
https://doi.org/10.1016/j.pmcj.2013.07.018

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

https://doi.org/10.1016/j.pmcj.2013.07.018
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

SHERLOCK: Semantic Management of Location-Based

Services in Wireless Environments

Roberto Yusa, Eduardo Menaa, Sergio Ilarria, Arantza Illarramendib

aUniversity of Zaragoza, Maŕıa de Luna 1, Zaragoza, Spain
bBasque Country University, Manuel de Lardizábal s/n, San Sebastián, Spain

Abstract

Location-Based Services (LBSs) are attracting nowadays a great interest,
mainly due to the economic value they can provide. So, different applications
are being developed for tracking, navigation, advertising, etc., but most of
those applications are designed for specific scenarios and goals with implicit
knowledge about the application context. However, currently it is a challenge
to provide a common framework that allows to manage knowledge obtained
from data sent by heterogeneous moving objects (textual data, multimedia
data, sensor data, etc.). Moreover, the challenge is even greater considering
situations where the system must adapt itself to contexts where the knowl-
edge changes dynamically and in which moving objects can use different
underlying wireless technologies and positioning systems.

In this paper we present the system SHERLOCK, that offers a common
framework with new functionalities for LBSs. Our system processes user
requests continuously to provide up-to-date answers in heterogeneous and
dynamic contexts. Ontologies and semantic techniques are used to share
knowledge among devices, which enables the system to guide the user select-
ing the service that best fits his/her needs in the given context. Moreover, the
system uses mobile agent technology to carry the processing tasks wherever
necessary in the dynamic underlying networks at any time.

Keywords: Location-based services, knowledge representation and
reasoning, real-time query processing, pervasive data management

Email addresses: ryus@unizar.es (Roberto Yus), emena@unizar.es (Eduardo
Mena), silarri@unizar.es (Sergio Ilarri), a.illarramendi@ehu.es (Arantza
Illarramendi)

Preprint submitted to Pervasive and Mobile Computing June 21, 2013

Administrador
Cuadro de texto
This is a preprint version of the following article, published by Elsevier (doi:http://dx.doi.org/10.1016/j.pmcj.2013.07.018):R. Yus, E. Mena, S. Ilarri, and A. Illarramendi, "SHERLOCK: Semantic Management of Location-Based Services in Wireless Environments", Pervasive and Mobile Computing, ISSN 1574-1192, Elsevier, August 2013.

1. Introduction

In the last years the interest in mobile computing has grown due to the
ever-increasing use of mobile devices and their pervasiveness. The low cost
of these devices, along with the high number of sensors and communication
mechanisms they are equipped with, make it possible to develop useful infor-
mation systems. Using special kinds of sensors, location mechanisms enable
the development of Location-Based Services (LBSs) [1]. These services pro-
vide value added by considering the locations of the mobile users to offer
customized information. For example, LBSs for taxi searching [2], helping
firefighting [3], detecting nearby friends [4], or multimedia retrieval in sport
events [5] have been presented, among many others.

However, current LBSs are usually designed for specific scenarios and
goals and are based on predefined schemas for the modeling of the elements
involved in their scenarios. Moreover, the context knowledge they manage
is implicit; that is the reason why they only work for one specific goal. For
example, a user that arrives in a city must know (and understand) which
LBSs could provide transportation information in that city. Some ad hoc
solutions have been proposed to provide users with LBSs (e.g., [6, 7]) but
there is a lack of a general and flexible framework that can be applied in
many different scenarios. To build such a general system by simply merging
preexisting LBSs is not straightforward: it is a challenge to provide a common
framework that allows 1) managing knowledge obtained from data sent by
heterogeneous moving objects (textual data, multimedia data, sensor data,
etc.); and 2) considering situations where the system must adapt itself to
contexts where the knowledge changes dynamically and in which moving
objects can use different underlying wireless technologies (fixed, wireless, ad
hoc, etc.) and positioning systems (GPS, GLONASS, cell-based positioning)

In this paper, we present SHERLOCK1, a general and flexible system to
provide LBSs based on the use of semantic techniques and mobile agents. As
its namesake, the well-known Arthur Conan Doyle’s character, SHERLOCK
uses abductive and deductive reasoning to infer information to answer user
requests. In our opinion, the use of semantic techniques can enable the de-
velopment of intelligent LBSs [8]. Thus, the system uses ontology reasoning
and alignment methods to represent and manage, in a distributed way, the

1System for Heterogeneous mobilE Requests by Leveraging Ontological and Contextual
Knowledge.

2

knowledge that describes objects and interesting areas in a scenario. In this
way, the system guides the user in the process of selecting the LBS that
best fits his/her needs; the participating objects/devices can cooperate and
exchange data and knowledge among them to relieve the user from knowing
and managing such knowledge directly. Furthermore, thanks to the use of
mobile agents [9], it is possible to distribute the load of the system (both
the CPU power and the communication costs) wherever it is needed in the
wireless environment. In this way, the required processing tasks can be car-
ried on the most appropriate device in the scenario. In summary, the main
benefits offered by our system, from the user’s point of view, are:

1. It offers to the user all the available LBSs at each moment and, after
choosing one of them, it helps the user to express his/her information
needs by querying the local knowledge at the user device. In this way,
it relieves the user from managing specific knowledge about LBSs.

2. It reconciles the different views of the world and the vocabulary used
to describe objects and requests. This is achieved by supporting a
decentralized and dynamic discovery of new kinds of objects (that can
provide different services/contents). In this way, the system manages
up-to-date knowledge about the LBSs provided to the user.

3. It manages heterogeneous (fixed or mobile) devices that can be part
of the system, each of them having different capabilities. Moreover, it
adapts itself in run-time to different underlying networks, such as fixed
infrastructures (e.g., 3G, wired networks, etc.) and Mobile Ad-hoc
Networks (MANETs) [10].

4. It continuously carries the processing to the most appropriate nodes
in order to balance the processing load and communication tasks, by
using mobile agents. This is important to alleviate the limited CPU
power, storage, and communication capabilities of mobile devices.

The rest of this paper is as follows. First, in Section 2 we present two
motivating use cases that illustrate some of the many different scenarios
that SHERLOCK can manage. In Section 3, an overview of the system
architecture is provided. In Section 4, we explain how SHERLOCK manages
the knowledge that defines moving objects and scenarios. In Section 5, we
explain how SHERLOCK offers the available LBSs to the user and helps
him/her to express his/her information needs in order to obtain a user request
to process. In Section 6, we explain how SHERLOCK processes user requests

3

in distributed scenarios. In Section 7, the motivating use cases are revisited to
show how to solve them following our approach, illustrated by the prototype
of SHERLOCK that we have developed. In Section 8, we present some related
works. Finally, conclusions and future work appear in Section 9.

2. Motivating Scenarios

In this section, we present two motivating use cases (as examples of many
others) that show the heterogeneity and complexity, as well as the interest,
of having a flexible and global system as a common framework to provide
mobile users with different non-predefined LBSs.

2.1. Looking for Transportation

Imagine a person that has just arrived at the airport of a city in a foreign
country and wants to get to a certain hotel but does not know the best way
to go there. Indeed, in that city there probably exist several transportation
services (taxi, bus, shuttle, metro, etc.) that could satisfy his demands,
but in addition to their typical characteristics (e.g., cost), they may have
also other specific features (e.g., shareable, door to door, etc.). So, the user
needs to ask first tourist offices or websites, or search for a mobile app about
transportation in that city; he could be easily overwhelmed with information
and many options, and it could be difficult for him to determine which ones
are relevant according to his preferences.

So, it would be very interesting for this person just to indicate the name of
the destination hotel and his preferences (for example, he could prefer to pay
more to reach the hotel as soon as possible) and obtain on his smartphone
the real-time location of the best possible transportation means around him.
To enable this, the system would have to deal with challenges such as ob-
taining information about the transportation means (considering geographic
information about the city) and keeping it updated, showing the results to
the user, etc. The interest of a system like this is beyond doubt: currently, al-
though many transportation services and hotels publish their information on
the Web and there exist useful services such as Google Maps, a user traveling
to a certain city will probably have to deal with all the previous applications
at the same time to try to arrange his trip.

2.2. Helping Firefighting

A wildfire has broken out in a wide area of forest; the designated coor-
dinator person is in charge of managing all the firefighters and emergency

4

vehicles in order to suppress the wildfire. The main task of this team coor-
dinator is to solve the problem as quickly as possible but, at the same time,
keeping the team members safe. Due to the lack of a network infrastructure
(the fire could have damaged it or there could be no network coverage in
that area), firefighter team members usually use walkie-talkies to describe
their location and the wildfire evolution. However, it is difficult to provide
an accurate oral description of the situation while fighting a wildfire (due
to smoke, geographic features, and the stressing situation). So, monitoring
firefighting units in a dangerous area (and instructing them to reach a safe
one), during the suppression of the wildfire, turns to be a very challenging
task for a team coordinator.

Therefore, it could be interesting for a firefighting coordinator to see,
on a map displayed on his tablet, the location of all the firefighting units
and the evolution of the wildfire in real-time; he would also have to keep a
continuous communication with all the team members to get their last smoke
and heat sensor readings. Thus, he could be able to notice changes of the
wildfire that could put the life of firefighters in danger. The main challenge
for a system that deals with this scenario is to monitor moving team members
deployed in an environment where it is not possible to rely on a fixed network
infrastructure, while detecting automatically firefighting units that could be
in danger.

2.3. Common Challenges

In the previous use cases, some common needs appear related to: 1) the
knowledge that the system must consider, and 2) mobile computing chal-
lenges. So, on the one hand, the system must be an expert in the current
user context (his/her location, device capabilities, the different kinds of el-
ements in the scenario and their features and capabilities, the geographic
information about such a context, etc.); so, it is the system, and not the
user, who is charge of knowing all the details about all the LBSs available at
each location. On the other hand, the system must deal with the distributed
nature of the environment (which is particularly challenging when it is not
possible to rely on fixed infrastructures and ad hoc networks have to be con-
sidered), and deal with continuous request processing, scalability and fault
tolerance, deployment of computations to specific geographic areas, etc.

Therefore, in the rest of this paper, we propose a system that is able to
address these common challenges of the two use cases by applying semantic

5

and distributed processing techniques. The system would be able to man-
age any other use case where a user is interested in obtaining information
about moving objects and performing actions in highly-dynamic distributed
scenarios.

3. Architecture of SHERLOCK

The main steps followed by the system to attend the information needs
of a user (see Figure 1) are: 1) Request Generation with the information
provided by the user using a GUI, and 2) Request Processing over the un-
derlying cloud of (fixed and moving) objects in the scenario. Both tasks use
the knowledge of a local ontology [11] on the user device that the Knowl-
edge Updating module manages and where different objects and scenarios are
modeled (see Section 4).

User

GUI

Local
ontology

Network
(P2P,S3G,Setc.)

UserSdevice

KnowledgeSUpdating

ServiceSFinder

RequestSGeneration

RequestSProcessing

userSrequest

Figure 1: High-level architecture of SHERLOCK.

SHERLOCK uses a mobile agent platform [12], which provides an ab-
straction level for the development of distributed agent-based cooperative
systems, to manage the different tasks. The agents involved in the knowl-
edge updating, request generation, and request processing, and the tasks they
carry out, are explained in Section 4, Section 5, and Section 6, respectively.
We include here a summary of these agents:

• Ontology Manager (OM), that shares and integrates new knowledge,
obtained from other objects, into the local ontology on the user device.

• ADUS, that generates user interfaces for applications, in a context with
heterogeneous devices, considering their features.

6

• Alfred, that stores as much information as possible about the device and
the user, such as user preferences, technical capabilities of the device,
previous user requests, etc.

• User Request Manager (URM), that helps the user to generate a request
that defines his/her information needs using ontology-guided mecha-
nisms.

• User Request Processor (URP), that continuously processes the user
request, with the help of Tracker agents, and returns the results to the
URM.

• Tracker, that continuously retrieves data from target objects inside its
assigned relevant area, with the help of Updater agents.

• Updater, that accesses the data from the target objects inside the rel-
evant area. The information obtained is communicated to its Tracker.

In our prototype, we use the mobile agent platform SPRINGS [13] which
offers RPC-based synchronous communications to support the cooperation
among agents on the same device or on different devices.

4. Knowledge Updating: Modeling Moving Objects and Scenarios

In our system, we consider that a moving object is both the mobile device
and the physical object that it acts on behalf of in the system. For example,
a person is an object in our system as long as he/she can be detected and
is attached to the device that impersonates him/her in the system2. This
allows to consider all the participating objects as equal peers and enables
flexible configurations in which every object can be a potential processing
node3. To be part of the system, an object has to share some information
about itself, that is modeled in an ontology: the context that defines the

2The right association between the device and the person could be guaranteed by
external security mechanisms (e.g., see the eGo project at http://www.ego-project.eu/).
Notice also that the same user could be associate to several devices (e.g., his/her laptop
and smartphone).

3We are aware that privacy issues affect many elements in our architecture. Cryptogra-
phy for protecting sensible information and schemas based on digital signatures/certificates
for authentication can be used, although this problem is out of the scope of this paper.

7

object, its geographic location, a list of sensors attached to the object, de-
vice characteristics (battery level, processor load, etc.), and the context that
defines the functional capabilities of the object. Moreover, any user could
create and share any other knowledge about objects, scenarios, services, etc.,
modeled in ontologies.

In SHERLOCK the user device knowledge is limited to its experience.
The device starts with a basic OWL ontology containing the user’s common
knowledge (device technical capabilities, user name, etc.) and the basic terms
to define a new LBS: concepts such as “Service”, “Provider”, “Parameter”,
“Area”, and properties such as “hasParameter”, “hasProvider”, etc. (see
Figure 5 in Section 7.1 where basic terms are in bold). Every time it meets
a new device, both objects learn from each other: they share their ontologies
and integrate the new knowledge they find into their own local ontologies4.
This automatic knowledge discovery mechanism is particularly interesting
when the user (and his/her device) travels to areas where new or different
LBSs are available; so, when traveling to other countries moving objects learn
about them. For example, the device of a user residing in Zaragoza (Spain)
knows that the city has taxi, bus, and tram transportation services; when
this user (device) travels to New York (USA), it does not know that a metro
service is available there but, as soon as it meets a new yorker device, that
information will be shared and integrated into its local ontology. In this
way, SHERLOCK alleviates the user from knowing about the vast amount
of LBSs around the world.

The ontological definition of the objects and the use of a reasoner [14]
based on Description Logics (DL) [15] enables the system to infer informa-
tion about the objects that a user device discovers5. For example, SHER-
LOCK can reason that an object that has wheels, carries passengers, and
moves along a road can be classified as a vehicle (and so provides a trans-
portation service). Besides, the location of the objects ranges from the most
precise possible (such as GPS coordinates) to more abstract locations such
as neighborhoods, cities, or fare zones. So, the system also stores geographic
information modeled in the local ontology. In this way, the system has knowl-
edge and is able to reason about the neighborhoods belonging to a city, the

4Only knowledge endorsed with trusted certificates will be considered.
5The use of a DL reasoner enables the system to detect contradictions between the

existing and new knowledge and in that case to take a conservative approach.

8

fare of each zone, routes (roads, streets), etc. For an example of these ontolo-
gies see the fragment of the ontology used in our prototype of SHERLOCK
in Figure 5 in Section 7.1.
The knowledge of the system is managed by the following agent:

OM (Ontology Manager) is a static agent that performs the following tasks:

• Sharing knowledge with OMs situated on other objects.

• Integrating new knowledge into the local ontology on the user de-
vice [16]. For this task it uses a DL reasoner.

The OM is the agent in charge of managing the local ontology on the
user’s device. One of the main tasks of this agent is to keep the knowledge
on the local ontology updated as a result of the interaction of its device with
other devices. There exist two situations in which the protocol to update the
local ontology is triggered:

1. The OM continuously broadcasts a message asking for knowledge about
services concerning the current location of the user, to keep its knowl-
edge up-to-date. The OM residing on each device that receives this
message consults its local ontology to return the relevant knowledge as
an answer. To extract this relevant knowledge, OMs apply ontology
modularization techniques [17]. The size of the knowledge extracted
depends on the current capabilities of the devices and the current com-
munication status.

2. When the user shows his/her interest in a specific location by clicking
on a map, the OM broadcasts a message to other devices asking for
knowledge related to that location, to update its current knowledge
about such a location. This process is performed in parallel with the
processing of user requests.

An OM integrates the new knowledge received with its local ontology
by using well-known ontology integration techniques [16]; specifically, our
current prototype uses the ideas presented in [18], but any other ontology
matching technique could be used. In this way, an OM will “merge” terms
similar enough (synonyms) and establish “is-a” relationships between sub-
sumed terms (hyponyms). Thus, for example, the user device that receives
the ontological context that defines a “shuttle” uses ontology matching tech-
niques to discover if this knowledge is already known; otherwise, it is inte-
grated into the local ontology. So, the system could infer that “shuttle” is

9

a concept related to the already-known concept “transportation”, and so it
will be considered in transportation requests.

The OM uses a DL reasoner to manage the local ontology of the device.
Having local reasoners on the devices of the users enables SHERLOCK to
manage knowledge even when network disconnections make impossible to rely
on third-party devices/computers to carry out the reasoning. We studied the
use of DL reasoners on Android in [19] and concluded that, although using
well-known DL reasoners on current Android devices is obviously slower than
in PCs, it is efficient enough (in Section 7 we show our Android prototype
using a DL reasoner on the mobile devices). Moreover, thanks to the use
of mobile agents it is possible to even send an agent to another device to
perform the reasoning, if the user device is currently overloaded.

5. Request Generation: Selecting an LBS

In the following, we describe the static agents that take part in the request
generation process and which reside on the user device (see Figure 2).

User Device

ADUS Alfred

Local
Ontology

Creation
Communication

Static Agent

User

User
Request
Manager

Figure 2: Agent network involved in generating a request.

ADUS (ADaptive USer) is an interface generation agent whose goal is:

• Generating user interfaces for applications, in a context with heteroge-
neous devices, considering their features.

ADUS is the only agent that generates GUIs for the user (adapting the
ideas explained in [20]). Whenever an agent wants to interact with the user, it
will communicate to ADUS a GUI specification using a GUI layout language
(such as Android XML Layouts6 or XUL7). ADUS is in charge of generating

6http://developer.android.com/guide/topics/ui/declaring-layout.html
7http://developer.mozilla.org/en/XUL

10

the specified GUI for the user device (considering its CPU speed, screen size,
capability to display images or play sounds or movies, etc.) transparently to
the agent that provided the GUI specification.

Alfred is a static agent that performs the following tasks:

• Storing as much information as possible about the device and the user,
such as user preferences, technical capabilities of the device, previous
user requests, etc.

• Creating a User Request Manager agent for each request of the user.

Thanks to the knowledge about the user that Alfred stores in the local
ontology, it will be possible to infer interesting information about previ-
ous user requests when generating a new request. For example, for a user
that wants to obtain transportation means, Alfred could infer that “buses”
should be prioritized over “taxis” as they are “public transportations” that
are cheaper than “private transportations” and in previous similar requests
the user usually chose to spend little money. Alfred then creates a User
Request Manager and provides it with this knowledge, the context of the
user, and the information that the user has input to the system (e.g., his/her
interest in transportation means). The agent creation is done transparently
by the mobile agent platform, which hides the implementation details from
the developer of mobile agent-based applications.

URM (User Request Manager) is a static agent that performs the following
tasks:

• Helping the user to generate a request that defines his/her information
needs using ontology-guided mechanisms.

• Creating a User Request Processor agent (see Section 6) that will be in
charge of the user request processing.

When the user expresses his/her interest on a certain geographic area
(by clicking on it on a map displayed on the user device), then the URM
asks the local ontology to obtain the services that are related to that specific
geographic point (i.e., LBSs). Then, when the user finally selects one of
these services, the URM presents (through the ADUS agent) a GUI with
an input form to express the user preferences for that service. With this
information the URM infers, with the help of the DL reasoner, the most

11

appropriate service providers according to the user preferences and generates
the user request. The services usually selected by the user will be available
as predefined forms (e.g., SOS button, k-nearest gas stations, etc.).

To process the user request the URM creates a User Request Processor
agent (see Section 6) that will be in charge of the user request processing. If
the communication with this agent fails, the URM could try to estimate the
results to provide an answer for the user (e.g., it could estimate the location
of a previously-retrieved object using its last known location, direction, and
speed).

6. Request Processing: Obtaining an Answer

In this section we will explain the agents involved in the processing of a
user request. To reach the target information for the user request, SHER-
LOCK will create a network of mobile agents [9] (see Figure 3), which are
programs that execute in contexts called places and can autonomously travel
among devices in the scenario, resuming their execution on the destination.

Relevant Area

Relevant Area

Creation
Communication

Mobile Agent

Static Agent

Wireless/wired device

User
Request

Processor

Updater

Updater

Updater
Updater

Tracker

Tracker

User Device

ADUS Alfred

Local
Ont.

User

Ontology
Manager

User
Request
Manager

Figure 3: Agent network deployed to process a request.

In SHERLOCK mobile agents communicate to each other directly. When
there is no direct communication (due to the lack of a fixed network infras-
tructure, which makes an ad hoc network the only possible option), SHER-
LOCK uses an underlying multi-hop ad hoc routing protocol [21] to allow its
agents to communicate with each other; this low-level communication pro-
tocol is beyond the scope of this paper. However, we would like to stress
the important role of the mobile agent technology in SHERLOCK, which is

12

to balance the computing load and minimize the network latency. For this
task, each mobile agent considers any object in the scenario as a potential
processing node, so it continuously evaluates the appropriateness of the cur-
rent device where it executes as well as the devices in its surroundings. As
result of this evaluation, four different decisions can be taken by the mobile
agent:

1. To remain on the same device, when both the computing and commu-
nications tasks do not suffer from important delays.

2. To move to another device, where the performance and communication
are expected to be better than on its current device.

3. To create a new helper mobile agent, when it detects a situation that it
cannot solve alone (for example, when the agent needs to monitor too
many objects or a too large area); this new helper mobile agent will be
created on the most appropriate device.

4. To command a helper agent to finish its execution, when other agents
are executing the same tasks more efficiently.

This adaptive behavior of the hierarchical mobile agent network, where
each mobile agent executes on the device that minimizes the computing
and communication delays, is specially important in highly-dynamic envi-
ronments where new devices can appear/disappear or change their capabil-
ities (e.g., a laptop can use Wi-Fi and then change to a wired connection).
As the capabilities of a device (e.g., processor load, remaining battery time,
communication range, etc.) will be considered when choosing a destination,
fixed devices with wired communication will be preferred if available.

In the following we describe the mobile agents involved in the processing
of the request.

URP (User Request Processor) is a mobile agent with these goals:

• Continuously processing the request and return the results to the URM.

• Creating one Tracker agent for each relevant area involved in the user
request. It is also in charge of the correlation of the results provided
by its Trackers.

A location-based request, by definition, has always at least an area at-
tached (called relevant area) that restricts the location of target objects in
which the user is interested in; these target objects (i.e., the objects in the

13

scenario that are of interest for the user) are defined in the user request.
For example, if the user is interested in cars inside a certain geographic area
then, cars are the target objects and that area is the relevant area in the user
request.

Relevant areas can be static (their boundaries do not change along time,
for example the area of Hyde Park in London) or dynamic (they are relative
to certain reference moving objects and/or their shapes change in time, for
example the area delimited by a vehicle fleet). Thus the URP creates one
Tracker agent for each relevant area in the user request, providing each of
them with the area boundaries (if it is static) or with its ontological definition
of the area to allow the continuous recomputation of its boundaries (in case
of a dynamic area).

The URP creates more than one Tracker when it must monitor different
relevant areas, or when one relevant area dynamically becomes too large for
just one Tracker or gets divided into two different relevant areas8.

Tracker is a mobile agent that performs the following tasks:

• Continuously retrieving data from target objects inside its assigned
relevant area.

• Maintaining a network of Updater agents to cover its assigned relevant
area (i.e., to monitor target objects inside it). It also correlates the
results provided by its Updaters.

The Tracker is in charge of monitoring a relevant area (that can be static
or dynamic), as mentioned before. For example, a Tracker agent could mon-
itor certain target objects inside a park, which is a static relevant area whose
geographic limits (or location granule [22]), were assigned to such a Tracker.
Besides, another Tracker could monitor certain vehicles in a traffic jam (dy-
namic relevant area) by assigning to this Tracker a list of police motorbikes
(the reference objects) whose location indicates the limits of the traffic jam
(the relevant area to monitor). In case of dynamic relevant areas, the Tracker
agents reevaluate continuously the location of the reference objects that de-
limit those relevant areas.

8This could happen, for instance, for dynamic relevant areas delimited by moving
objects.

14

To achieve its goal, the Tracker manages an Updater agent network to
monitor the target objects inside its relevant area and, in case of dynamic
relevant areas, to monitor the locations of the reference objects as well; the
results obtained from those Updaters will be correlated by the Tracker and re-
turned to its URP, continuously. The Tracker creates more than one Updater
when it must monitor many objects or when a single Updater is not able to
monitor some objects with the adequate frequency (due to communication
delays). The Tracker keeps a table with the information of the objects that
each Updater monitors and the lasts communication delays (see an example
of this table in Section 7.2). When the communication with a certain object
is too slow for all the Updaters that monitor it, the Tracker creates another
Updater agent near that object9. Moreover, the Tracker can command an
Updater to stop monitoring a certain object, and add it to its “black list”,
when other Updaters provide better communication with such an object; an
Updater finishes its execution when it has no objects to monitor. In this
way, each Tracker maintains its network of Updaters in a dynamic way (see
Section 7.2 for an example of this behavior in the firefighting use case).

Updater is a mobile agent that performs the following tasks:

• Accessing the data from the target objects inside the relevant area.
The information obtained is communicated to its Tracker.

• Discovering new knowledge interesting for the current request.

Updaters asks surrounding objects to check out whether they are mem-
bers of the target classes and are located inside the relevant area. Those
objects fulfilling the required features, and that do not belong to the “black
list” of the Updater, will be returned to the corresponding Tracker (as well as
the communication delays with them) in order to finally provide an answer
to the user. When an Updater does not find any interesting object to report
about in a certain period of time, it finishes its execution after informing its
corresponding Tracker.

When an Updater communicates with an object, this object returns the
(local) ontology context that describes it. It may happen that an object

9We would like to remind that Updater agents, as well as the rest of mobile agents
in SHERLOCK, decide continuously which the best node in the scenario to execute their
tasks is, as explained at the beginning of Section 6.

15

belongs to a class different from the target classes monitored by the Updater
but that could be considered part of the answer anyway. For example, an
Updater looking for taxis for a user that has just arrived in India could
discover that a tuk-tuk is a vehicle defined as a private transport that carries
people to a certain destination; the Updater (with the help of a DL reasoner)
can discover that the tuk-tuk concept fulfills the kind of vehicles it is looking
for, and then tuk-tuks will be considered as part of the answer, even when this
vehicle class was not known by the user device that posed this user request.
Indeed, new knowledge discovered by Updaters is propagated through the
network of agents to enrich the local ontology on the corresponding user
device.

7. Dealing With the Motivating Scenarios

In this section, we explain how the system deals with the two motivating
use cases presented in Section 2.

We have developed a SHERLOCK prototype to test the underlying ideas
of the system. Firstly, we developed a prototype running on a PC10, which is
a Java Applet that simulates how SHERLOCK would look like when running
on a smartphone (see Figure 6.a); this prototype uses the OWL API [23],
the Pellet [24] reasoner, and the SPRINGS mobile agent platform [13]. We
have recently developed an Android prototype of SHERLOCK11 [25] (see
Figure 4.a) that makes use of the OWL API and JFact as reasoner. At the
moment, we are working on porting the SPRINGS mobile agent platform to
Android (we have made some initial tests with a few dozens of agents moving
among three smartphones). Therefore, in the following we will use the PC
prototype for the second scenario (Section 2.2).

To simulate the scenarios for tests, the prototype uses a simulator (no-
tice that this is not part of SHERLOCK), which generates simulated moving
objects, from types interesting for the services considered (i.e., taxis, buses,
shuttles, etc.). These objects randomly move around the user and continu-
ously update their location every second in an database.

10Available at http://sid.cps.unizar.es/SHERLOCK/PC
11Available at http://sid.cps.unizar.es/SHERLOCK/Android

16

7.1. First Scenario: SHERLOCK for Looking for Transportation

In the first scenario, a user in the railway station of Zaragoza wants to find
transportation that could carry him/her to “Hotel Palafox” (see Section 2.1).

1. The user types in “Hotel Palafox” in SHERLOCK search bar and clicks
on the red marker (see Figure 4.a) to obtain the available LBSs related
to hotels.

(a) (b)

Figure 4: GUI of the Android prototype of SHERLOCK (a) and local ontology on the
device (b) for the first use case.

2. The User Request Manager (URM) agent deduces, after querying the
local ontology on the user device and by using a DL reasoner, that a
LBS called Transportation Service exists that has a parameter that can
reference hotels12(see Figure 5).

3. The user selects the Transportation Service and the URM obtains from
the local ontology the parameters of such a service (Price, Shareable,
Door2Door, and Luggage), to allow the user to specify his/her prefer-
ences.

12SHERLOCK looks for services that are somehow related to the concept Hotel whatever
the name of the property that references such a concept (we do not assume any predefined
schema in the definition of services).

17

Service
Name String

hasParameter some Parameter

hasProvider some Service Provider

Transportation2Service

Tourist2Information2Service

Parameter

Service Provider

Transportation
Parameter

Transportation
Provider

Vehicle
Bus

Shuttle
Taxi

Name String

Type String

PlateNumber String

hasPassenger some User

Required2Transport.
Parameter

Optional2Transport.
Parameter

Start

Destination

Price
Shareable
Door2Door
Luggage

GPS2Location
hasLatitude double

hasLongitude double

hasParameters some Trans. Parameter

hasProvider some Trans. Provider

Hotel

Bus2Service2(Tuzsa)

Taxi2Service
hasProvider some Bus

hasProvider some Taxi

Shuttle2Service
hasProvider some Shuttle

Thing

Figure 5: Subset of the ontology for the transportation use case.

4. The user shows his/her interest in a transport Door2Door (indicating
that this is mandatory) that admits Luggage, if possible13. Then, the
system infers that moving objects belonging to the Taxi, Bus, and
Shuttle classes fulfill the user preferences and provide transport services.
In addition, moving objects surrounding the user device share that
Tuzsa is an instance of Bus Transport Service available for that specific
geographic area (Zaragoza) and time, whose bus stops and schedules
can be obtained from a web service14.

5. So, the URM agent monitors the web service for the buses and creates
a network of agents to obtain taxis, shuttles, and buses located nearby
with a relevant area of 1 km around the user. In the meanwhile, the
Ontology Manager (OM) agent discovers that there exist moving ob-
jects classified as Bikecab (a subclass of Taxi unknown for the ontology
of the user). This new knowledge enriches the user device knowledge
(see green bold boxes in Figure 4.b) and enables the URM to infer that

13The use of an ontology and a DL reasoner enables the system to detect potential
situations where the user preferences cannot be fulfilled by any service provider, just by
checking their ontological definitions.

14The ontological definition of the web service (i.e., its location, how to invoke it, and
what information it returns) has to be described in the ontology to enable SHERLOCK
to use it.

18

bikecabs also fulfill the user preferences.

6. SHERLOCK presents on the GUI the interesting objects in different
colors: in green, those fulfilling all the mandatory and optional user
preferences; in red, those fulfilling some optional preferences but not
all the mandatory ones; the rest of moving objects displayed fulfill all
the mandatory preferences but not all the optional ones.

7. The user could click on a bus stop icon to trigger a request to obtain
the remaining time for the next bus arrival. As the user does not want
to wait too much, he/she finally decides to click on a taxi icon and
selects its Call Taxi service to get to “Hotel Palafox”.

Notice that the information provided by the user (a click on a map, se-
lecting the Transportation Service, and filling a user-friendly form) is enough
for SHERLOCK to retrieve interesting transportation for that geographic
area and time, due to the use of an ontology and a DL reasoner. SHER-
LOCK obtains all this information from a local ontology which gets updated
continuously thanks to the communication with other devices. Thus: 1) the
system is decoupled from the contextual knowledge of the scenario; and 2) it
adapts itself automatically to any location and service availability. More-
over, the system integrates data obtained directly from querying the moving
objects in the scenario with third-party data sources (e.g., web services)
specified in ontology descriptions of the services providers. In this way, if
no SHERLOCK-enabled devices are located near the user (and so it is no
possible to process the request with a P2P approach), his/her SHERLOCK
application could use a web service to provide an answer as long as a 3G
connection is available.

7.2. Second Scenario: SHERLOCK for Helping Firefighting

In this scenario, the coordinator of a wildfire suppression in Yellowstone
National Park is interested in obtaining information about eight fire out-
breaks and the firefighter team (which consists of five firefighters, two fire-
fighting trucks, and a helicopter). In this case we will illustrate this scenario
by using the PC prototype of SHERLOCK.

1. The user clicks the predefined query button Monitor fire of the GUI
(see Figure 6.a) that triggers the Fire Monitoring service. The URM
obtains from the local ontology that this service requires only one pa-
rameter: a Firefighting Team; in this case, the specific team members

19

are known and stored as part of the information about the user in the
local ontology. Moreover, the ontology states that this service has to
monitor Dangerous Areas, defined as High Temperature Area (hasTem-
perature > 50) and High Level of CO2 Area (hasCO2 > 400)15.

(a) (b)

Figure 6: GUI of the PC prototype for the fire monitoring scenario.

2. The URM creates a User Request Processor (URP) agent to monitor
the dynamic relevant area delimited by the location of the firefight-
ing units. The URP moves to a truck that provides firefighters with
water (see Figure 7.a) because its device has a powerful CPU and a
high capacity battery, and then creates a Tracker agent to monitor the
relevant area.

3. The Tracker, that chooses also to stay at the truck device, creates
one Updater agent (updater1) to obtain information from the firefight-

15Temperatures are measured in Celsius degrees and CO2 in ppm (parts per million).

20

(a) (b)

Figure 7: Location of the mobile agents deployed to monitor a fire for the sample scenario.

ing units. Then, updater1 sends the information obtained for each
firefighter (the location and measures of his/her temperature and CO2

sensors) continuously upwards through the network; the location of the
firefighter units is presented to the user along with the dangerous areas
computed with the firefighter sensor measures (see Figure 7 in orange).
This Updater also sends to the Tracker the communication delay with
the objects (see Table 1). As updater1 communicates too slow with
Firefighter4, the Tracker creates another Updater (updater2) that
will execute near Firefighter4 (see Figure 7.b).

Reference Object Updater Comm. Delay (s) Time Stamp

firefighter1
updater1 0.64, 0.62, 0.68, 0.67 19:17:12
updater2 1.05, 1.12 19:17:10

firefighter2
updater1 0.56, 0.0, 0.0, 0.0 19:17:12
updater2 0.85, 0.81 19:17:10

firefighter3
updater1 0.71, 0.94 19:17:11
updater2 0.0, 0.0, 0.0 19:17:15

firefighter4
updater1 1.32, 1.11 19:17:11
updater2 0.43, 0.38, 0.39 19:17:15

Table 1: Table used by a Tracker agent to dynamically maintain its network of Updaters.

21

4. The two Updaters continue monitoring all the firefighting units and
sending their information to the Tracker. The Tracker commands
updater2 to continue monitoring firefighter3 and firefighter4 be-
cause it has a better communication with them, whereas it commands
updater1 to stop monitoring them. In this way updater1 reevaluates
the appropriateness of the current device where it executes to try to
stay close to firefighter1 and firefighter2.

5. The Tracker, by analyzing the communication delays, detects when
a firefighter moves as far as to getting unreachable from the rest of
the objects. Then, an alarm is generated to enable the user to react
by commanding another firefighter to move closer to the last known
location of the missing firefighter, in order to try to reestablish the
connection with him/her.

Thus, SHERLOCK is able to manage its network of agents to dynamically
adapt itself to changes even in scenarios where it is not possible to rely on a
fixed infrastructure, such as the one described in this section.

8. Related Work

Up to the authors’ knowledge, no other work has proposed a general and
flexible system based on semantics to build generic LBSs. So, we will provide
an overview of contributions to some specific research areas related to our
proposal.

Location-dependent queries (i.e., queries whose answer depends on the
locations of certain moving objects), such as range queries (e.g., see [26, 27])
and nearest-neighbor queries (e.g., see [28, 29]), can be considered a basic
building block of LBSs. Therefore, considerable research efforts have been
invested on studying efficient ways to process them as continuous queries
(see [30] for an extensive survey on location-dependent query processing).
Some of the solutions proposed assume a centralized query processing envi-
ronment (e.g., [31]), whereas others perform a distributed query processing
using a fixed support infrastructure [7, 32] or exploiting the processing ca-
pabilities of the mobile devices attached to the moving objects [6]. However,
existing proposals do not solve all the challenges identified in this paper. For
example, managing the knowledge about the different kinds of moving objects
and their features is usually ignored and a predefined database schema (that
the user must know) is assumed instead. Even though there are interesting

22

proposals that have considered some semantic aspects (e.g., [33] proposes
the management of semantic trajectories and [34] presents the concept of
semantic caching of location-dependent data), they do not aim at developing
a general semantics-based query processing architecture.

There are also several proposals that deal with aspects related to the
case studies presented in this paper. For example, in relation to the first case
study, several systems for multimodal transportation planning have been de-
veloped16 and some works have focused on the problem of taxi searching
(e.g., [2]). As an example of a context-aware system to help firefighters (sec-
ond case study), [3] considers a multi-hop peer-to-peer communication model
and uses a context rule engine to generate alerts, and mobile nodes carried by
users combined with a fixed wireless network of sensors previously deployed,
to help firefighters to determine the current fire status. However, all these
proposals have been developed for quite specific scenarios where only certain
types of objects and requests have to be managed. So, a general system that
is able to manage all of them uniformly is missing. Moreover, even though
some proposals advocate the use of semantic techniques for some tasks (e.g.,
in the WORKPAD project17 ontologies are used for information integration
in a mobile peer-to-peer network), they would benefit from the exploitation
of semantic techniques at all levels (interpretation of users’ request, knowl-
edge modeling and reconciliation, query processing, and data integration),
as we propose in SHERLOCK.

9. Conclusions and Future Work

In this paper, we have presented SHERLOCK, a general system that
provides support for Location-Based Services that depend on highly-dynamic
information and infrastructures. Moving objects collaborate by exchanging
their knowledge and could become potential processing nodes at anytime.
Besides, we have introduced two different sample motivating scenarios that
can be solved by our system; any other use case where a user is interested
in obtaining information about moving objects or in asking them to perform
actions in highly-dynamic distributed scenarios can also be processed by
SHERLOCK. As a summary, the original contributions of SHERLOCK are
the following:

16http://ec.europa.eu/transport/its/multimodal-planners/index_en.htm.
17http://www.dis.uniroma1.it/~workpad.

23

• It offers to the user all the available LBSs at each moment and helps in
expressing his/her information needs. In this way, it relieves the user
from managing specific knowledge about LBSs.

• It supports the enrichment of the knowledge managed by discovering
new information as a result of the interaction among objects.

• It uses ontologies to avoid imposing the users with a global schema.
Instead, the system achieves semantic reconciliation of data sources
and services.

• It deals with requests that require the continuous acquisition of data
from different moving and static objects.

• It is flexible regarding the underlying network infrastructure, enabling
the use of static and mobile networks.

• It continuously carries the processing to the most appropriate nodes
in order to balance the processing load and communication tasks, by
using mobile agents.

We have developed and presented a prototype of SHERLOCK where we
tested two use cases. We would like to highlight that the system used in both
scenarios is the same and the only difference is the ontology/knowledge made
available to SHERLOCK. So, just by providing it with other ontology-defined
services, other scenarios will be considered. We are currently adapting the
mobile agent platform SPRINGS to Android to be able to fully develop our
SHERLOCK Android prototype with mobile agents.

Acknowledgments.

This research work has been supported by the CICYT project TIN2010-
21387-C02. We also thank Guillermo Esteban and Juan Mengual for their
help with the implementation of our prototype, and Jorge Bobed for his
ontology viewer.

References

[1] J. Schiller, A. Voisard (Eds.), Location-Based Services, Morgan Kaufmann, San Fran-
cisco, CA, USA, 2004.

24

[2] J.-P. Sheu, G.-Y. Chang, C.-H. Chen, A distributed taxi hailing protocol in vehicu-
lar ad-hoc networks, in: 71st IEEE Vehicular Technology Conf. (VTC 2010), IEEE
Computer Society, 2010, pp. 1–5.

[3] X. Jiang, N. Y. Chen, J. I. Hong, K. Wang, L. Takayama, J. A. Landay, Siren:
Context-aware computing for firefighting, in: 2nd Int. Conf. on Pervasive Computing
(PERVASIVE’04), Springer, 2004, pp. 87–105.

[4] A. Amir, A. Efrat, J. Myllymaki, L. Palaniappan, K. Wampler, Buddy tracking –
efficient proximity detection among mobile friends, Pervasive and Mobile Computing
3 (5) (2007) 489–511.

[5] S. Ilarri, E. Mena, A. Illarramendi, R. Yus, M. Laka, G. Marcos, A friendly location-
aware system to facilitate the work of technical directors when broadcasting sport
events, Mobile Information Systems 8 (1) (2012) 17–43.

[6] B. Gedik, L. Liu, MobiEyes: A distributed location monitoring service using moving
location queries, IEEE Trans. Mobile Comput. 5 (10) (2006) 1384–1402.

[7] S. Ilarri, E. Mena, A. Illarramendi, Location-dependent queries in mobile contexts:
Distributed processing using mobile agents, IEEE Trans. Mobile Comput. 5 (8) (2006)
1029–1043.

[8] S. Ilarri, A. lllarramendi, E. Mena, A. Sheth, Semantics in location-based services
– guest editors’ introduction for special issue, IEEE Internet Comput. 15 (6) (2011)
10–14.

[9] D. B. Lange, M. Oshima, Seven good reasons for mobile agents, Communications of
the ACM 42 (1999) 88–89.

[10] I. Chlamtac, M. Conti, J. J. N. Liu, Mobile ad hoc networking: Imperatives and
challenges, Ad Hoc Networks 1 (1) (2003) 13–64.

[11] T. R. Gruber, Toward principles for the design of ontologies used for knowledge
sharing, Int. J. Hum.-Comput. Stud. 43 (5-6) (1995) 907–928.

[12] R. Trillo, S. Ilarri, E. Mena, Comparison and performance evaluation of mobile agent
platforms, in: Proc. of the 3rd Int. Conf. on Autonomic and Autonomous Systems
(ICAS’07), Athens (Greece), IEEE Computer Society, ISBN 978-0-7695-2859-5, 2007,
pp. 41–46.

[13] S. Ilarri, R. Trillo, E. Mena, SPRINGS: A scalable platform for highly mobile agents
in distributed computing environments, 2012 IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM) (2006) 633–637.

[14] R. B. Mishra, S. Kumar, Semantic web reasoners and languages, Artificial Intelligence
Review 35 (4) (2011) 339–368.

25

[15] F. Baader, I. Horrocks, U. Sattler, Description Logics as ontology languages for the
Semantic Web, in: Mechanizing Mathematical Reasoning, Vol. 2605 of Lecture Notes
in Computer Science, Springer, 2005, pp. 228–248.

[16] N. Choi, I.-Y. Song, H. Han, A survey on ontology mapping, SIGMOD Record 35 (3)
(2006) 34–41.

[17] P. López-Garćıa, M. Boeker, A. Illarramendi, S. Schulz, Usability-driven pruning
of large ontologies: the case of SNOMED CT, Journal of the American Medical
Informatics Association 19 (2012) e102–e109.

[18] J. Gracia, E. Mena, Ontology matching with CIDER: Evaluation report for the oaei
2008, in: In Proc. of 3rd Ontology Matching Workshop (OM’08), at ISWC’08, 2008.

[19] R. Yus, C. Bobed, G. Esteban, F. Bobillo, E. Mena, Android goes semantic: DL
reasoners on smartphones, in: 2nd International Workshop on OWL Reasoner Eval-
uation (ORE 2013), 2013.

[20] N. Mitrovic, J. Royo, E. Mena, ADUS: Indirect generation of user interfaces on wire-
less devices, in: 7th Int. Workshop Mobility on Databases and Distributed Systems
(MDDS’2004), IEEE Computer Society, 2004, pp. 662–666.

[21] A. Boukerche, B. Turgut, N. Aydin, M. Z. Ahmad, L. Bölöni, D. Turgut, Routing
protocols in ad hoc networks: A survey, Computer Networks 55 (13) (2011) 3032–
3080.

[22] S. Ilarri, C. Bobed, E. Mena, An approach to process continuous location-dependent
queries on moving objects with support for location granules, Journal of Systems and
Software 84 (8) (2011) 1327–1350.

[23] M. Horridge, S. Bechhofer, The OWL API: A Java API for OWL ontologies, Semant.
Web 2 (1) (2011) 11–21.

[24] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz, Pellet: A practical OWL-DL
reasoner, Web Semant. 5 (2) (2007) 51–53.

[25] R. Yus, E. Mena, S. Ilarri, A. Illarramendi, SHERLOCK: A system for location-based
services in wireless environments using semantics, in: 22nd International World Wide
Web Conference (WWW 2013), ACM Press, ISBN 978-1-4503-2038-2, 2013, pp. 301–
304.

[26] K. Rothermel, S. Schnitzer, R. Lange, F. Dürr, T. Farrell, Context-aware and quality-
aware algorithms for efficient mobile object management, Pervasive and Mobile Com-
puting 8 (1) (2012) 131–146.

[27] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, W. Wang, Continuous monitoring of
distance-based range queries, IEEE Transactions on Knowledge and Data Engineering
23 (8) (2011) 1182–1199.

26

[28] W.-S. Ku, R. Zimmermann, Nearest neighbor queries with peer-to-peer data sharing
in mobile environments, Pervasive and Mobile Computing 4 (5) (2008) 775–788.

[29] R. Benetis, S. Jensen, G. Karĉiauskas, S. Ŝaltenis, Nearest and reverse nearest neigh-
bor queries for moving objects, The VLDB Journal 15 (3) (2006) 229–249.

[30] S. Ilarri, E. Mena, A. Illarramendi, Location-dependent query processing: Where we
are and where we are heading, ACM Comput. Surv. 42 (3) (2010) 1–73.

[31] H. Hu, J. Xu, D. L. Lee, A generic framework for monitoring continuous spatial
queries over moving objects, in: ACM SIGMOD Int. Conf. on Management of Data
(SIGMOD’05), ACM, 2005, pp. 479–490.

[32] J. Jayaputera, D. Taniar, Data retrieval for location-dependent queries in a multi-cell
wireless environment, Mobile Information Systems 1 (2) (2005) 91–108.

[33] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, K. Aberer, SeMiTri: a frame-
work for semantic annotation of heterogeneous trajectories, in: 14th Int. Conf. on
Extending Database Technology (EDBT 2011), ACM, 2011, pp. 259–270.

[34] B. Zheng, D. L. Lee, Semantic caching in location-dependent query processing, in:
7th Int. Symposium on Advances in Spatial and Temporal Databases (SSTD’01),
Springer, 2001, pp. 97–116.

27

	Blank Coversheet editable.pdf
	sherlockPMC

