
 

 

 
 

 
 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
   

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

RA Computer Science and Applications 

 
SPoT: Representing the 
Social, Spatial, and Temporal 
Dimensions of Human 
Mobility with a Unifying 
Framework 
 
 
Dmytro Karamshuk 
Chiara Boldrini 
Marco Conti 
Andrea Passarella 
 

 

 
 

 

 
IMT LUCCA CSA TECHNICAL 

REPORT SERIES 07 
May 2013 

Updated July 2013 

#07 
2013 



 

 

 
 

IMT LUCCA CSA TECHNICAL REPORT SERIES #07/2013 

© IMT Institute for Advanced Studies Lucca 
Piazza San Ponziano 6, 55100 Lucca 

 
 

Research Area 

Computer Science and Applications 
 

 
 

 
 

 

SPoT: Representing the 
Social, Spatial, and 
Temporal Dimensions of 
Human Mobility with a 
Unifying Framework 

 

 
 

 

Dmytro Karamshuk 
IMT Institute for Advanced Studies Lucca 

 

Chiara Boldrini 
IIT-CNR, Pisa 

 

Marco Conti 
IIT-CNR, Pisa 

 

Andrea Passarella 
IIT-CNR, Pisa 

 
 

 
 

 
 

 

 
 

 



SPoT: Representing the Social, Spatial, and Temporal

Dimensions of Human Mobility with a Unifying

Framework

Dmytro Karamshuk, Chiara Boldrini, Marco Conti, Andrea Passarella

IIT-CNR, Pisa, Italy

Abstract

Modeling human mobility is crucial in the analysis and simulation of oppor-
tunistic networks, where contacts are exploited as opportunities for peer-to-
peer message forwarding. The current approach with human mobility mod-
eling has been based on continuously modifying models, trying to embed in
them the mobility properties (e.g., visiting patterns to locations or specific
distributions of inter-contact times) as they came up from trace analysis. As
a consequence, with these models it is difficult, if not impossible, to modify
the features of mobility or to control the exact shape of mobility metrics
(e.g., modifying the distribution of inter-contact times). For these reasons,
in this paper we propose a mobility framework rather than a mobility model,
with the explicit goal of providing a flexible and controllable tool for model-
ing mathematically and generating simulatively different possible features of
human mobility.

Our framework, named SPoT, is able to incorporate the three dimensions
– spatial, social, and temporal – of human mobility. The way SPoT does
it is by mapping the different social communities of the network into differ-
ent locations, whose members visit with a configurable temporal pattern. In
order to characterize the temporal patterns of user visits to locations and
the relative positioning of locations based on their shared users, we analyze
the traces of real user movements extracted from three location-based on-
line social networks (Gowalla, Foursquare, and Altergeo). We observe that
a Bernoulli process effectively approximates user visits to locations in the
majority of cases and that locations that share many common users visiting
them frequently tend to be located close to each other. In addition, we use
these traces to test the flexibility of the framework, and we show that SPoT
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is able to accurately reproduce the mobility behavior observed in traces. Fi-
nally, relying on the Bernoulli assumption for arrival processes, we provide
a throughout mathematical analysis of the controllability of the framework,
deriving the conditions under which heavy-tailed and exponentially-tailed
aggregate inter-contact times (often observed in real traces) emerge.

Keywords: human mobility, opportunistic networks, complex networks,
stochastic processes

1. Introduction

Due to the widespread diffusion of personal handheld devices such as
smartphones and tablets, emerging wireless ad hoc networks are character-
ized by high user mobility, which ultimately leads to intermittent connectivity
and end-to-end paths that are continuously changing or even lacking at all.
Reversing the traditional approach, these potentially disconnected networks
benefit from the exploitation of user mobility to bridge disconnected users in
the network, and for this reason they are often referred to as opportunistic
networks [1]. In opportunistic networks messages are routed by the users of
the network (which exchange them upon encounters with other users) and are
eventually delivered to their destinations. The delay experienced by messages
is thus a function of the users’ mobility process. In particular, pairwise inter-
contact times (i.e., the time intervals between consecutive contacts of a pair
of nodes) are very important, since they characterize the temporal distance
between two consecutive forwarding opportunities. Inter-contact times are
determined by the movement patterns of users: users visiting the same loca-
tions will meet more frequently, and their inter-contact time will be shorter.
Given the dependence of the delay on inter-contact times, characterizing the
inter-contact time is therefore essential for modeling the performance of op-
portunistic networking protocols.

The first step in modeling human mobility is to understand how users
move. Recently, starting from traces of real user movements, there has been
a huge research effort in order to characterize the spatio-temporal (i.e, how
users travel across locations [2] [3] [4]) and social (i.e., how the nature of a
social relationship impacts on, e.g., inter-contact times between two users [5]
[6]) properties of human mobility. There is a general agreement that users
tend to travel most of the time along short distances while only occasion-
ally following very long paths. In addition, user movements are generally
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characterized by a high degree of predictability: users tend to visit the same
locations frequently, and to appear at them at about the same time. Less
clear is how inter-contact times are characterised. Many hypotheses have
been made (about them featuring an exponential distribution [7], a Pareto
distribution [5], a Pareto with exponential cut-off distribution [8], a LogNor-
mal distribution [6], etc.), but the problem has yet to be solved. The fact
is that inter-contact times are by nature heterogeneous, and trace analysis
suggests that a one-distribution-fits-all approach is probably wrong.

Building upon the above findings, the current approach to human mobility
modeling has been so far based on trying to incorporate in the model the
newest features of mobility properties as they came up from trace analysis.
Typically, each model focuses on just a few properties of human mobility. The
class of location-based mobility models aims to realistically represent user
mobility patterns in space. They are typically concerned with the regular
reappearance to a set of preferred locations [9] or with the length of paths
travelled by the users [10]. Similarly, there are models mostly focused on the
accurate representation of the time-varying behavior of users, often relying
on very detailed schedules of human activities [11] [12]. Finally, the class of
social-based mobility models aims to exploit the relation between sociality
and movements, and to formalize social interactions as the main driver of
human movements [13] [14].

The disadvantage of the current approach to modeling human mobility
is that the proposed models are intrinsically bound to the current state of
the art on trace analysis, and typically need to be redesigned from scratch
any time a new discovery is made. In addition, with current mobility models
it is typically difficult, if not impossible, to fine tune the mobility proper-
ties (e.g., obtaining inter-contact times featuring a probability distribution
with controllable parameters). Overall, flexibility and controllability are cur-
rently missing from available models of human mobility. Flexibility implies
allowing for different distributions of mobility properties (e.g., return times
to locations or inter-contact times) to be used with the model. The im-
portance of flexibility is twofold. First, it gives the opportunity to evaluate
networking protocols in different scenarios, and test their robustness to dif-
ferent mobility behaviors. Second, it allows for changing the model upon
new discoveries from trace analysis without the need to start over from clean
slate. On the other hand, controllability relates to the capability of obtaining
a predictable output starting from a given input. This can be done only at a
coarse granularity with the majority of available mobility models. For exam-
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ple, in social-based mobility, where social relationships determine the shape
of inter-contact times, an appropriate configuration can lead to heavy-tailed
inter-contact times [13]. However, there is no direct way for quantitatively
controlling the parameters characterizing this distribution, and a fine tuning
can be attempted only with a trial-and-error approach.

In light of the above discussion, the contribution of this paper is threefold.
First, we propose (Section 3) a mobility framework (SPoT – Social, sPatial,
and Temporal mobility framework) that incorporates the three dimensions
of human mobility, while at the same time being flexible and controllable.
SPoT takes as input the social graph representing the social relationships
between the users of the network and the stochastic processes characterizing
the visiting patterns of users to locations. Based on the input social graph,
communities are identified and are assigned to different locations. Thus,
people belonging to the same community share a common location where
the members of the community meet. Then, users visit these locations over
time based on a configurable stochastic process. The proposed framework
thus builds a network of users and locations (called arrival network), where
a link between a generic user i and a location l characterizes the way user
i visits location l. Overall, SPoT aims at being as accurate as possible in
matching the real behavior of human movements while at the same time be-
ing tractable for mathematical analysis. In addition, the fact that it links
together the three dimensions of human mobility provides a complete knowl-
edge on the main mobility drivers, which are often exploited by networking
protocols for opportunistic networks. For example, SPoT is superior to the
direct generation of inter-contact times, since it also provides information on
the social structure of the network. Knowing that a user belongs to a specific
community can be very helpful when evaluating the performance of commu-
nity detection schemes for opportunistic networks or social-aware forwarding
protocols.

The second contribution of this work lies in studying the mobility behav-
ior that emerges in real traces of human mobility (Section 4), and in using
this information to address two open points in our framework, i.e., how to
characterize the way users visit locations and how to position meeting places
in the considered scenario. To this aim we study three datasets of human self-
reported whereabouts records obtained from the online location-based social
networks (LBSN) Gowalla [15], Foursquare [16], and Altergeo [17]. LBSN
applications, where people can check-in into places (e.g., restaurants, offices)
and share their location with friends, have become incredibly popular with
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the widespread diffusion of smartphones. From the check-in records we study
the time sequences of individual user arrivals at places and reveal that for
the majority of user-place pairs, i.e., from 66% to 54% of the pairs depending
on the dataset, they are well approximated by a Bernoulli process, for which
the intervals between consecutive arrivals feature a geometric distribution.
Similarly, we show that the contact sequences between the majority of user
pairs, i.e., from 78% to 87% of the total number of pairs depending on the
dataset, can be approximated by a Bernoulli process. As we show later in
the paper, this finding is important as the Bernoulli process features a num-
ber of properties that significantly simplifies the mathematical analysis of
the framework. We also use the check-in records to study the correlation be-
tween the distances between locations and the number of regular visitors they
share. This property, to the best of our knowledge, has not been studied in
the literature before. We find that locations that share many common users
that visit them frequently tend to be located close to each other. We use
this result to realistically position meeting places in the area of the modeling
scenario.

The third contribution of the paper lies in showing that the proposed
framework is at the same time flexible and controllable. More specifically,
in Section 5 we show that SPoT is able to accurately reproduce the features
of aggregate inter-contact times observed in the Gowalla dataset. This high-
lights the fact that the framework can be instantiated to a desired, general
mobility configuration by just changing its input parameters. On the other
hand, in Section 6 we focus on the controllability of the framework, i.e., on
its capability to generate a predictable output. Building upon the results
of the analysis of real mobility data, we represent the way users arrive to
locations as Bernoulli processes. Then, first we prove that, when the arrival
processes are Bernoulli, the contact process between users is also Bernoulli,
which is well-aligned with the corresponding results of the data analysis (see
Section 4). Finally, we mathematically derive the conditions under which
heavy-tailed and exponentially-tailed aggregate inter-contact times emerge
starting from simple, but heterogenous, Bernoulli arrival processes for user
visits to locations. This advances the knowledge on the dependence between
aggregate and pairwise mobility statistics (explored for the first time in [18])
and confirms the main result in [18], i.e., that heterogeneity in pairwise statis-
tics can lead to aggregate statistics that are very distant in distribution.

Please note that in this paper we focus on the ability of SPoT to produce
a realistic output in terms of inter-contact times. As discussed above, inter-
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contact times are extremely important for the evaluation of opportunistic
networks. For this reason, most network simulators, either public platforms
[19] or custom simulators [20] [21], are designed to work with contact-based
traces as input. Alternatively, especially outside the opportunistic networks
domain, network simulators can take as input information about node move-
ments. This spatial output is not the main focus of the paper but, due to its
relevance, in Section 7 we discuss how SPoT can be extended for generating
a movement-based output. However, we leave the complete evaluation of the
properties of this spatial output for future work.

2. Related Work

A comprehensive overview of the state-of-the-art in mobility modeling
was presented in [22]. The work points out that the main findings in human
mobility research can be classified along the three axes of spatial, tempo-
ral, and connectivity (or social) properties. Spatial properties pertain to the
behavior of users in the physical space (e.g., the distance they travel), tempo-
ral properties to the time-varying features of human mobility (e.g., the time
users spend at specific locations), connectivity properties to the interactions
between users. One of the first significant findings in human mobility, which
highlighted the difference between our movements and random motion, was
documented by Brockman et al. [3], who analyzed a huge data set of records
of banknotes circulation, interpreting them as a proxy of human movements.
They showed that travel distances, frequently called jump size, of individuals
follow a power-law distribution. This fits the intuition that we usually move
over short distances, whereas occasionally we take rather long trips. Study-
ing data collected tracing mobile phone users, Gonzalez et al. [2] extended
the previous finding showing that the distribution of jumps was power law
up to a certain point, after which the decay was exponential. In addition,
they showed that individual truncated power-law trajectories co-exist with
population-based heterogeneity. Thus, it was shown that the distribution of
the radius of gyration - a measure which depicts the characteristic distance
traveled by a user - can be approximated by a truncated power-law. This
suggests that the majority of people usually travel in close vicinity to their
home location, while few of them frequently make long journeys.

As for the temporal properties of human movements, Gonzales et al. [2]
detected the tendency of people to return to a previously visited location
with a frequency proportional to the ranking in popularity of the location
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with respect to other locations. The authors also computed the return time
probability distribution (probability of returning at time t to a selected place)
and concluded that prominent peaks (at 24, 48, 72, ..., hours) capture the
tendency of humans to return regularly (on a daily basis) to the location
they visited before.

Connectivity properties have been extensively studied in the context of
opportunistic networks research. In fact, as we have already discussed, the
way users interact and get in touch with each other is crucial for message
delivery. In particular, the time between two consecutive contacts of two
devices contributes to the overall delay, while the duration of the contact
bounds the size of the data that can be exchanged at each encounter. Typi-
cally, user interactions are measured through human-carried mobile devices,
which are assumed to be proxies of real users. However, despite the great
efforts, a consensus hasn’t been reached yet on how to exactly characterize
in probabilistic terms the connectivity metrics.

From a taxonomy standpoint, the three dimensions of human mobility
(spatial, temporal, and social) described above can be mapped into three
different approaches to modeling human mobility: maps of preferred loca-
tions, personal agendas, and social graphs. The models of the first group
account for the properties characterizing the regular reappearance of users
at a set of preferred locations. Their general approach is to store the maps
(i.e., the sets) of preferred places for each user and to explore them while
deciding on the next destination for her walk. The main representatives of
this group are SLAW [10] and the model proposed by Song et al. [4]. These
models are able to satisfy the main spatial properties of human mobility tra-
jectories, but they do not pay enough attention to the social and temporal
aspects of human movement.

The second class of models focuses on reproducing realistic temporal pat-
terns of human mobility explicitly including repeating daily activities in hu-
man schedules. The most comprehensive approach of this group is presented
in [12]. The model incorporates detailed geographic topology, personal sched-
ules and motion generators defined for more than 30 different types of ac-
tivities. Although the model gives an extremely thorough representation of
human movements in some specific scenarios, it does not explain the main
driving forces of human mobility and it is too complex for analytical tractabil-
ity.

The most recent and most rapidly evolving trend in modeling human
mobility is based on incorporating sociality into models, thus considering
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human relations as the main driver of individual movements. The main
idea is that the destination for the next movement of a user depends on the
position of people with whom the user shares social ties. The first models
of this class of approaches were CMM [23] and HCMM [13], although others
have recently been developed.

A recent work that is orthogonal to the above classifications is the work
by Hossmann et al. [24]. They have found that, regardless of the modeling
approach to human mobility, the contact graph (i.e., the graph whose ver-
tices are the nodes of the network and whose edge weights are given by a
combination of contact frequency and aggregate contact duration) generated
by most synthetic models differs from that obtained from mobility traces.
More specifically, traces tend to generate bridging links (only few strong
edges connecting communities) in the contact graph, while synthetic models
tend to generate bridging nodes (nodes linked to many other nodes). In ad-
dition to this result, Hossmann et al. found that contacts happening outside
a community location are typically synchronized. In this paper, we do not
consider synchronized meetings, in order to keep the framework mathemati-
cally tractable. Due to lack of space, we also do not verify whether bridging
links are generated.

With respect to the related literature, SPoT covers and links together
all the three dimensions of human mobility using a flexible and controllable
framework, which can be instantiated to the desired mobility scenario and
which is naturally suited for mathematical analysis. This work is an ex-
tended version of our previous paper in [25]. Specifically, here we have added
the analysis of three relevant datasets extracted from the location-based on-
line social networks Gowalla, Foursquare, and Altergeo. Results from trace
analysis provide a strong case for Bernoulli arrivals, which are then used as
the reference assumption in the mathematical analysis of the framework. In
addition, we use these datasets to test the flexibility of the SPoT framework,
showing that the latter is able to reproduce the mobility behavior observed
in traces. With respect to [25], we also extend the mathematical analysis of
the framework with the derivation of the settings under which exponentially-
tailed aggregate inter-contact times (a case frequently encountered in traces)
can be obtained. Finally, here we also discuss how SPoT can be extended
for producing movement-based output.
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3. The Proposed Mobility Framework

In this section we introduce our SPoT mobility framework, designed
around the three main dimensions of human mobility, i.e., social, spatial
and temporal (see Figure 1). The social dimension is explicitly captured in
the framework by taking a graph of human social relationships as an input
parameter. This graph can be any well known graph, such as random graphs
[26] or scale-free graphs [26], or it can be extracted from real traces. Then,
the framework adds the spatial dimension to the social ties by generating an
arrival network, which is a bipartite graph that connects users and meeting
places. A link between a user and a meeting place in the arrival network im-
plies that the user visits that place during its movements. We exploit the fact
that the structure of communities in the social graph has a significant impact
on human mobility, thus we assign users to meeting places such that commu-
nities of tightly connected users (cliques, in complex network terminology)
share meeting places.

In order to add the temporal dimension to the model, we describe the
way users visit the meeting places to which they are connected in terms of
stochastic point processes [27]. A stochastic point process is a stochastic pro-
cess that characterizes how events (arrivals at location, in our framework)
are distributed over time. By sampling from the random variables represent-
ing the time between consecutive arrivals, we obtain the time sequences of
the visits of a user to a given location. Then, the contact network, i.e., the
network describing the contacts between nodes, can be obtained by assuming
that two nodes are in contact with each other if they happen to be at the
same time in the same meeting place.

3.1. The social and spatial dimensions of human mobility

Social interactions between users have emerged as one of the key factors
defining human mobile behavior, because individuals belong to social com-
munities and their social ties strongly affect their movement decisions [28]
[29]. As anticipated, in our analysis we consider proximity-based communi-
ties, i.e., communities whose members share a common meeting place (e.g.,
offices, bars, apartments). Since all members of the community visit a shared
meeting place, it implies that users are socially connected with all other mem-
bers of the community, and, therefore, form fully connected components (i.e.,
cliques) in the social graph.
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Figure 1: Framework overview

Such cliques in realistic social networks exhibit overlapping and hierar-
chical structure [30] [31]. Each user belongs to several overlapping cliques,
representing different social circles (e.g., friends, relatives, colleagues). On
the other hand, each clique is itself composed of a number of nested cliques,
which share additional meeting places that are not common to all the users
of a parent clique. For example, a company shares a set of offices visited by
all its employees, while each subdivision has its own working places.

As anticipated, we represent the relation between the spatial and the
social dimension of human mobility by means of a bipartite graph of users and
meeting places, which we call arrival network. In the algorithm (summarized
in Table 1) for generating the arrival network starting from the input social
graph we mainly need two components: a clique finding algorithm (which also
detects overlapping cliques) and a way for reproducing hierarchical cliques.

The first component corresponds to steps 1 and 2 in Table 1. In each
round, the social graph is divided into a set (called cover) of overlapping
cliques, such that each link of the social graph is assigned to exactly one
clique. To this purpose, we use the BronKerbosch algorithm [32]. The cover
of each round tries to capture the biggest possible cliques. For each of the
newly identified cliques, we create a new meeting place and assign all mem-
bers of the clique to that meeting place. In other words, we create a new
meeting place vertex in the arrival network and we add links between this
vertex and all members of the community. As an example, we describe in
Figure 2 how cliques identified in the social graph are reflected into corre-
sponding meeting places.

The second component (step 3 in Table 1) of the algorithm for generating
the arrival network allows us to generate nested cliques. More specifically,
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Table 1: Algorithm for building the arrival network - Input: social graph G and removal
probability α.

1. Divide input social graph G into a set of overlapping cliques, such that
the sizes of the cliques are maximum and each link is assigned to exactly
one clique. To this aim, the BronKerbosch algorithm [32] can be used.

2. To each clique assign a separate meeting place, i.e., create a new meet-
ing place and a set of links between this place and each member of the
clique in the arrival network.

3. Remove randomly each link in the social graph with probability α,
inducing emergence of new nested cliques.

4. Proceed to the next round starting from the first step, until there are
no links left in the input graph.
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Figure 2: A round of assigning social cliques to meeting place; cliques are marked with
different line styles

our algorithm tries to identify cliques of lower size nested into those identified
in the previous round. To do so, cliques are split according to a very simple
random process, according to which every link in the social graph is randomly
removed with a constant, configurable, probability α (removal probability).
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This leads to the emergence of smaller cliques, which are indeed nested into
the original ones. This simple strategy has also the advantage of allowing for
a fine control of the number of meeting places shared by users. In fact, each
link participates into a geometrically distributed (with parameter α) number
of rounds of meeting place assignments. As each link is assigned to at most
one clique per round, also the number of cliques that includes that link will
be geometrically distributed. This implies that the pair of users i, j with
which this link is associated will share a number Lij of cliques (and thus of
meeting places) that is itself geometrically distributed with parameter α.

The algorithm for generating the arrival network stops (step 4 in Table
1) when there are no more links in the social graph to be removed.

3.1.1. From meeting places to geographical locations

The analysis of the algorithm in Table 1 reveals that the number of meet-
ing places generated grows with the number of cliques. Thus, the more
cliques in the input social graph, the more meeting places are required. The
proliferation of meeting places is not of big concern as meeting places might
correspond to very small geographic areas (e.g., offices). However, in order
to improve the realism of the generated scenario, we combine these meet-
ing places into a fixed number L of wider physical locations (e.g., this is
equivalent to combining offices into a business center).

To assign meeting places to geographical locations we explore the obser-
vation that, intuitively, the places that share many common frequent visitors
should be located geographically close to each other, like in the case of dif-
ferent buildings of a university campus or different offices of a company. In
Section 4.4, we validate and confirm this observation using our datasets ex-
tracted from location-based online social networks. In order to quantify the
closeness between two meeting places, we define the strength Fij of ties be-
tween a pair of meeting places i and j as the summary co-appearing frequency
across all the users the two places share. More formally, we can write Fij as
follows:

Fi,j =
∑
u∈Ui,j

f iu × f ju (1)

where f iu is the frequency of user u’s visits to location i and Ui,j is the set of all
users shared between place i and j. The higher the arrival frequency of user
u to both places i and j, the higher the strength between the two places. We
anticipate here that the result of the analysis of realistic traces in Section 4.4
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suggests that the mean and the median of the distance between two places
i and j decreases with the strength Fij. This validate our observation and
allows us to exploit it for aggregating meeting places.

Our goal now is to distribute meeting places on the 2D plane such that
pairs of places with stronger ties in terms of shared visitors would be located
closer. To this aim, we use a variation of the energy model for graph drawing
described in [33, 34]. In this model, the places are represented as particles,
where particles connected with a link attract each other proportionally to the
power of the strength of the link and inversely proportional to the power of
the distance between the particles. Similarly, particles that are not connected
with a link repulse each other. The final spatial positioning of the meeting
places is achieved through simulation, where initial positions of the places
are selected randomly in a rectangle of size w × h. As a result of applying
attraction and repulsing forces to the nodes, the system eventually reaches
an equilibrium state in which tightly connected meeting places are situated
close to each other, thus achieving our desired goal.

3.2. The temporal dimension of user visits to meeting places

The arrival network that we have built in the previous section tells us
which are the meeting places visited by each user. Here we add the temporal
properties of such visits. To this aim, we assign to each link in the arrival
network a discrete stochastic point process Ali that describes the arrivals of
user i to a meeting place l over time. In this work, we consider only discrete
point processes, leaving the continuous case for future work. In a discrete
point process, the time is slotted. During a time slot, each node visits a
set of locations, where this set is determined by the evolution of the arrival
processes.

In this paper we assume that processes Ali are independent, i.e., that
nodes arrive to locations independently of each other. This implies that also
the resulting contact processes are independent. In real traces, contacts can
be synchronized [24], but coordination1 between nodes may drastically com-
plicate the mathematical analysis of mobility frameworks. For this reason,

1A weaker coordination involving only pairs of nodes has been sometimes assumed in
the literature for modelling purposes. With pairwise coordination, pairs of nodes can still
meet on purpose, but independently of the other pairs. However, since the tractability of
our analytical framework would not benefit from this assumption, we decided to use the
strongest independence condition.
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keeping in mind our target of controllability, we decided to limit the scope
of the paper to independent arrival processes. The comparison with traces
(where these assumptions in general do not hold) presented in Section 5
shows that the accuracy of the model is good, nevertheless.

Once we have characterized the time at which users visit their assigned
meeting places, we can build the contact graph of the network (Figure 1).
In fact, a contact between two users happens if the two users appear in the
same meeting place at the same time slot. A contact duration is measured
as the number of consecutive time slots in which two users have at least one
commonly visited location. The contact graph can be fully mathematically
characterized (we provide an example of this characterization in Section 6
for the case of arrival processes being heterogenous Bernoulli processes) or it
can be obtained from simulations.

4. Analysis of real user movements

As discussed in the previous section, the SPoT framework takes as input
the social graph of the network users and the arrival processes describing how
users visit locations. While the properties of the user social graph have been
extensively studied in the literature [35, 36], thus making their configuration
easy, the statistical characterization of user arrivals has been little explored,
especially for what concerns the individual user-pair behavior. In order to
address this open point in the framework (i.e, which arrival process is best
indicated to describe how users visit places in reality), in this section we
consider three datasets of real user movements, extracted from the location-
based online social networks Gowalla [15], Foursquare [16], and Altergeo
[17]. In location-based online social networks, users check-in at places (e.g.,
restaurants, offices) and share their location with their friends. Thus, the
concept of check-ins is very similar to the arrivals considered in the SPoT
mobility framework. In fact, both notions represent records of the time at
which users visit particular venues. For this reason, we chose to take check-
ins as proxies for user arrivals at places and to use them to measure the
temporal characteristics of arrival sequences.

In this section we also use the three datasets for studying the features
of pairwise inter-contact times in this real scenario. The pairwise results
we will be later compared against the mathematical results in Section 6,
showing that data and model predictions are totally in agreement. Finally, we
also study the geographic distribution of the meeting places sharing common
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visitors, whose results we used in Section 3.1.1 when defining the algorithm
for aggregating meeting places into locations.

4.1. Collecting data
Here we consider the datasets of check-ins collected from the three on-

line location-based social networks Gowalla, Foursquare and Altergeo. Each
check-in record is stored as a tuple ω = (U, V, T ) ∈ Ω where U represents
the user, V the venue and T the time of the check-in. For a pair of user
Ui and place Vl we consider a sequence of check-ins Ωl

i = {(U, V, T ) ∈ Ω :
U = Ui and V = Vl} and denote the number of check-ins in a sequence as nli
(nli = |Ωl

i|). We denote the total number of user-place pairs in the dataset
with Q. We use venues as proxies of meeting places without performing any
aggregation. Even in case two venues have similar coordinates, we treat them
as two different meeting places.

4.1.1. Gowalla

The first dataset used in this paper comprises check-ins of Gowalla users
collected via public API [24]. Launched in 2007, Gowalla was a pioneer
location-based social network available via mobile app for most of the ma-
jor platforms (Android, iPhone, etc.). The Gowalla service was bought by
Facebook in December 2011 and eventually shut down in 2012. The dataset
considered in this paper accounts for |ΩGO| = 27M check-in records collected
from |UGO| = 619K users at |VGO| = 2.4M venues in the period of time from
21 January, 2009 to 7 July, 2011.

4.1.2. Foursquare

Foursquare was launched in 2009 and it has quickly become the most
popular location-based service, with more than 35 million users as of January
2013 [16]. Similarly to Gowalla, Foursquare users receive bonuses for check-
ins at places. Recently, Foursquare is becoming more and more focused
on being a tool for exploring nearby places, e.g., finding restaurant, hotel,
nightclub etc. Per user Foursquare check-in data are not directly accessible.
However, users can opt to share their check-ins publicly on Twitter. Using the
Twitter’s streaming API, it was possible to crawl publicly available check-ins
[37]. Note that we can only access those check-ins that users explicitly choose
to share on Twitter, although users have the possibility to set this option as
default. In this paper we consider a dataset of |ΩFS| = 23M check-in records
collected from |UFS| = 494K users at |VFS| = 2.3M venues across the United
States in the period of time from November 16, 2010 to September 19, 2011.
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4.1.3. Altergeo

Altergeo is an alternative online location-based social networking service
focused on Russian speaking countries. Launched in 2008, Altergeo has re-
cently reported the audience of 1M+ users, mostly from big cities of Russia
and Ukraine [17]. Similarly to Foursquare and Gowalla, the Altergeo service
is available to its users as a check-in app. The service also explores check-
in data for personalized food recommendation in a mobile phone app called
Gvidi [38]. In the current paper we explore the dataset of |ΩAG| = 700 K
check-ins that we collected from |UAG| = 49K Altergeo users at |VAG| = 94K
places in the period of time between 12 February 2010 and 12 February 2012.

4.2. Data preprocessing

In Figure 3 below we plot the distribution of the number nli of check-
ins per user-place pair across all considered datasets. As the plot suggests,
the distribution of the number of check-ins for individual user-place pairs is
extremely heterogeneous: while 80% of check-ins in places are never repeated,
i.e., nli = 1, there exist user-place pairs with a number of repeated check-ins
higher than 800, i.e., nli > 800. In order to deliver a reliable analysis from
the statistical standpoint, we discarded those pairs with a small number of
check-ins. Thus, we explore the datasets of Q′GO = 94K, Q′FS = 90K and
Q′AG = 2.4K user-place pairs each containing at least 20 check-in records,
i.e., nli ≥ 20. We note that the resulting datasets account for CGO = 46K,
CFS = 34K and CAG = 998 contact pairs correspondingly. The summary
statistics for all three considered datasets are summarized in Table 2.

Table 2: Statistics for the three considered datasets

Characteristic Gowalla Foursquare Altergeo
Check-ins, |Ω| 27M 23M 0.7M
Users, |U | 619K 494K 49K
Places, |V | 2.4M 2.3M 94K
User-Place pairs, Q 15M 13M 0.3M
Arrival sequences, Q′ 94K 90K 2.4K
Contact pairs, C 46K 34K 998

In order to be able to obtain results that can be applied to a discrete-time
mobility framework like the one we have defined in Section 3, we need to fix
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Figure 3: Distribution of number of check-ins nli per user-place pair for the three considered
datasets

the duration of the timeslot we consider. Since it has been shown [2] [9] that
users tend to appear at previously visited locations with a period of about 24
hours, we decided to focus on timeslots of 24h length. This choice allows us
to capture daily dynamics of user movements: people regularly commuting
between home and work, working out at the gym, etc. The interested reader
can refer to Appendix A for a detailed analysis under different granularities
(8h, 12h). Suffices to mention here that in all cases the geometric hypothesis
is not rejected for around 50% of pairs for arrivals and 75% of pairs for inter-
contacts. As a general finding, the match between the model and traces tends
to worsen with the reduced granularity. This effect is probably due to the lack
of stationarity of user movements within the same day. In fact, while days
tend all to be similar with each other (apart from some deviations registered
during weekends [9]), the different parts of the day tend to differ significantly
(e.g., morning vs evening activities), even if the same user usually visits the
same location at about the same time [2].

4.3. Analysis of individual inter-arrival times and inter-contact times

We now describe the methodology that we exploit to characterize the dis-
tribution of individual inter-arrival times and individual inter-contact times.
From a preliminary analysis we observed that across a significant popula-
tion of user-place pairs the distribution of inter-arrival times has the shape
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of a straight line in lin-log scale, which roughly corresponds to a geomet-
ric distribution in the discrete case. Similarly, a preliminary observation of
the pairwise inter-contact time yielded again a geometric distribution. We
aim to validate this hypothesis by fitting individual inter-arrival time and
inter-contact time distribution to a geometric distribution and evaluating the
goodness of fit across all user-place pairs and user-user pairs, respectively, in
the dataset.

The fitting is performed using Maximum Likelihood Estimation [39],
which, in the case of a geometric distribution with success probability ρ,

yields an estimator ρ̂ =
nli∑nl
i
k=1 τk

(where τ1, τ2, ..., τnli are the nil observations in

the sample). Once we have fitted our data to a geometric distribution, we test
whether it is plausible that our data come in fact from such fitted distribu-
tion. To this aim, we rely on one of the most popular goodness of fit tests, the
Pearson’s chi-squared test [39], which works well for discrete distributions.
In the Pearson’s chi-squared test, the test statistic TS is calculated as a sum
of differences between observed and expected outcome frequencies (that is,
counts of observations), each squared and divided by the expectation:

TS =
n∑
k=1

(Ok − Ek)2

Ek
(2)

where n is the number of observations, Ok is an observed frequency for a bin
k of values, Ek is an expected frequency for a bin k. The test statistic TS
follows, approximately, a chi-square distribution with K = (n−c−1) degrees
of freedom (i.e, TS ∼ χ2

K), where n is the number of non-empty bins and c
is the number of estimated parameters for the distribution. In the case of a
geometric distribution, c = 1, thus it follows that K = n − 2. If we denote
with qχ2

K ,1−α the 1 − α quantile of χ2
K , then the test rejects the geometric

hypothesis at level α when TS > qχ2
K ,1−α. In our analysis we set α to 0.01

(similar to reference works in the literature [18, 40]), which corresponds to
a 0.01 probability of making a Type I error (i.e., rejecting the hypothesis
when it is actually true). However, for the sake of completeness we also
report the results for α = 0.05 and α = 0.001 (Tables 3 and 4). Please
note that, with all significance levels, for all datasets the percentage of pairs
for which the geometric hypothesis is not rejected remains above 49%. For
each pair, the number of bins is computed as the maximum number of bins
that allows us to have at least 5 expected occurrences in each bin (standard
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rule of thumb used with the chi-squared test). To estimate the goodness of
fit across the population of individual inter-arrival times and inter-contact
times, we calculate the percentage Qgeom of the user-place pairs and user-user
pairs, respectively, for which the hypothesis of geometric distribution is not
rejected.

4.3.1. Characterizing individual inter-arrival times

In Figure 4 we plot the inter-arrival times distribution (blue dots) for
three characteristic user-place pairs along with the corresponding fitted ge-
ometric distributions (red crosses) as estimated with the methodology de-
scribed above. In the first two cases the chi-squared test brings no evi-
dence against the assumption of geometric distribution of the inter-arrival
times, as the calculated chi-square statistics TS(a) = 14.76 and TS(b) = 0.11
are smaller than the corresponding quantiles for the chi-square distribution
qχ2

K(a)
,1−α = 18.48 and qχ2

K(b)
,1−α = 9.21, with K(a) = 7 and K(b) = 2 degrees

of freedom and statistical significance level α = 0.01. In opposite, in the lat-
ter case the assumption is rejected, since value TS(c) = 72.43 is bigger than
the corresponding quantile qχ2

K(c)
,1−α = 9.21 for the chi-square distribution

with K(c) = 2 degrees of freedom.
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Figure 4: Individual inter-arrival time distribution from traces (blue) vs geometric fitting
(red) a,b) for the cases when the assumption of geometric distribution is not rejected c)
for the case when that assumption is rejected

We further calculate the percentage of user-place pairs for which the as-
sumption on the geometric distribution of inter-arrival times is not rejected at
different significance levels (Table 3). Thus, we observe that for the majority
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of pairs across all datasets, i.e., Qgeom
GO = 60%, Qgeom

FS = 66%, Qgeom
AG = 54%,

the inter-arrival time distribution follows a geometric distribution. This re-
sult is important as a geometric distribution of inter-arrival times can be
modeled with a simple Bernoulli arrival process, which, as we discuss in Sec-
tion 6, is very convenient for mathematical analysis. The implication behind
Bernoulli arrivals is that users tend to visit places with a fixed rate. This
matches the common finding [9] that users tend be quite regular in their
movements.

Table 3: Percentage of pairs for which the geometric distribution hypothesis for arrivals
is not rejected, at different significance levels

α Gowalla (%) Foursquare (%) Altergeo (%)

0.001 0.71 0.77 0.57
0.01 0.60 0.66 0.54
0.05 0.50 0.51 0.49

4.3.2. Characterizing individual inter-contact times

We now analyze the pairwise inter-contact time sequences measured be-
tween consecutive contacts of the users in our datasets. In order to have
statistically reliable results, we discarded pairs that have less than 20 con-
tacts. The main obstacle in computing inter-contact times in our datasets is
that there are no check-out records, i.e., no records of the time when users
leave places. For this reason, we have to make some assumptions about the
duration of the sojourn time at a location. In [24], the inter-contact times
for the Gowalla trace (the exact same trace that we consider in this work)
were measured assuming that a contact between two users happen if they
have checked-in less than 1 hour apart at the same place. The rationale for
this choice lies behind the nature of location-based online social networks
like Gowalla, Foursquare, and Altergeo. In fact, these applications capture
mostly users going out for eating or entertainment, for which the 1-hour
choice appears reasonable. Thus, also in this work we keep the 1 hour as-
sumption.

The plots for three significant pairs (blue dots) and the corresponding
fitted geometric distributions (red crosses) are shown in Figure 5. As we can
guess from the plot, in the first two cases the assumption about geometric
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Figure 5: Individual inter-contact times distribution from the data traces (blue) vs geo-
metric fitting (red) a,b) for the cases when the assumption of geometric distribution is not
rejected c) for the case when that assumption is rejected

distribution of the inter-contact times is not rejected. In fact, in this case
the chi-square statistics TS(a) = 5.91 and TS(b) = 0.51 are smaller than
the corresponding chi-square distribution’s quantiles qχ2

K(a)
,1−α = 20.09 and

qχ2
K(b)

,1−α = 9.21, with degrees of freedom K(a) = 8 and K(b) = 2 and sta-

tistical significance α = 0.01. In the third case (Figure 5.c), instead, the
assumption on the geometric distribution of individual inter-contact times
is rejected, since TS(c) = 107.46 is bigger than the corresponding quantile
qχ2

K(c)
,1−α = 21.67 from the chi-square distribution with K(c) = 9 degrees of

freedom. Summarizing, the chi-squared test does not reject the geometric
hypothesis for Qgeom

GO = 80%, Qgeom
FS = 87%, Qgeom

AG = 78% of pairs in our
datasets.

Table 4: Percentage of pairs for which the geometric distribution hypothesis for inter-
contact times is not rejected, at different significance levels

α Gowalla (%) Foursquare (%) Altergeo (%)

0.001 0.89 0.94 0.84
0.01 0.80 0.87 0.78
0.05 0.51 0.74 0.56
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4.4. Relative positioning of meeting places sharing common visitors

We now study the relationship between the relative positions of meeting
places and the frequency of user visits to those places. More specifically, we
investigate whether places that share many common users that visit them
frequently happen to be located close to each other. To this end, we mea-
sure the social strength between pairs of meeting places in our dataset, ex-
ploiting the definition of social strength that we provided in Section 3.1.1.
Please recall that the social strength between places i and j measures the co-
appearing frequency across all users the two places share, and it is defined as
Fi,j =

∑
u∈Ui,j f

i
u × f ju, where f iu is the frequency of user u’s visits to location

i and Ui,j is the set of the users shared between places i and j. Intuitively,
the social strength is higher if two places share a lot of common users that
frequently visit both places.
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Figure 6: Median and mean values of the geographic distance between venues in the city
for different values of social strength Fi,j grouped in logarithm bins for Gowalla, Austin
(left), Foursquare, New York (center) and Altergeo, Moscow (right) datasets

In Figure 6 we plot the median and mean values of the geographic dis-
tance for different values of social strength Fi,j between venues in the biggest
cities of each dataset, i.e., Austin for Gowalla, New York for Foursquare and
Moscow for Altergeo. As we can see from the plot, the distances between
places tend to decrease with the strength, therefore suggesting that the places
that share a lot of frequent users tend to be located closer to each other. For
instance, half of the venues with social strength between 23 and 24 are situ-
ated more than 6km away from each other in Austin and Moscow and more
than 4km away in New York, whereas half of pairs of venues with very high
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social strengths of 215 − 216 are placed not farther than 1− 2km away from
each other across all datasets.

5. Testing the framework flexibility

While in previous sections we have introduced the SPoT framework and
we have used real data from location-based online social networks to address
the open points in the framework, in this section we start the evaluation of
SPoT. More specifically, here we study the flexibility of SPoT, i.e., its capa-
bility to reproduce a desired, general, mobility behavior, while in Section 6
we test its controllability.

Our goal in this section is to show that the framework, once configured for
the settings observed in a real mobility trace, generates the same aggregate
characteristics (aggregate inter-contact times, specifically) as those seen in
traces. We chose the aggregate over the pairwise statistics in this case be-
cause, from the mathematical characterisation of the framework (Section 6),
we know that SPoT, once configured with Bernoulli arrivals, will generate
geometric inter-contact times. Since we also know from trace analysis (Sec-
tion 4.3.2) that inter-contact times in the dataset can be approximated with a
geometric distribution for a large fraction of pairs, a match between the inter-
contact times generated by the framework and those seen in traces would be
quite expected. Less obvious, instead, is the capability of reproducing also
a realistic aggregate behaviour starting from pairwise controlled parameters.
Please note that in the following we are not validating those aspects that
we directly derived from traces (e.g., Bernoulli arrivals). Instead, we aim to
evaluate if the proposed generative algorithm based on the creation of the
arrival network is able to produce an output that matches the distribution
derived from traces.

Aggregate-inter contact times are an important metric often used in the
related literature [5, 2]. While it has been shown [18] that their relation
with pairwise inter-contact times might not always be as straightforward as
it was thought initially (i.e., in general, aggregate and pairwise inter contact
times do not feature the same distribution), aggregate inter-contact times
are useful for several reasons. First, as discussed in [18], while it is true that
in several cases the aggregate distribution does not contain enough infor-
mation to assess the performance of opportunistic networks (which always
depends on the pairwise distribution), there are other cases where looking at
the aggregate distribution is sufficient to assess some performance aspects.

23



For example, in addition to the cases where the aggregate and individual
distributions belong to the same family, highlighted in [18], we have also
shown in [41] that when the aggregate distribution does not present a heavy
tail, we can be sure that no pairwise distribution will have a heavy tail and
thus, for example, no convergence problems will arise for randomised oppor-
tunistic routing protocols. Moreover, due to the increasing privacy concerns
that are emerging in relation to collecting datasets with potentially sensitive
information about people, in the future we can reasonably expect that it
will be easier to find and distribute datasets with samples of the aggregate
distribution rather than of pairwise distributions, as the former in general
do not disclose the behaviour of the individuals. So, aggregate information
might be the only information available to researchers. In this case, having
a mobility framework able to control not only the pairwise but also the ag-
gregate statistics will be important. Finally, for any possible dataset, the
statistical confidence of fitting the aggregate distribution is (much) higher
than for the individual pairwise distributions (due to the greater number of
samples available, by definition, for the former). Therefore, considering the
aggregate distribution can be the only way to obtain statistically relevant
fittings.

In order to use the framework, we need to configure the following quanti-
ties: the social graph G, the removal probability α, and the arrival processes
Ali for each user i visiting a location l. We extract this information from
the data traces themselves, relying on the same subset of users (those with
at least 20 check-ins) that we have used in Section 4. We take users and
friendship records from the dataset to construct the social graph G. In or-
der to estimate the removal probability α from the trace, we recall that this
probability is the reciprocal of the average number of places Lij shared be-
tween a pair of users i and j, i.e., α = 1

E[Lij ]
(see Section 3 for more details).

From the analysis of the traces we compute the sample mean Ê[LGOij ] = 1.22

for Gowalla, Ê[LFSij ] = 1.60 for Foursquare and Ê[LFSij ] = 1.64 for Altergeo.
From this we calculate the corresponding removal probabilities α̂GO = 0.82,
α̂FS = 0.63 and α̂AG = 0.61. In order to configure arrival processes Ali we ex-
ploit the result from Section 4 and we set them to be Bernoulli processes. We
configure the rates of such processes so that they match the empirical rate
distribution derived from the trace (Figure 7). More specifically, the rate
distribution in Figure 7 is obtained aggregating the arrival rates for each
user-location pair extracted from traces. The use of these rate distributions
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allows us to maintain the statistical properties of arrival process, regardless
of the actual number of user or locations that we actually simulate.
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Figure 7: Distribution of arrival rates in the Gowalla, Foursquare and Altergeo traces

In Figure 8 we show the aggregate inter-contact time generated by SPoT
against those observed in the traces. As we can see from the plot, the ag-
gregate behavior observed in traces (red squares) is in good agreement with
the corresponding results from the simulation (blue crosses). This confirms
the flexibility of the framework to capture a desired realistic behavior seen
in real traces.

6. Testing the framework controllability

In this section we show mathematically how the SPoT framework is able
to produce different, controllable outputs depending on its initial configu-
ration. To this aim, we exploit the data analysis results and we focus on
Bernoulli arrivals, which we have shown in Section 4 to represent the be-
havior of the majority of user-place pairs. Using the Bernoulli assumption,
in this section we fully characterize the pairwise dynamics of the framework
and we also analytically derive the conditions under which heavy-tailed and
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Figure 8: Aggregate inter-contact times obtained from traces (red squares) and from
simulations (blue crosses)

exponentially-tailed aggregate inter-contact times, two cases often observed
in real traces, emerge.

In our analysis we use the term contact process to describe how users
meet with each other. Assuming that two users Ui and Uj can meet at Lij
distinct meeting places, the contact process between users i and j comprises
all contacts happening at all Lij shared meeting places. The time between
consecutive contacts in the contact process defines the inter-contact times
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between the pair of nodes. In the following we also characterize the single-
place contact process, as the contact process between users Ui and Uj limited
to a specific meeting place Ml.

As anticipated, in this analysis we model arrival processes as Bernoulli
processes, since they feature geometric inter-arrivals like those seen in traces
(Section 4.3.1). In a Bernoulli process, the probability of an arrival (a suc-
cess, in Bernoulli processes terminology) at a given time slot is constant and
corresponds to the rate of the process, defined as the expected frequency
of arrivals2. Hence, in the following we will use the terms probability and
rate interchangeably. We show that, if the individual arrival processes are
Bernoulli processes, then the contact process and the single-place contact
process are also Bernoulli processes for any pair of users. As inter-arrival
times for a Bernoulli process feature a geometric distribution, we obtain that
from geometric inter-arrival times to specific meeting places (corresponding
to Bernoulli arrivals) a geometric distribution of pairwise inter-contact times
follows, exactly as seen in traces.

Additionally, we show that the rates of the contact processes depend on
the rates of the arrival processes. Starting from this dependence, we are able
to derive analytically also the aggregate inter-contact times as a function of
the arrival rates of users to meeting places. Although this dependence is
not trivial in the general case, we show that different shapes of the aggre-
gate inter-contact distribution can be obtained starting from simple Bernoulli
arrival processes. More specifically, we focus on the two cases frequently re-
ported in the related literature, namely, when the the aggregate inter-contact
time has a power law or an exponential tail. We show that the latter emerges
in homogeneous networks when all the rates of individual Bernoulli processes
are equal, and the former when the rates feature a specific distribution.

Before proceeding to the details of our analysis, we first introduce the
notation used throughout the section. We consider an arrival network made
up of N users and L meeting places. We assume that each user Ui visits
place Ml according to a Bernoulli process Ali with rate ρAli . For each meeting

2It is straightforward to prove the equivalency between the rate ρ and the success
probability p of the Bernoulli process. The rate can in fact be computed as the expected
number of successes in n trials divided by the number of trials. Since the expected number
of successes in n trials can be computed as the expectation of the Binomial distribution
with parameters p and n, we get that ρ = np

n = p. Please note also that the rate of the
Bernoulli process takes thus values in [0, 1].
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place Ml and for each pair of users Ui and Uj we characterize the single-
place contact process C l

ij (of rate ρClij) and the contact process Cij of rate

ρCij , aggregated over the Lij shared meeting places. The latter defines the
distribution of pairwise inter-contact times. We denote the complementary
cumulative distribution function (CCDF) of the pairwise inter-contact times
of rate ρ with Fρ(τ), and that of the aggregate inter-contact times with F (τ).
F (τ) is obtained as a function of the probability density function (PDF) of
the rates of individual inter-contact times fP (ρ). The notation is summarized
in Table 5. The complete proofs for the results shown in this section, when
not provided inline, can be found in Appendix B.

Table 5: Table of Notation
N number of users in the arrival network
L number of meeting places in the arrival network
Ui user i
Ml meeting place l
Lij number of shared meeting places between users Ui and Uj
Ali arrival process of user Ui to meeting place Ml

C l
ij single-place contact process between users Ui and Uj at meeting

place Ml

Cij contact process between users Ui and Uj
ρAli rate of arrival process Ali
ρClij rate of single-place contact process C l

ij

ρCij rate of contact process Cij
E[P ] expectation of the rate of pairwise inter-contact times
Fρ(τ) CCDF of individual inter-contact times τ between a pair of nodes

whose rate is equal to ρ
fP (ρ) PDF of the rates of individual inter-contact times
F (τ) CCDF of the aggregated inter-contact times

6.1. Contact process for a pair of users

In this section, assuming Bernoulli arrivals to locations, we analytically
characterize the contact process between a pair of users. To this aim, consider
two Bernoulli processes Ali and Alj, describing arrivals of users Ui and Uj in
a shared place Ml. For a Bernoulli process, the probability 0 < ρ ≤ 1 of an
arrival in a time slot τ is constant (i.e., does not depend on τ), and is called
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the parameter or the rate of the process. Moreover, time intervals between
arrivals are independent geometrically distributed random variables.

We assume that individual arrival processes are independent, and that
a contact between two users happens if both decide to visit place Ml in
the same time slot. Thus, the single-place contact process C l

ij between user
pair Ui, Uj at meeting place Ml can be obtained from the intersection of the
individual Bernoulli arrival processes of users Ui and Uj at meeting place Ml.
An example of the intersection of individual arrival processes is provided
in Figure 9. In the following lemma we prove that the single-place contact
process C l

ij is also a Bernoulli point process.
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Figure 9: The single-place contact process as an intersection of arrival processes

Lemma 1 (Single-place contact process). The single-place contact pro-
cess C l

ij resulting from independent Bernoulli arrival processes Ali and Alj, of
rates ρAli and ρAlj respectively, is a Bernoulli process of rate ρClij = ρAli×ρAlj .

Proof. The probability of a contact at meeting place Ml is equal to the
probability that both users are at meeting place Ml in the same time slot.
This can be obtained as the product ρAli × ρAlj , recalling that, for a Bernoulli

process, the rate of the process is equal to the probability of an arrival in
a time slot. A discrete stochastic process in which arrivals happen with
constant probability ρClij = ρAli×ρAlj is again a Bernoulli process of rate ρClij .

�

In the following we focus on the contact process between a pair of users
Ui, Uj, i.e., on their contacts in the Lij shared meeting places. A contact
happens between the two users in a given time slot if they meet at least in
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one of the Lij meeting places that they share. Thus, the contact process
between users Ui and Uj can be obtained merging (as shown in [27]) their
single-place contact processes (Figure 10). In the following theorem we show
that if single-place contact processes are Bernoulli, then also the contact
process is Bernoulli.

C
1
ij

C
2
ij

C
L
ij

Cij
τ

Figure 10: The compound contact process as a merging of single-place contact processes

Theorem 1 (Contact process). The contact process Cij between contacts
resulting from a number Lij of individual place contact processes C l

ij, which,
in their turn, emerge from Bernoulli arrival processes Ali and Alj of rates ρAli
and ρAlj , is a Bernoulli process of rate ρCij = 1−

∏Lij
l=1 (1− ρAli × ρAlj).

Proof. The probability of at least one contact in a time slot can be com-
puted as one minus the probability of no contact in that time slot. The
probability of no contact in the time slot is equal to the probability that the
two users do not meet in any of their shared meeting places. As it follows
from Lemma 1, the probability of a contact in a single shared place is con-
stant and equal to ρAli×ρAlj . Therefore, the probability of at least one contact

in a time slot is also constant and equal to ρCij = 1 −
∏Lij

l=1 (1− ρAli × ρAlj).
It then follows that the sequence of time slots with at least one contact form
a Bernoulli process of rate ρCij . �

The contact process described in Theorem 1 also defines the time intervals
between consecutive contacts of a pair of users. Specifically, for a Bernoulli
process the distribution of inter-contact times is geometric. We summarize
this result in the following corollary.
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Corollary 1 (Pairwise inter-contact times). The inter-contact times dis-
tribution between a pair of users Ui and Uj, meeting at a number Lij of
meeting places, and whose arrivals to these meeting places are described as
Bernoulli arrival processes Ali and Alj of rates ρAli and ρAlj , is geometric with

the following rate:

ρ = 1−
Lij∏
l=1

(1− ρAli × ρAlj). (3)

Please note that the above result is perfectly in agreement with what we have
seen in traces (Section 4).

6.2. Aggregate contact process

In this section we describe how to derive the aggregate inter-contact times
starting from pairwise inter-contact times featuring a geometric distribu-
tion. More specifically, we solve two cases by providing the conditions on the
Bernoulli arrival processes of users to locations such that the resulting ag-
gregate inter-contact time distribution is either heavy-tailed or exponential.
The two cases are important as they have often emerged from the analy-
sis of real mobility traces [5][7]. Our derivation shows how these different
aggregate behaviors can result from simple heterogenous Bernoulli arrival
processes, which are very convenient to deal with for mathematical analysis.
This result also confirms the main finding of [18]: very different aggregate
statistics can emerge from the heterogeneity of simple pairwise statistics.

In order to derive the aggregate inter-contact times, we exploit the result
in [18], which describes the dependence between the aggregate inter-contact
time distribution and the inter-contact time distributions of individual pairs
of users. Specifically, the authors consider a heterogeneous scenario, where
pairwise inter-contact times distributions are all of the same type (e.g., ex-
ponential), but whose parameters (the rates, in the exponential example) are
unknown a-priori. The rates of the individual contact sequences are drawn
from a given distribution, which, therefore, determines the specific param-
eters of each pair’s inter-contact times. The model described in [18] shows
that both the distribution of the rates and the distributions of pairwise inter-
contact times impact on the aggregate distribution. For the convenience of
the reader we recall this result in Theorem 2.
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Theorem 2. In a network where the rates of pairwise inter-contact times
are distributed according to a continuous random variable P with density
fP (ρ), the CCDF of the aggregate inter-contact time is as follows:

F (τ) =
1

E[P ]

∫ ∞
0

ρfP (ρ)Fρ(τ)dρ, (4)

where Fρ(τ) denotes the CCDF of the inter-contact times between a pair of
nodes whose rate is equal to ρ.

Please note that, while originally derived for inter-contact times featuring a
continuous distribution, Theorem 2 can be used also for discrete inter-contact
times. In fact, the integral in Equation 4 depends on ρ, which was continuous
in [18] and it is still continuous here. Thus, discrete inter-contact times do
not change the expression for F (τ), except that now Equation 4 only holds
for discrete values of τ .

In Corollary 2, we extend the finding in Theorem 2 to our network of
interest, where pairwise inter-contact times depend on their corresponding
arrival processes. We have shown in Corollary 1 that, for the case of indepen-
dent Bernoulli arrival processes, the distribution of individual inter-contact
times is geometric. In other words, the shape of the pairwise inter-contact
time distribution Fρ(τ) is fixed in our model and, thus, the resulting aggre-
gate inter-contact times characteristic is controlled by the distribution of the
rates of individual inter-contact times fP (ρ). This distribution, in turn, de-
pends on the distribution of the corresponding arrival rates. This dependence
may not be trivial in the general case.

In order to apply Theorem 2 to our case of pairwise inter-contact times
featuring a geometric distribution, we note that a discrete random variable
X featuring a geometric distribution with rate ρ can be expressed in terms
of a discrete random variable Y featuring a discrete exponential distribution.
More specifically, the CCDF3 of the geometric distribution of the pairwise
inter-contact times, i.e., Fρ(τ) = (1− ρ)τ , τ ∈ {1, 2, 3, ...}, can be re-written
in a discrete exponential form, i.e., Fλ(τ) = e−λτ , τ ∈ {1, 2, 3, ...}, by substi-
tuting ρ = 1 − e−λ, where λ ∈ (0,∞). Variables X and Y are thus exactly

3Please note that the corresponding probability mass function is given by
e−λτ

(
1− e−λ

)
and adds up to one, thus showing that the discrete exponential is a properly

defined distribution.
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the same, but written in a different form. Using this substitution, we derive
the following corollary of Theorem 2.

Corollary 2. In a network where pairwise inter-contact times feature a ge-
ometric distribution with rate ρ, or, equivalently, a discrete exponential dis-
tribution with parameter λ = − ln(1 − ρ), the CCDF of the aggregate inter-
contact time is given by the following:

F (τ) =

∫∞
0

(1− e−λ)e−λτfΛ(λ)dλ∫∞
0

(1− e−λ)fΛ(λ)dλ
. (5)

In the above equation, function fΛ(λ) denotes the density of the parameters
of pairwise inter-contact times.

In the remaining of the section, we show under which arrival rate distribu-
tion it is possible to obtain heavy-tailed and exponentially-tailed aggregate
inter-contact times, two specific cases frequently reported in the literature.

6.2.1. Modeling heavy-tailed distribution of aggregate inter-contact times

In this section we study under which arrival rate distribution heavy-tailed
aggregate inter-contact times are obtained. To this aim, using Corollary 2,
we first derive in Lemma 2 the pairwise contact rate distribution that leads
to heavy-tailed aggregate inter-contact times.

Lemma 2. In a network where pairwise inter-contact times have a discrete
exponential distribution of the form Fλ(τ) = e−λτ , τ ∈ {1, 2, 3, ...}, and
parameters λ are drawn from an exponential distribution with rate a, the
aggregate inter-contact time distribution is as follows:

F (τ) =
a+ a2

(τ + a)(τ + a+ 1)

(
x→∞⇒ F (τ) ∼ 1/τ 2

)
. (6)

The complete proof for the above Lemma and for all results introduced below
can be found in Appendix B.

Lemma 2 says that the aggregate inter-contact times distribution decays
proportionally to the power γ = −2 of τ , i.e., F (τ) ∼ 1/τ 2, if the distribu-
tion of the parameters λ of individual inter-contact times is exponential. In
the rest of the section we develop this case and show how the exponential
distribution of the parameter of individual inter-contact times emerges in the
arrival network with independent Bernoulli arrival processes.
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As we have already shown, the distribution of the parameters of pairwise
inter-contact times depends on the distribution of the corresponding arrival
rates. This dependence is described by Equation 3, which after substitu-
tion of ρCij with λ, according to what we discussed above, takes the form

λ =
∑Lij

l=1− ln(1− ρAli × ρAlj). From this dependence, we find a distribu-

tion of arrival rates ρAli such that the conditions of Lemma 2 are satisfied,
i.e., the distribution of parameters λ of the individual inter-contact times is
exponential. To this aim, we prove the following lemma.

Lemma 3. If individual arrival processes are independent Bernoulli point
processes, the rates ρAli of the processes are drawn such that ρAli = e−

1
2
Y 2

,
where Y is a standard normal random variable, and the number of shared
meeting places Lij between pairs of users is a geometric random variable
with parameter α, then the resulting pairwise inter-contact times parameters
λ are exponentially distributed with parameter α.

A condition for Lemma 3 to be applicable is that the number of shared
meeting places between pairs of users is geometrically distributed. Recall
that this type of distribution is secured by the arrival network generating
algorithm described in Section 3. Therefore, the result of Lemma 3 can be
applied to the networks generated by the mobility framework. Finally, we
combine the results of Lemma 2 and Lemma 3 in the following theorem.

Theorem 3 (Heavy-tailed aggregate inter-contact times). If individ-
ual arrival processes are independent Bernoulli point processes, the rates ρAli
of the processes are drawn such that ρAli = e−

1
2
Y 2

, where Y is a standard nor-
mal random variable, and the number of shared meeting places Lij between
pairs of users is a geometric random variable with parameter α, the CCDF
of the aggregated inter-contact times is given by Equation 6.

6.2.2. Modeling exponential distribution of aggregate inter-contact times

In this section we show that the aggregate inter-contact time distribution
have an exponential decay if the arrival processes are homogeneous. To this
end, we firstly consider the case when the number of shared meeting places
Lij between pairs of users is constant and prove that in these conditions the
aggregate inter-contact times results in a discrete exponential (i.e., geometric)
distribution. Formally, we get the following result (proof can be found in
Appendix B):
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Theorem 4 (Exponential aggregate inter-contact times). If individual
arrival processes are independent Bernoulli point processes with homogeneous
rates ρAli = β and the number of shared meeting places Lij between pairs of
users is constant, i.e., Lij = L, then the aggregated inter-contact times fea-
ture a discrete exponential (i.e., geometric) distribution with CCDF:

F (τ) = e−γτ (7)

where γ = −L ln (1− β2).

In the above case we have shown that the exponential inter-contact time
distribution emerges if we put additional constraints on the number of shared
meeting places Lij, i.e., we assume that Lij is constant across all pairs of
users. Below we consider a more general scenario when the number of shared
meeting places Lij between pairs of users is a geometric random variable
with parameter α. Recall that this case is secured by the arrival network
generating algorithm described in Section 3. In the following theorem (proof
can be found in Appendix B) we show that also for this case the aggregated
statistics has an exponential decay in the tail of the distribution.

Theorem 5 (Exponentially-tailed aggregate inter-contact time). If in-
dividual arrival processes are independent Bernoulli point processes with ho-
mogeneous rates ρAli = β and the number of shared meeting places Lij be-
tween pairs of users is a geometric random variable with parameter α, then
the CCDF of the aggregated inter-contact times has an exponential tail, i.e.,:

F (τ) ∼ e−δτ , τ →∞ (8)

where δ = − ln (1− β2).

In this section we have studied arrival networks in which links between
users and places correspond to Bernoulli processes. We have shown that
the pairwise contact sequences in such networks are described by Bernoulli
processes, for which the inter-contact times feature a geometric distribution.
We have also shown that the rate of the resulting inter-contact times distri-
bution can be derived from the rates of arrival processes. Thus, the pairwise
inter-contact times in such networks, firstly, feature a geometric distribution,
secondly, have rates distributions controllable by the distribution of arrival
rates. As both components, i.e., individual inter-contact times distribution
and distribution of inter-contact times rates, have been shown [18] to have
impact on the aggregate inter-contact times distribution, we were able to de-
rive different forms of the latter from different distributions of arrival rates.
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6.3. Validation

In this section, we support the results obtained above comparing analyt-
ical predictions against simulation results. Please note that this validation is
needed since Theorems 3 and 5 provide an approximation for the tail of the
distribution of inter-contact times, not an exact analytical prediction.

In order to instantiate the proposed framework, we need to define its
input parameters: the social graph G, the removal probability α, and the
arrival processes Ali for each user i visiting a location l. We use the state-of-
the-art Barabási-Albert model [42] to generate input social graphs with re-
alistic characteristics (e.g., scale-free degree distribution, short average path
length). Thus we consider the two graphs Gn1,m1 and Gn2,m2 of n1 = 500
and n2 = 1000 users and growth parameters m1 = 50 and m2 = 30. The
graph generating algorithm starts with m randomly connected nodes and
adds nodes to the network one at a time. Each new node is connected to m
existing nodes with a probability that is proportional to the number of links
that the existing nodes already have. As a result heavily linked nodes tend
to accumulate even more links, while nodes with only a few links are unlikely
to attract a lot of new links. This mechanism of “preferential attachment”
has been shown to govern the evolution of realistic social networks [42].

We evaluate both graphs Gn1,m1 and Gn2,m2 when the removal probability
used by the algorithm for generating the arrival network is α1 = 0.5 and
α2 = 0.2. These settings correspond to an average number of locations shared
by a pair of users (which are geometrically distributed) equal to 1/α1 = 2
and 1/α2 = 5, correspondingly. As a result, we obtain four arrival networks
with different structural parameters which we explore in simulations. For
each of these arrival networks, we study the resulting inter-contact times
obtained changing the characteristics of the arrival processes Ali of users to
meeting places. More specifically, we focus on two cases discussed in the
previous sections, namely, when the arrival processes are homogeneous and
when the arrival rates features specific distribution that leads to the heavy-
tailed aggregate inter-contact times. Simulations are run for 10000 time units
of simulated time, and results are shown with a confidence level of 99.9%.

We assign rates ρAli of the Bernoulli arrival processes such that ρAli =

e−
1
2
Y 2

, where Y is a standard normal random variable. These settings cor-
respond to the case which we mathematically characterized in Section 6.2.1.
Figure 11 depicts the result of simulations for each of the arrival networks.
For instance, Figure 11.a depicts simulation results for the network with pa-
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Figure 11: The aggregate inter-contact times distribution for different arrival networks

rameters n = 500, m = 50 and a = 0.5. As we can see from the figure, the
resulting aggregate inter-contact time CCDF for this network decays as a
power law of exponent γ = −2, i.e., F (τ) ∼ τ−2. In the other arrival net-
works we observe similar results, which are in agreement with the theoretical
predictions from Theorem 3.
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Figure 12: The aggregate inter-contact times distribution for arrival network with identical
arrival rates

In the second experiment we simulate arrival networks where arrival pro-
cesses are Bernoulli processes, like in the first experiment, but this time with
identical rates. These settings correspond to the case which we mathemati-
cally characterize in Section 6.2.2. More specifically, we model two networks
with same parameters {n = 500, m = 50, a = 0.5}, in which all the rates of

arrival processes are identical and equal to ρ
(1)

Ali
= 1/2 for the first network,

and ρ
(2)

Ali
= 1/3 for the second. Recall that the rate of the arrival process is

the reciprocal of the average of the inter-arrival times. Therefore, the first
case corresponds to the network where the average inter-arrival time for all
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processes is equal to 1/ρ
(1)

Ali
= 2 time units, and the second case to the net-

work with average inter-arrival time for all processes equal to 1/ρ
(2)

Ali
= 3 time

units. From Figure 12 we can see that the resulting distribution of the ag-
gregate inter-contact times decays as an exponential function with exponent
δ(1) = 0.29 in the first case and δ(2) = 0.12 in the second. This result is in
agreement with the theoretical prediction (δ = − ln(1 − ρ2), where ρ is the
rate of the arrival process) from Theorem 5.

7. Extending SPoT for generating a spatial output

The main focus of the previous sections was on the ability of SPoT to
produce a realistic output in terms of inter-contact times. As previously
discussed, inter-contact times are extremely important for the evaluation of
opportunistic network and, for this reason, most network simulators (general
simulation platforms [19] or custom simulators [20, 21]) are designed to work
with contact-based traces as input. Outside the opportunistic networks do-
main, network simulators [43] often take as input information about nodes’
movements instead of (inter-)contact times. In order to make SPoT more
general, in this section we discuss how it can be extended for generating a
movement-based output. We do not intend to provide an exhaustive analysis
of the problem, but just to sketch the main steps for generating a movement-
based output. Due to lack of space, we leave the complete evaluation of the
properties of this spatial output for future work.

7.1. Generating user trajectories from arrival sequences

In order to obtain a movement-based output, we need to derive trajecto-
ries from arrival sequences. To explain the mechanism of transformation we
consider a scenario in which a user Ui visits a set of places {M1,M2, . . . ,Ml}
in a time slot T . The order in which user Ui visits individual locations Mj

can be defined through a sequence of arrival times {T1, T2, ..., Tl} where Tj is
the time inside time slot T when the user arrives at location Mj. Then, the
trajectory of user movements can be reconstructed by connecting places in
the order defined by the sequence of arrival times {Tj}.

Clearly, there are many possible orders in which Ui can visit places {Mj}
and, therefore, many possible instantiations of the sequence {Tj}. By design,
the SPoT framework assumes that all pairs of users who arrive at time slot
T in a place Mj meet with each other. This means that all visitors of Mj
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should be at Mj during a common time interval. The problem of schedul-
ing the meetings such that everyone attends but also visits other places on
their agendas can be transformed into a graph coloring problem [44]. There
are numerous algorithms available in the literature to solve graph coloring
problems efficiently [45, 46, 47]. Here we consider a graph as composed of
meeting places and links between those pairs of places that appear in the
agenda of at least one user (see Figure 13). The goal of a graph coloring
(or meeting scheduling) algorithm is to assign a color to each vertex, i.e.,
an arrival time Tj to a place Mj, such that the vertices at the ends of each
edge are assigned different colors, i.e., meetings do not overlap in time. In
this way, meetings at places with the same colors must be scheduled at the
same time, whereas meetings at places with different colors (i.e., sharing
common visitors) must be scheduled at different times. More schematically,
the trajectory generating algorithm proceeds as described in Table 6.

Table 6: A step of the trajectory generating algorithm.

1. The pairs of places that are on the agenda for time slot T (an example
is shown on the left in Figure 13) of at least one common user are
connected with links in the graph of places (on the right in Figure 13).

2. A graph coloring algorithm assigns different colors to vertices that share
a common link.

3. Arrival times Tj are assigned to places Mj, such that meeting places
with the same color are assigned the same Tj.

4. Individual trajectories are generated by connecting places on individual
user agendas according to the order defined by the sequence {Tj}.

Please note that the coloring process does not include any notion of “se-
quence”, i.e., taking for example two places with different colors, the coloring
algorithm does not tell us anything about whether the first place should be
visited before the other one, or vice versa. One possible option is to preserve
the same order of visits across all time slots, thus producing repeating se-
quences in the way people visit different locations (a property that has been
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Figure 13: An example of the transformation from arrival sequences generated by the
framework to trajectories of movements. The bipartite graph on the left describes user
arrivals to places at a time slot T . The resulting trajectories of users are shown on the
right with different arrow styles: P2 → P3 → P1 for user U2, P2 → P1 for user U1, P2 → P4

for users U3 and U4.

observed in real traces [48]). This can be simply achieved by tagging all
meeting places in the arrival network with numeric IDs, and ordering colors
at each time slot T in increasing (or decreasing) order of IDs. Clearly, this is
just one of the possible ways for assigning visiting times to meeting places,
and we leave to future work a more extensive evaluation of the problem.

7.2. Discussion

The realism of the movements generated by the approach proposed in this
section to a big extent depends on the parameters of the arrival network. For
instance, the number of places that a user visits per time slot depends on
the number of places he is connected to and on the arrival rates to those
places. The former, in turns, depends on the structure of the initial social
graph, whereas the latter depends on the distribution of arrival rates fP (ρ).
In general, a user cannot visit all meeting places of the network (unless he
is a member of all the cliques identified when running the algorithm for
generating the arrival network, event that is extremely unlikely in realistic
scenarios), but only a subset. When selecting the locations to be visited in
a time slot, each user takes a subset of the set of meeting places he can visit
(according to the outcome, e.g., of the Bernoulli selection process). The size
of this subset depends on the arrival rates defined for users in the arrival
network, since the higher the rates, the higher the number of places selected
to be visited in a time slot. We note that the majority of rates in the real
traces which we have considered in Section 5 has small values (i.e., less than
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0.4 for more than 80% of user-place pairs) and, thus, in general, each user
visits a small number of places in each time slot.

The fact that users are bound to visit in a time slot all the selected meet-
ing places introduces a consistency problem: at what speed should the users
move to visit all these meeting places, and is this speed realistic? There are
two main parameters that can be tuned to guarantee realistic user move-
ments: the duration of a time slot T and the size of the scenario considered.
As for the latter, it is clear that in a city-wide area visiting multiple locations
does not pose great challenges as these multiple locations can be reached, in
the worst case, at bus speed in quite a short time (e.g., an hour or so). For
larger scenarios (which are typically not considered for opportunistic net-
works), obtaining realistic movements can be more challenging, and further
investigation is required to address this point. The time slot T can also be
helpful. In fact, the larger the time slot, the higher the chances that multiple
meeting places can be reached using realistic speed.

8. Conclusion

In this paper we have proposed SPoT, a mobility framework that incor-
porates the spatial, social, and temporal dimensions of human mobility. The
social and spatial dimensions are added imposing that people belonging to
the same social community are assigned to the same location, which is where
the people of that community meet. Then, the way users visit their assigned
locations over time (corresponding to the temporal aspects of mobility) is
described by means of a stochastic process.

In order to provide a realistic instantiation of two building blocks of the
framework, namely, the arrival process of users to meeting places and the
aggregation of meeting places into larger locations, we have analyzed three
datasets containing traces of human check-ins at real locations, extracted
from the online location-based social networks Gowalla, Foursquare, and Al-
tergeo. The analysis of these datasets has revealed that human arrivals to
places can be reasonably approximated, for the majority of user-place pairs,
by Bernoulli processes. In addition, we have found that meeting places shar-
ing a lot of common users visiting them with high frequency are typically
located close to each other (thus, they should be aggregated).

In the third part of the paper we have focused on the flexibility and
controllability of the framework. First we have shown that the SPoT frame-
work can be easily instantiated to accurately reproduce the mobility behavior
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seen in the Gowalla, Foursquare, and Altergeo traces. Second, as far as the
controllability is concerned, we have analytically derived the conditions un-
der which aggregate heavy-tailed and exponentially-tailed inter-contact times
emerge, and we have shown that these analytical predictions are totally in
agreement with simulation results.

SPoT produces as output a contact-based trace, which can be fed to the
vast majority of simulators for opportunistic networks. In the last part of the
paper we have discussed how SPoT can be extended to generate a movement-
based trace, which can be useful for using SPoT together with simulators
such as NS3. In the future we plan to fully investigate the properties and
constraints of this spatial output.
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Appendix A. Data analysis with different timeslots

In Sections 4 and 5 we have analyzed the behavior of the framework for
timeslot duration equal to 24 hours. This choice was justified by the necessity
to capture the periodic daily dynamics that have been observed in human
movements, i.e., the fact that users tend to return at previously visited loca-
tions after time intervals proportional to about 24 hours [2, 9]. In the current
section we extend this analysis by considering timeslots of a shorter dura-
tion. More specifically, we study the effects of 12h and 8h timeslots on the
percentage of pairs for which the geometric hypothesis is not rejected by the
chi-squared test (similarly to what we have done in Section 4) and on the flex-
ibility of the framework (similarly to Section 5). We have chosen 12h and 8h
timeslots in order to capture the day/night and morning/afternoon/evening
dynamics of human movements.

In Table A.1 we present the percentage of user-place pairs in the datasets
for which the geometric hypothesis on the distribution of inter-arrival times
is not rejected by the chi-square test with a significance level of α = 0.01.
We observe a slight decrease of 7− 14% in the portion of pairs for which the
geometric assumption holds when the timeslot decreases from 24 hours to 12
hours and a further decline of 2−12% when 8 hours timeslots are considered.

Table A.1: Percentage of pairs for which the geometric hypothesis for arrivals is not
rejected, with different timeslot lengths

Gowalla (%) Foursquare (%) Altergeo (%)

8h 0.52 0.55 0.44
12h 0.53 0.57 0.50
24h 0.59 0.66 0.54

A smaller decrease (of 4− 10%) in the percentage of pairs for which the
geometric assumption holds is observed when pairwise inter-contact times are
analyzed under shorter timeslots (Table A.2). This effect can be potentially
explained by the fact that human movements tend to repeat from day to day
(e.g., traveling from home to work during work days) while differ significantly
between various parts of day (e.g., morning vs afternoon vs night activities).
However, please note that for all datasets and timeslots (but for the arrivals
in the 8h Altergeo case, whose ”fail to reject” percentage is still quite high -
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44%) the geometric hypothesis is not rejected for the majority of user-place
(50−57%) and user-user pairs (70−81%). These results provide a solid basis
for the Bernoulli arrivals that we use in the mathematical characterization
of SPoT in Section 6.

Table A.2: Percentage of pairs for which the geometric hypothesis for inter-contact times
is not rejected, with different timeslot lengths

Gowalla (%) Foursquare (%) Altergeo (%)

8h 0.77 0.81 0.70
12h 0.78 0.81 0.71
24h 0.80 0.87 0.78

Further, we analyze the influence of the timeslot duration on the flexibil-
ity of the framework, i.e., on its capability to reproduce a desired, general,
mobility behavior, which, in our case, is characterized in terms of aggregate
inter-contact times. While the results for the 24 hours timeslot have been
already discussed in Section 5, in Figure A.1 we complement our analysis
by presenting the results for shorter timeslot duration, i.e., 8 and 12 hours.
We recall that our goal is to show that the framework, once configured for
the settings observed in a real mobility trace, generates the same aggregate
inter-contact times as those seen in traces. From the plots we observe a
strong correspondence between the simulation results (blue crosses) and re-
sults obtained from data analysis (red squares). This fact highlights that the
flexibility of the framework holds also at different temporal granularities.
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Figure A.1: Aggregate inter-contact times obtained from traces (red squares) and from
simulations (blue crosses) for timeslots duration equal to 12h (left) and 8h (right)

49



Appendix B. Proofs

Corollary 2. In a network where pairwise inter-contact times feature a ge-
ometric distribution with rate ρ, or, equivalently, a discrete exponential dis-
tribution with parameter λ = − ln(1 − ρ), the CCDF of the aggregate inter-
contact time is given by the following:

F (τ) =

∫∞
0

(1− e−λ)e−λτfΛ(λ)dλ∫∞
0

(1− e−λ)fΛ(λ)dλ
. (3)

In the above equation, function fΛ(λ) denotes the density of the parameters
of pairwise inter-contact times.

Proof. The proof is based on adapting Theorem 2 for the case when the
pairwise contact sequences are modeled by the corresponding Bernoulli ar-
rival processes. As it follows from Corollary 1, in this case the distribu-
tion of individual inter-contact times is geometric, i.e., Fρ(τ) = (1 − ρ)τ ,
τ ∈ {1, 2, 3, ...}. We note that a discrete random variable X featuring a geo-
metric distribution with rate ρ can be expressed in terms of a discrete random
variable Y featuring a discrete exponential distribution. More specifically, the
CCDF of the geometric distribution of the pairwise inter-contact times, i.e.,
Fρ(τ) = (1 − ρ)τ , τ ∈ {1, 2, 3, ...}, can be re-written in a discrete exponen-
tial form, i.e., Fλ(τ) = e−λτ , τ ∈ {1, 2, 3, ...}, by substituting ρ = 1 − e−λ,
where λ ∈ (0,∞). Variables X and Y are thus exactly the same, but written
in a different form. Using this substitution the distribution of the pairwise
inter-contact times fP (ρ) in Equation 4 can be rewritten in the form:

fP (ρ) =
dFP (ρ)

dρ
= fΛ(λ)

dλ

dρ
, (B.1)

which follows from the following

FP (ρ) = P (1− e−Λ ≤ ρ) = FΛ(− ln(1− p)). (B.2)

The expectation E[P ] of the rates of the pairwise inter-contact times can be
rewritten as:

E[P ] =

∫ ∞
0

ρfP (ρ)dρ =

∫ ∞
0

(1− e−λ)fΛ(λ)dλ (B.3)
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Therefore, after substituting of B.1 and B.3 in Equation 4, Equation 5 follows.

F (τ) =

∫∞
0

(1− e−λ)e−λτfΛ(λ)dλ∫∞
0

(1− e−λ)fΛ(λ)dλ
(B.4)

�

Lemma 1. In a network where pairwise inter-contact times have a discrete
exponential distribution of the form Fλ(τ) = e−λτ , τ ∈ {1, 2, 3, ...}, and
parameters λ are drawn from an exponential distribution with rate a, the
aggregate inter-contact time distribution is as follows:

F (τ) =
a+ a2

(τ + a)(τ + a+ 1)
. (4)

Proof. The proof of this lemma exploits the result in Corollary 2. Basically,
when the distribution of λ is exponential with parameter a, we have that
fΛ(λ) = ae−aλ. Then Equation 6 simply follows from substitution. �

Lemma 2. If individual arrival processes are independent Bernoulli point
processes, the rates ρAli of the processes are drawn such that ρAli = e−

1
2
Y 2

,
where Y is a standard normal random variable, and the number of shared
meeting places Lij between pairs of users is a geometric random variable
with parameter α, then the resulting pairwise inter-contact times parameters
λ are exponentially distributed with parameter α.

Proof. As it follows from Corollary 1, the rate of the pairwise inter-contact
times for the case of Bernoulli arrival processes depends on the rates of the
arrival processes as described by Equation 3. By substituting rates ρ of the
pairwise inter-contact times with λ parameters, i.e., ρ = 1− e−λ, Equation 3
can be rewritten as:

λ =
∑
l∈Lij

− ln(1− ρAli × ρAlj). (B.5)

In the following we show that the exponential distribution of λ follows from
Equation B.5 if the rates ρAli of the arrival processes are drawn such that

ρAli = e−
1
2
Y 2

, where Y is a standard normal random variable, and the number
of shared meeting places Lij between pairs of users is a geometric random
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variable with parameter α. To this purpose we, first, analyze random variable
Xl, defined as follows:

Xl = − ln(1− ρAli × ρAlj) = − ln(1− e−
1
2

(Y l
2

i +Y l
2

j )) (B.6)

In the above equation, Y l
i and Y l

j are i.i.d. random variables with a standard
normal distribution. Note also that equality λ =

∑
l∈Lij Xl holds.

In the following, we show that Xl is an exponential random variable with
parameter β = 1. More specifically, if random variables Y l2

i and Y l2

j have

moment generating function MY 2(t), then random variable Z = Y l2

i + Y l2

j

has moment generating function MZ(t) = M2
Y 2(t). Particularly, if Y l

i and Y l
j

are standard normal random variables, then MY 2(t) = (1− 2t)−
1
2 , and, thus,

MZ(t) = (1− 2t)−1. This corresponds to an exponential random variable Z

with parameter 1
2
, i.e., FZ(z) = 1− e− 1

2
z. Then the CDF of random variable

Xl can be obtained as follows:

FXl(x) = P (− ln(1− e−
1
2
Z) ≤ x) =

= P (Z ≥ −2 ln(1− ex)) =

= 1− FZ(−2 ln(1− ex)) = 1− e−x.

Thus, Xl is distributed as an exponential random variable Xl with parameter
β = 1.

To derive the distribution of random variable λ =
∑

l∈Lij Xl, we explore
the fact that a random sum of Lij i.i.d. random variables Xl with mo-
ment generating function MXl(t), has moment generating function MΛ(t) =
GLij(MXl(t)), where GLij(z) is a probability generating function of a discrete
random variable Lij. Particularly, if Xl are i.i.d. exponential random vari-
ables, i.e., MXl(t) = (1− t

β
)−1, and Lij is a geometric random variable, i.e.,

GLij = αz
1−z(1−α)

, then random variable λ has a moment generating function

MΛ(t) = (1 − t
α×β )−1. This corresponds to an exponential random variable

λ with parameter α × β. In our case β = 1, therefore, the distribution of λ
is exponential with parameter α. �

Theorem 3. If individual arrival processes are independent Bernoulli point
processes, the rates ρAli of the processes are drawn such that ρAli = e−

1
2
Y 2

,
where Y is a standard normal random variable, and the number of shared
meeting places Lij between pairs of users is a geometric random variable
with parameter α, the CCDF of the aggregated inter-contact times is given
by Equation 6.
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Proof. The theorem combines the results of Lemma 2 and Lemma 3. More
specifically, from Lemma 3 it follows that for the case when individual ar-
rival processes are independent Bernoulli point processes, the rates ρAli of

the processes are drawn such that ρAli = e−
1
2
Y 2

, where Y is a standard nor-
mal random variable, and the number of shared meeting places Lij between
pairs of users is a geometric random variable with parameter α, the resulting
pairwise inter-contact times parameters λ are exponentially distributed with
parameter α. This allows us to apply Lemma 2 which says that the CCDF of
the aggregated inter-contact times in this case is given by Equation 6, then
Theorem 3 follows. �

Theorem 4. If individual arrival processes are independent Bernoulli point
processes with homogeneous rates ρAli = β and the number of shared meet-
ing places Lij between pairs of users is constant, i.e., Lij = L, then the
aggregated inter-contact times feature a discrete exponential (i.e., geometric)
distribution with CCDF:

F (τ) = e−γτ (5)

where γ = −L ln (1− β2).

Proof. The proof is based on adapting the result of Theorem 2 for the case
of homogeneous arrival processes and constant number of meeting places Lij.
Recall that Bernoulli arrivals generate inter-contact times that are geomet-
rically (or, equivalently, discrete exponentially) distributed (Corollary 1 and
Corollary 2). Below we show that, in this scenario, the parameter λ of the
discrete exponentially distributed pairwise inter-contact times is constant
and, thus, has a degenerate distribution, i.e.:

f(λ) =

{
1 if λ = γ
0 otherwise

, (B.7)

where γ = −α ln (1− β2). To this aim we explore Equation B.5 that relates
λ with individual arrival rates and substitute rates of arrival processes ρAli
and ρAlj with constant β, obtaining:

λ = −Lij × ln (1− β2). (B.8)

Particularly, if the number of shared meeting places Lij is constant across all
pairs of arrival processes, i.e., Lij = α, we get λ = −α ln (1− β2). It then
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follows that parameter λ for the pairwise inter-contact times is constant
and, thus, has a degenerate distribution as in Equation B.7, where γ =
−α ln (1− β2). The proof is concluded by substituting the expressions for λ
and f(λ) in Equation 5 of Corollary 2 from which Equation 5 follows. �

Theorem 5. If individual arrival processes are independent Bernoulli point
processes with homogeneous rates ρAli = β and the number of shared meet-
ing places Lij between pairs of users is a geometric random variable with
parameter α, then the CCDF of the aggregated inter-contact times has an
exponential tail, i.e.,:

F (τ) ∼ eδτ , τ →∞ (6)

where δ = − ln (1− β2).

Proof. The proof is similar to the one in the previous theorem: firstly, we
derive an expression for parameter λ of pairwise inter-contact times in the
considered case; then we apply Equation 5 from Corollary 2 to derive the
aggregate inter-contact times characteristic.

Recall from Equation B.8 that for the case of homogeneous arrival pro-
cesses, parameter λ of the pairwise inter-contact times distribution can be
expressed as a product of geometric random variable Lij (with PDF fL(l) =
(1 − α)l−1α, l = 1, 2...) and constant δ = − ln (1− β2). Then the PDF of λ

can be written as fΛ(λ) = P (Λ = λ) = P (Lijδ = λ) = fL(λ
δ
) = (1− α)

λ
δ
−1α,

λ = δ, 2δ, .... By substituting fΛ(λ) in Equation 5 we further obtain the
closed-form expression for the aggregate inter-contact times:

F (τ) =
α(eδ − 1 + α)eδτ

(eδτ − 1 + α)(eδ+δτ − 1 + α)
(B.9)

By taking the limit of F (τ) when τ goes to infinity we obtain Equation 8.
This concludes the proof. �
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