observed by
several receivers. In fact, the correlation introduced by multicast has been the starting point and
the main idea underlying tomographic topology inference. Subsequent schemes made this idea
more practical, by emulating multicast with back-to-back unicast probes [10, 37]. In contrast,
relating probes from different sources to reveal intermediate nodes, also referred to as multiple-
source tomography, has been a challenge [3, 36, 37]. Using simple network coding operations at
coding points solves this problem and allows accurate and fast topology inference.

Our approach is general and can be applied to infer the topology in a range of scenarios, in-
cluding but not limited to wireless multi-hop networks. Wireless multi-hop networks are able to
support simple network coding operations (additions are sufficient for our schemes), as demon-
strated in [32], and can therefore benefit from our techniques. Furthermore, there is a good match
between some properties and constraints of such networks and our schemes. First, there is natural
variability in the delay of wireless links, which (if appropriately used - as explained in later sec-
tions) can expedite inference. Second, our schemes keep internal nodes simple (moving processing
for inference to dedicated nodes at the edge) and anonymous (revealing the logical topology but
not the identities of nodes). Finally, improving the speed of inference may prove important to keep
up with changes, e.g., due to mobility.

Our contributions are as follows. First, we consider undirected trees, where leaves can act as
sources or receivers of probes, and we design hierarchical clustering algorithms that infer the topol-
ogy, building on our prior work in [24]. Then, we consider directed acyclic graphs (DAGs) with a
fixed set of M sources and N receivers and a pre-determined routing scheme. We first decompose
the topology into a number of two-source, two-receiver subnetwork components and then we merge
these components to reconstruct the topology. Our approach for DAGs builds on prior work on
tomography [36], and improves upon it by employing simple network coding operations at inter-
mediate nodes to deterministically distinguish among all possible 2-by-2 subnetwork components,
which was impossible without network coding [36, 37]. We evaluate our algorithms through simula-
tion over a number of topologies and we show that they can infer the topology accurately and faster
than tomographic approaches without network coding. We present our schemes as active probing:
special probes are sent by the sources, specifically for the purpose of inference, and are treated
in special ways by intermediate nodes and eventually received by the receivers and processed at
a fusion center. We believe that our active probing approach with network coding provides one
more building block, in the already large space of topology inference techniques, with core strength
and ability to identify joining points. We also compare and make connections between our active
probing approach and alternatives, such as passive inference, traceroute, and packet marking.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3
presents our assumptions, notation, and problem statement. Section 4 summarizes the main re-
sults of the paper. Section 5 presents algorithms for inferring tree topologies. Binary trees are
discussed in Section 5.1, in the absence (Section 5.1.1) or presence (Section 5.1.2) of packet loss.
General trees are discussed in Sections 5.2.1 and 5.2.2. Section 6 presents algorithms for inferring
directed acyclic graphs (DAGs). Section 6.2 presents algorithms for inferring 2-by-2 subnetwork
components, in the absence (6.2.1) or presence (6.2.2) of packet loss. Section 6.3 explains how to
merge these components to reconstruct the topology. Section 7 provides simulation results for some
realistic topologies. Section 8 discusses two possible deployment scenarios (one as an active probing
scheme and another one using packet marking), and makes connections between our approach and

2

alternative topology inference approaches. Section 9 concludes the paper. Appendices A and B
analyze the probability of error of our inference algorithms in trees and DAGs, respectively.

2. Related Work

One body of related work is network tomography in general, and topology inference in par-
ticular. A good survey of network tomography can be found in [6]. An early work on topology
inference using end-to-end measurements is [38], where the correlation between end-to-end multi-
cast packet loss patterns was used to infer the topology of binary trees. The correctness of this
idea was rigorously established in [19], and was extended to general trees and to measurements
other than loss, such as delay variance [20], or more generally any metric that grows monotonically
with the number of traversed links. The idea has also been extended to unicast probes [10, 37]. In
summary, tomographic schemes for topology inference use end-to-end active probing and feed the
number, order, or a monotonic property of received probes as input to statistical signal-processing
techniques. Inference of link characteristics [5] can also be combined with topology inference [37].
In a different context, similar problems have been studied in the context of phylogenetic trees [22].
The work in [1] uses such algorithms [22], for topology inference in sparse random graphs.

In addition, inference of congested links has been studied from the angles of compressive sensing
[11, 12, 48] and group testing [7, 16, 35]. The work in [7] formulates the problem as a graph-
constrained group testing, where the items correspond to edges, some of them being defective,
and the goal is to identify the defective edges given that the test matrix conforms to constraints
imposed by the graph, e.g., the path connectivities. The work in [48] recovers sparse vectors,
representing certain parameters of the links over the graph, through l1 minimization. It improves
the number of required measurements over [7], as compressive sensing allows real numbers for the
link characteristics and measurements instead of true/false binary values in group testing problems.

Most tomographic approaches rely on probes sent from a single source in a tree topology
[2, 4, 10, 17–21, 23, 38, 44]. Rabbat et al. [13, 36, 37] introduced the multiple-source multiple-
destination (M-by-N) tomography problem, by sending probes between M sources and N receivers.
In [36, 37], it was shown that an M-by-N network can be decomposed into a collection of 2-by-2
components. Then, coordinated transmission of multi-packet probes from two sources and packet
arrival order measurements at the two receivers were used to infer some information about the
2-by-2 topology. Assuming knowledge of M 1-by-N topologies and all 2-by-2 components, it was
also shown how to merge a second source’s 1-by-N tree topology with the first one. The resulting
M-by-N topology is not exact, but bounds are provided on the locations of joining points with
respect to the branching points. This approach also requires a large number of probes, as do all
approaches that need to collect enough probes for statistical significance [10, 17, 20, 21, 46]. Our
work on DAGs builds on and extends the multiple-source multiple-destination work in [36, 37], but
uses network coding to achieve exact and fast topology inference.

A second body of related work is from the network coding literature. It is well known that linear
network coding makes a network behave as a linear system, whose transfer function depends on
the topology. Based on the source packets and the observations at the receivers, one can then try
to passively infer the topology. The following papers consider that random linear network coding
is employed for the purpose of information transfer, and they perform passive inference on the
side. In [28], passive techniques are used to distinguish among failure patterns. In [30, 31, 42, 49],
subspace properties at various nodes are used for topology inference and error localization. In [42],
each node passively infers its upstream topology at no cost to throughput, but at high complexity.

In contrast, we propose active probing and a simple coding scheme at intermediate nodes, to
achieve low-complexity topology inference at the end nodes. In Section 8, we provide a detailed
comparison and make connections between active and passive topology inference. In [25, 34], we

3

revisited link-loss (but not topology) tomography using active probing and network coding. In the
first part of this paper, we extend our preliminary work in [24], where we showed that active probes
from two sources and XOR at intermediate nodes are sufficient to infer binary tree topologies. This
approach generalizes to trees, but not to general graphs. In [40], we used a different approach for
general graphs, which builds on [36, 37]: we identify 2-by-2 components and merge them together
in an M-by-N topology. This journal paper combines and extends our preliminary work in [24, 40].

A practical approach for inferring the network topology is based on traceroute [8, 9, 14, 15, 26,
29, 43, 45, 47, 50]. Multiple traceroute’s are sent among monitoring hosts, they record node ids
along paths, and this information is put together to reconstruct the graph. The traceroute-based
approach is discussed in detail in Section 8.5.

Wireless sensor networks and information fusion are considered in [27, 33]. Information is
collected at sensor nodes and is forwarded towards a fusion center, following a known reverse tree
topology. Information is aggregated [27] or network coded [33] at intermediate nodes, and the
loss rates of links are inferred based on the observations at the fusion center. In contrast, we are
interested in inferring the topology of DAGs.

3. Problem Statement

3.1. Model

Assumptions about the Network. We are interested in inferring static topologies1. We are
also interested in inferring logical topologies, which are defined by the branching and joining points
where the measured end-to-end paths meet2.

In the first part of the paper, we consider undirected trees with |V | = n vertices, |E| = n − 1
edges that can be used in both directions, and exactly one path between any two vertices. We
denote by L = {1, 2, ..., L} the leaf-vertices of the tree, which correspond to end-hosts that can act
as sources or receivers of probe packets.

In the second part, we consider directed acyclic graphs (DAGs) with M sources and N receiver
nodes, which we refer to as M-by-N topology, following the terminology of [36, 37]. Without loss
of generality (W.l.o.g.), we present most of our discussion in terms of M = 2, i.e., inferring a
2-by-N topology; an M-by-N topology can be constructed by merging smaller structures. Similarly
to [36, 37], we also assume that a predetermined routing policy maps each source-destination pair
to a unique route from the source to the destination.3 This implies the following three properties,
first stated in [36].

A1 There is a unique path from each source to each receiver.

A2 Two paths from the same source to different receivers take the same route until they branch,
so that all 1-by-2 components have the “inverted Y” structure; the node where the paths to
the two receivers split is called a branching point, B.

1Our algorithms assume that the topology remains static during the inference. However, the topology may change
over longer time scales.

2Intermediate nodes in a logical topology have degree at least 3, and in-degree and out-degree at least 1. Since it
is necessary for identifiability, focusing on logical topologies is a standard assumption in topology inference problems.

3Our assumption for single path routing is based on the following reasons: (1) single path routing is the reality
in most networks today: routers pick the unique next hop towards the destination; (2) this was also the assumption
made by Rabbat et al. [36, 37], which is the starting point on which we build in this paper, by adding simple network
coding operations; (3) topology inference when multi-path routing is used is an open problem; the state of the art is
[1], which proposes a heuristic approach; and (4) network coding is only used on special probes for the purpose of
inference here, and not for throughput, which could be improved by using multi-path routing.

4

A3 Two paths from different sources to the same receiver use exactly the same set of links after
they join, so that all 2-by-1 components have the “Y” structure; the node where the paths
from the two sources merge is called a joining point, J .

These properties are consistent with destination-based routing: the next hop taken by a packet
is determined by a routing table lookup on the destination address. Each subnetwork from one
source to N receivers is a 1-by-N tree; the general graph is called a “multiple-tree” network [36].

Loss and Delay. We consider scenarios with and without packet loss. Each link has a delay
with a fixed part, e.g., the propagation and transmission delay, and a variable part, e.g., the
queueing delay. Path delay is the sum of delays across the links in the path. We have no control
over the delays of the links but we have control over the timing of operations at sources and
intermediate nodes. We can make sources and intermediate nodes operate in time slots of duration
T and W , respectively, which can be chosen to be quite longer than link delays as explained later.4

Goal. Our goal, in this paper, is to design active probing schemes, i.e., the operation of
sources, intermediate nodes and receivers, that will allow us to infer the logical topology from the
observations at the receivers. We restrict the space of possible operations to the simple options
described in the rest of this section. In later sections, we design schemes based on these simple
operations and we show that they are sufficient for topology inference. We will revisit the problem
statement and make it more precise in the sections for trees and DAGs.

Operation of Sources. An experiment consists of a pair of sources S1 and S2 sending,
at the same time, a multicast probe packet each (x1 = [1, 0] and x2 = [0, 1], or more generally
symbols from a finite field) to all N receivers. These are special probes sent solely for the purpose of
inference, not for regular data transfer, and treated in a special way, specified next, by intermediate
nodes. We perform up to countMax experiments. Consecutive experiments are spaced apart by a
large time interval T , to ensure that only probes in the same experiment are combined together.

Operation of Intermediate Nodes. Intermediate nodes are assumed to support unicast,
multicast and the simplest possible network coding operation, i.e., addition over a finite field Fq.
They operate in time slots of pre-determined duration or window W : a node waits for W to receive
probe packets from its incoming links; if it receives more than one packet, it codes them together
and forwards (unicast or multicast) the resulting packet downstream. The choice of W affects
where the packets from the two sources meet. Essentially, an intermediate node can act either as a
joining point (J), in which case it adds all incoming packets and forwards the output to all outgoing
links;5 or as a branching point (B), in which case it sends (multicasts) the single incoming packet
downstream. This operation will be specified more precisely in the sections for trees and DAGs.

Operation of Receivers. Each receiver i receives probes Ri, which are the source packets
x1, x2, or a linear combination of x1 and x2, as the result of network coding operations at in-
termediate nodes. Inference of topology is based only on the observations Ri’s. We assume that
these observations are sent to a fusion center for central processing and inference; consistently to
all tomography literature, the communication of the receivers and the fusion center is out of the
scope of this paper.

Intuition. Multicast as well as network coding (which is limited to simple addition in this
paper, thus can be thought of as reverse multicast) introduce topology-dependent correlation in the

4This can be achieved, for example, by assuming a coarse synchronization across source and network nodes (on
the order of 5-10ms using NTP), and by making nodes wait for a window before sending or coding/forwarding probe
packets respectively.

5In our schemes, all joining points perform network coding. Therefore, in the rest of the paper, we use the terms
joining point, which comes from the tomography literature [13, 36, 37], and coding point, which comes from the
network coding literature, interchangeably.

5

content of packets, which can be used at the receivers to infer the underlying topology. In particular,
multicast helps reveal the branching points while network coding helps reveal the joining points.

3.2. Scope and Discussion

Possible deployment scenarios are described in Section 8.1. The first scenario (sending special
probes for the sole purpose of topology inference) is used to describe the schemes throughout the
paper. Furthermore, and beyond the specific details of the deployment, we believe that our work
provides a fundamental building block for exploiting correlation in the content of network coded
packets for inference of joining points. Similarly, multicast tomography showed how to exploit
correlation in multicast packets for inference of branching points; it was then followed by a series
of papers that used unicast traffic to “mimic” multicast probes and the whole functionality while
being more practical.

We would like to emphasize that, in this paper, we apply network coding on special probes
solely for the purpose of topology inference, and not for improving data transfer (decoding the
source messages at the receivers). In data transfer, throughput and delay are indeed important
metrics. In our problem, the important metrics are: identifiability (for which, we show that network
coding is necessary); and efficiency, i.e., the number of probes used and the amount of network
resources consumed for a certain level of estimation accuracy (which we show that it is improved
by network coding). Therefore, the delay of the algorithms is not of primary concern in this paper:
inferring the topology in the order of seconds as opposed to milliseconds is acceptable in our setup.
Multi-path routing, which could increase throughput with network coding, is not considered either.

4. Main Results

The main results obtained in this paper are the following:

• For tree networks:

– When there is no packet loss in the links, we design the deterministic Alg. 1, which
infers the topology in O(n) iterations, where n is the number of edges in the tree.

– When there is packet loss in the links, we design Alg. 2, which infers the topology in
O(nM) iterations, where M ≤ 1

Pmin
, and Pmin is the minimum probability of success

across all paths between a source and a destination.

• For DAGs, we decompose the topology into 2-by-2 subnetwork components, and then we
merge these components to reconstruct the topology. We design inference algorithms to infer
the 2-by-2’s, and we design merging algorithms to merge them back to the original topology:

– When there is no packet loss in the links, we design Alg. 5, which identifies any 2-by-2
topology with probability of error analyzed in Eq.(2), in countMax experiments.

– When there is packet loss in the links, we design Alg. 6, which identifies any 2-by-2
topology with probability of error analyzed in Lemma 6.1, in countMax experiments.

– Assuming knowledge of all the 2-by-2’s and one source’s 1-by-N tree topology, we design
Alg. 7 that merges a second source’s topology with the first one by identifying all the
joining points in O(N logN) steps.

– Assuming knowledge of all the 2-by-2’s, but not the 1-by-N tree topology, we can identify
all the joining points if and only if there are no branching points in a row. We merge
the two topologies in

(

N
2

)

steps, as we describe in Section 6.3.2.

6

– We also provide a lower bound on the number of 2-by-2’s required by any merging
algorithm to uniquely localize all the joining points in a 2-by-N topology, given one
source’s 1-by-N topology. In Lemma 6.2, we show that it is N

2 .

• We also make connections between our approach and alternative topology inference ap-
proaches in Section 8.

Note that Alg. 5, Alg. 6, and Alg. 7 build on and extend the corresponding algorithms by
Rabbat et al. [13, 36, 37], in the presence of network coding.

5. Inferring Trees

Overview. We design algorithms for inferring undirected tree topologies, based only on probes
sent between leaf nodes. We follow a hierarchical, top-down approach, by iteratively dividing the
tree topology into smaller clusters and revealing how the groups are connected to each other.

Operation of Sources and Receivers. In each iteration (timeslot T >> W) a set of leaves
(different across timeslots) are chosen to act as sources and the remaining leaves act as receivers.
Each source sends a distinct packet. The receiver stores the first packet it receives, and discards
any subsequent packets (in the same iteration).

Operation of Intermediate Nodes. Every intermediate node operates in intervals of du-
ration W . If, within W , the node receives a single probe from one of its neighbors, it multicasts
the probe to all other neighbors. If, within W , it receives more than one packet from different
neighbors, it adds them and forwards the result to all remaining neighbors. In binary trees, this
linear combination is simply XOR. In general trees, we need operations over higher fields.6

Summary of Results. In the rest of this section, we first consider binary trees, with or
without packet loss. Then we extend our algorithms to m-ary trees. For trees without loss, we
design deterministic algorithms that infer the topology in O(n) iterations. For trees with loss, just
one successfully received probe per network path is sufficient, without the need to collect packet
loss statistics, a property that enables rapid discovery of the underlying topology.

5.1. Binary Trees

5.1.1. Lossless Binary Tree

Let us first consider the simplest case: an undirected binary tree without packet loss. The
following example illustrates the main idea.

Example 1. Consider the tree shown in Fig. 1(a), with 7 leaves (1,2, ...7) and 5 intermediate nodes
(A,B,C,D,E). Assume that nodes 1, 7 act as sources S1, S2 and send probes x1 = [1, 0], x2 = [0, 1],
respectively. All other leaves act as receivers. Intermediate node A receives x1 and forwards it to
leaf 2 and to node C. Similarly, node D receives x2 and forwards it to node E (which in turn

6Note that other mappings at the joining point, from (x1, x2) to f(x1, x2), would achieve the same goal. Linear
network coding, f(x1, x2) = x1 + x2 , is only one such mapping. Concatenation (x1, x2), for example, is another
mapping. This approach is, for example, used as data aggregation in [27], where a node waits to receive data from all
its children in the reverse multicast tree (or until a specified period of time has elapsed). The node then aggregates
all the data and forwards it to the sink via the reverse tree. However, the advantages of using network coding,
in particular, compared to these other mapping functions, include simple linear operations and fixed packet size.
Indeed, when we have more than two source packets meeting at a joining point, network coding provides an output
packet of fixed size at the output, while concatenation provides an output packet with output linear in the number
of incoming packets. The same advantage applies when we have the same probe packet meeting multiple times with
the other probe at a J (as it may be the case in DAGs), e.g., network coding results in 2x2. In summary, although
it is possible to use other approaches for the same purpose, network coding is the most efficient way to do the task.

7

E

1 42 3

5 6

7

A B

D

C

(a) Undirected binary tree we
want to infer.

D

1 42 3

5

C

6 7

A B

(b) Structure revealed after 1
iteration. Leaves 1 and 7 act
as sources. Probes meet at C.

7

1 42 3

C
A B

D

5 6
(c) Structure revealed after two
iterations. Leaves 5 and 6 act
as sources. Probes meet at E.

Figure 1: Example 1: inferring the topology of an undirected binary tree with 7 leaves and 5 intermediate nodes.

forwards it to leaves 5, 6) and to node C. Probe packets x1 and x2 arrive at node C, which adds
them, creates the packet x3 = x1 ⊕ x2 = [1, 1], and forwards x3 to node B, which in turn forwards
it to leaves 3, 4.7

At the end, leaf 2 receives x1, leaves 5, 6 receive x2 and leaves 3, 4 receive x3 = x1 ⊕ x2. Thus,
the leaves of the tree can be partitioned into three sets: L1 containing S1 and the leaves that
received x1, i.e., L1 = {1, 2}; L2 = {5, 6, 7} containing S2 and the leaves that received x2; and
L3 = {3, 4} containing the leaves that received x1 ⊕x2. From this information observed at the edge
of the network, we can deduce that the binary tree has the structure depicted in Fig. 1(b): three
components, each seeing a different probe (x1, x2, x1⊕x2) flowing through it, and connected through
three links to the middle node C. This concludes the first experiment/iteration.

To infer the structure that connects leaves {5, 6, 7} to node C, we need a second experiment. We
randomly choose two of these leaves, e.g., 5, 6, to act as sources S1, S2. Any probe packet leaving
node D will be multicast to all remaining leaves of the tree, i.e., nodes {1, 2, 3, 4} observe the same
packet. One can think of node D as a single “aggregate-receiver” that observes the common packet
received at nodes {1, 2, 3, 4}. Following the same procedure as before, assuming that x1, x2 meet at
node E, nodes 7 and {1, 2, 3, 4} receive x3 = x1 ⊕ x2. Using this additional information and the
fact that the topology is a binary tree, we refine the inferred structure from Fig. 1(b) to Fig. 1(c).

Algorithm 1 generalizes the previous example and can infer any binary tree topology. It starts
by considering all the leaves L. It calls SendTwoProbes and partitions L into smaller sets L1, L2,
L3. It proceeds by recursively calling SendTwoProbes within each set, until all edges are revealed.

Lemma 5.1. Algorithm 1 terminates in at most n iterations and exactly infers the topology of an
undirected binary tree.

Proof. Consider a particular iteration (call of SendTwoProbes): sources S1 and S2 send exactly one
probe packet each to all other leaves. Now consider the intermediate nodes on the path P between
the two sources. Depending on the link delays, there are two possibilities.

The first possibility is that x1 and x2 meet (arrive within the sameW) at one of the intermediate
nodes on P, e.g., node A. Node A forwards their XOR to its third link, and the iteration reveals the

7We have chosen the directionality of the edges depending on which source reaches the intermediate node first.
In this example, we assume that all links have the same delay. For different delays, x1, x2 could meet at different
nodes, but the algorithm will still work, as discussed after Lemma 5.1.

8

Algorithm 1 Topology Inference for Lossless Binary Tree
1: E = ∅; /*Initially, we can only observe the leaves (L); our goal is to reveal all the edges in the tree, i.e., set E.*/

2: InferBinaryTree(L):
3: (L1,L2,L3, A1, A2, A3)=SendTwoProbes(L);
4: for i ∈ {1, 2, 3} do
5: if |Li| == 0 then
6: Continue;
7: else if |Li| == 1 || |Li| == 2 then
8: for v ∈ Li do
9: E = E ∪ {(v, Ai)}; /*Connect the leaf nodes v in Li through node Ai to the rest of the network.*/
10: end for
11: else
12: /*|Li| > 2, i.e., Li contains three or more leaves.*/
13: InferBinaryTree(Li ∪Ai); /*Node Ai that connects Li to the network acts as an aggregate receiver8.*/
14: end if
15: end for
16: return
17: Replace vertices of degree two with a single node.

18: SendTwoProbes(L):
19: Randomly choose two leaves in L to act as sources S1, S2 and send probe packets x1, x2 respectively. All other

leaves L − {S1, S2} act as receivers. Intermediate nodes act as branching or joining points.
20: When all receivers receive a probe, partition L into L1,L2,L3 as follows.
21: Set L1 contains S1 and all receivers that observe x1. Set L2 contains S2 and all receivers that observe x2. Set

L3 contains all receivers that observe x3 = x1 ⊕ x2.
22: if |L3| 6= 0 then
23: Create new nodes A1, A2, A3, A∗.
24: E = E ∪ {(A1, A∗), (A2, A∗), (A3, A∗)};
25: /*This case is depicted in Fig. 2(a): L is divided into three components L1, L2, L3, connected through three

edges to nodes A1, A2, A3.*/
26: else
27: /*L3 = ∅*/
28: Create new nodes A1, A2. Also, A3 = null.
29: E = E ∪ {(A1, A2)};
30: /*This case is depicted in Fig. 2(b): L is divided into 2 components L1,L2, connected through a single edge.*/
31: end if
32: return the components L1,L2,L3 and the nodes A1, A2, A3.

neighboring edges and nodes to A as depicted in Fig. 2(a). Another possibility is that x1 and x2
cross each other while traversing the same link of P in opposite directions, i.e., they do not meet
at a node. Even if a leaf node receives more than one probe, we design their operation so that they
only keep the first one. In this case, we infer the configuration in Fig. 2(b) that reveals one edge.

In summary, the algorithm iteratively divides the binary tree into smaller components until one
component has two or less leaves, in which case we know its structure. In each iteration, we reveal
three edges or one edge. At the end, we have revealed all n − 1 edges. Therefore, the algorithm
requires between n−1

3 and n− 1 iterations.

Notes. In each iteration, every link is traversed exactly once by a probe. Link delays affect
where the probes meet and thus what components are revealed in each iteration. However, they
do not affect the correctness of the algorithm.

8Although we cannot directly observe Ai, whatever is received by Ai will be received by the leaves that are in L
but not in Li; thus acting as an “aggregate” receiver on their behalf.

9

2

A

L L

L

A 1
2

A 3

1 2

3

S

S

x
x

x

1

2

1

2

3 =x + x1

(a) Dividing L into 3 components.

A

L L

A 1

1 2

S

S

x
x

1

2

1

2

2

(b) Dividing L into 2 components

Figure 2: Edges and vertices of the graph, as revealed by a single iteration (call of SendTwoProbes) in Algorithm 1.
The leaves L are partitioned into two or three groups, based on their observations, x1, x2, x1 ⊕ x2.

5.1.2. Lossy Binary Tree

Packet loss may cause confusion when dividing the receivers into components. One solution is
to send multiple probes from the same two sources in each iteration as we discuss next. However,
given packet loss and delay variability, this may result in probes meeting at different nodes in the
same iteration9. This problem exists because we deal with undirected graphs, where a link may be
traversed in opposite directions by probes sent in the same iteration. It can be avoided by fixing
the directionality of edges in each iteration. This can be achieved in a distributed way by the first
packet arriving at each intermediate node. We modify the intermediate node operations as follows.

Intermediate Node Operation: Each intermediate node keeps a table of its neighbors. In
each iteration, it marks these neighbors as source or sink neighbors. Once this marking is done,
it does not change for the duration of the iteration. The first time during an iteration that an
intermediate node receives a probe, it waits for a window W to receive probes from other neighbors.
After this time W passes, the node marks all neighbors from which it received packets as sources
and all other neighbors as sinks. For the remaining duration of the iteration, the node accepts
packets only if they originate from its source neighbors. If the node receives a packet from one of
its source neighbors, it forwards it to all its sink neighbors. If it receives more than one packet from
different source neighbors, it linearly combines them, and forwards the result to its sink neighbors.
The node rejects probes coming from sinks, and does not forward packets towards sources.

Alg. 2 presents the modifications required for Alg. 1 to be able to infer binary trees with lossy
links. The main difference is that in each iteration, each source sends M instead of one probes.

Performance: Alg. 2 has an associated probability of error, since a leaf might not receive the
“correct” probe packet10. For our algorithm to operate correctly, it suffices that each receiver
receives at least one packet from each of the sources it is connected to. Nodes in L1 or L2 are
connected to one source (S1 or S2), while nodes in L3 to two sources. In general, the number
of probes M required per iteration in order to have one “success” is a random variable that
depends on the topology. For general trees, the distribution of this random variable is difficult
to characterize precisely, but upper bounds can be provided. In particular, we need every path
(from each source to each receiver) to work at least once. Different paths have different probability
of success depending on their length (lP) and the probability of loss on every link across the

9This was not a problem in the lossless case. In a given iteration, since only one probe packet is generated by
each source, the packets at most meet at one intermediate node.

10In a given iteration, an error may occur either because a leaf does not receive any packet (which can be made
arbitrarily small by increasing the number of probes M) or, because it belongs to L3 but happens to receive only x1

or only x2 packets. This probability decreases very fast as M increases, as observed in the simulations of Section 7.

10

Algorithm 2 Topology Inference for Lossy Binary Tree. We only describe the SendTwoProbes

function below since the first part (which contained the InferBinaryTree procedure) is similar
to Algorithm 1. SendTwoProbes is different from Algorithm 1 in that: (i) each source sends M ,
instead of one, probe packets; and (ii) the rules to divide L into three components change as follows.

1: SendTwoProbes(L):
2: Randomly choose two leaves in L to act as S1, S2. The sources transmit, for M times, probe packets x1, x2,

respectively. All other leaves L−{S1, S2} act as receivers. Intermediate nodes act as branching or joining points.

3: /*Partition L into L1,L2,L3 as follows.*/
4: for each receiver j do
5: Let Oj be the set of all observations of receiver j. /*We consider the union of observations for each receiver.*/

6: /*For aggregate receiver Ai, we apply the same rule using the union of the aggregate receiver observations.*/
7: if Oj contains only x1 then
8: Assign receiver j to the set L1.
9: else if Oj contains only x2 then
10: Assign receiver j to the set L2.
11: else if Oj contains both x1 and x2, or it contains an x1 ⊕ x2 packet then
12: Assign receiver j to the set L3.
13: else
14: /*Oj = ∅*/
15: Randomly assign receiver j to one of the components.
16: end if
17: end for
18: if |L3| 6= 0 then
19: Create new nodes A1, A2, A3, A∗.
20: E = E ∪ {(A1, A∗), (A2, A∗), (A3, A∗)};
21: /*This case is depicted in Fig. 2(a): L is divided into three components L1, L2, L3, connected through three

edges to nodes A1, A2, A3.*/
22: else
23: /*L3 = ∅*/
24: Create new nodes A1, A2. Also, A3 = null.
25: E = E ∪ {(A1, A2)};
26: /*This case is depicted in Fig. 2(b): L is divided into 2 components L1,L2, connected through a single edge.*/
27: end if
28: return the components L1,L2,L3 and the nodes A1, A2, A3.

path (pi for link i): P = (1 − p1) · · · (1 − plP). Let Pmin be the minimum probability of success
across all paths. Then M is a geometric random variable with success probability Pmin. Therefore,
E[M] = 1/Pmin, var[M] = (1−Pmin)/P

2
min, and Pr(|M−E[M]| ≥ m) ≤ var[M]/m2. An example

computation for the exact probability of error in a specific topology (tree of Fig. 1(a)) is provided
in Appendix A. Note that in general, M is much smaller compared to the methods that collect a
statistically significant number of packets and perform estimation.

5.2. M-ary Trees

5.2.1. Full M-ary Trees

We first consider full m-ary trees, where all intermediate nodes have degree m + 1, m ≥ 3,
without packet loss. Alg. 1 can still accurately infer the topology in less than n iterations. However,
we can modify the algorithm to infer the topology even faster. The idea is to keep the hierarchical
clustering approach but increase the number of components revealed in each iteration, either (i)
by changing the intermediate nodes so that they forward different linear combinations of incoming
probes to different outgoing links; or (ii) by increasing the number of sources in each iteration.

Modification I: (two sources per iteration, coding points send different combinations to differ-
ent links). When an intermediate node receives two incoming packets from two different neighbors,

11

it deterministically generates different linear combinations, e.g., x1+x2, x1+2x2, · · · and forwards
each resulting packet to a different neighbor. Therefore, when x1 and x2 meet at any intermediate
node, the leaves of the network will be divided into m+ 1 components, depending on which probe
packet they receive. If the probe packets do not meet at a node but cross each other, the leaves of
the network will be divided into two components. Once a component has m or less leaves, since
we have a full m-ary tree, we know its structure. Therefore, in each iteration, we reveal m + 1
edges or one edge, and the total number of iterations is reduced to at least n−1

m+1 and at most n− 1
iterations. Note that the operations are performed over Fm2 in this case.

Modification II: (more than two sources per iteration, coding points send the same com-
bination to all outgoing links). Alternatively, we can use up to m sources (as per Lemma 5.2)
per iteration. The sources send x1 = [1, 0, 0, · · · , 0], x2 = [0, 1, 0, · · · , 0], · · · , xm = [0, 0, 0, · · · , 1],
respectively. When an intermediate node receives k packets from different neighbors within W ,
2 ≤ k ≤ m, it simply adds them up (over F2m) and forwards the result to all remaining neighbors.
Depending on whether the node receives k packets or only a single packet, the leaves of the network
will be divided into m + 1 or m more components; i.e., in each iteration, we reveal m + 1 or m
edges. Therefore, the algorithm requires at least n−1

m+1 and at most n−1
m

iterations.

Lemma 5.2. The maximum number of sources that can be used to uniquely infer the topology of
a full m-ary tree is m.

Proof. We show that if we use m+1 sources to infer the topology of a full m-ary tree, it cannot be
uniquely identified. For example, consider a binary tree with three sources sending x1 = [1, 0, 0],
x2 = [0, 1, 0], and x3 = [0, 0, 1] respectively, to all other leaves in the tree. Assume that the three
probe packets meet at one intermediate node; thus, we divide the leaves into four components,
which observe x1, x2, x3, and x1 + x2 + x3 = [1, 1, 1] respectively. Since the degree of intermediate
nodes is three, we conclude that two of the three sources must have joined at one intermediate node
first, and then their result must have joined with the third source in another intermediate node, so
that they result in x1 + x2 + x3 in the last component. The first two sources can be either x1, x2
or x2, x3. Therefore, we cannot uniquely infer the underlying binary tree topology by observing
these four components. The same discussion applies to larger full m-ary trees (m > 2).

Note. In the presence of loss, the same argument as in Section 5.1.2 applies, i.e., we can assign
directions to edges in each iteration, so that our algorithms are applicable to the lossy case as well.

5.2.2. General M-ary Trees

In general m-ary trees, the degree of intermediate nodes varies from three up to a maximum of
m+1. We can still apply Alg. 1 and infer the tree topology in O(n) iterations. We can also apply
Modification I described in Section 5.2.1; the operations are still performed over Fm2 since probe
packets may meet at an intermediate node of degree m+1. However, we cannot apply Modification
II here: since probe packets may meet at an intermediate node of degree three, we cannot use more
than two sources according to Lemma 5.2, although there exist larger degree nodes in the tree.

6. Inferring Directed Acyclic Graphs (DAGs)

6.1. From a Single-Tree to Multiple-Tree Topologies

So far, we considered undirected trees. Let us now consider directed trees, which are a special
case of DAGs.

12

S
1

S
2

J

B

R
2 R

1

J
1
=J

2
=

B
1
=B

2
=

(a) type 1: shared

S
1

B
2

J
1

J
2

B
1

R
2 R

1

S
2

(b) type 2: non-shared

S
1

J
2

B
1

J
1

B
2

R
2

R
1

S
2

(c) type 3: non-shared

S
1

J
2

B
2

J
1

B
1

R
2 R

1

S
2

(d) type 4: non-shared

Figure 3: The four possible types of a 2-by-2 subnetwork component, as defined in [36]. There are two sources
(S1, S2) multicasting packets x1, x2 to two receivers (R1, R2). (The 1-by-2 topology of S1 is a tree composed of
S1, B1, R1, R2. Similarly, The 1-by-2 tree rooted at S2 is S2, B2, R1, R2. J1 and J2 are the joining points, where the
paths from S2 to R1 and R2, join/merge with S1’s topology.)

Example 2. Assume that we assign directions to the links of the binary tree in Fig. 1(a), all
from the top to the bottom. Clearly, we can no longer send probe packets in arbitrary directions
in each iteration. However, we can still infer some information about the topology. Assume that
we send probes from the source nodes 1 and 2, and we observe x1 ⊕ x2 at the receiver nodes 5, 6,
and 7. Therefore, we identify three components L1 = {1}, L2 = {2}, and L3 = {5, 6, 7}, together
with the intermediate nodes A and D, and three edges 1A, 2A, and AD, which connect the three
components together. However, we cannot obtain more information about the internal structure of
the component L3 or any other part of the tree network.

Next, consider a 2-by-2 network as defined in Section 3, i.e., a directed acyclic graph with two
sources, two receivers and predetermined routing. Note that directed trees are only one type among
all four possible types of the basic 2-by-2 components of any multiple-tree network, as defined in
Section 3. There exist four 2-by-2 topologies, as shown in Fig. 3, which were first defined in [36, 37].
Following the same terminology as in [36, 37], we refer to Fig. 3(a), (b), (c) and (d) as type 1, 2,
3 and 4, respectively. Type 1 is called shared [36, 37] since the joining points for both receivers
coincide (J1 = J2) and the branching points for both sources coincide (B1 = B2). The other three
types (types 2, 3 and 4) are called non-shared since they have two distinct joining points and two
distinct branching points.

In a directed tree, all 2-by-2 components are of type 1. However, in a general M-by-N topology,
several different 2-by-2 types may co-exist. The algorithms described so far can identify type 1
2-by-2 topologies, and thus, trees (either completely or partially, as described above). However,
they cannot distinguish between type 1 and type 4 2-by-2’s, as described in the following example.

Example 3. Consider Fig. 3 (a) and (d). Assume that in both cases, we send x1, x2 from S1, S2

to R1, R2 and that x1, x2 meet (arrive within the same W) at any joining point. Therefore, in both
type 1 and type 4, both receivers observe x1 + x2, and we cannot distinguish between the two types.

In general, unlike single-tree networks, the observations do not uniquely characterize the un-
derlying topology in multiple-tree networks. The reason is that once two sources in a tree network
transmit their probe packets, they at most meet at one coding point for all the receivers, as we saw
in Section 5. On the other hand, in a multiple-tree network, probe packets may meet at different
coding points for different receivers, as depicted in Fig. 4. Therefore, we need a different approach.

Problem Statement. Our goal in this section is to infer a multiple-tree topology, or an “M-
by-N” topology according to the terminology of Section 3. Similarly to [36], we take two steps. In

13

S1

x1
x2

S2

x1+x2 x1+x2

R1 R2

2 sources meet only once

(for all the receivers)

Figure 4: Single-tree vs. multiple-tree topologies. Consider a single iteration. In a multiple-tree topology, unlike the
single-tree topology, the observations at the receivers no longer uniquely identify the topology.

the first step (Section 6.2), we use several experiments and we exactly identify the type of every
2-by-2 component. In the second step (Section 6.3), we merge these 2-by-2 subnetwork components
to reconstruct the M-by-N network.

Operation of Sources. Pairs of sources are selected and send up to countMax coordinated
multicast packets to all receivers. As in the general setup, probes are spaced apart by intervals of
length T . In addition, we introduce a difference in the sending time of the two sources, which we
call the offset u. W.l.o.g., let S1 send first and S2 second.

The timing parameters T, u,W are coarsely tuned so as to create observations that can distin-
guish among different 2-by-2 types. In particular, (i) T >> W ensures that only probes within
the same experiment are coded together. To be more precise, we choose T ≥ g ·W , where g is the
maximum number of joining points on any (Si, Rj) path in the topology. In the worst case, there
can be N joining points in a row and thus, g ≤ N . However, in practice, g is usually a lot smaller.
(ii) W >> path delay (between the sources and the joining points) ensures that source packets
meet at the joining points despite link delays. (iii) u is selected randomly in each iteration, so that
it forces probes to meet at different points, or not meet at all, in different iterations. Finally, coarse
selection of T,W with rough estimates of upper bounds on link and path delays is sufficient.

Operation of Receivers. For a given 2-by-2 subnetwork, let the observations at the two
receivers be R1 = c11x1 + c12x2, R2 = c21x1 + c22x2. Based on these observations, we design
Inference algorithms that identify the 2-by-2 type (in Section 6.2) and Merging algorithms that
build the M-by-N from the 2-by-2’s (in Section 6.3).

Operation of Intermediate Nodes. In DAGs, the operation of an intermediate node,
depending on whether it acts as a joining point or a branching point, is summarized in Alg. 3
and Alg. 4, respectively. A joining point (J) adds and forwards packets, while a branching point
(B) forwards the single received packet to all “interested” links downstream. A link is “interested”
in the routing sense if it is the next hop for at least one source packet in the network coded packet.

6.2. Identifying 2-by-2 Components

In this section, we propose an approach to exactly identify a 2-by-2 component, using the same
intuition as in trees, i.e., coding operations result in observations that can uniquely characterize
the underlying 2-by-2. Our approach builds on [36] and improves over it by uniquely distinguishing
among all four 2-by-2 types, while [36] could only distinguish between shared and non-shared types.

6.2.1. Lossless 2-by-2

First, we provide an algorithm to identify the type of a 2-by-2 component without packet loss.
In the first experiment, sources S1, S2 multicast probe packets x1, x2 to R1, R2. We begin with
the assumption that S1, S2 act simultaneously, or in practice within the synchronization offset. A

14

Algorithm 3 Operation at Joining Point J, in DAGs. When two sources multicast to N receivers, J has
two incoming links and one outgoing link. Additions are performed over Fq.

1: for every time window W do
2: if (J receives two packets within W from its incoming links) then
3: as soon as the last packet arrives, it adds them up, and forwards the resulting packet downstream.
4: else if (J receives only one packet within W) then
5: it forwards the packet downstream.
6: else if (J does not receive any packet within W) then
7: /*nothing to do.*/
8: end if
9: end for

Algorithm 4 Operation at Branching Point B, in DAGs. While two sources multicast to N receivers, B
has one incoming packet and multiple outgoing links.

1: for each incoming packet do
2: if the incoming packet is x1 (or x2) then
3: forward it only on the outgoing links that are next hops for S1 (S2).
4: else
5: /* The incoming packet is of the form ax1 + bx2. */
6: forward the packet to all outgoing links.
7: end if
8: end for

choice of large W guarantees that x1, x2 meet at both joining points J1, J2, which add the incoming
probes over F3. Depending on the underlying 2-by-2 type, R1, R2 observe one of the following pairs:

• type 1: R1: x1 + x2 , R2: x1 + x2

• type 2: R1: x1 + x2 , R2: x1 + 2x2

• type 3: R1: x1 + 2x2 , R2: x1 + x2

• type 4: R1: x1 + x2 , R2: x1 + x2

Types 2 and 3 result in unique observations that make them distinguishable from any other
type; i.e., one such observation suffices to identify type 2 or type 3. However, types 1 and 4
result in the same pair of observations; therefore, we need to design different experiments to get
observations that can uniquely characterize type 1 or type 4.

In the next experiment, we exploit the observation, first made in [36], that type 1 is the only
2-by-2 where the two joining points coincide (J1 = J2 = J). Therefore, the observations at the two
receivers are always the same: either x1 + x2 when the two packets meet at J ; or a single packet
(x1 or x2) when the two packets do not meet at J . In contrast, type 4 has two different joining
points J1 6= J2. If we force packets to meet only at one of the joining points but not at the other
one, the receivers will have different observations. These are observations #3 and #4 in Table 1
and they can uniquely characterize type 4.

These observations can be achieved by appropriately selecting the offset u in the sources’ sending
times. u needs to be large enough so that after addition to the link delays, it can affect W : if D1,D2

represent the delays on the paths from S2 to J1, J2, respectively, u must be in [W−D1,W−D2]
11.12

Alg. 5 summarizes the experiments we perform in order to infer the type of a 2-by-2 network.
Types 2 and 3 are identified in the first observation. Type 4 is identified the first time that the two

11 In 2-by-2 components, this interval is close to W , since D1 and D2 are small compared to W . In more general
2-by-N networks that we consider for our simulations, there exist multiple links between the sources and the joining
points, link delays are on the order of tens of ms, and W is on the order of hundreds of ms. Therefore, we can
safely choose u ∈ [f ·W,W] in the general case, where 0 < f < 1 is a tunable parameter. We choose f = 0.7 in our

15

Table 1: Lossless Case. Possible observations for types 1 and 4 2-by-2 topologies. (Observation #1 occurs when
the sources are synchronized. Observations #2-4 occur when S2 sends after S1, by an offset u ∈ [f ·W,W].)

Observation Type 1 Type 4
Number R1 R2 R1 R2

1 x1 + x2 x1 + x2 x1 + x2 x1 + x2

2 x1 x1 x1 x1

3 x1 + x2 x1

4 x1 x1 + x2

Algorithm 5 Lossless Case - Inferring a 2-by-2 component. Sources S1 and S2 multicast x1 and x2.
Receivers observe R1 = c11x1 + c12x2 and R2 = c21x1 + c22x2.

1: n=1; /*first experiment*/
2: if c22 > c12 then
3: Output type 2;
4: else if c22 < c12 then
5: Output type 3;
6: else
7: /*It is R1 = R2*/
8: while n < countMax & R1 == R2 do
9: Draw offset u uniformly at random out of [f ·W,W].
10: Send probes; S2 transmits u time later than S1.
11: if R1 6= R2 then
12: Output type 4;
13: Exit;
14: end if
15: n++;
16: end while
17: Output type 1; /* It is n == countMax*/
18: end if

receivers see different observations. If after countMax trials, we still have not seen any different
observations at the two receivers, then we declare the 2-by-2 to be of type 1.

Choosing countMax. countMax should be large enough to ensure small probability of error.
The probability of error of Alg. 5 can be computed as follows. Let X = I{R1 = R2} indicate
whether the two observations are the same or not; it is a Bernoulli random variable with success
probability Pr{R1 = R2}. The number of required experiments is a geometric random variable.
The only possible error is to mistakenly declare type 4 as type 1, which happens with probability:

Pr(error) = 1−Pr(type = 1|X1 = 1, · · · ,XcountMax = 1) = 1−
1

1 + (Pr(X = 1|type = 4))countMax

(1)

In type 4, X = 1 occurs when u /∈ [W − D1,W − D2], i.e., with probability 1 − |D1−D2|
(1−f)·W . Thus,

Alg. 5 identifies any 2-by-2 topology in countMax experiments with the following error probability:

Pr(error) = 1−
1

1 + (1− |D1−D2|
(1−f)·W)countMax

(2)

We can then find countMax by replacing the appropriate values [39]. One can calculate that in
order to ensure an accuracy of 99% in distinguishing between types 1 and 4 2-by-2’s, countMax

simulations, to force different observations at the two receivers.
12In fact, we can obtain similar observations without using the offset u, but instead, by changing W in a range of

values, from the maximum path delay (as it is now), down to 0. One can check that Alg. 5 (without u) can still be
applied in this case. Therefore, using the offset is not really crucial in our scheme.

16

Table 2: Lossy Case. Possible observations for all four types of 2-by-2 topologies. (Sources send synchronized and
W is large. Observation #13 for types 2, 3 occurs only when S2 sends with offset u ∈ [f ·W,W] after S1.) We divide
the observations into 3 groups: (i) at least one receiver does not receive any packet, (ii) R1 = R2 and (iii) R1 6= R2.

Type 1 Type 2 Type 3 Type 4
grp R1 R2 grp R1 R2 grp R1 R2 grp R1 R2

1 i - - i - - i - - i - -
2 - x1 + x2 - x1 + 2x2 x1 + 2x2 - - x1 + x2

3 - x1 - x1 + x2 x1 + x2 - - x1

4 - x2 - x1 x1 - - x2

5 x1 + x2 - - x2 x2 - x1 + x2 -
6 x1 - x1 + x2 - - x1 + x2 x1 -
7 x2 - x1 - - x1 x2 -
8 ii x1 + x2 x1 + x2 x2 - - x2 ii x1 + x2 x1 + x2

9 x1 x1 ii x1 + x2 x1 + x2 ii x1 + x2 x1 + x2 x1 x1

10 x2 x2 x1 x1 x1 x1 x2 x2

11 x2 x2 x2 x2 iii x1 x1 + x2

12 iii x1 + x2 x1 + 2x2 iii x1 + 2x2 x1 + x2 x1 + x2 x1

13 x1 x1 + x2 x1 + x2 x1 x1 x2

14 x1 x2 x2 x1 x2 x1

15 x1 + x2 x2 x2 x1 + x2 x1 + x2 x2

16 x2 x1 + x2

needs to be ∼ 450. However, this is a pessimistic upper bound: simulation results in Section 7
show that a much smaller countMax is sufficient in practice.

6.2.2. Lossy 2-by-2

Let us now consider a 2-by-2 network where packets may be lost on some links. In this case, we
can no longer guarantee meetings of x1 and x2 at the joining points and predictable observations
at the receivers. There are two differences from the lossless case. First, because of random packet
loss, each experiment might result in different outcomes, shown in Table 2. Second, there are
common observations across all four types, as opposed to just between types 1 and 4. We divide
the observations in Table 2 into three groups: (i) at least one of the receivers does not receive any
packet (“-”) due to loss, (ii) both receivers have the same observation R1 = R2, and (iii) the two
receivers have different observations R1 6= R2.

We choose to ignore the observations of group (i) because they can occur in any of the four
2-by-2 types and thus, they do not help to distinguish among 2-by-2’s in the deterministic way
adopted in this paper. Observations of group (ii) can also be the result of any 2-by-2 type: unlike
the lossless case, where R1 = R2 is unique to type 1 or 4 topologies, any of the four topologies
may result in such observations if some packets are lost. We observe that group (ii) are the only
possibility for type 1 topology, apart from the group (i) that we ignore, while all other three 2-by-2
types may result in either R1 = R2 or R1 6= R2. Therefore, if after countMax trials, we only have
observations of group (ii), we declare the topology to be type 1.

In observations of group (iii), it is R1 6= R2, which means that c12 6= c22 and/or c11 6= c21. An
important observation is that the difference of the coefficients between the two receivers contains
topology-related information. W.l.o.g., we focus on the coefficient of x2 and look at the difference
c12 − c22. Table 2 shows that c12 − c22 < 0 can only occur in type 2 or type 4 topologies; while
c12 − c22 > 0 can only occur in a type 3 or 4 topology. Note that the coefficient is larger on
one side (e.g., c12 > c22) when the probe (x2) goes through two joining points on its way to one
receiver (in this case, R1) and through one joining point on its way to the other receiver (R2). By
performing several independent experiments and collecting several observations of group (iii), we

17

Algorithm 6 Lossy Case - Inferring a 2-by-2 component. Sources S1 and S2 multicast x1 and x2, respec-
tively. Receivers observe R1 = c11x1 + c12x2 and R2 = c21x1 + c22x2. The variable type stores our estimate of the
type of the 2-by-2 component and it gets updated during the experiments.

1: n = 1; /*first experiment*/
2: type=0; /*initialization*/
3: while n ≤ countMax do
4: if R1 6= [0, 0] & R2 6= [0, 0] then
5: if c22 > c12 then
6: if type 6= 3 then
7: type=2;
8: else
9: type=4; Break;
10: end if
11: else if c22 < c12 then
12: if type 6= 2 then
13: type=3;
14: else
15: type=4; Break;
16: end if
17: else if type == 0 & R1 == R2 then
18: type=1;
19: end if
20: end if
21: n++;
22: Draw offset u uniformly at random out of [f ·W,W].
23: Send probes; S2 transmits u time later than S1.
24: end while
25: Output type.

can distinguish among the candidate topologies. If after countMax experiments, there are only
observations of group (ii) or (iii) with c12 − c22 ≤ 0, we declare the topology as type 2. If there
are only observations of group (ii) or (iii) with c12 − c22 ≥ 0, we declare it as type 3. If there are
observations of group (ii) or (iii) with both c12 − c22 < 0 and c12 − c22 > 0, we declare it as type 4.

In our experiments, we try to create those observations that reveal the topology. These can
occur either naturally, as the result of packet loss, or artificially, by us introducing an offset u in
S2’s sending time with respect to S1. To help these observations occur, especially for small loss
rates, and similarly to the lossless case, we use a random offset u ∈ [f · W,W]. To make these
experiments independent, we space apart successive sets of probes by roughly selecting T ≥ 3W ,
which is sufficient since there are at most two joining points on any (Si, Rj) path in a 2-by-2.

Alg. 6 summarizes the 2-by-2 inference for lossy networks. The algorithm is simple and fol-
lows a deterministic approach: one observation, or a set of observations, is sufficient to uniquely
distinguish among types. For example, at least one observation of group (iii) rules out the type 1
topology; a pair of group (iii) observations with both c12−c22 > 0 and c12−c22 < 0 indicates type 4;
etc. As a result, we require less experiments compared to thousands of arrival order measurements
required by [36, 37] for statistical significance. In addition and more importantly, we identify the
exact 2-by-2 type, while [36] was only able to distinguish between shared and non-shared types.
The following Lemma describes the probability of error of Alg. 6 with respect to the number of
experiments (countMax) more precisely.

Lemma 6.1. Alg. 6 identifies any 2-by-2 topology with Pr(error) ≤
∑2

i=1(1 − ρ′i)
countMax in

countMax experiments, where ρ′i = (1− p)6(p + (1 − p)γi)(p + (1 − p)γi′), i, i
′ = 1, 2, i 6= i′, p is

the link loss rate (same for all links), and γi is the probability that probe packet x2 arrives within
W at Ji in a type 4 topology, i.e., γi = Pr(u+Di ≤ W), i = 1, 2.

18

The proof is provided in Appendix B.

6.2.3. Inferring all 2-by-2’s in a 2-by-N Network

Algorithms 5 and 6 can be directly applied to a 2-by-N network, where two sources multicast
to N receivers. A difference is that intermediate nodes need to perform addition over a larger finite
field, of order larger than the maximum number of joining points on a path (g), since a packet may
meet itself at all the joining points on the path. In the worst case, there can be N joining points
in a row and thus, the maximum required field size is the first prime greater than N. Algorithm
5 and Algorithm 6 can be performed on any pair of receivers among all

(

N
2

)

possible pairs. The
same set of 2-by-N probes can be used to infer, in parallel and independently, the type of all 2-by-2
topologies. This reduces the number of probes, as we re-use them, instead of sending

(

N
2

)

different
sets of probes. The 2-by-N structure is important for the merging algorithm in Section 6.3.

6.2.4. 2-by-2’s vs. other Subnetwork Components

We now discuss why we choose to decompose an M-by-N network into 2-by-2 subnetwork
components, as opposed to any other subnetwork structures m− by − n, 1 ≤ m ≤ M, 1 ≤ n ≤ N :

• 1-by-1: This is the smallest component and corresponds to measuring a single end-to-end
path. However, it reveals neither joining nor branching points.

• 1-by-2 and 2-by-1: These correspond to a 2-leaf multicast or a reverse-multicast tree, respec-
tively. The 2-by-1 consists of 2 sources, one coding point, and 1 receiver. The 2-by-1 cannot
identify the branching points while the 1-by-2 cannot identify the joining points. Similar
comments apply to M-by-1 and 1-by-N.

• 2-by-2: This is the smallest structure that gives information about the relative locations of
joining and branching points.

• m-by-n, with 2 < m < M, 2 < n < N : If we consider larger structures, there is an exponen-
tially larger number of possible types, which requires more complicated inference algorithms.
For example, there exist 19 possible types for a 2-by-3 structure.

• M-by-N: In the extreme case, we need to enumerate all possible M-by-N topologies as in [42].

The larger the subnetwork component we use as a building block, the less components we need to
infer and the simpler the merging algorithm. However, as the size of the basic component grows,
the number of possible types increases exponentially and the inference step becomes increasingly
complex. In this paper, we choose to decompose an M-by-N into 2-by-2 components, inspired by
the approach in [36]. We note that 2-by-2 is the minimum size building block required to infer
both joining and branching points and strikes a good tradeoff of inference vs. merging complexity.

6.3. Merging Algorithm

Assuming knowledge of all 2-by-2 subnetwork components, from Section 6.2, we now merge
them together to reconstruct the M-by-N network. We study merging in two different scenarios:
(i) when a 1-by-N tree topology is known, which is the same problem studied in [36]; and (ii)
without knowledge of any 1-by-N, which is new to our work. Exploiting the accurately identified
2-by-2’s, we can solve (i) exactly, which was previously only approximately solved; and also solve
(ii), which was previously not known how to address.

More precisely, our merging algorithm can identify every joining point, in the sense that it can
localize it between two branching points. However, note that when there are several joining points
in a row, without any branching point in between, it is not possible to identify the relative locations
of these joining points with respect to each other. In fact, this is the case in a tree topology.

19

Algorithm 7 Merging Algorithm: Given the two sources S1, S2, a set of receivers R1, R2, · · · , RN , the 1-by-N
S1 tree topology, and the 2-by-2 results from Alg. 6 for any pair of receivers Ri, Rj , this algorithm identifies a single
link for the location of every Ji (the joining point for Ri), on S1 topology.

1: for each receiver Ri do
2: if ∃ k < i such that the S1, S2, Rk, Ri 2-by-2 is shared then
3: Ji = Jk;
4: else
5: Let B be the closest branching point to Ri.
6: while Ji is not localized to a single link do
7: Let Rj be any child of B (j 6= i).
8: Based on the type of the 2-by-2 component S1, S2, Ri, Rj , locate Ji above/below B.
9: if (Ji is below B) || ((Ji is above B) && (∄ other branching point above B on S1’s 1-by-N)) then
10: Ji is localized to a single link.
11: Output this link; Break;
12: else
13: B = the next upstream branching point.
14: end if
15: end while
16: end if
17: end for

6.3.1. Merging a 1-by-N and 2-by-2’s into a 2-by-N

In this section, we assume that the 1-by-N from S1 to N receivers is known using either the
classic methods for single-tree topology inference [6] or our algorithms in Section 5 for tree networks.

This 1-by-N is a tree rooted at S1 and contains only branching points. We also assume that the
2-by-2’s between S1, a new source S2, and any pair of receivers are known, using the algorithms of
Section 6.2. Our goal is to locate the joining points where paths from S2 to the same N receivers
join S1’s topology. We use the assumptions of Section 3 for routing.

This problem was posed in [13, 36] and was solved there in an approximate way. Bounds on the
joining point locations in the S1 topology were provided within a sequence of consecutive logical
links. This was because the 2-by-2’s are only identified as shared or non-shared types in [36, 37].

In contrast, we design Algorithm 7, which localizes each joining point for each receiver to a single
logical link, between two branching points in the S1 topology. Our algorithm is simpler, faster,
and more accurate: it can identify all joining points for any topology and with lower complexity,
thanks to our complete knowledge of the 2-by-2 types.

Example 4. Fig. 7(a) depicts a 2-by-9 topology constructed based on the Abilene network [51].
Consider R1: it forms a type 1 2-by-2 with R2. Therefore, J1 must lie above B1,2, so that there
exists a unique path from each source to R1. We then need to localize J1 with respect to B1,3: R1,R3

form a 2-by-2 of type 4; thus, J1 must lie below B1,3. J1 is now localized to one link (between B1,2

and B1,3), and the algorithm ends here for R1. Other receivers are considered similarly. Note that
a joining point can be placed on any link from the receiver to S1. Therefore, the number of steps
required to localize a joining point is at most equal to the height of the S1 tree. Also, when there is a
group of receivers within which all pairs are of type 1, the algorithm is run only once and it assigns
the same joining point to all of them. For this example, the algorithm in [36] cannot completely
resolve all joining points, and provides bounds within a sequence of several logical links instead.

6.3.2. Merging 2-by-2’s into a 2-by-N

In this section, we infer a 2-by-N without prior knowledge of any 1-by-N. Inference under this
relaxed assumption is enabled by our exact knowledge of 2-by-2’s and was not possible before
[13, 36]. We first send probes over the 2-by-N and then merge all

(

N
2

)

2-by-2’s, as described next.

20

Example 5. We first consider all shared (type 1) 2-by-2 components and assign them the minimum
number of branching and joining points required. For example in Fig. 7(a), B1,2, B3,4 and J1 =
J2, J3 = J4 = J5 = J6 = J7 = J8 = J9 are identified in this step. Second, we consider all non-shared
2-by-2 topologies (of type 2, 3, or 4). We use the information about the locations of the branching
and joining points in each type to: (i) add the minimum number of branching points required to the
ones already identified from the shared pairs; and (ii) assign joining points to those receivers that
have not been already assigned one. In the example of Fig. 7(a), an additional branching point B1,3

is required, which is connected to both joining points J1 = J2 and J3 = J4 = J5 = J6 = J7 = J8 =
J9, to satisfy the 2-by-2’s of type 4 between the two shared groups. No additional joining point is
required in this example.

This approach identifies the locations of all joining points, between the S1 and S2 1-by-N
topologies, but it does not identify all the branching points in the S1 tree topology. Only the
“minimum” S1 topology is identified, i.e., the tree made by the “necessary” branching points. We
define as “necessary” branching points the ones located below a joining point of S1 and S2 in the
2-by-N. An “unnecessary” branching point is the child of another branching point with no joining
point in between. For example in Fig. 7(a), this approach does not identify B4,5, B6,7, B6,9, and
directly connects their children (R4, R5, R6, R7, R8, R9) to the upstream branching point (B3,4).

Note that the worst case input for this approach is a tree network. Since all 2-by-2’s are of
type 1, and the algorithm cannot reconstruct branching points in a row, it can only identify the
top-most branching point of the entire tree structure.

6.3.3. From 2-by-N to M-by-N

We can directly extend the 2-by-N inference techniques to the M-by-N case [13]. We start from
a 2-by-N topology, and add one source at a time, to connect the 1-by-N’s of the remaining M − 2
sources. Assume that we have constructed a k-by-N topology, 2 ≤ k < M . To add the (k + 1)th

source, we perform k experiments, where at each experiment one different of the k sources and the
(k+1)th source send x1 and x2. We then glue these topologies together by following the topological
rules of Section 6.3.1 (with single-source trees given) or Section 6.3.2 (without that assumption).

6.3.4. Complexity of Merging

Lemma 6.2. If one source’s 1-by-N tree topology is given, the minimum number of 2-by-2’s required
by any merging algorithm to uniquely localize all the joining points (between two branching points)
in the 2-by-N topology is N

2 .

Proof. One can think of checking the types of the 2-by-2 components in the following sense: we
divide the N receivers in the network into two sets of vertices, in a bipartite graph, and we draw
an edge between any two vertices for which we check the 2-by-2 type. The minimum number of
required 2-by-2’s is then given by a perfect matching in this bipartite graph; therefore, it is N

2 .

Example 6. Fig. 5 shows two 2-by-N topologies that require exactly N
2 2-by-2’s for their joining

points to be uniquely identified by any merging algorithm. In Fig. 5(a), checking the types of
(R1, R2) and (R3, R4) is sufficient for localizing all four joining points. In Fig. 5(b), where all the
joining points are the same as J , checking the types of (R1, R3) and (R2, R4) would be sufficient.

Note on Lemma 6.2: If the 2-by-2’s are properly selected, N
2 of them can be sufficient in some

topologies, as we see in the examples of Fig. 5. Unfortunately, we do not know in advance (without

knowledge of the 2-by-N topology) which 2-by-2’s to choose out of all
(

N
2

)

possible 2-by-2’s, so as to
uniquely localize the joining points between branching points. Nevertheless, from the given S1 1-
by-N topology, we can give an upper bound on the number of 2-by-2’s required. Since every receiver

21

R1 R2

B1,3

B1,2

J1

S2 S1

B3,4

R3 R4

J2 J3 J4

B2

(a) Example topology 1

R1 R2

B1,3

B1,2

J

S2
S1

B3,4

R3 R4

(b) Example topology 2

Figure 5: Two example 2-by-N topologies that require exactly N
2

2-by-2’s for their joining points to be uniquely
identified by any merging algorithm.

is checked with other receivers that are children of its upper branching points, up to the location
of its joining point, we need to check for O(N logN) 2-by-2’s. This is less than identifying all

(

N
2

)

2-by-2’s. Note that we still need to multicast x1, x2 to all receivers and monitor all observations,
but we can use only the observations of the selected 2-by-2’s for inference, and ignore the rest.

Lemma 6.3. Algorithm 7 takes at most O(N logN) steps.

Proof. As mentioned in the note above, Algorithm 7 considers every single receiver and checks the
2-by-2 type of that receiver with other receivers that are children of its upper branching points, up
to the location of its joining point. Therefore, it takes at most O(N logN) steps.

This is an improvement over O(N3) in [36]. Note that the second merging algorithm requires

all
(

N
2

)

2-by-2’s; therefore, it takes
(

N
2

)

steps.

7. Simulation Results

We now simulate our Inference13 algorithms in some representative topologies that exemplify
different characteristics.

7.1. Trees

7.1.1. Simulation Setup

Consider the binary tree example of Fig. 1(a). Assume that all links have the same loss
probability p ∈ [0, 10%]. We simulate Algorithm 2 and we send up to M = 10 probes per iteration.
We conservatively consider an error to be any divergence from the true topology. The results are
averaged over 10, 000 realizations of the loss process.

7.1.2. Simulation Results

Fig. 6 shows the percentage of inference errors in each of the first two iterations (shown in
Fig. 1(b) and Fig. 1(c)) as a function of p and M . As expected, the probability of error is increasing
with p, since packet losses may lead to the misclassification of a leaf to the incorrect component. For
a fixed number of probes per iteration and fixed loss rate p, the probability of error decreases with

13We note that, in both our approach and in past work [36, 37], the error in identifying the 2-by-2’s, in the first
step, may propagate to the Merging algorithm, in the next step. However, there is no additional error introduced by
the Merging algorithm itself, and thus no need to simulate it.

22

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

% loss (same on every link)

%
 w

ro
n
g
 i
n
fe

re
n
c
e

M=1

M=2

M=3

M=5

(a) Iteration 1 infers the topology in Fig. 1(b).

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

% loss (same on every link)

%
 w

ro
n
g
 i
n
fe

re
n
c
e

M=1

M=2

M=3

M=5

(b) Iteration 2 infers the topology in Fig. 1(c).

Figure 6: Probability of incorrect inference for the binary tree of Fig. 1(a), as a function of the loss probability p

(same for all links) and of the number of probes M per iteration. The results are averaged over 10, 000 realizations.

the iterations. It also decreases rapidly with the number of probes M per iteration: it decreases
significantly even with M = 2, 3, even for large p, and becomes practically zero for M ≥ 5.14

7.2. Multiple-Tree Topologies (DAGs)

We simulate our algorithms in example multiple-tree networks. In summary, we show that
(i) our approach significantly improves over [13, 36, 37], in terms of the number of experiments
required to identify the type of all 2-by-2’s as well as of the associated probability of error; (ii) the
probability of error in identifying the 2-by-2’s depends on the underlying topology. In particular,
it is smaller for preferential attachment graphs as compared to ER random graphs.

7.2.1. Simulation Setup

To demonstrate (i), we consider Fig. 7(a), which shows the Abilene topology [51], with two
sources located at the Chicago and Indiana nodes, and nine receivers, each located at one of the
other core network nodes. This is the same topology considered in [36]. To investigate (ii), we
consider Fig. 7(b) and Fig. 7(c). Fig. 7(b) shows a random topology with 2 sources and 7 receivers
generated by LEDA [53], which can be used to model wireless multi-hop topologies. Fig. 7(c) shows
a preferential attachment topology generated by Brite [52]. We pick 2 sources and 8 receivers and
we select the route for every source-destination pair, according to our assumptions in Section 3.

We run Alg. 5 and Alg. 6 in the absence and presence of packet loss, respectively, and we
compute the error. In the lossless case, we identify the 2-by-2 types and we report the error as a
function of the number of experiments countMax. The only possible error in this case is to falsely
declare type 4 as type 1. In the lossy case, we also report the error assuming that there is packet loss
in the network (with probability p independently on every link), and after applying Alg. 6 to each
topology. An error in this case can result either from declaring type 2 or 3 or 4 as type 1; or from
declaring type 4 as type 2 or 3. We consider values of p ∈ [0, 10%] and countMax = 100, 200, 250.

14This second observation is due to the fact that one correctly received packet is sufficient for the correct operation
of Alg. 2. E.g., if a node receives a mixture of x1 and x2 probes, it will be correctly assigned to component L3 even if
some probes are lost. In contrast, methods that require each receiver to receive enough packets to infer the loss rate
associated with the network links with a certain accuracy, need a larger number of probes for statistical significance.

23

B1,3

S1

B2

J3

B3,4

B6,7 B4,5

R9 R8 R7 R6 R5 R4 R3 R2 R1

B1,2

B6,9

J1

S2

(a) The Abilene topology [51].

S1

B5,6

B1,2

J1

R7 R6 R5 R4 R3 R2 R1

J5

J4 B1,3

B1,4

B2

S2

(b) An Erdos-Renyi random graph.

S1

B2

S2

B1,2

J1

R2

J2

R4 R3

B2,3

R8 R7 R6 R5 R1

(c) A preferential attachment graph.

Figure 7: Three different topologies used to test our inference algorithms in simulation.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

number of experiments (countMax)

%
 e

rr
or

Random (ER)
Abilene
Preferential

(a) Lossless case. Probability of error vs. the number
of experiments for the three topologies in Fig. 7. The
results are averaged over 1000 realizations.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

% loss (same on every link)

%
 e

rr
or

The Abilene topology

countMax=100
countMax=200
countMax=250

(b) Lossy case. The probability of error vs. the loss
rate for different countMax values for the Abilene
topology in Fig. 7(a); 5000 realizations.

Figure 8: Simulation results both in the absence and in the presence of loss for the topologies in Fig. 7.

We assume that individual link delays have a fixed part of 5-10ms (propagation delay) and
a variable part, which is exponential with mean 2ms (queueing delay). We choose a large time
window W = 100ms. The offset u is drawn uniformly at random from [70, 100]ms, i.e., f = 0.7.

7.2.2. Simulation Results

Fig. 8(a) reports the results for the lossless case for all three topologies in Fig. 7. We also
report the results for the lossy case: only one topology is shown in Fig. 8(b) due to the lack of
space; additional figures can be found in the technical report [39].

We first discuss the Abilene topology in Fig. 7(a). In the lossless case, the Abilene curve in
Fig. 8(a) shows that the error probability decreases very rapidly with countmax and reaches 0 at
countMax ≃ 50. In the lossy case shown in Fig. 8(b), the error probability also decreases rapidly
with countMax; it is negligible with 200−250 experiments. This is a significant improvement over
[36] for the same example topology: they use 1000 measurements to distinguish only between type
1 and the other types, for very small loss rates up to 1.5%, and they achieve error probability 10%.
In contrast, with an order of magnitude less probes, we distinguish among all four types, and we
have a very small error probability for larger loss rates (up to 10%). Note that the error probability
is decreasing with the loss rate because loss actually helps to create observations of group (iii) [39].

24

We now consider random graphs, in particular Erdos-Renyi (ER) vs. Preferential Attachment,
as shown in Fig. 7(b), 7(c). In the lossless case, Fig. 8(a) shows that the error probability decreases
rapidly with countMax and reaches 0 at countMax ≃ 50. We also observe that for the same num-
ber of experiments, the error is generally smaller in the topology generated using the preferential
attachment rather than the ER model. This is true in both lossless and lossy cases [39].15

8. Our Work in Perspective

First, we discuss possible deployment scenarios in Section 8.1. Then, in Sections 8.2-8.6, we
revisit the related work, briefly outlined in Section 2, but now focusing on the most closely re-
lated parts. We discuss the trade-offs involved in each approach and we identify connections and
differences between our approach and each of the alternative approaches.

8.1. Deployment Scenarios

In practice, our scheme can be deployed in two ways:

• Active probing scenario: special probes are sent by the sources, recognized and coded/multicast
at intermediate nodes, received by the receivers, sent and processed at a fusion center.

• Packet marking scenario: a special header is reserved on regular packets, marking and coding
occurs only on this header, without coding the data in the packet. The rest of the ideas in
this paper apply in the same way, but now considering the content of the headers as opposed
to the content of the payload.

The first scenario is the one already described throughout the paper. The sources send special
probe packets, whose sole purpose is to be received and processed for inference purposes. The
intermediate nodes perform simple network coding operations on these packets, to allow for more
accurate and efficient inference. We are going to compare the first scenario to alternative topology
inference approaches in Sections 8.2, 8.3, 8.4 and 8.5. In the second scenario, our scheme could also
be implemented as passive on top of regular traffic. A 2-by-2 component consists of four regular
unicast flows between the two sources and the two receivers, intermediate nodes mark a special
field in the headers of these regular packets. The special field in the headers can be coded (by
constructing a mark that is the sum of the marks from two flows going through the intermediate
node), or multicast (by marking several outgoing flows with the mark found on the header of one
incoming flow). However, all the “action” is now on the headers, while the actual data can remain
uncoded. In this respect, this deployment scenario is similar to packet marking techniques, which
we describe in detail in Section 8.6.

Beyond the deployment scenario and practical applicability, we believe that our work provides
a fundamental building block for exploiting correlation in the content of network coded packets
for inference. It is already applicable to networks with network coding (which can be applied to
dedicated probes sent over the network, as in the first scenario above) or packet marking capa-
bilities (which can be applied only on the headers of packets from regular unicast flows, as in the
second scenario above), or can be used as the basis for designing more “practical” schemes that
approximate its functionality. For example, a large portion of the tomography literature is based

15The reason is that in the preferential attachment topologies, we have a few nodes with a very high degree and
many nodes with a low degree. As a result, we have a large number of receivers with a shared joining point and
some other receivers with distinct joining points. In contrast, in ER graphs, we have several roughly equally-sized
groups of shared receivers, where each group forms a non-shared type with any other group. Therefore, we have
more 2-by-2’s of type 1 in preferential attachment graphs, which results in a smaller error in Alg. 5 and Alg. 6.

25

on multicast, which has not been deployed in the Internet either, thus one can say that it was not
“practical”. Nevertheless, multicast tomography showed how to exploit fundamental properties
of topology-dependent correlation in multicast traffic for inference. Later on, unicast tomography
used unicast probes to develop more “practical” schemes that mimicked and approximated the
multicast tomography. Similarly, we believe that our work provides a fundamental building block
for exploiting correlation in the content of network coded packets for inference. In our context,
network coding can be thought of as “reverse multicast” that can be exploited for inference.

8.2. Comparison to Traditional Tomography w/o Network Coding

Within the large literature on network tomography, the most closely related work is the Multiple
Source Network Tomography in [13, 36, 37], which formally defines M-by-N tomography problem.
Our work on DAGs builds on [13, 36]: we follow their approach for decomposing the M-by-N into a
number of 2-by-2 components, inferring the type of each 2-by-2 and then merging them together to
reconstruct the M-by-N. Using simple network coding operations at intermediate nodes provides a
graceful way to reveal coding points, which has been typically a challenge in traditional tomography.
Our work improves upon [13, 36] in that: (i) it can exactly identify the 2-by-2 type, as opposed to
just distinguish between shared and non-shared types; and (ii) the merging algorithms can precisely
locate the joining points with respect to the branching points, as opposed to provide bounds.

Simulation results in Section 7 on the same topology used in [36], showed that our approach is
more accurate, with less experiments. In essence, our approach is deterministic (one observation
suffices to distinguish among types) as opposed to probabilistic (which needs to collect a large
number of probes for statistical significance). This benefit comes at the cost of having intermediate
nodes do some operations. However, these operations are so simple (just additions), that can be
simply thought of as inverse multicast. This cost can be removed, if our approach is implemented
as passive on top of random network coding, as outlined in Section 8.4.

8.3. Comparison to Passive Tomography with Network Coding

Recently, a passive approach for topology inference on top of random network coding has been
proposed in [42]. Probes are sent once, and intermediate nodes pick coding coefficients β uniformly
at random out of a large field Fq. The key idea is that, under assumptions of strong connectivity and
large enough finite field, Fq, the transfer matrix M , from the sender to the receiver, is distinct for
different networks, w.h.p. Then, using the observations Y at the receiver and the source messages
X, exhaustive enumeration of all possible topologies is used to find an M that matches Y = MX.
An extended version of this work to erroneous networks is provided in [49], where different (ergodic
or adversarial) failures lead to different transfer functions. Our approach is different in that it is
active and uses several probes but simple coding operations over a small field.

Example 7. To better illustrate the differences, we consider a 2-by-2 topology, and we try to infer
its type using the two approaches. The transfer matrices corresponding to the four 2-by-2 types of
Fig. 3 are provided in Fig. 9. The approach in [42, 49] tries to distinguish among these four M ’s in
a single experiment. In contrast, we send probe packets in multiple rounds. In each experiment, β’s
are either 0 or 1 (since we do additions only16). We exclude some of the possible topologies in each
experiment, until we are left with only one unique topology, in at most countMax experiments.

Our countMax experiments can be thought of as collecting observations Y1 = M1X,Y2 =
M2X, · · · , YcountMax = McountMaxX, where M1,M2, · · · ,McountMax are different representations

16In a joining point J , the β from an incoming link to the outgoing link is 1 if the packet arrives at J within W ,
and 0 otherwise. In a branching point B, all β’s are 1 unless there is loss, which makes β’s 0 in both J ’s and B’s.

26

M1 =

(

βS1J,JB · βJB,BR1
βS1J,JB · βJB,BR2

βS2J,JB · βJB,BR1
βS2J,JB · βJB,BR2

)

M2 =

(

βS1J1,J1B1
· βJ1B1,B1R1

βS1J1,J1B1
· βJ1B1,B1J2

· βB1J2,J2R2

βS2B2,B2J1
· βB2J1,J1B1

· βJ1B1,B1R1
βS2B2,B2J2

· βB2J2,J2R2
+ βS2B2,B2J1

· βB2J1,J1B1
· βJ1B1,B1J2

· βB1J2,J2R2

)

M3 =

(

βS1J2,J2B1
· βJ2B1,B1J1

· βB1J1,J1R1
βS1J2,J2B1

· βJ2B1,B1R2

βS2B2,B2J1
· βB2J1,J1R1

+ βS2B2,B2J2
· βB2J2,J2B1

· βJ2B1,B1J1
· βB1J1,J1R1

βS2B2,B2J2
· βB2J2,J2B1

· βJ2B1,B1R2

)

M4 =

(

βS1B1,B1J1
· βB1J1,J1R1

βS1B1,B1J2
· βB1J2,J2R2

βS2B2,B2J1
· βB2J1,J1R1

βS2B2,B2J2
· βB2J2,J2R2

)

Figure 9: Comparison of our approach to [42, 49] in the example of a 2-by-2 topology. M1, M2, M3, and M4 are the
transfer matrices resulting from the four different types (types 1, 2, 3, and 4, respectively, in Fig. 3) of a 2-by-2, if
intermediate nodes use coding coefficients β. The approach in [42, 49] tries to distinguish among these four M ’s in
a single experiment. In contrast, we use β’s either 0 or 1 and multiple experiments to choose an M .

of the unique M . Note that, although M is unique in terms of β’s for each topology, it can be
shown to be non-unique when these β’s are replaced by 0/1 values. For example in Fig. 9, the
transfer matrices of types 1 and 4 would look similar if all β’s are equal to 1, but only type 4 can
potentially result in M = [1, 1; 0, 1], while type 1 cannot. We send probes in multiple experiments
to create those representations of M that help us uniquely identify the underlying topology.

In terms of the field size, [42, 49] require a larger field than us, to obtain distinct transfer
matrices for different topologies.17 In terms of bandwidth, we use small packets in each experiment,
since we perform operations over a small field, and a few experiments are required. On the other
hand in [42], the coefficients, sent anyway along with packets through the network, are used to
reveal the topology from the transfer matrix at the receiver, and can be thought of as the equivalent
of probes. The distinction between active and passive approaches becomes even less pronounced, if
we consider that [42, 49] require the receiver to have a-priori knowledge of the size of the network,
and of the code-book used at each node (referred to as common randomness), which depends on the
node id [49]. We do not require such knowledge and we infer the topology with smaller complexity.
Further comparison of our approach to [49] for larger M-by-N topologies can be found in [39].

8.4. Extension to Passive Tomography with RNC

We now discuss how our approach can potentially be extended to be implemented as passive,
when random network coding (RNC) is used in the middle. Intuitively, the same topology inference
algorithms should apply if we ensure that RNC coefficients satisfy necessary conditions for inference.

Assume that in each experiment, the intermediate nodes perform random linear network coding
operations instead of the simple additions assumed so far. In this case, Alg. 6 will still work if
we assign coding coefficients to the joining points in a partial order, so as to ensure that the
minimum coding coefficient of a joining point is always greater than or equal to the maximum
coding coefficient of its ancestor joining point. Under this condition, we can prove that the same
rationale as in Section 6.2.2 still holds, i.e., type 1 results in similar observations; type 2 results in

17[42] shows that if local coding variables are i.i.d uniform random variables over Fq, then the probability that all

different unicast networks with at most |V | nodes and |E| edges have distinct transfer matrices is ≥ 1− |V |4|E|(1−

(1− 1

q
)|V |). This shows that: (i) the success probability → 1 iff q → ∞; (ii) q needs to increase rapidly as the network

size grows. For example, our approach described in Section 6.2 requires a small field F3 to distinguish among different
2-by-2’s. While one can calculate that if β’s are chosen uniformly at random out of F3, then Pr(M4 = M1) ∼= 0.04.

27

c12 − c22 ≤ 0; type 3 results in c12 − c22 ≥ 0; and type 4 results in c12 − c22 ≤ 0 or c12 − c22 ≥ 0.
The proof can be found in the technical report [39]. Code design to jointly meet both random
network coding goals (large enough field for independent linear equations) and tomographic goals
(the aforementioned condition) is part of future work. If such a code design is possible, Algorithm
6 can be directly applied to the case of random network coding. An example can be found in [39].

8.5. Comparison to traceroute-like Approaches

In practice, the dominant approach to Internet mapping is based on traceroute [8, 9, 14, 15,
26, 29, 43, 45, 47, 50]. It uses traceroute’s sent between selected nodes and collects the ids of
the nodes along the paths traversed. It faces the challenges of (i) resolving anonymous routers and
router aliases and (ii) causing congestion close to the monitoring points [15].

Similarly to traceroute, we also use active end-to-end probes and we require some minimal
co-operation from internal nodes (simple additions in our case vs. traceroute-specific responses).
However, unlike traceroute, we do not ask intermediate nodes to reveal their node id, which has
the advantage of preserving the anonymity of intermediate nodes. A design difference was also
noted in Section 6.2.4: we infer 2-by-2 components, instead of 1-by-1’s (paths) for traceroute.

In terms of measurement bandwidth, our approach uses exactly one probe per link per exper-
iment, which is the minimum possible. This is thanks to network coding that combines multiple
incoming packets into one, and thanks to multicast that replicates a single incoming packet into
many outgoings, thus eliminating overlap. On the other hand, standard traceroute implemen-
tations, e.g., skitter [29], send three probe packets for each hop count in every single path.18 For
example, our approach reduces the number of measured paths in a 2-by-N topology by a factor of
two, compared to traceroute; i.e., we require O(N) instead of O(2N) measurements, since each
coded packet observes two paths.

In terms of the amount of information per probe, we can think of our approach as traceroute
probes that only report the joining points in the topology; while traceroute reports all the node
ids, some of them being duplicate. Therefore, the amount of information per probe is significantly
decreased in our approach. In essence, we only report the minimum required information, which
we prove to be sufficient for reconstructing the topology.

8.6. Comparison to Packet Marking Approaches

As we mentioned in the previous section, traceroute sends many rounds of probes, one for
each hop towards the destination [8, 9, 14, 15, 26, 29, 43, 45, 47, 50]. Therefore, our approach is not
directly comparable to traceroute. On the other hand, as we described in Section 8.1, our scheme
can also be implemented as a packet marking scheme on top of regular unicast flows. Indeed, the
most comparable approaches to our work are the packet marking schemes, e.g., traceback schemes
[41], which aim at identifying the source(s) of a sequence of packets and the nodes these packets
have traversed. This is useful for tracing the source(s) of high volume traffic, e.g., in Distributed
Denial-of-Service attacks [41]. In packet marking schemes, intermediate nodes (probabilistically)
mark packets with information about their identity, and the receiver uses the information from
several packets to reconstruct the path(s) they have traversed. Packet marking schemes have
been mostly used in a single-path or a reverse tree topology, rooted on the victim of the attack.
Therefore, they identify an M-by-1 topology, while we identify a more general M-by-N topology.

18As an example, the average number of packets/link required by both standard traceroute [8] and our approach
to identify the 2-by-2’s is as follows: in type 2 or 3, it is 12 for traceroute and 1 for our approach. In type 1, it is
14.4, and in type 4, it is 9, for traceroute, while both are countMax for our approach. The benefit of our approach
in terms of the number of required packets depends on the topology. Also, we can trade-off accuracy for the load by
adjusting countMax. On the other hand, Doubletree [15] can reduce the traceroute overhead to some extent.

28

On the other hand, traceback needs to reconstruct not only the node ids, but also the order in
which they are traversed by the packets, i.e., the attack paths and graph. In single-path scenarios,
this can be done by adding a distance value to the marking field. However, in multi-path scenarios,
this has been a challenge since there exist multiple nodes at the same distance from the receiver.
Many approaches have been proposed to overcome this limitation, and most of them suffer from
practical issues in terms of the amount of space required in the packet header for marking. In
contrast, multi-path scenarios are the strength of our approach, which identifies the joining points
using network coding.

9. Conclusion

In this paper, we designed active probing schemes that exploit simple operations at intermediate
nodes to accurately infer the topology, based on end-to-end observations. We designed algorithms
for trees and general topologies, and we simulated them in representative examples. Our schemes
build on the work by Rabbat et al. [13, 36, 37] and extend it when joining points perform network
coding operations. Furthermore, we make connections with several alternative approaches, includ-
ing passive inference, traceroute, and packet marking. Our main contribution is that we show
how to exploit the fundamental connection between network coding and topology, and thus adding
one new building block in the, already large, space of available options for topology inference. We
expect the techniques developed in this paper to be most useful in networks that can perform
simple network coding operations, including but not limited to wireless multi-hop networks.

Acknowledgment

We would like to thank Prof. Animashree Anandkumar at UC Irvine for useful discussion on
the performance analysis of Algorithm 6 and on the complexity of merging algorithms.

Appendix A. Probability of Error of Alg. 2 (Topology Inference in Trees with Loss)

In this Appendix, we consider the topology inference algorithm for tree networks in the presence
of packet loss (i.e., Alg. 2), and we derive the exact probability of error of its first iteration in
inferring the binary tree topology of Fig. 1(a). Assume that all links have the same loss rate p.
Let Xi, i = 2, 3, 4, 5, 6, be the number of experiments required for receiver i to observe one correct
packet in the first iteration, as described in Example 1; e.g., X2 is the number of experiments
required for receiver 2 to observe x1, X3 is the number of experiments required for receiver 3 to
observe x1 + x2, etc. Xi is a geometric random variable with probability of success ρi, as follows:

ρ2 = (1− p)2 , ρ5 = ρ6 = (1− p)3 , ρ3 = ρ4 = (1− p)6 (A.1)

If we denote the total number of required experiments for the first iteration of Alg. 2 by X,
then we have that: X = maxi∈{2,3,4,5,6}Xi. Therefore, we can compute the Chebyshev bound on
X. On the other hand, in M experiments, we can also compute the probability of error as follows:

Pr(error) = 1− Pr(X2 ≤ M &X3 ≤ M &X4 ≤ M &X5 ≤ M &X6 ≤ M) (A.2)

For general M , Eq.(A.2) becomes complicated to compute. Here we only compute it for M = 1:

29

Pr(error) = 1− [Pr(X2 = 1)Pr(X5 = 1|X2 = 1)Pr(X6 = 1|X2 = 1,X5 = 1)

Pr(X3 = 1|X2 = 1,X5 = 1,X6 = 1)Pr(X4 = 1|X2 = 1,X5 = 1,X6 = 1,X3 = 1)]

= 1− (1− p)2(1− p)3(1− p)(1− p)4(1− p)

(A.3)

For example, for M = 1 and p = 10%, Eq.(A.3) results in Pr(error) = 0.69, which agrees with
the simulation results in Fig. 6(a). We can also provide an upper bound on Pr(error) using the
union bound, as follows:

Pr(error) ≤
∑

i∈{2,3,4,5,6}

Pr(Xi > M) = (1−(1 − p)2)M+2(1−(1 − p)3)M+2(1−(1 − p)6)M (A.4)

For example, for M = 5 and p = 10%, Eq.(A.4) results in Pr(error) ≤ 0.05, which is an upper
bound on the probability of error that we observe in Fig. 6(a). Similar analysis can be used for the
second iteration and for any other tree topology.

Appendix B. Prob. of Error of Alg. 6 (Inference of 2-by-2’s in DAGs with loss)

In this Appendix, we consider the topology inference algorithm for DAGs in the presence of
packet loss (i.e., Alg. 6), and we derive the probability of error of Alg. 6, which we stated in
Lemma 6.1. Assume that all links have the same loss rate p. As we mentioned in Section 7.2.1,
an error in Alg. 6 can result either from declaring type 4 as type 2 or 3, or from declaring type
2 or 3 or 4 as type 1. In countMax experiments, the probability of error is maximized when the
underlying topology is of type 4. In fact, a type 4 topology can give an upper bound on countMax,
as it requires the maximum number of experiments to be identified correctly: it requires both a
c12 − c22 > 0 observation and a c12 − c22 < 0 observation.

Let Y1 be the number of experiments required to obtain a c12 − c22 > 0 observation and let Y2

be the number of experiments required to obtain a c12 − c22 < 0 observation. Both Y1 and Y2 are
geometric random variables with success probabilities ρ′1 and ρ′2, respectively. In a type 4 topology,
from Table 2, we have that:

ρ′1 = Pr(x1 + x2, x1) + Pr(x2, x1) (B.1)

One can compute each of these probabilities by considering the loss events and the late arrival
events (at joining points) that can cause such observations in type 4. If we denote the probability
that packet x2 arrives at joining point Ji within W by Pr(u+Di ≤ W) = γi, i = 1, 2, and we also
use the notation Pr(u+Di > W) = γi, then we have that:

Pr(x1 + x2, x1) = p(1− p)7γ1 + (1− p)8γ2γ1 = (1− p)7γ1(p+ (1− p)γ2) (B.2)

Also:

Pr(x2, x1) = p2(1− p)6 + (1− p)7γ2p = p(1− p)6(p+ (1− p)γ2) (B.3)

Therefore, we have that:

ρ′1 = (1− p)6(p+ (1− p)γ1)(p + (1− p)γ2) (B.4)

30

Similarly, one can compute that:

ρ′2 = (1− p)6(p+ (1− p)γ2)(p + (1− p)γ1) (B.5)

If we denote the total number of required experiments for Alg. 6 by Y , then we can estimate Y
by Y ≤ Y1+Y2. If the link delay distribution and the link loss rates are given, we can use the above
relationships to find the Chebyshev bound on Y . On the other hand, in countMax experiments,
we can also compute the probability of error as follows:

Pr(error) = 1− Pr(Y1 ≤ countMax& Y2 ≤ countMax) (B.6)

We can assume that the events Y1 ≤ countMax and Y2 ≤ countMax are independent. Thus:

Pr(error) = 1−

countMax−1
∑

i=0

(1− ρ′1)
iρ′1

countMax−1
∑

j=0

(1− ρ′2)
jρ′2 (B.7)

We can also provide an upper bound on Pr(error) using the union bound, as follows:

Pr(error) ≤ Pr(Y1 > countMax) + Pr(Y2 > countMax) = (1− ρ′1)
countMax + (1− ρ′2)

countMax

(B.8)
Therefore, the proof of Lemma 6.1 is complete. �

References

[1] A. Anandkumar, A. Hassidim, and J. Kelner, “Topology Discovery of Sparse Random Graphs with Few Partic-
ipants,” in Proc. of ACM Sigmetrics ’11, San Jose, CA, Jun. 2011.

[2] A. Bestavros, J. Byers, and K. Harfoush, “Inference and labeling of metric-induced network topologies,” in
IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 11, pp. 1053–1065, Nov. 2005.

[3] T. Bu, N. Duffield, F. Lo Presti, and D. Towsley, “Network tomography on general topologies,” in Proc. of
ACM Sigmetrics, Marina Del Rey, CA, Jun. 2002.

[4] R. Caceres, N. Duffield, J. Horowitz, F. L. Presti, and D. Towsley, “Loss based inference of multicast network
topology,” in Proc. of the 38th IEEE conference on Decision and Control, Phoenix, AZ, Dec. 1999.

[5] R. Caceres, N. G. Duffield, J. Horowitz, and D. Towsley, “Multicast-based inference of network-internal loss
characteristics”, in IEEE Transactions on Information Theory, vol. 45, pp. 2462–2480, Nov. 1999.

[6] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network tomography: Recent developments,” Statistical
Science, vol. 19, no. 3, pp. 499–517, 2004.

[7] M. Cheraghchi, A. Karbasi, S. Mohajer, and V. Saligrama, “Graph-Constrained Group Testing,” in Computing
Research Repository (CoRR), 2010.

[8] B. Cheswick, H. Burch, S. Branigan, “Mapping and visualizing the Internet,” in Proc. of USENIX ATC, 2000.
[9] A. Clauset and C. Moore, “Why mapping the Internet is hard,” arXiv:cond-mat/0407339, 2004.

[10] M. Coates, R. Castro, M. Gadhiok, R. King, Y. Tsang, R. Nowak, “Maximum likelihood network topology
identification from edge-based unicast measurements,” in Proc. of ACM Sigmetrics, Marina Del Rey, CA, 2002.

[11] M. Coates, Y. Pointurier, and M. Rabbat, “Compressed network monitoring for IP and all-optical networks,”
in Proc. of ACM IMC, San Diego, CA, Oct. 2007.

[12] M. Coates, Y. Pointurier, and M. Rabbat, “Compressed network monitoring,” in Proc. of IEEE Statistical
Signal Processing Workshop, Madison, Wisconsin, Aug. 2007.

[13] M. Coates, M. Rabbat, and R. Nowak, “Merging Logical Topologies Using End-to-end Measurements,” in Proc.
of ACM IMC, Miami, FL, Oct. 2003.

[14] L. Dall’Asta, I. Alvarez-Hamelin, A. Barrat, A. Vazquez, A. Vespignani, “A statistical approach to the
traceroute-like exploration of networks: Theory and simulations,” Lecture Notes in CS, vol. 3405, p. 140, 2005.

[15] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Deployment of an Algorithm for Large-Scale Topology
Discovery,” IEEE JSAC, vol. 24, issue 12, pp. 2210–2220, Dec. 2006.

[16] D-Z. Du, F. Hwang, “Combinatorial group testing and its applications,” Series on Applied Mathematics, 2000.
[17] N. Duffield, J. Horowitz, F. Presti, “Adaptive multicast topology inference,” in Proc. of IEEE INFOCOM, 2001.

31

http://arxiv.org/abs/cond-mat/0407339

[18] N. Duffield, J. Horowitz, F. L. Presti, and D. Towsley, “Multicast topology inference from end-to-end measure-
ments,” in Proc. of ITC Seminar on IP Traffic, Measurement, and Modeling, Monterey, CA, Sep. 2000.

[19] N. G. Duffield, J. Horowitz, F. L. Presti, and D. Towsley, “Multicast topology inference from measured end-to-
end loss,” in IEEE Trans. on Inf. Theory, vol. 48, no. 1, pp. 26–45, Jan. 2002.

[20] N. G. Duffield and F. L. Presti, “Network tomography from measured end-to-end delay covariance,” in
IEEE/ACM Transactions on Networking, vol. 12, no. 6, pp. 978–992, Dec. 2004.

[21] N. Duffield, F. L. Presti, V. Paxson, and D. Towsley, “Inferring link loss using striped unicast probes,” in Proc.
of IEEE INFOCOM, Anchorage, AK, Apr. 2001.

[22] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, “Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids,” Cambridge University Press, 1999.

[23] B. Eriksson, G. Dasarathy, P. Barford, and R. Nowak, “Toward the Practical Use of Network Tomography for
Internet Topology Discovery”, in Proc. of IEEE infocom, San Diego, CA, Mar. 2010.

[24] C. Fragouli, A. Markopoulou, and S. Diggavi, “Topology Inference using Network Coding,” in Proc. of the
Allerton Conference, Monticello, IL, Sept. 2006.

[25] M. Gjoka, C. Fragouli, P. Sattari, and A. Markopoulou, “Loss Tomography in General Topologies with Network
Coding,” in Proc. of IEEE Globecom, Washington DC, Nov. 2007.

[26] R. Govindan, H. Tangmunarunkit, “Heuristics for Internet map discovery,” in Proc. of IEEE Infocom, 2000.
[27] G. Hartl, B. Li, “Loss inference in wireless sensor networks based on data aggregation,” in Proc. of IPSN, 2004.
[28] T. Ho, B. Leong, Y. Chang, Y. Wen, and R. Koetter, “Network Monitoring in Multicast Networks Using Network

Coding,” in Proc. of IEEE ISIT, Adelaide, Australia, Sep. 2005.
[29] B. Huffaker, D. Plummer, D. Moore, k. claffy, “Topology discovery by active probing,” in Proc. of SAINT, 2002.
[30] M. Jafarisiavoshani, C. Fragouli, and S. Diggavi, “Subspace properties of randomized network coding,” in Proc.

of ITW, Bergen, Norway, Jul. 2007.
[31] M. Jafarisiavoshani, C. Fragouli, S. Diggavi, C. Gkantsidis, “Bottleneck discovery and overlay management in

network coded peer-to-peer systems,” in Proc. of ACM SIGCOMM INM Workshop, Kyoto, Japan, Aug. 2007.
[32] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft, “XORs in the Air: Practical Wireless

Network Coding,” in IEEE Trans. on Networking, vol. 16, no. 3, Jun. 2008.
[33] Y. Lin, B. Liang, and B. Li, “Passive Loss Inference in Wireless Sensor Networks Based on Network Coding,”

in Proc. of IEEE Infocom, Rio De Janeiro, Brazil, Apr. 2009.
[34] A. Markopoulou, C. Fragouli, M. Gjoka, “A network coding approach to loss tomography,” arXiv:1005.4769.
[35] H. Nguyen and P. Thiran, “The Boolean solution to the congested IP link location problem: theory and practice,”

in Proc. of IEEE Infocom, May 2007.
[36] M. Rabbat, M. Coates, and R. Nowak, “Multiple Source Internet Tomography,” in IEEE JSAC, vol. 24, no. 12,

pp. 2221–2234, Dec. 2006.
[37] M. Rabbat, R. Nowak, and M. Coates, “Multiple Source Multiple Destination Network Tomography,” in Proc.

of IEEE INFOCOM, Hong Kong, Mar. 2004.
[38] S. Ratnasamy and S. McCanne, “Inference of multicast routing trees and bottleneck bandwidths using end-to-

end measurements”, in Proc. of IEEE Infocom, New York, NY, Mar. 1999.
[39] P. Sattari, C. Fragouli, A. Markopoulou, “Active Topology Inference using Network Coding,” arXiv:1007.3336.
[40] P. Sattari, A. Markopoulou, and C. Fragouli, “Multiple Source Multiple Destination Topology Inference using

Network Coding,” in Proc. of NetCod Workshop, EPFL, Switzerland, Jun. 2009.
[41] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network support for IP traceback,” in IEEE/ACM ToN,

vol. 9, issue 3, pp. 226–237, 2001.
[42] G. Sharma, S. Jaggi, B. K. Dey, “Network tomography via network coding,” in Proc. of ITA Workshop, 2008.
[43] Y. Shavitt, E. Shir, “DIMES: Let the Internet Measure Itself,” in ACM SIGCOMM CCR, vol. 35, issue 5, 2005.
[44] M. Shih, A. Hero, “Network topology discovery using finite mixture models,” in Proc. of IEEE ICASSP, 2004.
[45] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies with Rocketfuel,” in Proc. of ACM

Sigcomm, Pittsburgh, PA, Aug. 2002.
[46] Y. Tsang, M. Yildiz, P. Barford, and R. Nowak, “Network radar: tomography from round trip time measure-

ments,” in Proc. of ACM IMC, Taormina, Sicily, Italy, Oct. 2004.
[47] F. Viger, B. Augustin, X. Cuvellier, C. Magnien, M. Latapy, T. Friedman, R. Teixeira, “Detection, understanding

and prevention of traceroute measurement artifacts,” Computer Networks, vol. 52, no. 5, pp. 998–1018, 2008.
[48] W. Xu, E. Mallada, and A. K. Tang, “Compressive Sensing over Graphs,” in Proc. of IEEE Infocom, 2011.
[49] H. Yao, S. Jaggi, and M. Chen, “Passive network tomography for erroneous networks: A network coding

approach,” arXiv:0908.0711, 2010.
[50] B. Yao, R. Viswanathan, F. Chang, and D. Waddington, “Topology inference in the presence of anonymous

routers,” in Proc. of IEEE INFOCOM, San Francisco, CA, Mar. 2003.
[51] The Abilene Network, http://noc.net.internet2.edu/.
[52] BRITE Topology Generator. Available at: http://www.cs.bu.edu/brite/.
[53] LEDA software, http://www.algorithmic-solutions.com/.

32

http://arxiv.org/abs/1005.4769
http://arxiv.org/abs/1007.3336
http://arxiv.org/abs/0908.0711
http://noc.net.internet2.edu/
http://www.cs.bu.edu/brite/
http://www.algorithmic-solutions.com/

Pegah Sattari (SM’08) received the B.S. degree in Electrical Engineering from
Sharif University of Technology, Tehran, Iran, in 2006, and the M.S. degree in
Electrical and Computer Engineering from the University of California, Irvine, in
2007. She is currently a Ph.D. candidate in the EECS Department at the Univer-
sity of California, Irvine. Her research interests include network measurements,
network coding, and its applications to inference problems.

Christina Fragouli is an assistant professor in the School of Computer and
Communication Sciences, EPFL, Switzerland. She received the B.S. degree in
Electrical Engineering from the National Technical University of Athens, Greece,
in 1996, and the M.Sc. and Ph.D. degrees in Electrical Engineering from the Uni-
versity of California, Los Angeles, in 1998 and 2000, respectively. She has worked
at the Information Sciences Center, AT&T Labs, and the National University of
Athens. She has also visited Bell Labs and DIMACS, Rutgers University. Her

research interests include network coding, network information flow theory and algorithms, and
connections between communications and computer science. She received the ERC Starting Grant
from the European Research Council in 2009.

Athina Markopoulou (SM’98, M’02) is an assistant professor in the EECS De-
partment at the University of California, Irvine. She received the Diploma degree
in Electrical and Computer Engineering from the National Technical University
of Athens, Greece, in 1996, and the M.S. and Ph.D. degrees in Electrical Engi-
neering from Stanford University in 1998 and 2003, respectively. She has been a
postdoctoral fellow at Sprint Labs and at Stanford University, and a member of

the technical staff at Arastra Inc.. Her research interests include network coding, network measure-
ments and security, media streaming and online social networks. She received the NSF CAREER
award in 2008.

33

	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Model
	3.2 Scope and Discussion

	4 Main Results
	5 Inferring Trees
	5.1 Binary Trees
	5.1.1 Lossless Binary Tree
	5.1.2 Lossy Binary Tree

	5.2 M-ary Trees
	5.2.1 Full M-ary Trees
	5.2.2 General M-ary Trees

	6 Inferring Directed Acyclic Graphs (DAGs)
	6.1 From a Single-Tree to Multiple-Tree Topologies
	6.2 Identifying 2-by-2 Components
	6.2.1 Lossless 2-by-2
	6.2.2 Lossy 2-by-2
	6.2.3 Inferring all 2-by-2's in a 2-by-N Network
	6.2.4 2-by-2's vs. other Subnetwork Components

	6.3 Merging Algorithm
	6.3.1 Merging a 1-by-N and 2-by-2's into a 2-by-N
	6.3.2 Merging 2-by-2's into a 2-by-N
	6.3.3 From 2-by-N to M-by-N
	6.3.4 Complexity of Merging

	7 Simulation Results
	7.1 Trees
	7.1.1 Simulation Setup
	7.1.2 Simulation Results

	7.2 Multiple-Tree Topologies (DAGs)
	7.2.1 Simulation Setup
	7.2.2 Simulation Results

	8 Our Work in Perspective
	8.1 Deployment Scenarios
	8.2 Comparison to Traditional Tomography w/o Network Coding
	8.3 Comparison to Passive Tomography with Network Coding
	8.4 Extension to Passive Tomography with RNC
	8.5 Comparison to traceroute-like Approaches
	8.6 Comparison to Packet Marking Approaches

	9 Conclusion
	Appendix A Probability of Error of Alg. 2 (Topology Inference in Trees with Loss)
	Appendix B Prob. of Error of Alg. 6 (Inference of 2-by-2's in DAGs with loss)

