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Abstract

We investigate underwater acoustic (UWA) channel equalization and introduce hi-

erarchical and adaptive nonlinear channel equalization algorithms that are highly

efficient and provide significantly improved bit error rate (BER) performance. Due

to the high complexity of nonlinear equalizers and poor performance of linear ones,

to equalize highly difficult underwater acoustic channels, we employ piecewise linear

equalizers. However, in order to achieve the performance of the best piecewise linear

model, we use a tree structure to hierarchically partition the space of the received

signal. Furthermore, the equalization algorithm should be completely adaptive, since

due to the highly non-stationary nature of the underwater medium, the optimal

MSE equalizer as well as the best piecewise linear equalizer changes in time. To this

end, we introduce an adaptive piecewise linear equalization algorithm that not only

adapts the linear equalizer at each region but also learns the complete hierarchical

structure with a computational complexity only polynomial in the number of nodes

of the tree. Furthermore, our algorithm is constructed to directly minimize the fi-

nal squared error without introducing any ad-hoc parameters. We demonstrate the

performance of our algorithms through highly realistic experiments performed on

accurately simulated underwater acoustic channels.
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1 Introduction

Underwater acoustic (UWA) domain has become an important research field

due to proliferation of new and exciting applications [1, 2]. However, due to

poor physical link quality, high latency, constant movement of waves and chem-

ical properties of water, the underwater acoustic channel is considered as one

of the most adverse communication mediums in use today [3–5]. These ad-

verse properties of the underwater acoustic channel should be equalized by

in order to provide reliable communication [2, 3, 6–13]. Furthermore, due to

rapidly changing and unpredictable nature of underwater environment, con-

stant movement of waves and transmitter-receivers, such processing should be

adaptive [2, 7, 9, 11]. However, there exist significant practical and theoretical

difficulties to adaptive signal processing in underwater applications, since the

signal generated in these applications show high degrees of non-stationarity,

limit cycles and, in many cases, are even chaotic. Hence, the classical adap-

tive approaches that rely on assumed statistical models are inadequate since

there is usually no or little knowledge about the statistical properties of the

underlying signals or systems involved [3, 14,15].

In this paper, in order to rectify the undesirable effects of underwater acoustic

channels, we introduce a radical approach to adaptive channel equalization

and seek to provide robust adaptive algorithms in an individual sequence

manner [16]. Since the signals generated in this domain have high degrees of

non-stationarity and uncertainty, we introduce a completely novel approach

to adaptive channel equalization and aim to design adaptive methods that are
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(Nuri Denizcan Vanli), kozat@ee.bilkent.edu.tr (Suleyman S. Kozat).
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mathematically guaranteed to work uniformly for all possible signals without

any explicit or implicit statistical assumptions on the underlying signals or

systems [16].

Although linear equalization is the simplest equalization method, it delivers

an extremely inferior performance compared to that of the optimal methods,

such as Maximum A Posteriori (MAP) or Maximum Likelihood (ML) methods

[10,17,18]. Nonetheless, the high complexities of the optimal methods, and also

their need of the channel information [8, 10,12,19,20], make them practically

infeasible for UWA channel equalization, because of the extremely large delay

spread of UWA channels [8, 18, 21–23]. Hence, we seek to provide powerful

nonlinear equalizers with low complexities as well as linear ones. To this end,

we employ piecewise linear methods, since the simplest and most effective

as well as close to the nonlinear equalizers are piecewise linear ones [16, 24].

By using piecewise linear methods, we can retain the breadth of nonlinear

equalizers, while mitigating the over-fitting problems associated with these

models [24, 25]. As a result, piecewise linear filters are used in a vast variety

of applications in signal processing and machine learning literature [25].

In piecewise linear equalization methods, the space of the received signal is

partitioned into disjoint regions, each of which is then fitted a linear equalizer

[18, 24]. We use the term “linear” to refer generally to the class of “affine”

rather than strictly linear filters. In its most basic form, a fixed partition is

used for piecewise linear equalization, i.e., both the number of regions and

the region boundaries are fixed over time [24,25]. To estimate the transmitted

symbol with a piecewise linear model, at each specific time, exactly one of

the linear equalizers is used [18]. The linear equalizers in every region should

be adaptive such that they can match the time varying channel response.

However, due to the non-stationary statistics of the channel response, a fixed

partition over time cannot result in a satisfactory performance. Hence, the

partitioning should be adaptive as well as the linear equalizers in each region.
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To this aim, we use a novel piecewise linear algorithm in which not only the

linear equalizers in each region, but also the region boundaries are adaptive

[16]. Therefore, the regions are effectively adapted to the channel response

and follow the time variations of the best equalizer in highly time varying

UWA channels. In this sense, our algorithm can achieve the performance of

the best piecewise linear equalizer with the same number of regions, i.e., the

linear equalizers as well as the region boundaries converge to their optimal

linear solutions.

Nevertheless, due to the non-stationary channel statistics, there is no knowl-

edge about the number of regions of the best piecewise linear equalizer, i.e.,

even with adaptive boundaries, the piecewise linear equalizer with a certain

number of regions, does not perform well. Hence, we use a tree structure to con-

struct a class of models, each of which has a different number of regions [24,26].

Each of these models can be then employed to construct a piecewise linear

equalizer with adaptive filters in each region and also adaptive region bound-

aries [16]. In [26], they choose the best model (subtree) represented by a tree

over a fixed partition. However, the final estimates of all of these models should

be effectively combined to achieve the performance of the best piecewise lin-

ear equalizer within this class [16]. For this, we assign a weight to each model

and linearly combine the results generated by each of them. However, due

to the high computational complexity resulted from running a large number

of different models, we introduce a technique to combine the node estimates

to produce the exactly same result. We emphasize that we directly combine

the node estimates with specific weights rather than running all of these dou-

bly exponential [24] number of models. Furthermore, the algorithm adaptively

learns the node combination weights and the region boundaries as well as the

linear equalizers in each region, to achieve the performance of the best piece-

wise linear equalizer. Specifically, we apply a computationally efficient solution

to the UWA channel equalization problem using turning boundaries trees [16].
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As a result, in highly time varying UWA channels, we significantly outperform

other piecewise linear equalizers constructed over a fixed partition.

In this paper, we introduce an algorithm that is shown i) to provide signifi-

cantly improved BER performance over the conventional linear and piecewise

linear equalization methods in realistic UWA experiments ii) to have guaran-

teed performance bounds without any statistical assumptions. Our algorithm

not only adapts the corresponding linear equalizers in each region, but also

learns the corresponding region boundaries, as well as the “best” linear mix-

ture of a doubly exponential number of piecewise linear equalizers. Hence,

the algorithm minimizes the final soft squared error, with a computational

complexity only polynomial in the number of nodes of the tree. In our algo-

rithm, we avoid any artificial weighting of models with highly data dependent

parameters and, instead, “directly” minimize the squared error. Hence, the in-

troduced approach significantly outperforms the other tree based approaches

such as [24], as demonstrated in our simulations.

The paper is organized as follows: In section 2 we describe our framework

mathematically and introduce the notations. Then, in section 3 we first present

an algorithm to hierarchically partition the space of the received signal. We

then present an upper bound on the performance of the promised algorithm

and construct the algorithm. In section 4 we show the performance of our

method using highly realistic simulations, and then conclude the paper with

section 5.

2 Problem Description

We denote the received signal by {r(t)}t≥1, r(t) ∈ R, and our aim is to de-

termine the transmitted bits {b(t)}t≥1, b(t) ∈ {−1, 1}. All vectors are column

vectors and denoted by boldface lower case letters. For a vector x, xT is the
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ordinary transpose.

In UWA communication, if the input signal is bandlimited, the baseband signal

at the output is modeled as follows [27]

y(t) =
K∑
p=0

gp(t)x(t− pTs) + ν(t), (1)

where y(t) is the channel output, Ts is the sampling interval, K is the minimum

number beyond which the tap gains gp(t) are negligible, ν(t) indicates the

ambient noise, and gp(t) is defined by

gp(t) ,
∫ ∞
−∞

c(τ, t) sinc(
τ − pTs
Ts

) dτ. (2)

where c(τ, t) indicates the channel response at time t related to an impulse

launched at time t − τ , and τ is the delay time. The input signal x(t) is the

pulse shaped signal generated from the sequence of bits {b(t)}t≥1 transmitted

every Ts seconds. Note that the effects of time delay and phase deviations are

usually addressed at the front-end of the receiver. Hence, we do not deal with

this representation of the received signal. Instead, we assume that channel is

modeled by a discrete time impulse response (i.e., a tap delay model). With

a small abuse of notation, in the rest of the paper, we denote the discrete

sampling times by t, such that the received signal can be represented as

r(t) =
N1∑

k=−N2

b(k)g̃(t− k) + ν(t), (3)

where r(t) , y(tTs) is the output of the discrete channel model, g̃(k) is the kth

tap of the discrete channel impulse response, and ν(t) represents the ambient

noise. We have assumed that the discrete channel can be effectively represented

by N1 causal and N2 anti-causal taps. The input symbols b(t) are transmitted

every Ts seconds and our aim is to estimate the transmitted bits {b(t)}t≥1

according to the channel outputs {r(t)}t≥1. In this setup, a linear channel
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equalizer can be constructed as

b̂(t) = wT (t)r(t), (4)

where r(t) , [r(t), . . . , r(t − h + 1)]T is the received signal vector at time t,

w(t) , [w0(t), . . . , wh−1(t)]T is the linear equalizer at time t, and h is the

equalizer length. The tap weights w(t) can be updated using any adaptive

filtering algorithm such as the least mean squares (LMS) or the recursive least

squares (RLS) algorithms [28] in order to minimize the squared error loss

function, where the soft error at time t is defined as

e(t) = b(t)− b̂(t).

However, we can get significantly better performance by using adaptive non-

linear equalizers, because such linear equalization methods usually yield un-

satisfactory performance [18]. Thus, we employ piecewise linear equalizers,

which serve as the most natural and computationally efficient extension to lin-

ear equalizers [25], since the equalizer lengths are significantly large in UWA

channels [29]. The block diagram of a sample adaptive piecewise linear equal-

izer is shown in the Fig. 1. In such equalizers, the space of the received signal

(here, Rh) is partitioned into disjoint regions, to each of which a different

linear equalizer is assigned.

As an example, in Fig. 2, we use the received signal r(t) , [r(t), r(t−1)]T ∈ R2

to estimate the transmitted bit b(t). We partition the spaceR2 into two regions

R1 and R2, and use different linear equalizers w1 ∈ R2 and w2 ∈ R2 in these

regions respectively. Hence the estimate b̂(t) is calculated as

b̂(t) =


wT

1 (t)r(t) + c1(t) if r(t) ∈ R1

wT
2 (t)r(t) + c2(t) if r(t) ∈ R2,
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1w

Nw

ˆ(t)b(t)r ˆ( (t))Q b

(t)e
-

Adaptation 
Block

Training 
Sequence

Decision 
Device

Performance 
Evaluation

Received 
Signal

Piecewise Linear 
Filter

Fig. 1. The block diagram of an adaptive piecewise linear equalizer. This equalizer
consists of N different linear filters, one of which is used for each time step, based
on the region (a subset of Rh, where h is the length of each filter) in which the
received signal vector lies.

The boundary 
between the regions

The direction vector
n

Region Region

Linear equalizer Linear equalizer

R21R

( 1)r t −

2
ˆ( ) ( ) (t)Tb t t= w r1

ˆ( ) ( ) (t)Tb t t= w r

( )r t

Fig. 2. A simple two region partition of the space R2. We use different equalizers w1

and w2 in regions R1 and R2 respectively. The direction vector n is an orthogonal
vector to the regions boundary (the hyper-plane used to separate the regions).

where c1(t) ∈ R and c2(t) ∈ R are the offset terms, which can be embedded

into w1 and w2, i.e., wj , [wT
j cj]

T , j = 1, 2, and r , [rT 1]T . Hence the

above expression can be rewritten as

b̂(t) =


wT

1 (t)r(t) if r(t) ∈ R1

wT
2 (t)r(t) if r(t) ∈ R2.

Because of the high complexity of the best linear minimum mean squared

error (MMSE) equalizer in each region [18], as well as the rapidly changing

characteristics of the UWA channel, we use low complexity adaptive techniques

to achieve the best linear equalizer in each region [28]. Hence we update the
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equalizer’s coefficients using least mean squares (LMS) algorithm as

w1(t+ 1) = w1(t) + µ1 e(t) r(t) if r(t) ∈ R1

w2(t+ 1) = w2(t) + µ2 e(t) r(t) if r(t) ∈ R2,

Note that the complexity of the MMSE method is quadratic in the equalizer

length [18], while the LMS method has a complexity only linear in the equalizer

length.

To obtain a general expression, consider that we use a partition P with N

subsets (regions) to divide the space of the received signal into disjoint regions,

i.e.,

P = {R1, . . . , RN}

R
h = ∪Nj=1Rj

b̂(t) = b̂j(t) = wT
j (t)r(t) if r(t) ∈ Rj, (5)

which can be rewritten using indicator functions as

b̂(t) =
N∑
j=1

b̂j(t) idj(r(t))

=
N∑
j=1

wT
j (t)r(t) idj(r(t)), (6)

where the indicator function idj(r(t)) determines whether the received signal

vector r(t) lies in the region Rj or not, i.e.,

idj(r(t)) =


1 if r(t) ∈ Rj

0 otherwise.

Remark 1: Note that this algorithm can be directly applied to DFE equal-

izers. In this scenario, we partition the space of the extended received signal
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vector. To this end, we append the past decided symbols to the received signal

vector as

r̃(t) , [r(t), . . . , r(t− h+ 1), b̄(t− 1), . . . , b̄(t− hf )]T ,

where hf is the length of the feedback part of the equalizer, i.e., we partition

R
(h+hf ). Also, b̄(t) = Q(b̂(t)) denotes the quantized estimate of the transmitted

bit b(t). Furthermore, corresponding to this extension in the received signal

vector, we merge the feed-forward and feedback equalizers in each region to

obtain an extended filter of length h+ hf as

w̃j(t) , [wT
j (t) fTj (t)]T ,

where f j(t) represents the feedback filter corresponding to the jth region at

time t. Hence, the jth region estimate is calculated as

b̂j(t) = w̃T
j (t) r̃(t).

In the next section, we extend these expressions to the case of an adaptive

partition, both in the region boundaries and number of regions, and introduce

our final algorithm.

3 Adaptive Partitioning of The Received Signal Space

3.1 An Adaptive Piecewise Linear Equalizer with a Specific Partition

Due to the non-stationary nature of underwater channel, a fixed partitioning

over time cannot match well to the channel response, i.e., the partitioning

should be adaptive. Hence we use a partition with adaptive boundaries. To this

end, we use hyper-planes with adaptive direction vectors (a vector orthogonal
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to the hyper-plane) as boundaries. We use n to refer to the direction vector

of a hyperplane.

As an example consider a partition with two regions as depicted in Fig. 2,

hence, there is one boundary, the direction vector to which is shown by n.

The indicator functions for these regions are calculated as

id1(r(t)) = σ(r(t))

id2(r(t)) = 1− σ(r(t)),

where

σ(r(t)) =


1 if r(t) ∈ R1

0 if r(t) ∈ R2,

represents the hard separation of the regions. However, in order to learn the

region boundaries, we use a soft separator function, which is defined as

σ(r) ,
1

1 + er
Tn+b

, (7)

which yields

σ(r) =


1 if rTn + b� 0

0 if rTn + b� 0.

Although this separator function is not a hard separator function, it is a differ-

entiable function, hence, it can be used to simply update the direction vector

n using LMS algorithm, resulting in an adaptive boundary. For simplicity,

with a small abuse of notation, we redefine n and r, as n , [nT b]T and
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r , [rT 1]T , hence (7) can be rewritten as

σ(r) ,
1

1 + er
Tn . (8)

We use the LMS algorithm to update the direction vector n. Hence,

n(t+ 1) = n(t)− 1

2
µ ∇n(t)e

2

= n(t) + µ e(t)
∂ b̂(t)

∂ n(t)

= n(t) + µ e(t)

(
∂ id1(r(t))

∂ n(t)
b̂1(t) +

∂ id2(r(t))

∂ n(t)
b̂2(t)

)

= n(t) + µ e(t) σ(r)(σ(r)− 1)
(
b̂1(t)− b̂2(t)

)
r(t),

since

∂σ(r)

∂n
=
−r erTn+b

(1 + er
Tn+b)2

= −rσ(r)(1− σ(r)). (9)

Since the region boundaries as well as the linear filters in each region are

adaptive, if every filter converges, this equalizer can perform better than other

piecewise linear equalizers with the same number of regions.

Remark: The piecewise linear equalizers are not limited to the BPSK mod-

ulation and one can easily extend these results to higher order modulation

schemes like QAM or PAM. However, for the complex valued data (e.g., in

QAM modulations) the separating function should change as

σ(r) ,
1

1 + er
T
renre+rTimnim

(10)

where the subscripts “re” and “im” denote the real and imaginary part of each
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vector respectively, e.g.,

rre = [Re{r(t)}, . . . ,Re{r(t− h+ 1)}]T

rim = [Im{r(t)}, . . . , Im{r(t− h+ 1)}]T . (11)

3.2 The Completely Adaptive Equalizer Based on a Turning Boundaries Tree

The block diagram of a sample adaptive piecewise linear equalizer with adap-

tive regions is shown in Fig. 3. Given a fixed number of regions, we can achieve

the best piecewise linear equalizer with the algorithm described in Section 3.1.

However, there is no a priori knowledge about the number of regions of the

best piecewise linear equalizer, and the best linear equalizer will change in

time, due to the highly non-stationary nature of underwater medium. In order

to provide an acceptable performance with a relatively small computational

complexity, we introduce a tree-based piecewise linear equalization algorithm,

where we hierarchically partition the space of the received signal, i.e., Rh.

Every node of the tree represents a region and is fitted a linear equalizer, as

shown in Fig. 4. As shown in Fig. 3, each node j provides its own estimate

b̂j(t), which are then combined to generate the final estimate b̂(t) as

b̂(t) =
2d+1−1∑
j=1

uj(t)w
T
j (t)r(t),

= uT (t)b̂(t), (12)

where u(t) = [u1(t), . . . , u2d+1−1(t)]T is the combination weight vector, which

is updated each time, and b̂(t) = [b̂1(t), ..., b̂2d+1−1(t)]T is the vector of the

node estimates.

As depicted in Fig. 5, this tree introduces a number of partitions with different

number of regions, each of which can be separately used as a piecewise linear

equalizer [16]. Note that in our method, both the region boundaries and the
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1u

12 1du  

u

1b̂
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ˆ
db  

1w

12 1d 
w

2 1d 
n

1n




ˆ(t)b(t)r ˆ( (t))Q b

(t)e -Adaptation 
Block

Training 
Sequence

Decision 
Device

Fig. 3. The block diagram of a turning boundaries tree (TBT) equalizer. The re-
ceived signal space is partitioned using a depth d tree, and corresponding to each
node i there is a linear filter wi. Furthermore, the direction vectors of the sep-
arating hyper-planes, n’s, are adaptive resulting in an adaptive tree. The weight
vector u, which contains the combination weights for each node’s contribution, is
also adaptive.

The whole 
space

Fig. 4. Partitioning the spaceR2 using a depth-2 tree structure. Hyper-planes (lines)
are used to divide the regions. The direction vectors are the orthogonal vectors to
the hyper-planes.

channel equalizers in each region are adaptive.

To achieve the performance of the best piecewise linear equalizer, we hierar-

chically partition the space of the received signal. To this aim we use a tree

structure in which, each node represents a region that is the union of the re-

gions assigned to its left and right children [30], as shown in Fig. 4. We denote

the root node by 1, and the left and right children of the node j by 2j and

14



Fig. 5. All different partitions of the received signal space that can be obtained using
a depth-2 tree. Any of these partition can be used to construct a piecewise linear
equalizer, which can be adaptively trained to minimize the squared error. These
partitions are based on the separation functions shown in Fig. 4.

2j + 1, respectively. Obviously the root node indicates the whole space of the

received signal, i.e., Rh. The estimate generated by node j is calculated as

b̂j(t) = wT
j (t) r(t).

We denote by αd the number of partitioning trees with depth≤ d. Hence,

αd+1 = α2
d + 1,

which shows that there are a doubly exponential number of models embedded

in a depth-d tree (See Fig. 5), each of which can be used to construct a

piecewise linear equalizer [24]. Each of these models consists of a number

of nodes. However, the number of regions (leaf nodes) in each model can

be different with that of other models, as shown in Fig. 5, e.g., P2 has two

regions, while P5 has 4 regions. Therefore, we implicitly run all of the piecewise
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linear equalizers constructed based on these partitions, and linearly combine

their results to estimate the transmitted bit. We then adaptively learn the

combination weights to achieve the best estimate at each time.

To clarify the framework, suppose the corresponding space of the received

signal vector is two dimensional, i.e., r(t) ∈ R2, and we partition this space

using a depth-2 tree as in Fig. 4. A depth-2 tree is represented by three sepa-

rating functions σ1(r(t)), σ2(r(t)) and σ3(r(t)), which are defined using three

hyper-planes with direction vectors n1(t), n2(t) and n3(t), respectively (See

Fig. 4). The left and right children of the node j are 2j and 2j+1 respectively,

therefore, the indicator functions are defined as

id1(r) = 1

id2j(r) = σj(r) × idj(r)

id2j+1(r) = (1− σj(r)) × idj(r),

where j ≤ 2d − 1 and

σj(r) ,
1

1 + er
Tnj

.

Due to the tree structure, three separating hyper-planes generate four regions,

each corresponding to a leaf node on the tree given in Fig. 4. The partitioning

is defined in a hierarchical manner, i.e., r(t) is first processed by σ1(r(t))

and then by σi(t), i = 2, 3. A complete tree defines a doubly exponential

number, O(22d), of models each of which can be used to partition the space

of the received signal vector. As an example, a depth-2 tree defines 5 different

partitions as shown in Fig. 5, where each of these subtrees is constructed using

the leaves and the nodes of the original tree.

Consider the fifth model in Fig. 5, i.e., P5, where this partition consists of 4

disjoint regions each corresponding to a leaf node of the original complete tree

in Fig. 4, labeled as 4, 5, 6, and 7. At each region, say the 4th region, we gener-

ate the estimate b̂4(t) = wT
4 (t)r(t), where w4(t) ∈ Rh is the tap weights of the
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linear equalizer assigned to region 4. Considering the hierarchical structure of

the tree and having calculated the region estimates, b̂j(t), the final estimate

of P5 is given by

b̂(5)(t) =
7∑
j=4

idj(r(t))b̂j(t), (13)

for an arbitrary selection of the separator functions σ1, σ2, σ3 and for any r(t).

We emphasize that any Pi, i = 1, . . . , 5 can be used in a similar fashion to

construct a piecewise linear channel equalizer. Based on these model estimates,

the final estimate of the transmitted bit b(t) is obtained by

b̂(t) =
αd∑
i=1

b̂(i)(t) u′i(t)

= b̂
′
(t)T u′(t), (14)

where b̂
′
(t) , [b̂(1)(t), . . . , b̂(αd)(t)]T and b̂(k)(t) represents the estimate of b(t)

generated by the kth piecewise linear channel equalizer, k = 1, . . . , αd. We

use the LMS algorithm to update the weighting vector u′(t). Note that in our

method, which is given in Algorithm 1, we linearly combine the estimates gen-

erated by all αd models, using the weighting vector u′(t) , [u′1(t), . . . , u′αd(t)]
T ,

to estimate the transmitted bit b(t), such that we can achieve the best perfor-

mance on the tree.

Under the moderate assumptions on the cost function that e2(u′(t)) is a λ-

strong convex function [31] and also its gradient is upper bounded by a con-

stant number, the following theorem provides an upper bound on the error

performance of our algorithm (given in Algorithm 1).

Theorem 1: Let {b(t)}t≥1 and {r(t)}t≥1 represents arbitrary and real-valued

sequences of transmitted bits and channel outputs. The algorithm for b̂(t) given

in Algorithm 1 when applied to any sequence with an arbitrary length L ≥ 1
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yields

E{
L∑
t=1

(
b(t)− b̂(t)

)2
} − min

z∈Rαd
E{

L∑
t=1

(
b(t)− zT b̂(t)

)2
} ≤

E{
L∑
t=1

(
b(t)− b̂(t)

)2
} − E{ min

z∈Rαd

L∑
t=1

(
b(t)− zT b̂(t)

)2
} ≤ O

(
logL

)
, (15)

where z is an arbitrary constant combination weight vector, used to combine

the results of all models.

Outline of the proof: Since we use a stochastic gradient method to update

the weighting vector in Algorithm 1, from Chapter 3 of [32] it can be straight-

forwardly shown that

L∑
t=1

(
b(t)− b̂(t)

)2
− min

z∈Rαd

L∑
t=1

(
b(t)− zT b̂(t)

)2
≤ O

(
logL

)
,

in a strong deterministic sense, which is a well known result in computational

learning theory [32]. Taking the expectation of both sides of this deterministic

bound yields the result in (15).

This theorem implies that the algorithm given in Algorithm 1 asymptotically

achieves the performance of the optimal linear combination of the O(22d) dif-

ferent “adaptive” piecewise linear equalizers, represented using a depth-d tree,

in the MSE sense, with a computational complexity O(h4d) (i.e., only poly-

nomial in the number of nodes).

Regarding this theorem, for αd ≈ (1.5)2d different models that are embed-

ded within a depth-d tree, the introduced algorithm (given in Algorithm 1)

asymptotically achieves the same cumulative squared error as the optimal

combination of the best adaptive equalizers. Moreover, note that as the data

length increases and each region becomes dense enough, the linear equalizer in

each region, converges to the corresponding linear MMSE equalizer in that re-

gion [24]. In addition, since in our algorithm the tree structure is also adaptive,

it can follow the data statistics effectively even when the channel is highly time
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varying. Therefore, our algorithm outperforms the conventional methods and

asymptotically achieves the performance of the best piecewise linear equalizer.

We update the combination weights using LMS algorithm to achieve the per-

formance of the best piecewise linear equalizer. Hence,

u′(t+ 1) = u′(t)− 1

2
µ∇u′(t)e2(t)

= u′(t) + η e(t) b̂(t).

Note that, as depicted in Fig. 5, each model weight equals the sum of the

weights assigned to its leaf nodes, hence we have

u′k(t) =
∑
i∈Pk

ui(t),

which in turn results in the following node weights update algorithm

uj(t+ 1) = uj(t) + µ e(t) b̂j(t) idj(r(t)),

where uj(t) denotes the weight assigned to the jth node at time t.

So far we have shown how to construct a piecewise linear equalizer using

separating functions and how to combine the estimates of all models to achieve

the performance of the best piecewise linear equalizer. However, there are

a doubly exponential number of these models, hence it is computationally

prohibited to run all of these models and combine their results. In order to

reduce this complexity while reaching exactly the same result, we directly

combine the node estimates, i.e., instead of running all possible models, we

combine the node estimates with special weights, which yields the same result.

We now illustrate how to directly combine the node weights in our algorithm.

19



The overall estimate using all models contributions is

b̂(t) =
αd∑
i=1

b̂(i)(t) u′i(t)

=
αd∑
i=1

b̂(i)(t)

∑
j∈Pi

uj(t)


=

αd∑
i=1

∑
k∈Pi

idk(r(t)) b̂k(t)

∑
j∈Pi

uj(t)


=

αd∑
i=1

 ∑
j,k∈Pi

idk(r(t)) b̂k(t)uj(t)

 , (16)

where j and k indicate two arbitrary nodes. For each node k, we define zk(t) ,

idk(r(t)) b̂k(t). Hence we have

b̂(t) =
αd∑
i=1

 ∑
j,k∈Pi

zk(t)uj(t)

 .
Consider that Γ = {Γ1, . . . ,Γθd(dk)} is the family of models (subtrees) in all

of which the node k is a leaf node,where θd(dk) denotes the number of such

models. Therefore the final estimate of our algorithm can be rewritten as:

b̂(t) =
2d+1−1∑
k=1

zk(t)

∑
j∈Γ1

uj(t) + · · ·+
∑

j∈Γθd(dk)

uj(t)

 .
We denote by ρ(j0, k) the number of models in all of which the nodes j0 and

k appear as the leaf nodes simultaneously. The weight of each node j0 (i.e.,

uj0) appears in the above expression exactly ρ(j0, k) times, which yields the

following expression for the final estimate

b̂(t) =
2d+1−1∑
k=1

zk(t) βk(t),

where

βk(t) ,
2d+1−1∑
j0=1

uj0(t)ρ(j0, k).
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We now illustrate how to calculate ρ(j, k) in a depth-d tree. We use θd(dj) to

denote the number of models extracted from a depth-d tree, in all of which j

is a leaf node. It can be shown that

θd(dj) =
dj∏
l=1

αd−l,

where dj = blog2(j)c denotes the depth of the jth node [16]. To calculate

ρ(j, k) we first note that ρ(j, k) = ρ(k, j) and ρ(j, j) = θd(j). Therefore we

obtain

ρ(j, k) =


θd(j) if j = k

θd−l−1(dk−l−1)
αd−l−1

θd(dj) if j 6= k,

where, l represents the depth of the nearest common ancestor of the nodes j

and k in the tree, i.e., an ancestor of both nodes j and k, none of the children

of that is a common ancestor of j and k. This parameter can be calculated

using the following algorithm. Assume that, without loss of generality, j ≤ k.

Obviously if j is an ancestor of k, it is also the nearest common ancestor, i.e.,

l = dj. However, if j is not an ancestor of k, we define j′ , 2dk−djj, which is a

grandchild of the node j. Hence, the nearest common ancestor of j′ and k is

that of j and k. The following procedure computes the parameter l.

l = 0;
δ = dk;
while (l ≤ dk) do

δ = δ − l;
if (j′, k ≤ 2δ−1 + 2δ or j′, k ≥ 2δ−1 + 2δ) then

l = l + 1;
else

stop;
end

end

In order to update the region boundaries, we update their direction vectors as

follows

nj(t+ 1) = nj(t)−
1

2
µ∇nj(t)e

2(t), (17)
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where ∇nj(t)e
2(t) is the derivative of e2(t) with respect to nj(t). Since e(t) =

b(t)− b̂(t) the updating expression can be calculated as follows

nj(t+ 1) = nj(t)−
1

2
µ∇nj(t)e

2(t)

= nj(t) + µ e(t)
∂ b̂(t)

∂ nj(t)

= nj(t) + µ e(t)
2d+1−1∑
k=1

∂ b̂(t)

∂ zk(t)

∂ zk(t)

∂ nj(t)

= nj(t) + µ e(t)
2d+1−1∑
k=1

βk(t) b̂k(t)
∂ idk(r(t))

∂ nj(t)

= nj(t) + µ e(t)
2d+1−1∑
k=1

βk(t) b̂k(t)
∂ idk(r(t))

∂ σj(r(t))

∂ σj(r(t))

∂ nj(t)

= nj(t) + µ e(t)
∂ σj(r(t))

∂ nj(t)

2d+1−1∑
k=1

βk(t) b̂k(t)
∂ idk(r(t))

∂ σj(r(t))
.

However note that not all of the idk(r(t)) functions involve σj(r(t)), i.e., only

the nodes of the subtree with the root node j are included. Hence,

2d+1−1∑
k=1

βk(t) b̂k(t)
∂ idk(r(t))

∂ σj(r(t))
=

d−dj∑
m=1

2m+1−1∑
s=0

β2mj+s(t) b̂2mj+s(t)
∂ id2mj+s(r(t))

∂ σj(r(t))

=
d−dj−1∑
m=0

( 2m−1∑
s=0

β2m+1j+s(t) b̂2m+1j+s(t)
id2m+1j+s(r(t))

σj(r(t))

−
2m+1−1∑
s=2m

β2m+1j+s(t) b̂2m+1j+s(t)
id2m+1j+s(r(t))

σj(r(t))

)
.

We have presented the algorithm 1 for a “turning boundaries tree” equalizer,

which is completely adaptive to the channel response. Especially in our algo-

rithm both the number of regions and the region boundaries as well as the

linear equalizers in each region are adaptive. We emphasize that the learning

rates and initial values of all filters can be different.
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3.3 Complexity

Consider that we use a depth-d tree to partition the space of the received

signal, Rh. First note that each node estimate needs h computation. Since we

update all the linear filters corresponding to each region at each specific time,

it generates a computational complexity of O(h(2d+1 − 1)). Also, updating

the separator functions results in a computational complexity of O(h(2d−1)).

Moreover, note that we compute the cross-correlation of every node estimate

and every node weight, which results in the complexity of O(hN2
d ) = O(h4d).

Hence our algorithm has the complexity O(h4d) which is only polynomial in

the number of the tree nodes.

From the construction of this algorithm, it can be straightforwardly shown

that the algorithm is completely adaptive such that it converges to the opti-

mal linear filters in every region and optimal partition. Therefore, the proposed

equalizer achieves the performance of the best linear combination of all possi-

ble piecewise linear equalizers embedded in a depth-d tree, with a complexity

only polynomial in the number of tree nodes.
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Compute ρ(j, k) for all pairs {j, k} of nodes;
for t = 1 to L do

r = [r(t), . . . , r(t− h+ 1)]T ;
for k = 1 to 2d − 1 do

σk = 1

1+erTnk
;

end
id1 = 1;
for k = 1 to 2d − 1 do

id2k = idkσk;
id2k+1 = idk(1− σk);

end

b̂ = 0;
for k = 1 to 2d+1 − 1 do

b̂k = wT
k r;

zk = b̂kidk;
βk = 0;
for j = 1 to 2d+1 − 1 do

βk = βk + uj ρ(j, k);
end

b̂(t) = b̂(t) + zkβk;

end
if train mode then

b̄ = b(t);
else

b̄ = Q(b̂(t));
end

e = b̄− b̂(t);
for k = 1 to 2d+1 − 1 do

wk = wk + µk e idkr;
uk = uk + η e zk;

end
for j = 1 to 2d − 1 do

dj = blog2(j)c;
for m = 0 to d− dj − 1 do

for p = 0 to 2m − 1 do
i = 2m+1j + p;

S1 = S1 + βi b̂i
idi
σj

;

end
for p = 2m to 2m+1 − 1 do

i = 2m+1j + p;

S2 = S2 + βi b̂i
idi
σj

;

end
S = S + S1 − S2;

end
nj = nj + ζj e σ (σ − 1) S r;

end

end
Algorithm 1: Turning Boundaries Tree (TBT) Equalizer
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Remark: Although we have introduced our equalization method in a sin-

gle carrier framework, one can see that is directly extended to the OFDM

framework as well. For this purpose, one can use a tree-based piecewise linear

equalizer for each subcarrier in the OFDM modulation, which will improve the

performance in highly nonstationary underwater acoustic channels. Further-

more, our method can be straightforwardly used in MIMO communications,

i.e., one can embed all of the received symbols from all of the outputs in one

vector, and then apply the proposed piecewise linear equalizer to them.

4 Simulations

In this section, we illustrate the performance of our algorithm under a highly

realistic UWA channel equalization scenario. The UWA channel response is

generated using the algorithm introduced in [29], which presents highly accu-

rate modeling of the real life UWA communication experiments as illustrated

in [29]. Particularly, the surface height is set to 100m, transmitter antenna is

placed at the height of 20m, the receiver antenna is placed at the height of

50m, and the channel distance is 1000m. We compare the performances of the

following equalization algorithms: the Turning Boundaries Tree (TBT) equal-

izer of Theorem 1, the Fixed Boundaries Tree (FBT) equalizer of [16], Finest

Partition with Fixed Boundaries (FF), Finest Partition with Turning Bound-

aries (FT) (all having depths d = 2), and the linear LMS equalizer. We have

compared the performance of our algorithm with the context tree weighting

(CTW), as shown in Fig. 7 and 9. The Finest Partition refers to the partition

consisted of all leaf nodes of the tree (the P5 model in Fig. 5). Also, we use

FBT to refer to an equalizer with fixed boundaries, which adaptively update

the node weights as well as TBT algorithm. We use the LMS algorithm in the

linear equalizer of each node for all algorithms, and the step sizes are set to
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µ = 0.01 for all equalizers algorithms. In all algorithms we have used length

362 equalizers.

We sent 1000 repeated Turyn sequences [33] (of 28 bits) over the simulated

UWA channel. Fig. 8 shows the normalized time accumulated squared errors

of the equalizers, when SNR = 30dB. We emphasize that the TBT equalizer

significantly outperforms its competitors, where the FBT equalizer cannot pro-

vide a satisfactory result since it commits to the initial partitioning structure.

Moreover, the linear equalizer yields unacceptable results due to the struc-

tural commitment to the linearity. Note that the TBT equalizer adapts its

region boundaries and can successfully perform channel equalization even for

a highly difficult UWA channel. The Fig. 6 shows the bit error rate perfor-

mance in different SNRs for different equalizers. In the Fig. 10, it is shown

that the boundaries are turning during TBT algorithm, which results in an

adaptive partition. The results are averaged over 10 repetitions, and show the

extremely superior performance of our algorithm over other methods.
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LMS
FF
FT
FBT
TBT

Fig. 6. BER performances for the UWA channel response generated by [29]. The
BERs for the TBT, FBT, FF and FT equalizers (all using depth-2 tree structure),
and for the linear equalizer are presented.
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Fig. 7. BER performances for the UWA channel response generated by [29]. The
BERs for the TBT and CTW equalizers (both using depth-2 tree structure), and
for the linear equalizer are presented.

time(t) ×104
0 0.5 1 1.5 2 2.5 3

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

0

0.2

0.4

0.6

0.8

1

1.2

1.4
MSE comparison for different Equalizers at SNR = 30 dB

LMS
FF
FT
FBT
TBT

Fig. 8. Squared error performances for the UWA channel response generated by [29]
for SNR = 30dB. The time accumulated normalized squared errors for the TBT,
FBT, FF, and FT equalizers (all using depth-2 tree structure), and for the linear
equalizer are presented.
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Fig. 9. Squared error performances for the UWA channel response generated by [29]
for SNR = 30dB. The time accumulated normalized squared errors for the TBT and
CTW equalizers (both using depth-2 tree structure), and for the linear equalizer are
presented.

Fig. 10. An adaptive partition using a depth 2 tree. The region boundaries are
changing during the TBT algorithm converging to the optimal partition. In this
experiment, SNR = 30dB

In the second experiment we sent 10000 repeated Turyn sequence over the sim-

ulated channel, and used TBT algorithm with different depths to equalize the

channel. The results, as shown in Fig. 11 and 12, demonstrate that increasing

the depth of the tree improves the performance. However, as the depth of the
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tree increases, the effect of the depth diminishes. This is because increasing

the depth introduces finer partitions, i.e., the partitions with more regions.

As the number of the regions in a partition increases, the data congestion in

each region decreases, hence, the linear filters in these regions cannot fully

converge to their MMSE solutions. As a result, the estimates of these regions

(nodes) will be contributed to the final estimate with a much lower combina-

tion weight than other nodes, which are also present in a lower depth tree.

Therefore, although increasing the depth of the tree improves the result, we

cannot get a significant improvement in the performance by only increasing

the depth.
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Fig. 11. BER performances for different depths TBT equalizers. This figure shows
that increasing the depth of the tree improves the BER performance.
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Fig. 12. Squared error performances for different depths TBT equalizers for
SNR = 30dB. This figure shows that increasing the depth of the tree improves
the MSE performance. However, as the depth increases this effect diminishes.

Also, the node combination weights in the second experiment are shown in

Fig. 13. This figure shows that node 1, the root node, has the largest weight,

which means that it has the most contribution to the final estimate. Note that

for an arbitrarily chosen parent node, a larger portion of the data is used to

train the linear filter assigned to that node compared to its children nodes,

which in turn, yields a better convergence for the parent node’s filter. Hence,

the contribution of the parent node to the final estimation is more than that

of the children nodes. As a result the weight of each node is greater than both

the weights of its left and right children, e.g., node 2 has a greater weight than

node 4 and 5.
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Fig. 13. The node combination weights in TBT algorithm. In this experiment,
SNR = 30dB. Each node has a greater weight than its children, after convergence.

5 Conclusion

We study nonlinear UWA channel equalization using hierarchical structures,

where we partition the received signal space using a nested tree structure and

use different linear equalizers in each region. In this framework, we introduce

a tree based piecewise linear equalizer that both adapts its linear equalizers in

each region as well as its tree structure to best match to the underlying chan-

nel response. Our algorithm asymptotically achieves the performance of the

best linear combination of a doubly exponential number of adaptive piecewise

linear equalizers represented on a tree with a computational complexity only

polynomial in the number of tree nodes. Since our algorithm directly mini-

mizes the squared error and avoid using any artificial weighting coefficients,

it strongly outperforms the conventional linear and piecewise linear equalizers

as shown in our experiments.
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