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Mesh-based routing multicast state information is aggregated. We also present simulation results illustrating
Scalability that Hydra attains comparable or higher delivery ratios than the On-Demand Multicast
Multicast state aggregation Routing Protocol (ODMRP), but with considerably lower end-to-end delays and far less

communication overhead. Results are shown for scenarios using 802.11 DCF and TDMA
as the MAC layer protocols and using random waypoint and group mobility as mobility
models.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The objective of a multicast protocol for mobile ad hoc networks (MANET) is to enable communication between a sender
and a group of receivers in a network where nodes are mobile and may not be within direct wireless transmission range of
each other. These multicast routing protocols can be classified by the type of routing structure they construct and maintain;
namely tree-based and mesh-based protocols.

A tree-based multicast routing protocol constructs and maintains either a shared multicast routing tree or multiple
multicast trees (one for each sender) to deliver packets from sources to receivers. Several tree-based multicast routing
protocols have been reported, and this approach has proven to deliver adequate performance in wired networks. However,
in the context of MANETS, establishing and maintaining a tree or a set of trees in the presence of frequent topology changes
incurs substantial exchange of control messages, which has a negative impact in the overall performance of the protocol [1].

On the other hand, a mesh-based multicast routing protocol maintains a mesh consisting of a connected sub-graph of
the network that contains all receivers of a particular group and the relays needed to maintain connectivity. Maintaining a
connected component is far simpler than maintaining a tree and hence mesh-based protocols tend to be simpler and more
robust. Three representatives of this kind of protocols are the Core Assisted Mesh Protocol (CAMP) [1], the On-Demand
Multicast Routing Protocol (ODMRP) [2], and the Protocol for Unified Multicast through Announcements (PUMA) [3].
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A potential concern in mesh-based schemes is that, under high channel contention, these protocols may have poor
performance if too many redundant relays are involved in the forwarding of multicast traffic.

Whether multicast routing protocols for MANETSs build multicast trees or meshes, all of them are based on network-wide
dissemination of control packets to inform the rest of the nodes about the existence of multicast groups. In receiver-initiated
schemes, only one node, which in many schemes is called the core of the group, originates the dissemination of information
about a multicast group reaching all other nodes, and receivers send explicit requests towards the core to join the group. This
approach was originally introduced in the core-based tree (CBT) protocol [4]. In contrast, source-based or sender-initiated
schemes have each multicast source originate the dissemination of state information that reaches all nodes in the network.
This approach was originally introduced by Deering [5]. Given that the sender-initiated protocols proposed to date use per-
source flooding, they do not scale well as the number of groups and sources increases. However, they can provide shortest
paths from sources to destinations and avoid hot spots. On the other hand, core-based protocols incur far less overhead, but
they do not establish shortest paths from sources to destinations, which leads to higher delays than the ideal shortest paths
from sources to receivers. This approach also increases the potential of creating contention hot spots because they tend to
concentrate the traffic around cores.

The work presented in this paper is motivated by the desirability of providing the best features from the two alternatives
in the existing design space summarized above, and which we discuss in more detail in Section 2. The main contribution of
this paper is to introduce and verify the first sender-initiated multicast routing protocol that incurs the same order overhead
as receiver-initiated approaches, and yet establishes multicast meshes that approximate routing structures containing the
shortest paths from multicast sources to their destinations.

Section 3 presents Hydra, a multicast routing protocol that creates a multicast mesh formed by a mixture of source-
specific and shared sub-trees (or sub-meshes) using as few control packets as receiver-initiated schemes. The key ideas
behind Hydra are: Restricting the dissemination of control packets to those regions of the network where other dynamically
designated sender has previously discovered receivers, aggregating control messages from non-core senders, and electing
a sender as the core in non-destructive manner. Section 4 shows that the algorithm used in Hydra to perform multicast
state aggregation is correct (i.e., it establishes loop-free routes from sources to receivers). Section 5 describes the results
of simulation experiments used to compare Hydra’s performance with that of ODMRP by considering different numbers of
sources, group sizes, node density, the use of 802.11 and TDMA as the underlying MAC protocol, as well as random waypoint
and group mobility [6] as the mobility models. The results illustrate the performance benefits that should be expected from
the approach implemented in Hydra, and that Hydra provides substantial performance improvements over ODMRP even in
scenarios involving relatively small networks with few multicast sources. Hydra attains the same or better delivery ratios
than ODMRP, and does so while transmitting from one third to one half the number of data packets sent in ODMRP and
incurring end-to-end delays that can be close to an order of magnitude smaller than in ODMRP. The simulation experiments
also compare different versions of Hydra based on the construction of trees or meshes. The results illustrate the tradeoffs of
using different routing structures, and indicate the need for an adaptive strategy that builds trees or meshes based on the
state of the network.

2. Related work

Many multicast routing proposals exist for MANETSs, and due to space limitations we focus on just a few to highlight
Hydra’s novelty. The multicast ad hoc on-demand distance vector protocol (MAODV) [7] maintains a shared tree for each
multicast group consisting of receivers and relays. Each multicast group has a group leader who is the first node joining
the group. The group leader is responsible for maintaining the group’s sequence number, which is used to ensure freshness
of routing information. The group leader periodically transmits a group hello packet to become aware of reconnections.
Receivers join the shared tree by means of a special route request (RREQ) packet. Any node belonging to the multicast tree
can answer to the RREQ with a route reply (RREP). A sender joins the group through the node reporting the freshest route
in a RREP with the minimum hop count to the tree. Data are delivered along the tree edges maintained by MAODV. If a node
that does not belong to the multicast group wishes to multicast a packet, it has to send a non-join RREQ, which is treated
like a RREQ to reach the group. As a result, the sender finds a route to a multicast group member. Once data are delivered to
a group member, the remaining members receive the data along the multicast tree.

The adaptive demand-driven multicast routing protocol (ADMR) [8] maintains a source-based multicast tree for each
sender of a multicast group. A new receiver performs a network-wide flood of a multicast solicitation packet when it needs
to join the multicast group. Each source replies to the solicitation and the receiver sends a receiver join packet to each
source that answered the solicitation. Each source-based tree is maintained by periodic keep-alive packets from the source,
which allow intermediate nodes to detect link breaks in the tree by the absence of data or keep-alive packets. A new sender
also sends a network-wide flood to allow existing group receivers to send receiver joins to the source. MZR [9] maintains
source-based trees, like ADMR, but performs zonal routing, and hence its dissemination of control packets is less expensive.

In ODMRP [ 2], group membership and multicast routes are established and updated by the sources. Each multicast source
broadcasts Join Query (JQ) packets periodically, and these are disseminated to the entire network to establish and refresh
group membership information. When a JQ packet reaches a multicast receiver, it creates and broadcasts a Join Reply (JR)
to its neighbors stating a list of one or more forwarding nodes. Nodes receiving JR listing them as part of forwarding groups
forward the replies with its own list of forwarding nodes. A JR is propagated by each forwarding group member until it
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reaches a multicast source via the selected paths. This process establishes and updates the routes from sources to receivers
and builds a mesh of nodes, the forwarding group. A source can multicast data packets to multicast receivers via selected
routes and forwarding groups. Many ODMRP extensions have been proposed. One such extension is DCMP [10], which
designates certain senders as cores and reduces the number of senders performing flooding. NSMP [11] is another extension
to ODMRP aiming to restrict the flooding of control packets to a subset of the entire network. However, DCMP and NSMP
fail to eliminate entirely ODMRP’s use of multiple nodes flooding control packets for each group. MMARP [12] is another
extension to ODMRP that builds its multicast mesh as the union of a set of trees that approximate Steiner trees rooted at
each source. The authors report an improvement of 40%-50% in forwarding efficiency with respect to ODMRP; however, the
control overhead is of the same order as ODMRP.

CAMP [1] avoids the need for network-wide disseminations from each source to maintain multicast meshes by using one
or more cores per multicast group. A receiver-initiated approach is used for receivers to join a multicast group by sending
unicast join requests towards a core of the desired group. The drawbacks of CAMP are that it needs the pre-assignment of
cores to groups and a unicast routing protocol to maintain routing information about the cores. PUMA [3] uses a receiver-
initiated approach similar to that of CAMP in which receivers join a multicast group using the address of a special node
(core), without the need for network-wide dissemination of control or data packets from all the sources of a group. PUMA
implements a distributed algorithm to elect one of the receivers of a group as the core of the group, and to inform each
router in the network of at least one next hop to the elected core of each group. Within a finite time, each router has one or
multiple paths to the elected core. All nodes on shortest paths between any receiver and the core collectively form the mesh
of the multicast group. A sender node can send packets to the multicast group by encapsulating them in unicast packets to
the core along any of the paths to the core.

Regarding multicast state aggregation, the few existing proposals such as the one presented by Liu et al. [ 13] are targeted
to the Internet and require nodes to know the entire multicast tree of a group which is not feasible in a MANET.

3. Hydra

Multicast sources in Hydra periodically broadcast Join Query (JQ ) messages to establish a partial ordering of the nodes
in the network. In the case of ODMRP and Hydra, the ordering is based on the nodes’ distances in hops to the sources. This
ordering is further used to route Join Reply (JR) messages from receivers to sources, forcing intermediate nodes to join either
a mesh or a tree. However, Hydra uses three mechanisms to build a routing structure as close as possible to a set of source-
rooted breadth-first trees (or meshes composed of the union of breadth-first trees) spanning all the receivers while incurring
as few control packets as possible.

In contrast to ODMRP, Hydra uses an elected source as the core of the group, and this is the only source whose JQs reach
the entire network. Non-core sources take advantage of the routing state established by the core to identify connected sub-
graphs containing themselves and the receivers of the group. This way, the scope of the dissemination of JQ s from non-core
sources is restricted to these connected regions, and other parts of the network are not flooded with unnecessary control
information.

Hydra also identifies regions of the network where two or more sources share common sub-graphs (meshes or trees) and
performs routing-state aggregation, so that nodes located inside those common regions only keep routing state regarding
one of the aggregated sources and receive JQ s and JRs only from and for that source. To detect the boundaries of a common
sub-graph, Hydra compares the orderings established by previous sources with the ordering that is being established by
the current JQ from a non-core source. If the ordering induced by the JQ is equivalent to the ordering established by a
prior JQ from another source, then the current JQ is not forwarded any further and the two sources that have equivalent
orderings are considered as aggregated. Two partial orderings over a graph are equivalent if the gradient vectors among
neighbors obtained from the two orderings are the same. It is easy to see that if two sources order a region of a network
in an equivalent way and if consistent criteria are used to break ties when selecting a parent when routing JR packets form
receivers to senders, then both sub-trees (or sub-meshes) are identical in that region. Hence, both routing structures can
share a single sub-graph without deviating from optimality too much in terms of the length of the paths from sources to the
receivers located in the region under consideration. As the number of senders increases, the likelihood of finding equivalent
regions also increases, because nothing prevents a source to share different sub-graphs with different sources, or a given
sub-graph to be shared by more than two sources. This property helps the scalability of Hydra with respect to the number
of sources. We also note that, while Hydra takes advantage of having a core, it is not necessary for its operation.

Hydra opportunistically groups control messages of different sources and groups into control bundles. However, in the
rest of our description, we focus on the signaling intended for a single multicast group.

3.1. Join Query messages

The first active multicast source for a given group considers itself to be the core for that group and states so in the
Join Query (JQ ) message it broadcasts every join query period. As JQ s disseminate in the network, they inform nodes of the
existence of the multicast group and its current core, and also create a partial ordering of the network based on the distance
in hops from each node to the current core. If two or more sources become active concurrently in the same partition, a
distributed election is held. Section 3.4 presents the details of the election algorithm.
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Fig. 1. k-restricted region. A k-restricted region of a non-core sender is a set of nodes that forward Non-Core Join Query messages generated by that source.

Sources other than the core in the same multicast group are considered regular sources or non-core senders. Non-core
senders transmit Non-Core Join Query (JQnC) messages to build their own trees or meshes. A JQ is composed of:

e A packet type identifier.

e The address of the multicast group.
o ATime-To-Live field.

e The distance to the core.

e A sequence number.

In addition, a JQnC contains the address of the non-core sender, the distance to the non-core sender and the address of
the selected parent towards the core. This last field is used to route JQnCs towards the mesh of the core.

Because non-core nodes benefit from the routing structure created by the core, the transmission of JQnCs is roughly
synchronized with the reception of JQs. Upon receiving a JQ with a larger sequence number, non-core senders wait for a
random period of time that is much smaller than the join query period, but long enough to allow the establishment of the
routing structure of the core before transmitting their next JQnC. That JQnC refreshes the routing information for that source.
Non-core senders also send JQnC when they have data to send but no route is known to the receivers, or when the sender
has not received a JQ from the core in the last two consecutive join query periods.

The objective of the combined use of JQ s and JQnC for a given multicast group is to order all nodes with respect to the core
of the group, and to make the multicast routing structure (mesh or tree) as close as possible to the aggregation of the source
trees of all the multicast sources in the group. JQ s must be sent to all nodes; however, the overhead due to the dissemination
of JQnCs is reduced using the following two mechanisms.

The first way of reducing the overhead incurred with JQnCs consist of disseminating them only to a subset of the network
composed of nodes that are part of the mesh or tree established by the core, nodes that lay in the path from the non-core
sender to the core, and nodes located at most k hops away from them. The set of nodes that forward JQnCs for a given non-
core sender is called the source’s k-restricted region of interest or simply k-restricted region. This way, the dissemination of
JQnCs is carried out only among nodes that are likely to be close to receivers, and other regions of the network do not receive
irrelevant control information.

The optimal value of k for a k-restricted region depends on the topology of the network, as well as on the mobility of the
nodes and on the length of the join query period. In our experiments, a sensitivity analysis showed that a reasonable value
for k is one. In general, as the value of k grows, the k-restricted region grows larger, which helps to cope with mobility. In
the worst case, the k-restricted regions cover the entire network, and the scheme degenerates to the case of flooding the
network with control packets per sender per group as in ODMRP.

Fig. 1 illustrates the above concepts. The figure shows two multicast groups, G; and G,, with their respective cores, S,
and S;. Each group has a non-core source; S;; for Gy and S; for G,. The mesh of core S¢ of group G; is composed of nodes
labeled mg; and the mesh of core S; of group G, is composed of nodes labeled mg,. In the figure, the 1-restricted region of Sy,
is delimited by a dotted line. We observe that it contains the mesh constructed by the core of group S;, which is delimited by
asolid line, as well as the nodes located one hop way from the mesh or from the path from the non-core sender to the mesh.
JQnCs generated by S, are forwarded only by such nodes as node x or node y, which are located inside of the 1-restricted
region, and nodes located outside of this region, such as node z, may receive the packet but do not forward it. The figure also
presents a similar situation for group G,.

The second way to reduce the number of JQnCs transmitted and the state kept at nodes consist of finding common sub-
graphs and performing multicast state aggregation on these particular regions of the network. Nodes located in a common
sub-graph only receive and forward JQs (or JQnC s) of one of the sources that share that sub-graph and keep state about
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Fig. 2. Aggregated sub-graphs.

the source whose join queries are forwarded. Fig. 2 shows an example of a network in which two sources, S, and S5,
share a common sub-graph. With this goal, we propose the Dissemination of Multicast Aggregated-State (DIMAS) algorithm.
From the standpoint of message complexity, DIMAS behaves as simple flooding in the worst case. However, depending on
the topology of the network, DIMAS stops disseminating control packets of non-core senders before covering the whole
k-restricted region.

3.2. Join Reply messages

After receiving a JQ or a JQnC with a fresher sequence number, a receiver generates a Join Reply (JR) message. A JR
contains:

e A packet type identifier.

e The address of the multicast group.

The address of the sender (either core or non-core).
The distance to the sender.

The address of the selected parent towards the core.
A sequence number.

AJR is routed back to the source following the reverse direction of the gradient of the distances established by the partial
ordering obtained from the diffusion of JQs. JRs travel on a hop-by-hop basis forcing intermediate nodes to join the multicast
routing structure, until the JRs reach the first node that is already part of the multicast routing structure or a multicast source.
If a JR is generated inside of a shared sub-graph, it travels along the shared region establishing routing state only about a
single source. However, as soon as the JR reaches a node in which one or more JQnC were stopped by the DIMAS algorithm,
a new JR is generated for each JQnC that was stopped in that particular node. Then, these JRs follow their own independent
paths towards the different sources.

From the example shown in Fig. 2, we observe that a JR generated by receiver R; travels to node y, and establishes routing
state regarding only the core S.. However, when the JR reaches the aggregation point x, two independent JRs are forwarded
towards S and S,. As the figure also show, these two JRs can follow independent paths towards their respective sources.

When nodes forward JRs, they can select one or more parents to reach a source. In the first case the resulting routing
structure approximates a tree, while in the latter case is a mesh. In Hydra, we chose to keep state per source because we
want to avoid forwarding data packets to places where they are not needed, e.g., towards other senders. This last design
decision implies an increase in the state kept at the nodes. However, as our simulations show, bandwidth is a much more
stringent bottleneck than memory, and spending extra memory in order to save bandwidth is a good tradeoff. Furthermore,
keeping state per sender is necessary if the protocol has to support a source-specific multicast service model [ 14].

3.3. State aggregation: Dissemination of multicast aggregated-state (DIMAS)

The objective of the DIMAS algorithm is to reduce the number of control packets disseminated needed to establish a
partial ordering that is as close as possible to the ordering that would be obtained by a per-source per-group dissemination.
To do so, nodes determine if they are located in the boundary of a region that would likely be ordered by a JQ of a given source
(say S;) in an equivalent way as it was already ordered by a previous dissemination of JQ s generated by a different source (say
S;j). If this is the case, then nodes stop the dissemination of control packets from S; and mark that source as aggregated with
S;. Beyond this point, data packets generated by S; are forwarded as if they were data packets from S;. DIMAS(i, snd : 1...n)
is executed at node i when it is about to relay a JQnC from sender snd to decide whether the message is to be sent or the
sender snd is aggregated at node i. We assume that the execution of DIMAS is atomic. The following three rules are used to
decide when to aggregate.

Rule 1: Upon reception of a JQnC with a larger sequence number, nodes wait for a period of time equal to FWD_DLY to
collect packets forwarded by other neighbors. Based on the distances stated in these JQnC, nodes compute their own distance
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Algorithm 1: DIMAS(i, snd : 1...n)

1 JQnC.snd «— snd;
2 JQT'LCSTL — maXzENbﬂz.snd:snd{x’Sn};
3 JQnCd’LSt — minz6Nbr|z.snd:snd/\JQnC.sn:z.sn{x-diSt} +1
4 sGrdS «— tGrdS « 0;
5 forall x € Nbr | z.snd = snd do
6 if z.time + STL_PRD > clock.getT'ime A x.sn = J@nC.sn then
7 A — JQnC.dist — x.dist;
8 if A >0 then
9 | sGrdS « sGrdS U {(z.id, A)};
10 forall y # (snd, nil, x,true) € Snd do /* Desc order respect
snd’s id */
11 lsn « maxzeNb'r|z.snd=y.id{x~sn};
12 td minxeNbr|x.snd:y.id/\Lsn:lsn{x'diSt} + ]-;
13 forall = € Nbr | z.snd = y.id do
14 if x.time+ STL_PRD > clock.getTime A x.sn = lsn then
15 A — td — x.dist;
16 if A >0 then
17 | tGrdS —tGrdS U {(z.id, A)};
18 if sGrdS = tGrdS then
19 Snd — (Snd — {(snd, *, x,%)}) U {(snd, y.id, JQnC.sn, true)};
20 return;

21 forall y # (snd,nil, %, false) € Snd | snd < y.id do  /* Desc order
respect snd’s id */
22 tGrdS «— 0;

23 Isn maXzENbr\I.snd:g/.id{$'5n}:,

24 td minz6Nbr|z.5nd=y.id/\z.sn:lsn{x-diSt} + 1;

25 forall z € Nbr | z.snd = y.id do

26 if x.time + STL_PRD > clock.getTime A x.sn = lsn then
27 A — td — x.dist;

28 if A >0 then

29 | tGrdS —tGrdS U {(z.id, A)};

30 if sGrdS =tGrdS then

31 Snd — (Snd — {(snd, *,*,%)}) U {(snd, y.id, JQnC.sn, true};
32 return;

33 S;Ld — (Snd — {(snd, %, *,%)}) U {(snd, nil, JQnC.sn, true) };
34 snd; «(JQnC);

Fig. 3. Total-DIMAS algorithm.

to the source and a set of pairs (neighbor, gradient), where the gradient is computed as the node’s distance minus the distance
reported by each neighbor. Then, nodes check if they have recently received JQ s or JQnCs from another source, such that the
set {(neighbor, gradient) : gradient > 0} matches with the one computed for the current source. If that is the case, nodes do
not forward the JQnC and mark the senders as aggregated. If there is no match, nodes forward their own JQnC (with their
computed distance).

Rule 2: If a node receives JQnCs generated by different sources at roughly the same time (within a FWD_DLY period) and
if there is a match between the sets of gradient pairs, then the node forwards the control packet corresponding to the source
with the largest identifier and stops the control packets corresponding to the other sources.

Rule 3: The core source is not aggregated to any non-core source. Aggregation is allowed only either among non-core
sources, or with the core aggregating non-core sources. This rule has an exception that is described at Section 3.4.

There are two possible versions of the DIMAS algorithm. We call the one shown in the Fig. 3, Total-DIMAS, because
it allows the aggregation of a non-core sender with any other sender. An alternative implementation that only allows
aggregation of non-core senders with the core is called Core-DIMAS. The algorithm is composed of three main loops. The
first loop (lines 5-9) computes the gradient set for the sender under consideration; it only takes into account information
regarding the sender’s current sequence number and those JQnC received during the last STL_PRD seconds. The second (lines
10-20) and third (lines 21-32) loops check for a match between the gradient sets of the sender under consideration and
any other source of the same multicast group. The second loop only iterates over those senders for whom a JQ or JQnC has
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already been forwarded, and the third loop over senders form whom a JQ or JQnC is about to be sent in the current control
bundle.

We use two separate loops to favor the aggregation with senders with more stable routing structures. In the same way, the
algorithm can also be easily extended to favor the aggregation with the core. Both loops process the sender list in descending
order to guarantee that per each set of senders with matching gradient sets, a single sender is selected to aggregate their
multicast state.

3.3.1. Data structures

DIMAS uses a few data structures. The neighbor list Nbr is a set of tuples of the form (id, snd, sn, dist, time). Each tuple
contains data regarding the freshest (according to the largest sequence number) JQ or JQnC received from a given neighbor
and originated by a particular source. The identifier of the neighboring node is id, snd is the identifier of the sender, sn is the
freshest sequence number, dist is the distance to the sender and time is the node’s local time at which the JQ or JQnC was
received.

The sender list Snd is a set of tuples (snd, sWith, sn, fwd) that stores information regarding the state kept for each sender
with identifier snd. sn is as defined before, sWith contains either the identifier of the source with which the sender snd is
aggregated, or nil if the sender snd is not aggregated. The flag f wd indicates if the node has forwarded a JQ or JQnC for that
sequence number. sGrdS, tGrdS are list of pairs (neighbor identifier, gradient value) that state if a neighbor is parent, child
or sibling of the current node for a given source. sGrdS, tGrdS are temporary data structures that are used to compare the
gradient sets of two sources. We also define two constants FWD_DLY, STL_PRD. The first one is the amount of time a node
waits since it receives the first JQ or JQnC with a fresher sequence number until it sends its own JQ or JQnC message. The
latter is the time within which a previously sent JQ or JQnC is considered to be recent, so that the source under consideration
can be aggregated with that source. Typically, the value of STL_PRD is set to one third of the time between consecutive
transmissions of JQ messages. We also assume that every node has its own independent clock (clock) that can be locally
queried by calling a function getTime.

3.3.2. Disseminating aggregation maps

JQs and JQnCs can be augmented with an aggregation map containing pairs of nodes identifiers of the form (aggregated,
aggregatedWith), where aggregated is the identifier of a source that is aggregated to other source with identifier
aggregatedWith. The aggregation maps are stored at downstream nodes and can be used to decide which source’s routing
information has to be used when forwarding a data packet of an aggregated source. Aggregation maps permit the forwarding
of multicast data packets from sources whose state has been aggregated. In effect, they are routing-table extensions, as we
discuss in Section 3.5.

3.3.3. Opportunistic grouping of control packets

In order to take advantage of the broadcast nature of the the wireless medium and save extra bandwidth, nodes
opportunistically stack as many control messages as possible in control bundles. Control bundles can contain a mixture of Join
Query, Non-Core Join Query and Join Reply messages regarding different multicast groups and sources. Control messages
are grouped opportunistically in the sense that nodes wait for a short period of time before transmitting a newly generated
control message so that other control messages that may be generated within this period of time are sent in the same control
bundle.

3.3.4. Preventing aggregation chains

DIMAS prevents the formation of aggregation chains inside of a node. An aggregation chain is of the form: S; is aggregated
with S;, S; is aggregated with Sy, Sy is aggregated with S; and so on. The problem with aggregation chains is that they may
violate the condition that a source should be aggregated with another source only if their respective JQnCs were received
within an interval of STL_PRD seconds (lines 6, 14 and 26 of Algorithm 1). This “freshness” condition is important because it
assures that the routing structure of a source is constructed using recent topological information. As an example, lets assume
that at a given node, a JQnC generated by source S; is received at time t; and that another JQnC of source Sy is received at
time t; with t; — tg < STL_PRD. Lets further assume that their gradient sets are the same. Then, from Algorithm 1, S is
aggregated with S;. Now, if a new JQnC generated by a third source S; is received at time t, with t, — t; < STL_PRD and if
the gradients sets of S; and Sy are the same, then S; may be aggregated with Sy, which leads to a potential violation of the
freshness property if t; — to > STL_PRD. A simple way to avoid aggregation chains is to exclude from consideration those
sources that were aggregated with any other source. This can be seen in Algorithm 1 at the forall cycles, defined at lines 10
and 21, which only iterate over sources with a nil value in their aggregatedWith field.

The state-aggregation algorithms just described may allow the creation of duplicate paths from senders to receivers. This
can happen when JQnCs from a given sender s are stopped at a set of nodes S but removing the set of links with an endpoint
in S do not create a partition between the sender s and a receiver r. Under this scenario, it is possible for a JR message
generated by the receiver r for some other source S, to establish an aggregated s ~» r path in addition to the non-aggregated
path established by the JR generated by r for s. However, establishing more than one path from senders to receivers is also
common in mesh-based protocols. This is not a major drawback, because in some situations these extra paths may help to
increase the reliability of delivery.
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S, is aggregated S, is aggregated
with S, with S,
O DO

S,'s link A S,'s link 12" Sy’s link -

Fig. 4. Aggregated path. The S; ~ R path is an aggregated path composed of the S; ~ S,, S, ~ S5 and S3 ~ R sub-paths.
3.4. Non-destructive core election

If a source has data to send to a multicast group, it first determines whether it has received a JQ from the core of that
group. If that source node has, it adopts the core specified in the JQ it has received and transmits a JQnC advertising the same
core for the group. Otherwise, it considers itself the core of the group and starts transmitting JQ s periodically to its neighbors,
stating itself as the core of the group and a 0 distance to itself. Nodes propagate JQ s based on the best JQ they receive from
their neighbors. A JQ with a higher core id is considered better than a JQ with a lower core id. Eventually, each connected
component has only one core. If a sender becomes active for a group before other senders, then it becomes the core of the
group. If several senders become active concurrently, then the one with the highest id is elected the core of the group.

A core election is also held if the network is partitioned. The election is held in the connected component of the partition
that does not have the old core. A node detects a partition if it does not receive a fresh JQ from the core for three consecutive
join query periods. Once a sender detects a partition and it has data to send, it promotes itself to the rank of core and par-
ticipates in the core election. JQ s from nodes with lower ids are not discarded and the routing information regarding those
senders is not destroyed. Instead, JQ s are just demoted to JQnC and they are forwarded using the k-restricted scheme and
become susceptible of being stopped by the DIMAS algorithm. This scheme contrasts with the destructive schemes used in
previous core-based multicast routing protocols (e.g., PUMA) in which the partial routing structure built by the dissemina-
tion of JQs of senders that contended and lose an election is eliminated when JQ from senders with larger ids are received.

The way in which two partitions are merged depends on the type of join queries that traverse from one partition to
the other. If a JQ reaches a new partition with a "better” core, then it is demoted to a JQnC and disseminated accordingly
in that region of the network. The node or nodes that received the JQ from the core with a smaller id check if they have
recently forwarded a JQ for the current core (for instance, within the last 100mS). If not, then they send JQ s that merge the
partitions. While traversing the region of the network with the smaller core, JQ s force nodes to change to the new core but
do not destroy their current routing information regarding the previously known sources. When the JQ is received by the
senders located in the previously different partition with the smaller core, they generate new JQnCs with larger sequence
numbers if at least one third of the join query period has elapsed since the last transmission of a join query.

For the case of Non-Core Join Queries we have the following options. If a JQnC reaches a previously different partition
with a better core, then the behavior is analogous to the one just described with the only difference that there is no need of
demoting the message because it is already a JQnC. On the other hand, when a JQnC arrives to a previously different partition
with a smaller core, nodes that first receive the message aggregate the core stated at the arriving JQnC with the sender that
originated it, and relay the JQnC but now stating as a core the core with the smaller id. Nodes located at the border of the
region of the network with the core with smaller id are allowed to perform aggregation because (1) nodes in that region
have not received a JQ from the core with larger id (for otherwise that sender would be the core), and (2) it is certain that
their links are cut links between the core with the larger id and the receivers that may be located at the region with the core
with smaller id. If the two regions remain connected long enough, then the next JQ generated by the core with larger id will
force all nodes in the network to have a single core.

3.5. Forwarding multicast data packets

When a source has data to send, it first checks whether it has received at least one JR with the same sequence number
as the last transmitted JQ or JQnC. If it is the case, the source considers the node from which it received the JR a child and
transmits the data packet. If the source does not have any child, then it checks if has elapsed ALLOW_NEXT_JQ time since the
last time it sent either a JQ or a JQnC. If so, it piggybacks the data packet in a JQ (or JQnC) with a newer sequence number
and transmits it. Otherwise, the packet is silently dropped.

A multicast data packet received from a sender s; is discarded by a node if a hit is found in the packet cache at the node
based on the packet’s sender and its sequence number. Otherwise, the receiving node inserts the (sender’s address, sequence
number) pair in its packet cache and determines the address of the effective source (es) of the packet, which is the one used to
decide whether the packet has to be forwarded or not. The address of the effective source for a given packet is the original
source s;, or s; if s; was aggregated with s; at the current node. Once the node determines the value of es, it forwards the data
packet if it has at least one child for es. The effective source is obtained from the aggregation map maintained by each node.

Fig. 4 shows a simple example of a path composed of three concatenated paths, each of which corresponds to a path
established for an aggregated source. In the figure, data packets generated by S; are routed by x using S; as the address of
the effective source (es). When a S;’s packet reaches S,, it determines from its aggregation map that the effective source for
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S is itself (S,) and forwards the packet accordingly using its routing table. Nodes along the sub-path from S, to S3 similarly
determine that S, is the effective source for S;. At node S3, the effective source becomes Ss itself, and the same is true for the
relays in the sub-path from S3 to R.

If aggregation maps are not communicated among neighbors as part of JQnCs and are maintained only locally, the original
multicast data packet can be encapsulated in another multicast data packet with the aggregating source as the sender and
the same group as the destination. At each hop, a relay decapsulates and encapsulates the packet before forwarding it.

4. Correctness of DIMAS

The following notation is used in this section. Let G = (V, E) be a connected graph and s € V be anynode of G.T = (V, E)
denotes a tree rooted in a designated node s, € V.R C V is a set of nodes designated as receivers and S C V is a set of nodes
designated as senders. ds(u) is the distance in hops assigned to node u by an ordering initiated by node s.

Theorems 1 and 2 prove the correctness of the Core-DIMAS algorithm for a general topology. Theorem 3 shows the
correctness of the Total-DIMAS algorithm only for acyclic graphs. In practice, a tree topology can be approximated by setting
the value k of the k-restricted dissemination of JQnC to 0 and employing only one parent when establishing the routing
structure of the core. However, our simulation results show that the Total-DIMAS and Core-DIMAS versions of our protocol
achieve similar delivery ratios, even for values of k > 0 and when the core establishes a mesh instead of a tree.

Theorem 1. Ordering the nodes in G with respect to its distance in hops to s establishes reverse loop-free paths from any node
u € V to s by selecting as a next hop to s a node with a distance strictly less than the distance of the current node.

Proof. We proceed by contradiction and assume thataloop is created ina path ug ~ s = ugu; . . . us when a node u; selects
uy, with dg(u;) > ds(uy), as its next hop to s. Now, if there is a loop in the path, then there exist a down stream node u; such
that u; = uy. However we know that ds(u,) > ds(u1) > -+ > ds(u;) > -+ > ds(u;) > ds(ug); hence ds(ug) > ds(ug), which
is a contradiction. H

Theorem 2. The Core-DIMAS algorithm can be used in conjunction with a join query and join reply signaling to establish loop-free
routes from any sender s € S to any receiver r € R.

Proof. Lets; € S and r,€R be an arbitrary sender-receiver pair. From the specification of DIMAS, we know that a non-core
sender s; sends a JQnC;; message to its neighbors when it needs to establish routes towards the senders. From the DIMAS
specification we also know that every node in V relays JQnCj;, unless JQnC;; is aggregated with the JQ. sent by the core s..
Now, if T receives a copy of JQnCs, it follows from Theorem 1 that we can use the ordering established by the JQnC;, to
establish a loop-free path s; ~ r;. If this is not the case, then there is a set of nodes U C V where the JQnC; messages were
aggregated with JQ. messages. Therefore, given that JQnC; could not reach rj, we can identify a cut C = (A, B) withs;, s. € A
(otherwise s;, sc would not have the same gradient set at the nodes in U), r€B and cut edges of the form (u, v), where
u e U C Aand v € B. Because C is a cut, any JR;, message generated by r; has to reach a node in U (say u) on its way to s.
Accordingly, we can establish a loop-free path from r; to u, which can be concatenated with a s; ~» u path to get the desired
s; ~» 1; path.

Nojvsll3 we just simply argue that the concatenation of aggregated paths is loop-free. We proceed by contradiction and
assume that there is a loop in an aggregated path s; ~ 1; = s;uguy ... u;j established using our algorithm. Hence, there
must be a pair of nodes u;, u; in s; ~ 1j such that u; = u;. From Theorem 1, we know that u;, u; cannot be located in the same
partition. However, because they are located in different partitions, they cannot be the same node. ®

Theorem 3. In an acyclic graph T = (V, E), the Total-DIMAS algorithm can be used in conjunction with a join query and join
reply signaling to establish loop-free routes from any sender s € S to any receiver r € R.

Proof. Lets; € S and rj € R be an arbitrary sender-receiver pair. From the specification, we know that when a non-core
sender s; wants to establish routes towards the receivers it sends a JQnC;, message to its neighbors. From the algorithm we
also know that every node in V will relay its JQnC;, message (with its computed distance to s;) unless the JQnC;, is aggregated
with another JQs, or JQnC;, (we can use either JQs, or JQnC,, because we allow a non-core sender to be aggregated with other
non-core sender) generated by a sender s; € S with s, # s;. Now, if rj receives a copy of the JQnCj;, then from Theorem 1,
we can use the ordering established by JQnC; to establish a loop-free path s; ~ r;. If this is not the case, then the JQnC; was
aggregated at an inner node i € V with other JQs, that was received from the same node (say ) as JQnCs;, otherwise sy and s;
would not have identical gradient sets. From the algorithm we also know that either k > i or JQ;, had already been relayed
when the JQnG;; arrived at i.

Now, if we remove the edge (I, i) we have two sub-trees T' = (V’, E’)and T” = (V”, E”) wherel, s;, sy € V' andi, rj € V".
From lines 10 and 21 of the algorithm we know that if the JQnC;;, is aggregated with a JQ,, at i, then i has to relay (or it has
already done that) JQ;, to its neighbors. Since T is a tree, and JQ,, was received from | € V' then, at the time the JQ;, was
received at i, the remaining nodes in V” have not received JQs, yet, hence the JQ;, will be eventually relayed to all the nodes
in T” unless it is aggregated with other JQs,, . If JQs, reaches rj then we can use the ordering established by JQs, to establish a
loop-free path from r; to i which can be concatenated with the paths; ~ i to get the desired s; ~ r; path. If this is not the case,
we can keep applying the same argument until r; is reached. Now, we just have to argue that the concatenation of aggregated
paths is loop-free. We proceed by contradiction and assume that there is aloop in an aggregated path s; ~ r; = Siuplly . . . U7}
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Table 1

Simulation environment.

Total nodes 50 Node placement Random Simulation area 1400 x 1400 m?

Data source MCBR Pkts. sent per src. 1000 Channel capacity 2000000 bps

TX. power 15 dbm

MAC Protocol: WiFi

Simulation time 150s

Mobility model Random waypoint Pause time 10s Min.-Max. Vel. 1-20 m/s

Mobility model Group mobility Grp. pause time 10s Grp. Min.-Max. Vel. 1-10 m/s
Node pause time 10s Node Min.-Max. Vel. 1-20 m/s

MAC Protocol: TDMA (1 slot of 10ms per node in round-robin)

Simulation time 30 min

Mobility model Random waypoint Pause time 50s Min.-Max. Vel. 1-2 m/s

Mobility model Group mobility Grp. pause time 50s Grp. Min.-Max. Vel. 1-2m/s

Node pause time 50s Node Min.-Max. Vel. 1-2 m/s

established using our algorithm. Hence in s; ~ r; there must be a pair of nodes u;, u; such that u; = u;. From Theorem 1 we
know that u;, u; cannot be located in the same partition, therefore, since they are located in different partitions they cannot
be the same node. ®|

5. Performance comparison

We present simulation results in which we compare six different variants of Hydra against ODMRP. The six variants
consist of adding one or two parents per node when building the multicast routing structures, and using Total-DIMAS
(Hydra-TA), Core-DIMAS (Hydra-CA) or no aggregation (Hydra-NA). We chose ODMRP for our comparison because it is a
representative of the state of the art in multicast routing protocols for MANETs and has also become a de facto baseline
for performance comparisons. Another reason for selecting ODMRP is that it constructs its forwarding mesh as the union
of the source-specific trees of the senders of a particular group. Given that Hydra also builds a structure that is close to a
set of source-specific trees or meshes, comparing Hydra against ODMRP allows us to highlight the benefits obtained by the
signaling used in Hydra. Another popular protocol for performance comparisons is MAODV [7]. However, previous work [15]
has shown that ODMRP clearly outperforms MAODV and hence we omit the latter in these experiments.

We use packet delivery ratio, end-to-end delay and number of packets relayed per packet received at receivers as our
performance metrics. The latter metric can be seen as the cost in terms of bandwidth that the protocol pays to achieve a
given delivery ratio.

The multicast protocols are tested with 802.11 DCF (WiFi) and TDMA as the underlying MAC protocols. The former is the
most commonly used MAC in the MANET literature and the latter allows us to isolate multicast signaling and construction
of routing structures from the effects of collisions at the MAC layer. In addition, we used random waypoint and group
mobility [6] as our mobility models. The first model allows us to test the protocols on general situations in which each
node moves independently, and the latter models situations in which the members of a team tend to move in groups.

We used the discrete event simulator Qualnet [ 16] version 3.9 which has the advantage of providing a realistic simulation
of the physical layer. The software distribution of Qualnet itself has a very stable version of ODMRP, which was used for the
ODMRP simulations. For PUMA simulations we used the original code used in [3]. Each simulation was run for ten different
seed values. In our graphs we report the average and standard deviation computed over these ten independent runs. To have
meaningful comparisons, all the protocols use the same period (join query period for ODMRP and Hydra, and announcement
period for PUMA) to refresh their routing structures (3s for 802.11 and 30s for TDMA). For ODMRP, the forwarding group
timeout was set to three times the value of the join query period, as advised by its designers. Table 1 lists the details of the
simulation environment.

5.1. Results using 802.11 DCF

We first focus on an experiment in which the number of concurrent active senders changes. For this experiment we set
the value of k to 1. Hence, only nodes that are at most one hop away from the routing structure of the core disseminate JQnCs.
Each sender transmits 20 packets of 256 bytes per second and the group is composed of 20 nodes. We observe from Fig. 5(a)
that all the versions of Hydra (TA, CA and NA for mesh and tree topologies) perform similar or slightly better than ODMRP
for more than one source. Among the Hydra variants, we can observe that the mesh versions tend to outperform the tree
versions only for a small number of senders, whereas the tree versions clearly outperform the mesh versions for six to twelve
senders. This is an indication of how soon the extra redundancy used by the mesh versions becomes counterproductive as the
load injected into the network increases. We can also observe that the versions that use aggregation are capable of attaining
delivery ratios equivalent to the ones attained by the versions that do not use aggregation, but incur much less control
overhead. In these experiments, the tree and mesh versions of Hydra-TA transmitted an average of 77.89% and 78.73% of the
Join Queries (JQ 4 JQnC) transmitted by the tree and mesh versions of Hydra-NA, respectively.
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Fig.5. 802.11 DCF MAC: Performance with increasing number of concurrent active sources. (a-c) Random waypoint mobility. (d-f) Group mobility. (a and
d) Delivery ratio. (b and e) Average end-to-end delay. (c and f) Average number of data packets relayed per data packet received at receivers.

Fig. 5(c) shows the average number of data packets relayed per packet received by receivers. We can see that ODMRP
incurs considerably more redundancy than the Hydra variants. As we would expect, the variant of Hydra that uses less
redundancy is the tree version with no aggregation, while the one that uses more redundancy is the mesh version with
total aggregation. In general, the versions that use total aggregation generate more redundancy than the core aggregation
versions, which in turn generate more redundancy than the versions that do not use aggregation. This is due to the fact that
the no-aggregation versions try to establish source-specific shortest-path trees or meshes, while the structures created by
the aggregated versions are not necessarily composed of shortest paths. If we analyze these two metrics, we notice that the
versions of Hydra are able to attain higher delivery ratios at a much smaller cost. This is a strong indication that the routing
structures built by Hydra are more efficient than ODMRP’s mesh.

Regarding the average end-to-end delay attained by the protocols, From Fig. 5(b) we can observe that the versions of
Hydra clearly outperform ODMRP. There are two important factors behind this behavior. The first one is the queueing delay,
which is strongly correlated to the amount of redundancy used by the protocol. Hence, protocols that incur less redundancy
when forwarding data packets and that induce less control traffic tend to attain lower end-to-end delays than the ones
with increased level of redundancy. The other factor is the length of the paths followed by the data packets. Therefore, the
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Mobility 0s 55 108 155 20S

(pausetime) | Avg | sD [ Avg | sD [ Ag | sp [ Awg [ sp | Avg | sD
Delivery Ratio

ODMRP 0.632 | 0.037 | 0.639 | 0.055 | 0.630 | 0.049 | 0.629 | 0.045 [ 0.630 | 0.050

Hydra-TA:Mesh | 0.656 | 0.057 | 0.646 | 0.048 | 0.644 | 0.057 [ 0.646 | 0.056 | 0.635 [ 0.054
Hydra-CA:Mesh | 0.649 | 0.053 | 0.651 [ 0.060 | 0.637 | 0.049 [ 0.641 | 0.057 | 0.643 | 0.059
Hydra-NA:Mesh | 0.657 | 0.046 | 0.649 | 0.057 | 0.653 | 0.057 | 0.645 | 0.060 | 0.643 | 0.059
End-to-End Delay (S)
ODMRP 1.691 | 1.374 | 1.570 | 1.308 | 1.513 | 1.349 | 1.594 | 1.490 | 1.291 | 1.232
Hydra-TA:Mesh | 0.166 | 0.360 | 0.180 | 0.288 | 0.101 | 0.164 | 0.172 | 0.427 | 0.134 | 0.247
Hydra-CA:Mesh | 0.179 | 0.311 | 0.049 | 0.048 | 0.107 | 0.174 [ 0.078 | 0.146 | 0.068 | 0.115
Hydra-NA:Mesh | 0.092 | 0.143 | 0.076 | 0.107 | 0.026 | 0.004 | 0.082 | 0.114 | 0.036 | 0.022
Number of Data Packets Relayed per Data Packet Received at Receivers

ODMRP 1.714 ] 0.125 | 1.699 [ 0.090 | 1.696 | 0.101 | 1.727 | 0.113 | 1.695 | 0.120
PUMA 1.717 | 0.344 | 1.840 | 0.428 | 1.863 | 0.421 | 1.747 | 0.332 | 1.768 | 0.349
Hydra-TA:Mesh | 0.986 | 0.140 | 1.064 | 0.171 | 1.020 | 0.146 | 1.001 | 0.184 | 1.034 | 0.162
Hydra-CA:Mesh | 1.005 | 0.182 | 0.948 | 0.113 | 0.958 | 0.158 [ 0.940 | 0.176 | 0.923 | 0.167
Hydra-NA:Mesh | 0.864 | 0.155 | 0.866 | 0.122 | 0.822 | 0.084 | 0.889 | 0.146 | 0.848 | 0.085

Terrain 1200x1200m [ 1300x1300m | 1400x1400m | 1500x1500m | 1600x1600m
Dimensions Delivery Ratio
ODMRP 0.659 | 0.029 | 0.646 | 0.033 [ 0.630 | 0.049 | 0.619 [ 0.049 | 0.597 | 0.070

Hydra-TA:Mesh | 0.685 | 0.048 | 0.670 [ 0.052 | 0.644 | 0.057 [ 0.618 | 0.057 | 0.586 | 0.062
Hydra-CA:Mesh | 0.703 | 0.052 | 0.672 [ 0.049 | 0.637 | 0.049 [ 0.618 | 0.062 | 0.587 | 0.059
Hydra-NA:Mesh | 0.709 | 0.053 | 0.680 [ 0.052 | 0.653 | 0.057 [ 0.617 | 0.064 | 0.589 | 0.062
End-to-End Delay (S)
ODMRP 2.875 | 1.531 | 2.098 | 1.575 | 1.513 [ 1.349 | 0.854 | 0.972 | 0.464 | 0.602
Hydra-TA:Mesh | 0.667 | 0.765 | 0.267 | 0.382 | 0.101 | 0.164 [ 0.058 | 0.071 | 0.038 | 0.016
Hydra-CA:Mesh | 0.384 | 0.598 | 0.313 [ 0.542 | 0.107 | 0.174 [ 0.033 | 0.009 | 0.031 | 0.007
Hydra-NA:Mesh | 0.345 | 0.645 | 0.175 | 0.304 | 0.026 | 0.004 | 0.027 | 0.005 | 0.027 | 0.004
Number of Data Packets Relayed per Data Packet Received at Receivers

ODMRP 1.660 | 0.119 ] 1.699 [ 0.128 | 1.696 | 0.101 [ 1.663 | 0.137 | 1.690 [ 0.093
Hydra-TA:Mesh | 1.050 | 0.258| 1.017 | 0.194 | 1.020 | 0.146 [ 0.994 | 0.132 | 1.092 | 0.082
Hydra-CA:Mesh | 0.888 | 0.225 | 0.967 | 0.246 | 0.958 | 0.158 [ 0.982 | 0.096 | 1.010 | 0.112
Hydra-NA:Mesh | 0.802 | 0.231 | 0.846 | 0.187 | 0.822 | 0.084 | 0.851 | 0.087 | 0.917 | 0.094

Group size 10 15 20 25 30
(receivers) Delivery Ratio
ODMRP 0.656 | 0.062 | 0.636 | 0.052 [ 0.630 | 0.049 | 0.625 [ 0.034 | 0.620 | 0.045
Hydra-TA 0.650 | 0.063 | 0.651 | 0.055 [ 0.644 | 0.057 | 0.639 [ 0.058 | 0.634 | 0.050
Hydra-CA 0.656 | 0.055 | 0.654 | 0.048 | 0.637 | 0.049 | 0.649 | 0.048 | 0.645 | 0.054
Hydra-NA 0.647 | 0.059 | 0.654 | 0.055 | 0.653 | 0.057 | 0.649 | 0.058 | 0.653 | 0.061
End-to-End Delay (S)
ODMRP 0.7229] 0.7501] 1.2985 1.2738| 1.5128] 1.3494 [ 1.5305| 1.381 | 1.7905( 1.4114

Hydra-TA:Mesh [ 0.0327]0.0271] 0.0861[0.1705]| 0.1008] 0.1641| 0.271 | 0.4881] 0.2859 | 0.4022
Hydra-CA:Mesh | 0.022 | 0.0034| 0.0345] 0.0209| 0.1074 | 0.1739] 0.1853| 0.252 | 0.2194] 0.3614
Hydra-NA:Mesh | 0.0209] 0.0019| 0.0242] 0.0043 | 0.0259 | 0.0043 | 0.0966| 0.152 | 0.1395] 0.2859
Number of Data Packets Relayed per Data Packet Received at Receivers

ODMRP 2.857 | 0.248 | 2.145 | 0.158 | 1.696 | 0.101 [ 1.368 | 0.095 | 1.200 [ 0.067
Hydra-TA:Mesh | 1.464 | 0.215 | 1.158 | 0.206 | 1.020 | 0.146 [ 0.855 | 0.182 | 0.745 | 0.094
Hydra-CA:Mesh | 1.304 | 0.207 | 1.080 | 0.124 | 0.958 | 0.158 | 0.829 | 0.115 | 0.741 | 0.094
Hydra-NA:Mesh | 1.250 | 0.140 | 0.972 | 0.122 | 0.822 | 0.084 | 0.734 | 0.116 | 0.647 | 0.126

Fig. 6. Performance when varying mobility, node density, and group size with 802.11 DCF MAC.

versions of Hydra that build routing structures that are closer to source-specific trees, namely the ones that use less or no
aggregation, tend to attain lower end-to-end delays than the versions that use more aggregation.

Fig. 5(d-f) present results for the group mobility model in which the 20 nodes that belong to the multicast group move
around inside of a square region of 900 x 900 m?. In the group mobility model, each group decides its group mobility
direction and speed randomly. Each node then decides its internal mobility randomly and computes its actual mobility by
summing the two mobility vectors [6]. The remaining 30 nodes, including sources, move following the random waypoint
mobility model. From Fig. 5(d) we can notice that the delivery ratio attained by the Hydra family of protocols is very close
to the one attained for the random waypoint mobility model. However, that is not the case for ODMRP whose delivery ratio
is diminished. The reason is as follows. Given that receivers are concentrated in a particular region of the network and that
sources are spread all over the simulation area, ODMRP meshes tend to cover more regions where no receivers and only
sources are located and hence, to route data packets towards places where no receiver is located. This is also the reason for
its reduced forwarding efficiency as shown in Fig. 5(f). On the other hand, the end-to-end delays (Fig. 5(e)) attained by all
the protocols is increased with respect to the one attained for the random waypoint mobility model. The reason for this is
that, on average, the paths from sources to receivers are longer when nodes move according to the group mobility model.

Fig. 6 summarizes a number of simulation results for three concurrent sources and different scenarios where we vary the
mobility, node density, and multicast group size. Because of space limitations, we only show results for the mesh versions of
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Fig. 7. TDMA MAC: Performance with increasing number of concurrent active sources (a-c) Random waypoint mobility. (d-f) Group mobility. (a and d)
Delivery ratio. (b and e) Average end-to-end delay. (c and f) Average number of data packets relayed per data packet received at receivers.

Hydra. From the figure, we can observe that the variants of Hydra attain similar or better delivery ratios than ODMRP across
the three scenarios. We can also observe that the Hydra variants incur far less forwarding overhead (around 30%-50%) than
ODMRP, and render close to an order of magnitude improvement in delay with respect to ODMRP.

5.2. Results using TDMA

The results shown in Fig. 7(a-c) present a sample of the behavior of the protocols when the transmission of control
information (by assigning control packets to a higher priority queue) is isolated from the effects of the data traffic. For
these experiments, each sender transmits 1 packet of 256 bytes per second and the group is composed of 20 nodes. TDMA
allocates 1 slot of 10 ms per node in round-robin fashion by address. In this scenario the join query period, the multicast
announcement period, the sources’ data rate and the mobility parameters are scaled so that all the protocols have good
performance for one source given that nodes are able to access the medium only two times per second. For one sender, all
the protocols have equivalent performance in terms of delivery ratio and end-to-end delay, as should be expected. However,
as the number of sources increases, the performance of ODMRP drops sharply, which is due to the per-source per-group
flooding strategy it uses. For six or more sources, the Hydra family provides an improvement of around 30% in delivery ratio
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and up to 40% in end-to-end delay. The decreased amount of data overhead shown by ODMRP for 12 sources is due to the
fact that many more data packets are being dropped early.

Given that collisions are prevented by the scheduled nature of TDMA, the main reason for packets being lost consist of
packets dropped due to queues being overflowed. This situation is particularly adverse to ODMRP and any routing protocol
that transmits a considerable amount of high-priority control packets, which tend to stall the lower priority data packets.

Fig. 7(d-f) present the results attained by the protocols when the group mobility model is used. In this scenario we can
observe an improvement in the three performance metrics of all the protocols over the performance attained with random
waypoint mobility. This is due to the fact that receivers tend to be concentrated in the region of the network, and hence
the trees established by the protocols are less shallow which is reflected in the improved forwarding efficiency shown in
Fig. 7(f). As a result of a better forwarding efficiency we observe a reduction in the number of data packets sent to network
which benefits the delivery ratio (Fig. 7(d)) and end-to-end delay (Fig. 7(e)) because it also reduce the number of packets
dropped due to overflowed queues as well as the queueing delay.

6. Conclusions

We introduced and verified the Hydra multicast routing protocol for MANETSs. Hydra is the first multicast routing
protocol that establishes routing structures that approximate those built with sender-initiated approaches, but incurring
the communication overhead of a receiver-initiated approach. This is accomplished by limiting the dissemination of control
information from non-core sources to small regions of the network, and aggregating routing information by establishing
common sub-graphs that are shared by two or more senders. Hydra can work in either mesh or tree mode by restricting
the number of parents that are forced to join the routing structure. Cores are elected using a non-destructive core election
protocol that does not destroy recently established trees (or meshes). To save bandwidth and take advantage of the broadcast
nature of the wireless medium, Hydra opportunistically combines control messages from different groups and sources into
a single control packet. We showed that the aggregation algorithms establish loop-free routes from senders to receivers.
We also presented the results of a series of simulation experiments illustrating that Hydra attains higher delivery ratios
and considerably lower end-to-end delays than ODMRP, while inducing far less retransmission overhead, even in relatively
small networks with few multicast sources.
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