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Abstract

Recognising human activities from sensors embedded in an environment or worn on bodies is an important
and challenging research topic in pervasive computing. Existing work on activity recognition is mainly
concerned with identifying single user sequential activities from well-scripted or pre-segmented sequences
of sensor events. However a real-world environment often contains multiple users, with each performing
activities simultaneously, in their own way and with no explicit instructions to follow. Recognising multi-
user concurrent activities is challenging, but essential for designing applications for real environments. This
paper presents a novel Knowledge-driven approach for Concurrent Activity Recognition (KCAR). Within
KCAR, we explore the semantics underlying each sensor event and use semantic dissimilarity to segment a
continuous sensor sequence into fragments, each of which corresponds to one ongoing activity. We exploit
the Pyramid Match Kernel, with a strength in approximate matching on hierarchical concepts, to recognise
activities of varying grained constraints from a potentially noisy sensor sequence. We conduct an empirical
evaluation on a large-scale real-world data set that is collected over one year and consists of 2.8 millions of
sensor events. Our results demonstrate that KCAR achieves an average recognition accuracy of 91%.

Keywords: Ontologies, Smart home, Concurrent activity recognition, Semantics, Domain knowledge,
Pyramid match kernel

1. Introduction

Recognising human activities is an important task in a pervasive environment. It is particularly beneficial
for application areas such as healthcare, home care for the elderly and disabled, emergency detection,
and leisure. Earlier work mainly focuses on identifying activities for a single user [48], however there are
often multiple residents living in the same environment, performing different tasks simultaneously. Having
the ability to distinguish these concurrent activities is an essential step towards realising activity-aware
applications for real-world settings [12].

Recognising multi-user concurrent activities is challenging due to many factors, among which the most
critical are the interwoven sensor sequences and the myriad ways that activities may be simultaneously con-
ducted. Sophisticated data-driven techniques have been designed to capture concurrent activity patterns [22],
and they usually rely on heavy computation based around large volumes of training data, rendering them
unsuitable for real-time recognition. The different ways in which concurrent activities may overlap lead
to many possible patterns of sensor data, and the greater the number of permutations, the less feasible it
becomes to collect sufficient training data. As a result, learned models may suffer from over-fitting, making
them less effective in recognising activities. Few knowledge-driven techniques have attempted [38], however
the detailed specifications might only be specific to certain environments or users, thus not scalable to a
wide range of deployment.

To address the above problems, we propose a general knowledge-driven approach to support online
multi-user concurrent activity recognition, called KCAR. We novelly consider one of the most important
and pre-requisite processes toward recognising concurrent activities to be the ability to segment a continuous
sensor sequence into fragments, each of which corresponds to a single ongoing activity. Then we turn the
multi-user concurrent activity recognition problem into single user sequential activity recognition.
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KCAR is designed to recognise activities conducted by multiple users simultaneously in a smart home
environment, which benefits from the integration of an existing commonly-agreed knowledge base and of the
statistical techniques in similarity measure and approximate matching. More specifically, the contributions
of KCAR are listed as follows:

e KCAR is built on a top-level ontology model that explores the universal hierarchical structure in all
dimensions of information [49], forming the theoretical foundation of our approach. Rather than de-
vise an ad hoc model, we construct domain ontologies from an existing large knowledge base (e.g.,
WordNet [30]), which facilitates reuse and share of the ontologies across different platforms and envi-
ronments. With the help of this knowledge, KCAR does not need to learn correlations between sensor
events from training data.

e KCAR enables online segmentation on continuous sensor sequences by evaluating the semantic simi-
larity between individual sensor events. We follow the methodology of the semantic sensor web [39]
to extract the semantic features of a sensor event into spatial, temporal, and thematic aspects. We
employ a hierarchy-based similarity measure [45] to quantify the similarity on these aspects in their
corresponding ontologies.

e KCAR recognises activities by matching segmented sensor sequences to ontological activity profiles.
One of the main concerns in concurrent activity recognition is how to distinguish an unexpected sensor
event as either a sensor noise or another concurrent activity. To tackle this issue, we employ and
extend the recently devised image matching technique — Pyramid Match Kernel (PMK) [11] — to
accommodate and balance the sensor noise in activity recognition.

e We evaluate the performance of KCAR’s segmentation and recognition algorithms on a large-scale
real-world smart home data set. The results demonstrate that (1) compared to classic segmentation
techniques not only can KCAR segment the sensor sequence more accurately, but it can also produce
segments that more closely resemble activities being performed in a real-world environment, and (2)
KCAR can recognise concurrent activity recognition to a high accuracy.

The rest of the paper is organised as follows. Section 2 introduces the background and existing work
in activity recognition and identifies the scope of this paper. Section 3 describes the modelling of domain
ontologies in a smart home environment, based on which we discuss semantic similarity between sensor
events and perform segmentation on interwoven sensor sequences in Section 4. To perform concurrent
activity recognition, we introduce the principle of the PMK and demonstrate how we extend and apply it in
Section 5. The performance of segmentation and activity recognition is evaluated on a large-scale real-world
data set, which is detailed and discussed in Section 6. The paper concludes in Section 7.

2. Background and Literature Review

A smart home environment can be defined as a regular dwelling that is configured with a number of
sensors and actuators. The sensors perceive the state of the residents and their ambient environment,
based on which the actuators infer the residents’ present activities and as well as provide activity-aware
services [9]. Examples of the prototyped smart homes include the Georgia Tech Aware Home project [21],
MIT PlaceLab [27], University of Amsterdam smart houses [20], and the CASAS project [6], to name a
few. Activity recognition is a key element in realising the smart home vision, which links the gap between
high-level applications and low-level sensor data. A general process of activity recognition is composed of
collecting sensor data, segmenting the collected sensor data into fragments, and recognising the activity
from each fragment. In the following, we detail the process and identify the scope of this paper in terms of
what types of sensor data are usually collected in a smart home environment, what types of activities are
of interest, how the data is collected, why we need to segment sensor data and how, and what the existing
techniques for recognising activities are.



2.1. Sensor Data

Pervasive sensing technologies have progressed significantly towards the design and development of small,
lightweight, low cost sensors with long battery life. There are five types of sensors that are popular in existing
smart home environments [7, 48]: cameras to closely watch the activities in the environment, accelerometers
that are worn on a human body to detect movement and postures, environment and resource sensors to
monitor the environmental property (e.g., temperature or humidity) and resource (e.g., electricity or gas)
consumption, positioning sensors that are installed in rooms to detect the inhabitant’s whereabout, and
object sensors that are attached to an everyday object to detect interactions between the object and the
inhabitant.

Early activity recognition approaches relied on processing features extracted from camera video streams [2,
40]. Such solutions are challenged because of the potential for the violation of user privacy, the difficulty
of extracting robust and informative features to infer high-level activities, and the computational over-
head [42, 44]. Accelerometers, worn by users on their thighs or arms, have proved useful in detecting
running, walking, or jogging [28, 50]. It is usually necessary to combine this information with other sensors
to accurately recognise higher-level activities such as cooking or exercising. Environmental and resource sen-
sors are often considered as a contextual factor that affects users’ activities or an outcome of their activities,
rather than as a direct evidence on inference.

Positioning sensors like passive infrared sensors [20] or motion detectors [7, 27] are widely used in smart
homes. Location has significant importance in identifying human daily activities in a smart home [27, 47];
e.g., cooking in the kitchen, sleeping in the bedroom, or taking shower in the bathroom. To distinguish
activities occurring in the same location, we need to use other types of sensors. Object sensors detect user
interactions with everyday objects, which include RFIDs, pressure mats, binary-state sensors developed
in the University of Amsterdam [20], binary switches (called MITes) in MIT [27], and binary discrete
motion sensors used in CASAS [7]. Compared with the other types of sensors, object sensors exhibit the
advantages of unobtrusiveness, ease of processing, potential to be deployed on a wide range of objects, and
direct implication of a user’s current activities. KCAR attempts activity recognition mainly based on these
positioning and object sensors.

2.2. Activities of Interest

Varying with different application goals, a smart home environment can have a wide range of activities of
potential interest. For example, an elderly healthcare application may be concerned about users’ movements
or fall detection, while a general purpose smart home application may be interested in daily routines such as
cooking, personal hygiene, working, or entertaining. According to the interactions between the performance
of these activities, they can be classified into four categories [14]:

e single user sequential activities — a single user performs activities one by one;

o multi-user sequential and simultaneous activities — multiple users perform the same activity together,
e.g., two users are drinking coffee together;

o multi-user collaborative activities — multiple users perform different activities in a cooperative manner
to achieve the same goal; e.g., two users are cooking together: one is retrieving the ingredients while
the other is stirring the pan;

o multi-user concurrent activities — multiple users perform different activities independently and aim for
different goals; e.g., one user is cooking while the other is working on the computer.

KCAR is founded on semantics underlying the sensor events and activities, and hence it aims to recog-
nise the fourth class of activities — detecting coarse-grained concurrent activities that have explicit and
distinguishable semantic profiles; for examples, activities being performed in different locations; or activi-
ties involving everyday objects in completely different categories such as Stove in the Cook activity, and
Computer in the Work activity.



2.8. Data Collection

Most activity recognition techniques require a data set to build an activity model and evaluate the
recognition algorithm. A data set usually consists of a temporally ordered sequence of sensor events that
are annotated with activity labels. An example of a data set is shown in Listing 1.

Listing 1 An example of a data set that consists of timestamped sensor events with annotated activities [5]

Timestamp Sensor Value Annotated Activity
2009-08-24 20:23:43.054643 Kitchen_Stove ON R2_Prepare_Dinner begin
2009-08-24 20:23:56.086543 WorkAreal Computer  ON R1_Work_In_Room begin
2009-08-24 20:23:57.002937 Kitchen_Fridge OoN
2009-08-24 20:24:19.034964 WorkAreal ON
2009-08-24 20:24:21.061429 WorkAreal ON
2009-08-24 20:24:22.078563 Kitchen_Door oN
2009-08-24 20:24:23.077674 WorkAreal oN
2009-08-24 20:24:25.095411 BedAreal oN
2009-08-24 20:24:26.077674 WorkAreal ON R1_Work_In_Room end

Early approaches to collecting such data sets relied on asking subjects to perform a set of scripted
activities, one at a time, in a laboratory setting [23]. This usually produces a clean data set with well
segmented sensor sequences and highly predictable activity patterns. In recent years, researchers are more
interested in collecting data in a more realistic manner; that is, they instrument many sensors of various
types in a normal house where subjects will live in for a long period of time and perform activities as
normally as possible. The subjects’ activities can be manually recorded by hand [46], reported using a
microphone [20], or recorded on video [27]. An offline annotation process will be taken to mark the sensor
data with the recorded activities. In these cases, data is often noisy due to the environmental interference,
dislodge of the sensors, activities being performed in a more diverse manner, or errors in recording the
performed activities, and consequently segmenting sensor sequences and recognising activities on these data
are more challenging. We propose KCAR as a technique to perform activity recognition on unsegmented
sensor sequences that are collected in this type of environments.

2.4. Segmentation

Segmenting a continuous sensor sequence is usually a prerequisite process for activity recognition [33].
The most common approach is to partition a sensor sequence into a fixed time interval; e.g., one second [12]
or one minute [43]. Each of the resulting partitions shares the same time interval, known as the static sliding
window technique [1, 18]. Another type of static sliding window techniques is the fixed-size approach, where
each window has the same number of sensor events [23]. We refer to the former as fized time segmentation
and the latter as fized size segmentation in this paper and we will compare the performance of KCAR with
these two techniques in Section 6.

The above static sliding window techniques are impractical in real-world scenarios as the duration of
activities typically varies anywhere from 30 seconds to over 10 hours. Such segmentation often gathers
sensor events that are spread over the boundary of two activities into one segment, which adds extra noise
to the inference process. Additionally, for a long-duration activity like cooking, sensor traces within a short
time window are often insufficient to arrive at an accurate classification.

In contrast, dynamic sliding window methods enable varying sizes of sliding windows at runtime based
on different features, such as the duration of activities [29, 33, 41], change of sensor states [24], or change
of location context of consecutive sensor data [16]. Krishnan et al. [23] explore both static and dynamic
sliding window approaches, with the incorporation of the time decay and mutual information of sensor
events within a window; e.g., the occurrence ratio of two sensors occurring consecutively in the entire sensor

IFor the sake of readability, we replace the sensor IDs with an object or location symbol indicating to which object the
sensor is attached, or where it is this sensor is installed.



stream. Rashidi et al. [35] extend the tilted-time window approach to discover activity sequential patterns
over time; that is, using temporally parameterised support counts to find frequent patterns over streaming
sensor data. All these techniques work well on single user sequential activity data sets and none of them
yet targets at segmenting concurrent activity data sets, which KCAR aims to address.

Gu et al. [12] present an unsupervised technique based on emerging patterns with sliding time windows to
recognise interleaved activities. This technique calculates complex activity scores based on mined activity-
feature sets as well as correlation scores between the activities. The main difference between KCAR and
the emerging patterns in segmentation is that instead of relying on any training data we use the ontological
reasoning to evaluate the semantic similarity between consecutive sensor events.

2.5. Activity Recognition

Activity recognition techniques can be grouped into data- and knowledge-driven approaches [3, 48].
Data-driven approaches are built on machine learning and data mining techniques, which learn an activity
model and estimate parameters from a set of training data. Among all the existing techniques, Hidden
Markov Models (HMM) have not only demonstrated promising accuracies in recognising single user sequen-
tial activities [20] but also are presented as one of the most popular techniques in recognising interleaved
and concurrent activities.

Patterson et al. [34] employ the HMM model to recognise interleaved activities of a morning routine
using RFID data. Having experimented with various HMM models, they conclude that using a HMM with
a single state for each activity performs best and increasing model complexity does not necessarily improve
the recognition accuracy. Modayil et al. [31] propose an interleaved HMM model that aims to capture inter-
and intra-activity dynamics. It recognises the interleaved activities that are performed by a single user. It
is evaluated on a data set that is collected in a laboratory performed by subjects on scripted activities. The
results show that it is an efficient mechanism to recognise potentially confusable activities like make oatmeal
and make eggs.

Gong et al. [10] develope a dynamically multi-linked HMM model to interpret group activities from video
data involving multiple objects in a noisy outdoor scene. The model is based on the discovery of salient
dynamic interlinks among multiple events using dynamic probabilistic networks. Nguyen et al. [32] employ
the hierarchical HMM (HHMM) in a general framework to recognise primitive and complex behaviours
of multiple people. A unified graphical model is constructed to incorporate a set of HHMMs with data
association.

Hu et al. [17] propose a novel probabilistic framework for multi-goal recognition where both concurrent
and interleaving goals can be recognised. The technique used is the Skip-Chain Conditional Random Field
(SCCRF), within which concurrent and interleaved goals are derived by adjusting inferred probabilities
through a correlation graph. The SCCRF is computationally expensive when a large number of skip edges
are involved. To prevent the recognition accuracy from deteriorating, every partial model of the interleaved
activities has to be observed during the training phase. Hence the SCCRF requires a large amount of
training data because there are many different ways to interrupt and resume an ongoing activity. Also
as acknowledged in [22], both HMMs and CRFs are more suitable for purely sequential activities. To
recognise interleaved and concurrent activities, these techniques need to be extended or integrated with
other techniques, which usually encounters the problems of heavy computation and craving for training
data.

Helaui et al. [15] build composite activity models using the Markov Logic Network, a statistical relational
approach to incorporate common-sense background knowledge; that is, the sequential relationships between
activities; e.g., the activity of setting the table must precede the activities of eating breakfast and clearing
the table.

Different from the above data-driven approaches, KCAR is knowledge-driven in that we do not need any
training data to build a potentially complex model and thus we avoid the computational complexity and
the problems of over-fitting. Knowledge-driven techniques follow a description-based approach to model the
relationships between sensor features and activities [3]. Ontological reasoning is a representative example
as ontologies provide a formal way to represent sensor data, context, and situations into well-structured



terminologies, which makes them understandable, sharable, and reusable by both humans and machines [4,
13, 37]. In ontology-based approaches, activities are described with a number of properties linking to
constraints on sensor events. The activity recognition process is to match the conditions of each activity
against the input sensor sequence. If all the conditions are satisfied, the reasoner will infer the activity.

Chen et al. [4] present an ontological model to represent smart home activities and relevant context. The
approach is motivated by the observations that activities are daily routines full of common-sense knowledge
providing rich links between the environment, events, and activities. The domain and prior knowledge is
valuable in creating activity models, avoiding the need of large-scale data set collection and training. More
recently, Saguna et al. [38] combine ontological and spatio-temporal modelling and reasoning to recognise
interleaved and concurrent activities. However their approach requires detailed understanding and thorough
investigation of the activity-related specifics so as to successfully build long-term solutions. Although our
approach shares the same motivation, we use the more certain must-have knowledge rather than provide a
complete specification for each activity; thus, we can reduce the amount of knowledge engineering effort and
as well as the bias from experts.

Moreover, a pure knowledge-based reasoning is insufficient to deal with sensor noise [48] in that if a sensor
sequence contains contradictory sensor events, then the reasoner might arrive at conflicting inference results.
To resolve this problem we employ the Pyramid Match Kernel (PMK) technique to enable approximate
match between sensor sequences and activity profiles. This technique is rooted in image-based object
detection, with a well proved advantage in supporting match between hierarchical concepts [25]. In KCAR
we adapt the PMK algorithm to accommodate sensor noise that sparsely occurs in the collected data set.

2.6. Overview of KCAR

KCAR is able to recognise multi-user concurrent activities, as illustrated in Figure 1. KCAR takes as
input a continuous sensor sequence that consists of raw sensor events and processes the input sequence by
linking each sensor event with the concepts defined in our ontological models. The segmentation process
groups or partitions sensor events into fragments based on the similarity measure that is calculated between
the ontological concepts linked with these events.

A PMK-based recogniser performs the matching between each fragment and the ontological description
of activities, and infers the activity that is most likely to be occurring. The inferred result is evaluated
to determine whether the fragment for this activity is complete or not. If so, the recogniser outputs the
result; otherwise, the fragment is returned to the segmentation algorithm to be concatenated with new
sensor events; this process is performed recursively. The produced result is a sequence of temporally bound
activities. We describe each part of the process in the following sections, starting with the ontological model
that forms the foundation for the segmentation and recognition algorithms.

Ontology Models

Input a Sensor Sequence —P[ Process Semantics ]-—>l Segment Recognise Activity Output Activities

v . Slide Windows EndTime Activity

R2_Prepare_Dinner

Timestamp Sensor Value R1_Work_In_Room

| 2009-08-24 20:23:43.054643 Ki ;

StartTime EndTime Segmented Sensor Events

| 2009-08-24 20:23:43 - 2009-08-24 20:23:57 <Kitchen_Stove, Kitchen_Fridge:

>
12009-08-24 20:23:56 - 2009-08-24 20:24:26 <WorkArea1_Compute, WorkAreat, WorkAreat,WorkAreat,WorkAreat, BedAreat, WorkAreat>

rea
. a
} 2009-08-24 20:24:26.077674 WorkAreal ON

Figure 1: An overview of KCAR on segmentation and recognition



3. Ontological Modelling

Central to our technique is a generic ontological model that consists of three components: sensor, domain,
and activity ontologies. This is illustrated in Figure 2. Built upon well-founded domain ontologies, we can
evaluate the semantic similarity between sensor events in the sensor ontology and as well as relate the sensor
and activity ontologies so that we can perform activity recognition.

|

isReportedAt v
IsReporte isReportedBy hasValue
¢
I

isAttachedTo

isLocatedIn

hasStartTimeConstraint

Object

belongsTo belongsTo
hasLocationConstraint hasObjectConstraint
Person
hasDurationConstraint

hasPersonConstraint

Figure 2: An overview of a general structure of the ontological model

To specify domain knowledge, we use OWL — Web Ontology Language — a Description Logic [52] based
markup language, as it supplies decidability and computational completeness of reasoning procedures at the
expense of some modelling expressiveness. The core elements in the formalism are concepts, instances, and
relationships. A concept corresponds to a collection of instances and a relationship relates two instances.
In Description Logic there are (1) the TBox, Terminological Boz, that contains the vocabularies on defining
concepts and relationships, which are reusable across different environments, and (2) the ABoz, Assertional
Boz, that contains the vocabularies on defining instances and their relationships about a particular real-world
domain.

3.1. Domain Ontology

Rather than provide a full formal conceptualisation, the domain ontologies are referred to as vocabularies,
which classify and organise conceptual terms in a hierarchy. The object ontology (OO) describes the type-of
relationships between household objects. For example, a Fridge is a type of WhiteGood, denoted as Fridge
C WhiteGood, and represented in the following statement in the TBox of the OO.

Listing 2 An example of declaring household object concepts
# Declare household object concepts in the TBox of 00
obj:WhiteGood a owl:Class.
obj:Fridge a owl:Class;

rdfs:subClass0f obj:WhiteGood.

The vocabulary in the OO is extracted from the WordNet [30], which is a hierarchical lexical system where
words are organised by semantic relations in terms of their meaning. The use of the existing knowledge
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Figure 3: Examples of domain ontologies in Object, Location, and Person

repository can make the OO as general as possible, which encourages share and reuse of the ontologies.
Figure 3 (a) shows a part of the 002

The location ontology (LO) describes location concepts common in most home settings, which is com-
plemented by defining location instances and containment relationships in terms of their spatial layout.
Figure 3 (b) presents an example of room layouts in a particular house in the form of a lattice. A house
consists of two floors, connected by a set of stairs, whose ontological statements are described in Listing 3.1.

Listing 3 An example of defining location concepts, instances, and relationships
# Declare location concepts in the TBox of LO

loc:House a owl:Class .

loc:Floor a owl:Class .

loc:Stairs a owl:Class

# Define the containment relation (to be used on instances) in the TBox of LO
loc:contains a owl:0bjectProperty .

# Define location instances in the ABox of LO
ex:house a loc:House .

ex:groundFloor a loc:Floor .

ex:firstFloor a loc:Floor .

ex:stairs a loc:Stairs

# Define spatial relationships between location instances in the ABox of LO
ex:house loc:contains ex:groundFloor .
ex:house loc:contains ex:firstFloor .
ex:groundFloor loc:contains ex:stairs
ex:firstFloor loc:contains ex:stairs .

We similarly construct the person ontology (PO) that classifies the residents in a house into groups;
for example in Figure 3 (c): there are two elderly resident instances R1 and R2. Both the PO and OO
focus on relations at the class level, while the interpretation of the LO is subject to relations between its

2For brevity, we omit intermediate terms.



individuals (the spatial layout of the environment). We manually create these relations by following the
guideline of a top-level ontology [49]: gradually abstracting concepts from the ground values in each domain
step by step. This allows us to build domain ontologies in a more systematic and tractable manner, which
not only facilitates reasoning on relationships between concepts but also enables share and reuse with other
ontologies across more environments [49].

3.2. Sensor Ontology

The sensor ontology (SO) describes sensors and sensor events. A sensor event is usually denoted as a
tuple (¢, s,v), indicating that at the time instant ¢ a sensor s reports a value v, as shown in Listing 1. To
explore the semantics of a sensor event, we borrow the semantic annotation terminology from the Semantic
Sensor Web, that describes temporal, spatial, and thematic semantics [39]. The temporal dimension refers
to the time instant ¢ when the sensor event is reported or an interval during which the event is valid; the
spatial dimension refers to the location where the sensor s is installed; and the thematic dimension refers to
a real-world state extracted from the sensor event. As we are concerned with object sensors, the thematic
dimension refers to objects to which a sensor is attached.

Definition 1 defines the semantics of an object sensor event as a 3-dimensional tuple, denoted as se =
(t,1,0), each of which refers to an instant in domain ontologies including the Time, Location, and Object
ontologies.

Definition 1. Let TO, LO, and OO be the Time, Location, and Object ontologies that organise concepts
of each domain in a hierarchy. The semantics of a sensor event is represented as se = (t,1,0), where

e 7:se — TO, mapping the reported time of se to an instance t in TO;
e ,: se — LO, mapping the location of the sensor to an instance / in LO;
e §:se — OO, mapping the object associated with the sensor to an instance o in 00.

Different from the Semantic Sensor Web community, the sensing semantics in a smart home environment,
especially in a multi-user context, involve another important dimension — Person, indirectly indicating who
a sensor event is about via the association of person semantics with the location or object of the sensor;
that is, who owns or has the access right to this location or object. Person semantics are indirectly related
to a sensor event and can be used to infer which particular person is performing an activity. For example, if
we infer the current activity is sleeping and the detected location is a bedroom belonging to a resident R1,
then we can further derive that it is R1 who is sleeping.

3.8. Activity Ontology

The activity ontology (AO) represents the structural properties; that is, the hierarchy of activity types.
We constrain activities by associating each with time, object, location, and person conditions. We constrain
activity classes and instances by associating each with conditions on properties; for object, location, and
person, activity classes restrict the type of values that each property can relate. The object and location
condition specifies what object a person must access in order to perform this activity, and where this activity
must occur. The use of a hierarchy allows us to specify conditions using more general concepts rather than
listing each specific concept for each instance. For example, we can directly constrain the objects for the
activity of preparing dinner on cooking utensil or tableware, without the need to enumerate every concrete
entity like a cup, plate, or pan.

We note that what we specify against more general activity classes should be general knowledge in the
sense that most people will execute the activity in this way. Against activity instances, the person constraint
indicates the current activity profile is about a specific user; that is, one user performs this activity differently
from another. General conditions are defined on concepts in the domain ontologies (e.g., sleeping takes place
in a bedroom), while specific constraints can be placed on instances (e.g., R1_Sleep involves sleeping in R1’s
bedroom). Listing 3.3 specifies this relationship.



Classes and instances may also be paired with time conditions: occurring time — when the activity
usually occurs and period — how long the activity typically lasts. For example, we place the constraint
that the activity of preparing dinner should start in the evening and last more than 5 minutes. Where this
information is present in an instance definition, we treat it as overriding any temporal restrictions associated
with the class.

Listing 4 An example of defining activity concepts and instances
# Define the general activity of sleeping in the TBox of AO
ex:Sleep rdfs:subClass0f act:Activity ;
act:time [act:hasStartTimeConstraint [ ex:activityStartDescription
a time:DateTimeDescription ;
time:unitType time:unitHourMinute ;
time:hour 22~ "xsd:int] ;
act:hasDurationConstraint "PT35M""~"xsd:duration ] ;
rdfs:subClass0f
[ a owl:Restriction ;
owl:onProperty act:object ;
owl:allValuesFrom obj:Bed
15
rdfs:subClassOf
[ a owl:Restriction ;
owl:onProperty act:location ;
owl:allValuesFrom loc:Bedroom
15
rdfs:subClassOf
[ a owl:Restriction ;
owl:onProperty act:person ;
owl:allValuesFrom per:Person

# Define activity instances in the ABox of AO
ex:R1_Sleep a ex:Sleep;

act:object ex:bedl ;

act:location ex:bedrooml ;

act:person ex:R1

4. Semantic Similarity and Segmentation

In this section, we use the generic ontological model introduced above to partition a continuous real-time
sensor sequence into fragments,; each of which corresponds to one (or part of an) activity that might be
occurring simultaneously with other activities, as illustrated in Figure 4. The segmentation is based on
sensor and activity semantics; that is, using semantic dissimilarity between sensor events to segment for
each user, and using activity temporal knowledge to control the time interval of fragments. In the following
we introduce how to quantify the similarity measures between sensor events.

4.1. Semantic Similarity

The main assumption of our approach is that there exists semantic similarity between sensor events, with
which we can segment sensor sequences into semantically integral partitions. Deriving from the semantic
interpretation of a sensor event, we present how to quantify the similarity between two sensor events from
their ontological conceptual terms.
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Figure 4: Online segmentation of a continuous sensor trace

Definition 2. Let se; and se; be semantic representations of two sensor events. The semantic similarity
between them is defined as

sim(sei, se;) =(simy(se;, sej), simg(ses, se;)) (1)
simg (seq, sej) =(sime (i), 1(s5)) + sima (9(si), 0(s5))/2 (2)
where
e , and ¢§ are the location and object mapping functions introduced in Definition 1.
e simy is the time similarity function that compares the temporal similarity between the sensor events;
e simg is the sensor similarity function on Location and Object concepts that are associated with sensors;

e simc is the conceptual similarity function between hierarchical concepts in each domain.

The conceptual similarity function is built on the algorithm proposed by Wu et al. [45]. The approach
works by finding the least common subsumer (LCS) of the two input concepts and computing the path
length from the LCS up to the root node. The LCS is the most specific concept that both concepts share as
an ancestor. The literature contains many other similarity measures; for example, the Leacock Chodorow
matcher is based on counting the number of links between two concepts in the hierarchy [26]. The principle
of this method is similar to what we use here; however, the similarity value in [45] is more intuitive to
understand. Some works use the information content of the concepts by exploiting the frequency of concept
occurrences in a given text corpus, such as the Resnik matcher [36] and the Jiang Conrath matchers [19].
Compared to them, [45] only needs a hierarchy of conceptual terms, which can be easily accessed through
the standard lexical system like WordNet.

Definition 3. Let ¢; and ¢y be two concepts organised in one hierarchy. The conceptual similarity
measure between them is calculated as (as shown in Figure 5):

2 X N3

simg(c1,c2) = Ni+Na+2x N3’

where N7 (N2) is the path length between ¢; (c2) and the LCS node of ¢; and ¢q, and Nj is the path length
between the LCS and the root.

When ¢; is equal to ¢y, their LCS node is itself and the similarity is 1.0. When ¢; is semantically far
from ¢, their LCS node can be close to the root in the hierarchy, which makes N; and N, are large and
N3 small, so the similarity is close to 0. Therefore, the larger the similarity measure, the closer the two
concepts. Taking an example from Figure 3, the conceptual similarity between a Stove and a Fridge is

% = 0.67, while the similarity between Stove and Computer is % =0.18.
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LCS of C1 and C2

Figure 5: The concept similarity measure

The time similarity function simz can exist in two forms: numeric and symbolic. Since the timestamps
on each sensor event can be represented in milliseconds, its numeric form is calculated as

_ I7(sey) = T(sei)l)

Trmaz

; (3)

simr(se;, se;) = max(0,1

where T},4, is the maximum range of the time under consideration. For example, if we consider daily
activities we set the T}, to be 24 hours (equally 86,400 seconds). If there exists a hierarchy of temporal
concepts similar to the object or location concepts, then its symbolic form is calculated as Definition 3. In
this paper, we take the numeric form, because sensors in a smart home environment are usually frequently
sampling and the symbolic form of temporal concepts is not particularly useful.

Example 1. In this example, we calculate the semantic similarity between the sensor events sej, ses and
ses in Figure 6, which are extracted from the Listing 1. The location, and object concepts refer to the LO
and OO in Figure 3.

e se; and ses: their time similarity is 1 — % = 1 using Equation 3. In terms of the sensor similarity,

their location similarity between kitchen and work area 1 is 0, and object similarity between Stove and
Computer is 0.18. Thus the sensor similarity is normalised to be 0.09 (=(040.18)/2) using Definition 2.

e seq and sez: Similarly, their time similarity is 1 — m = 1 and their sensor similarity is 0.09.
e se; and seg: their time similarity is 1 — ﬁ = 1 and their sensor similarity is (1 + 0.67)/2 = 0.83

where the location similarity is 1.0 and the similarity between Stove and Fridge is 0.67.

In the above example, based on the similarity measures between these three sensor events, we can
intuitively derive that the sensor events se, should be partitioned from the events se; and ses, for ses is
more likely to correspond to an activity different from the activity corresponding to the latter two. For
example, this sequence could suggest that there are two semantically different activities occurring at the
same time: cooking in the kitchen, and using the computer in the bedroom.

This example introduces our idea of automatic segmentation of sensor sequences that record concurrent
activities; that is, dividing a sequence of sensor events into segments, each of which is composed of sensor
events that are semantically similar, intuitively corresponding to one of the ongoing activities. As a coarse-
grained concurrent activity recognition approach, KCAR only separates the sensor events that cannot be
grouped together. It cannot finely distinguish concurrent activities that are semantically similar. For exam-
ple in Figure 6, it cannot detect how many users are involved in the cooking activity, or further discriminate
which user is performing a different cooking task such as stirring a pan or retrieving an ingredient.

12



Input sensor sequences

(1, 0.09) (1, 0.09)

se3 se2 sel
(2009-08-24 20:23:57 (2009-08-24 20:23:56 (2009-08-24 20:23:43
Kitchen_Fridge ) WorkAreal Computer ) Kitchen_Stove )

—

Figure 6: Segmenting a sequence of input sensor events based on their semantic similarity

4.2. Online Segmentation

Algorithm 1 presents the segmentation process. During the process, we maintain two lists: a tentative
list L; and a confirmed list L.. L; records a list of pairs (I,a), where [ is an unfinished sequence that is
possibly concatenated with new sensor events, and a is an activity that is inferred from .

Algorithm 1: Automatic segmentation of real-time sensor sequences

Data: SEQ = (se1, sez, ..., sey): a sequence of incoming sensor events
(67,05): the time and sensor similarity threshold pair
A: the maximum time distance to separate any two adjacent sensor events
AR: an activity recognition reasoner that takes a sequence of sensor events and outputs an activity
Result: Lg: a list of segmented sequences
initialise(Lc);
initialise(L¢);
foreach se € SEQ do
found = false;
if (L;.isNotEmpty) then
foreach (l,a) € L; do
(simr, simg) = sim(se,l.last);
if dist(7(se) — T(l.last)) > X then
Lc.add((l,a));
Li.remove((l,a));

if similarityCheck(simr, simg,0r,0s) then

a’ = AR((l; se));

if timeSpan({l; se)) < retrieve DurationConstraint(a’).upper Bound then
Li.update(({l; se),a’));
found = true;
break;

ifilfound then
o’ = AR((se));
| Lt.add(({se),a));

if Li.isNotEmpty then
L Lc.addAll(Ly);

return Le;

Given an incoming sensor event se, the algorithm calculates the similarity measure between it and the
last sensor event in each sensor sequence [ in L;. If they pass the similarity check, then the event se is
appended to the list [ as (I;se). The algorithm performs activity recognition on the new list and updates
the inferred activity a’. If the time span over the new list satisfies the upper bound of the period constraint
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on a’, then the new list is validated and updated to L;. If the current event se cannot concatenate with any
sequence in Ly, then a new list (se) is formed and an activity o’ is informed from this singular list. The new
pair ((se), a’) will be added to L. That is, each sequence in L; suggests one of the concurrent activities and
the number of sequences in L; implies how many concurrent activities are ongoing.

To examine whether a pair (I, a) in L; should be removed to the confirmed list, we consider the principle
that inactive sensor events over a long period suggest discontinuity of activities. That is, if the time distance
between the most recent event in ! and the current event (i.e., 7(se)) is greater than the maximum time
gap, then [ is regarded as out of date and cannot be joined with incoming sensor events.

In the end, the segmentation result is a m-sized list L. = {((se1, sea, ..., sex1),a1), ((sepii1, ..., S€x2),aa),

oy ((segm-141,-..,8€n),am)}, where ki(1 < i < m — 1) is the last index in the ith segmentation. Since
the input sensor sequence records the interleaved activities, it is highly likely that there exist two sequences
that are temporally contained or overlapping, as depicted in Figure 4.

In this algorithm, we consider the reasoner AR can be any technique for recognising sequential (rather
than overlapping) activities of a single user, no matter it is from a logical reasoning engine of a knowledge-
driven technique or from a trained model of a data-driven technique. In the next section, we will introduce
our activity recognition algorithm — matching segmented sensor sequences to activity profiles specified in
the AO.

5. PMK and Activity Recognition

Activity recognition is done by finding an activity whose condition best matches a sensor sequence. Here
we employ the PMK technique [11], which is used to find an approximate correspondence between two sets
of hierarchical concepts. PMK has been successfully utilised in recent image-based object detection and
matching studies [51].

5.1. PMK and Preliminaries

The principle of PMK is described as follows [25]: let X and Y be two sets of vectors in a D-dimensional
feature space. Pyramid matching works by placing a sequence of increasingly finer grids over the feature
space and taking a weighted sum of the number of matches that occur at each level of resolution. At any
fixed resolution, two points are said to match if they fall into the same cell of the grid; matches found at
finer resolutions are weighed more heavily than matches found at coarser resolutions. More formally, let
HY% and HY denote the histograms of X and Y at a resolution ¢, and H% (i) and HY{ (i) are the numbers
of points from X and Y that fall into the ith cell of the grid. The number of matches at ¢ is given by the
histogram intersection function:

N
T < T HY) = 3 min(HE ), 1 ),

where N is the total number of cells at a level ¢ along each dimension, which is N = 2P¢,

Since the number of matches found at a coarser resolution ¢ includes all the matches found at the finer
level £+ 1, the matches at coarser levels involve increasingly dissimilar features. To address this issue, PMK
penalises matches at the coarser level by associating the matches at each level ¢ with a weight ZL%Z, which

is inversely proportional to the cell width at that level. Thus we come to the formula:

1

ST=7 (If _ I€+1).

L—1
KYX,Y) =T+
=0

To illustrate the PMK algorithm more concretely, we develop an example from [25] to calculate the match
degree between two images. Figure 7 presents two images: Image 1 and 2, each of which has three feature
types: red diamonds, blue crosses, and green stars. The original image is considered as Level 0, which has
one cell. We count the occurrences of each feature in each image at this level and the match degree is the
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Figure 7: A PMK image matching example

sum of the minimum matches of each feature, which is min(6,6) + min(9,7) + min(9,9) = 22. Then we
place the first level of grids on these two images respectively, resulting in a regular 2 x 2 grid. Similarly
we count the occurrence of each feature in the four finer-grained cells. Take the red diamond feature as an
example. We count the match degrees in the cells from the left to the right and then from the top to the
bottom: min(2,2) + min(1,1) + min(1,1) + min(2,2) = 6. Then we sum the degrees of the three features
to be 18 (=6+45+7).

Repeatedly we place the second level of grids, resulting in a 4 x 4 grid, and calculate the match degrees
at this level cell by cell and feature by feature, whose values have been presented in the tables of Figure 7. If
necessary, we can place finer-grained levels of grid over the images, however for the purpose of demonstration,
we stop at the second level. The final result is a penalised score on the degrees measured at each level; that
is, the sum of the match degrees at the finest grained level and gradually weighted difference degrees at
adjacent levels; that is, 18 + (21 -18)/2 + (22 - 21)/4 = 19.75. The score represents the similarity between
two images, and the larger the score, the higher the similarity. If we have more images to compare against,
we can find out which image best matches a target image by comparing their match degrees. In the following
we demonstrate how to extend this image matching principle to perform activity recognition; that is, which
activity profile best matches a given sensor sequence.

5.2. PMK-based Activity Recognition

After introducing the basics of PMK, we now describe how to adapt it to support semantic matching
between the conditions in activity and sensor events. To prepare, we translate each activity’s condition
into a D-dimensional vector V', where each dimension represents a type of constraint (i.e., Location, Object,
Start Time, and Period). Correspondingly, we construct a set .S of D-dimensional vectors extracted from a
sensor segment. For a cell ¢ at a resolution level ¢ in a dimension d, we consider a value falling into the cell
if the value is more specific to the value corresponding to the cell. Since each element in an activity vector
could be composed of a set of values, we call the activity element falling into a cell if any of its values falls
into the cell. If the activity element v is more general than the value ¢ representing the cell, the falling is
quantified as the similarity measure between them; that is, simg (v, ¢).

Instead of employing uniform grids on each feature space, we use the conceptual hierarchies of the OO
and LO presented in Figure 3. Thus, the match degrees at each resolution level ¢ will be penalised by a new
weight wy, where wy is the width under the ¢th level. The final match degree between a sensor sequence
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and an activity profile is the summed degree at each resolution level in each dimension, which is formally
defined in Definition 4.

Definition 4. Let V be a D-dimensional activity profile and S be a set of D-dimensional vectors extracted
from a segment of sensor sequences. The matching degree K between V' and S is calculated in the following
formula.

D Lg—1 1
K(V,5) =) T" + -
d=1 = I wi

N(£) size(St(d))

) =T(S" (@), V) =3 > 8(0,85(d),V(d)

(Z%(d) = T (d))));

. min(1l, max, sime (v, cell(3))),  if cell(i) T S;(d) and cell(i) T V¢(d

where L4 is the number of resolution levels in a dimension d, N(£) is the number of cells, and size(S*(d))
is the size of values in the sensor segment S at a level £ in the dimension d.

5.8. Case Study

In this section we present two examples: one as a work-through example of computing the PMK match
degree on an unevenly structured hierarchy of the object ontologies using Definition 4; and the other to
illustrate how to use the modified PMK to infer activities from a sensor sequence. In the second example,
we will also demonstrate the advantage of dealing with sporadic sensor noise and inferring activities with
constraints at varying granularities.

(a) Hierarchy of domain concepts (b) Calculate match degrees between the (© Penalise match degrees at
sensed object stove and the object adjacent levels
constraint Computer on the activity 'Work'.

(d) Sum penalised match degrees

Physical
Entity

""""""""""""""""""""""""""""""""""" Level
- 10 |@-17@5r108e5r) =0
®) Level T-0)/(25710°8°6'5) =
--------------------------------- - 2to1 0.000017
Level 2 0 Level 0+0+0+0+0+
(6) I:t 3t02 0/(25"10'8'6) =0 Ijl ) 0.000017 +0 =
y /

Tevel 0.00017

& Level

____________________________________________________________________ 5t04 0/(25*10)=0

Figure 8: An example of calculating PMK match degree on the object ontology

We start from the simplest example: given one sensor event whose object feature is Stove and an activity
of Work whose object constraint is Computer, we calculate their PMK match degree on the object ontology
of Figure 3. The OO is assumed to have 7 levels and the widths (i.e., the number of nodes) under each level
are respectively 1, 5, 6, 8, 10, and 25. Following a procedure similar to that introduced in the example of
Figure 7, we start from the top concept and move down to the finer-grained concepts. That is, at level 0, we
count how many times both Stove and Computer are more specific than the root concept PhysicalEntity,
which here is 1. At each of the following levels, we count how many times both of these concepts are
more specific than any concept on that level. The calculation is illustrated in Figure 8. Then we compute

the difference between each adjacent level and penalise by the width at all the finer levels (Hf:’[ ! w;); for
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example, the difference from level 5 to 4 is 0 (=0 - 0) and the penalised weight is 1/(25*10), where 25 and 10
are the widths under levels 5 and 4 respectively. The final PMK match degree is the sum of these penalised
differences at each level. In this example the match degree between Stove and Computer on the object
ontology is 0 + 1/(25*%10*8*6*5) + 0 + 0 4+ 0 = 0.000017.

We have illustrated how to use Definition 4 to calculate the PMK match degree in the simplest form of
matching a pair of concepts on an unevenly structured hierarchy in a top-down manner. In the following,
we will use a slightly more complicated example to show how we use the PMK match degree to perform
activity recognition and deal with sporadically occurring sensor noise.

Example 2. For the sake of the space, we focus our example on the location dimension only. Using
the previous example in Listing 1, we extract location features from one segmented sensor sequence: L =
(WA WA WA WA BA,WA), where WA and BA represent workAreal and bedAreal in bedrooml (as
shown in Figure 3).

We consider three activities whose constraints are specified as: Sleep — at the bed area BA, Work — at
the work area W A, and Wander — in the bedroom BR. The Wander activity is most coarsely defined, which
entails the constraints on the other activities; pure ontological reasoning might not be able to distinguish
them. For example, the above sensor segment matches the constraint of the Wander activity; however
intuitively it suggests the Work activity while the single occurrence of BA seems more likely to be a sensor
noise.

(b) Calculate match degrees
between sensor sequence
and activities at each level

(@) Hierarchy of domain concepts (c) Penalise match degrees at (d) Sum penalised match degrees

adjacent levels

Sleep 6 Sleep (6-6)/(20110*2) =0
Level 0 Level 100 —
@ Work 6 1100 Work (6-6)/(20*10*2) =0
Wander 6 Wander (6-6)/(20*10*2) =0
Sl 6 Sl - *10) =
Y R N CECUTED
Work 6 Work -6)/(20*10) = )
o' [ N 55 SN RCECVCOECH (B .,
Wander 6 Wander (6-6)/(20*10) =0 -
y 4.8+0.06+0+0=14.86
Sleep 6 Sleep (6-1)/20=0.25 —_—
Level 2 Level
() o ° 3t02 Work (6-5)/20=005
Wander 6 Wander (6-4.8)/20=0.06
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Figure 9: A working example of using the extended PMK to calculate match degrees between a sensor sequence and ontological
activity profiles

Through Figure 9 we illustrate the processes of calculating match degrees at each level of the hierarchy,
penalising the match degrees at coarser-grained levels, and summing the degrees up to the final score.
Figure 9 (a) represents a part of a hierarchy that contains relevant location concepts from Figure 3, which
forms the basis of the calculation. We consider the whole house as level 0, the floor as level 1, the rooms in
each floor as level 2, and the specific areas contained in each room as level 3. In this example, we assume
the widths under level 0, 1, and 2 are 2, 10, and 20 respectively.

The match degree of the sensor sequence and one activity at each level is the count of how many sensor
events in this sequence agree with the activity profile in each cell at level of this location feature. For
example at level 3, only one sensor event matches with the location constraint of the Sleep activity on the
specific area BA, so the match degree with Sleep at level 3 is 1. Similarly the match degree with Work at
this level is 5. For the Wander activity, the location constraint BR is more general than both BA and W A,
both of which are assumed to be the only areas contained in the bedroom. Given that conceptual similarity
between BR and BA (W A) is 0.8, the match degree between the sensor sequence and Wander activity at
level 3 is the sum of the minimum counts on these two areas; that is, min(1,0.8) + min(5,0.8 x5) = 4.8.

The next step is to penalise the match degrees at the coarser level. For the Sleep activity, the difference
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of the degrees between levels 3 and 2 is 5 (= 6 - 1), and the penalisation on the difference is to divide by
the width under level 2; that is, 5/20 = 0.25. Moving up the hierarchy, we penalise the degrees level 1 and
0 to be 0 and 0 respectively. We perform the similar process on the Work and Wander activities. Finally, we
sum up the penalised degrees; e.g., adding the penalised degrees from level 3 up to 0 on the Wander activity:
1+ 0.25 + 0 + 0 = 1.25. By comparing the final scores between this sensor sequence and each of these
activities, we can conclude that the most likely activity is Work.

The above example demonstrates that the extended PMK algorithm can accommodate the small amount
of sensor noise and infer the correct result. In the following we will illustrate how the PMK can balance the
sensor noise with the inference of a coarsely-specified activity.

We slightly change L by replacing one WA with BA. As a result, the match degree on the Work activity
becomes: 6, 6, 6, and 4, leading to the penalised degree to be 4.1, which is lower than the match degree
on the Wander activity. Thus we will infer the Wander activity as the final result. Now we reflect one step
back: what if we use the original PMK formula; that is, we simply count the matching cells rather than use
the similarity measure? For the new L, the match degree in the location dimension on the Wander activity
would be 0.3, from the unpenalised match degrees: 6, 6, 6, and 0. In fact we will not be able to infer the
Wander activity at all, only Sleep or Work.

In summary, the underlying assumption of this modified PMK is that when a sensor sequence consists
of sensor events that are spread out in the range of a coarser constrained activity, then this method will
promote the chance of this activity being inferred. However, if the sensor events indicating a more strongly
constrained activity are accumulated then we will still be able to infer the more specific activity.

5.4. Activity Recognition Algorithm

The activity recognition algorithm starts by extracting from an input sensor sequence the semantic
features in time, location, object, and person. For each candidate activity, the algorithm checks whether its
person constraint is satisfied by the person feature. For example, given the person feature as the user R1, if
the cooking activity is set to be Resident, then we consider this activity’s person constraint is satisfied; R1
is an instance of Resident in Figure 3. For all the activities whose person constraint is satisfied, we perform
PMK-based matching algorithm on the time, location, and object features. The algorithm will produce the
match degrees, indicating how close the input sequence matches to the activity profile. The activity that
achieves the highest match score is the inferred result.

6. Experiment and Evaluation

We evaluate the segmentation and recognition algorithms of KCAR on a well-established real-world data
set. To the best of our knowledge, there are few available multi-user data sets that are well annotated in the
smart home community. After a careful selection®, we adopte the ‘Interleaved ADL Activities’ (IAA) data
set from the CASAS smart home project [5]. This data set was collected in a smart apartment testbed hosted
at Washington State University during the 2009-2010 academic year. The apartment was instrumented with
various types of sensors to detect user movements, interaction with selected items, the states of doors and
lights, consumption of water and electrical energy, and temperature, resulting in 2,804,812 sensor events.
The majority of sensors in this data set are still positioning sensors, which might restrict the semantics
analysis on sensor events and thus limit the effectiveness of KCAR in segmentation and activity recognition.
However, with the size of collected data, the length of the collection period, and the availability of the
environment knowledge, we still consider TAA as the best available data set to evaluate our technique.

The apartment housed two people, R1 and R2, who performed their normal daily activities during the
collection period. The annotated activities along with their recorded occurrence time and location constraints
are summarised in Table 1. In this data set, we find that these activities do not have explicit temporal
features; e.g., the sleeping activity is rather than defined as a proper night sleep, but as the user lying on
the bed even for a few seconds. To be consistent with our knowledge engineering principle: only consider

3Lists of home data sets: http://boxlab.wikispaces.com/List+of+Home+Datasets
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confident conditions when specifying an activity, we do not place any temporal constraints on the activities.
The only objects used in this data set is the equipment in the kitchen (e.g., the burner), which is only
relevant to the cooking activity. Therefore, we focus our constraints on the location. For example, the
wandering activity is constrained to be in a bedroom, the sleeping activity is constrained to be in a bed
area, and the cooking activity is constrained to the kitchen and using the burner object.

The person constraint is used to distinguish who is performing the same activity; for example, Wander
is defined as an instance of the activity Wandering, with a person constraint on the resident R1. We note
that in this paper we do not intend to distinguish behaviour for multiple users if they are semantically
ambiguous; for example, R1_Cook and R2_Cook are treated together as one activity Cook. This paper focuses
on demonstrating the effectiveness of using a very limited amount of more certain and less subjective
knowledge in detecting coarse-grained multi-user concurrent activities with explicit semantic implications;
e.g., recognising the situation where one user is cooking while the other is working. How to further distinguish
individual users’ behaviour patterns on the same type of activities is out of the scope of this paper. The
reason is that capturing the behaviour patterns for each individual user in performing the same activity
is very challenging, which does not only pose the risk of under- or over-specifying due to expert bias
but also requires expressive logical language to specify and computationally expensive inference engine to
process. Such knowledge is usually better discovered through sophisticated data mining and machine learning
techniques [32]. Omne of our future goals is to combine our technique with such techniques to distinguish
finer-grained interleaved activities.

We manually construct the object, location, person, and activity ontologies. We take the spatial layout
of the map, identify the critical areas where sensors are deployed, and gradually abstract the areas to rooms,
floors, and to the house level. We extract the object ontology from WordNet and manually check the noun
terms that are closest to object instances that are associated with the sensors. The person ontology only
contains 2 concepts (Resident and ElderlyResident) and 2 instances as there are only two residents. After
construction, the object ontology contains 56 concepts and 5 instances and the location ontology contains
8 concepts and 32 instances, on which we manually define 83 sensor and 13 activity instances from the 10
activity concepts. We note that these ontologies are quite small for recognising activities in a real-world
smart home environment. Complement to such small size of knowledge in activity recognition is a novel use
of hierarchy-based similarity measure and pattern recognition.

Table 1: The occurrence time and constraints on activities recorded in the TAA data set

Activity ~ Recorded Time (in hours) Location Constraint

R1_Sleep 1053.97 R1’s bed area
R1_Work 123.44 R1’s work area
R1_Wander 1.47 R1’s bedroom
R2_Sleep 1335.57 R2’s bed area
R2_Work 99.87 R2’s work area
R2_Wander 0.62 R2’s bedroom
Hygiene 83.83 basin area
Bathing 14.84 bathtub
Housekeep 1.01 living room
Eat 29.1 dining table area
WatchTV 103.03 tv area
Cook 34.05 kitchen
Home 2.30 front hall

6.1. Fvaluation Methodology
KCAR is designed as a knowledge-driven activity recognition technique, where we manually specify the
activity profiles in ontologies using common-sense knowledge. We do not use any training data to build the
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model, so the testing is performed on the whole data set.

We consider a segmentation algorithm to work well if it can detect the boundary between concurrent
activities and produce partitions into a small number of fragments that well resemble real activities. That
is, the algorithm will be measured in three parameters: accuracy — the percentage of boundaries between
activities that are successfully detected; partition percentage — the percentage of the number of the segmen-
tations over the total size of sensor events; and resembling scores — the Chi-Squared scores between the
produced segmentations and the actual activity instances recorded in the diary to measure how similar the
segmentations are to what really happened.

To evaluate the performance of activity recognition, we use a standard technique — time-slice accuracy [14,
43], which represents the percentage of correctly labelled time slices. The length of the time slice is set to one
minute in our experiment. The accuracy is evaluated using two parameters: precision and recall. Precision
is the ratio of the times that an activity is correctly recognised to the times that it is inferred. Recall is the
ratio of the times that an activity is correctly inferred to the times that it actually occurs. As an overall
measure of accuracy, we use the F-measurement that is a balanced measure of precision and recall together.

We compare the evaluation measurements of KCAR with the other two static sliding window techniques
discussed in Section 2.4: (1) fized time segmentation (FTS) where a sensor trace is divided into equal size
time intervals, which are set to be 30 and 60 seconds, labelled as FTS-30 and FTS-60 respectively; and
(2) fized size segmentation (FSS) where a sensor trace is divided into chunks each of which contains an
equal number of sensor events, which are set from 1 to 60, labelled as FSS-1 to FSS-60 respectively. To
quantify the improvement of performance (i.e., segmentation and recognition accuracies), we employ the
Welch’s t-test, which is a standard technique to test the statistical significance of the difference between
classifiers [8].

6.2. Parameter Selection

In terms of segmentation, we have mentioned two parameters in Algorithm 1: A — the maximum time
distance threshold, and (fr,fs) — the semantic threshold pair. A is set to be 30 minutes, which we consider
is enough for a dense sensing environment.

The sensor threshold g is set to separate activities with the furthest semantic distance. The semantic
distance between activities is measured on the semantic similarity between sensors that are mapped to these
activities. The mapping process is described in Definition 5; that is, if a domain concept used to characterise
a sensor (i.e., object and location) is more specific to the corresponding domain concept constrained in an
activity, then the sensor is considered as a key sensor to the activity. Using this process, each activity will
have a collection of key sensors.

Definition 5. For each activity in AO, its object and location constraint is represented as a collection of
objects Co and locations C. A sensor s is mapped to an activity if there exists an object 0 € Cp and a
location [ € Cp, such that 6(s) C o and «(s) C .

For any two activities A, A’, we compute the semantic similarity measures between their mapped sensors
S, 8" and choose the largest value as the mazimum similarity measure (MSM) between A and A’. The MSM
msm(A, A') is calculated as follows:

msm(A, A") =maz(sims(s;, s;)),Vs; € S,s; € S'.

The sensor threshold g is the smallest non-zero value among the MSMs between any two activities.
Figure 10 presents the MSM between each activity in the IAA data set, and the semantic threshold is
chosen as 0.222.

The time threshold O is set to separate sensor events that are not temporally close. Here we discuss
two strategies of setting the threshold: uniform time threshold (UTT) and tuned time threshold (TTT). In
UTT, we set a time distance d and the threshold 6 = 1 — T"iz' If simy(seq, ses) in Formula 3 is below
Or (i-e., their time distance is over d), then we dissect the corresponding sensor events se; and ses. The
principle of TTT is to tune the time distance by taking the sensor similarity into account:

d

ea(l—sims)

d'(simg) =
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R1_Sleep | R1_Work | R1_Wander | R2_Sleep | R2_Work | R2_Wander | Hygiene | Bath | Housekeep | Eat |Watch TV | Cook | Home

R1_Sleep 1 0.6 1 0.444 0.444 0.5 0.444 0.444 0.25 0222 | 0.222 0.25 0.25

R1_Work 1 1 0.444 0.444 0.5 0.444 0.444 0.25 0.222 | 0.222 0.25 0.25
R1_Wander 1 0.571 0.571 0.667 0.571 0.571 0.333 0.286 0.286 0.333 0.333
R2_Sleep 1 0.75 1 0.5 0.5 0.286 0.25 0.25 0.286 | 0.286
R2_Work 1 1 0.5 0.5 0.286 0.25 0.25 0.286 | 0.286
R2_Wander 1 0.571 0.571 0.333 0.286 0.286 0.333 0.333
Hygiene 1 0.75 0.286 0.25 0.25 0.286 | 0.286
Bath 1 0.286 0.25 0.25 0.286 | 0.286

Ho k i 1 1 1 0.667 0.667
Eat 1 0.75 0.571 | 0.571
Watch_TV 1 0.571 | 0.571
Cook 1 0.667

Home 1

Figure 10: Maximum similarity measures between activities in the IAA data set

Compared to the UTT strategy, TTT is more flexible in balancing both the time and sensor thresholds.
The intuition is that the sensor events reported in close proximity should be integrated, even though they
are not highly similar; this is useful in detecting activities that have coarser constraints. For example, the
R1_Wander activity is constrained in R1l’s bedroom that spatially contains both the bed and work areas.
These two areas are defined as the location constraints on the R1_Sleep and R1_Work activities respectively.
Using this tuned threshold, we could gather sensor traces that are spread over the room but whose timing
gap is close, potentially implying that R1 is wandering. On the other hand, as the sensor threshold fg is
meant to distinguish the activities whose semantic similarity is furthest, we could use this increasingly tighter
time constraint to dissect sensor events whose semantics are not very close. For example, we could dissect
sensor sequences for the sleeping and working activities if the timing gap between the events is not close
enough. Therefore, in the following we use the TTT strategy to set 8 and study the impact of difference
combinations of the parameters d and «.

6.3. Evaluation of Segmentation

In the following, we will evaluate the three segmentation measurements: segmentation accuracies, parti-
tion percentage, and resembling scores.

6.3.1. Segmentation Accuracies

First of all, we measure the accuracy of segmentation. A detection is considered successful if the detected
segmentation (dst, ded) is within the range of the recorded segmentation (rst, red); i.e., dst € [rst—tt, rst+tt]
and ded € [red — tt,red + tt], where t¢ is the time tolerance.

Figure 11 presents KCAR’s accuracies of segmentation on different configurations of the time distance
d and « factors in the above TTT strategy. The results show that the larger the a value is, the higher the
accuracy; and the larger the d value is, the lower the accuracy. This observation is mainly to do with the
intense sensing frequency in this data set; that is, the gap between any adjacent sensor events is as small as
1 second. Therefore, we choose the distance threshold 10 seconds and « value 8 for the following evaluation.

Figure 12 compares the boundary detection accuracies between KCAR and FTS / FSS techniques. The
results show that KCAR outperforms these two techniques at different time tolerances. The boundary
detection accuracies on the FTS techniques do not vary much at different time intervals (e.g., 30 or 60
seconds). The difference in the evaluation results is mainly to do with the effect of the time tolerance to be
evaluated on the time intervals that are used to partition, rather than with the actual segmentations. For
example, when the time tolerance is not greater than 30 seconds, then the FTS-30 technique achieves better
segmentation accuracies than the FTS-60 technique; and when the tolerance is greater than 30 seconds, the
FTS-60 technique takes over.

The boundary detection accuracies on the FSS techniques in the bottom of Figure 12 are not monotonous.
As the number of sensors increases from a very low number (e.g., 1), the accuracies go up. When the number
of sensors reaches to a certain point (e.g., 12), the accuracies start decreasing, suggesting that the majority
of the activity instances recorded in the diary include around 12 sensor events.
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Figure 11: Accuracies of semantic segmentation with various combinations of d and « in TTT

We use Welch’s t test to quantify the improvement of the segmentation accuracies. We take the seg-
mentation accuracies of KCAR at different time tolerances, and compare them with the accuracies acquired
from each of FTS and FSS techniques. With a null hypothesis HO of KCAR providing no improvement in
accuracy over FTS-30 in segmenting the data set, and an alternative hypothesis H1 of KCAR displaying
improvement, we select a standard significance level of 95% for the test, meaning that if the p-value in the
test result is smaller than 0.05, we reject the null hypothesis and accept that there is a statistically significant
improvement. The result shows that KCAR has significantly improved the segmentation accuracies over the
FTS techniques and the majority of the FSS techniques, except when the sensor size is set between 5 and
16. The choice on the sensor size might depend on the density of sensor deployment, sampling frequencies
of sensors, and the nature of activities of interest. Even though the accuracies on certain FSS techniques are
very close to KCAR, in order to set the right size on the FSS technique developers need to acquire a com-
prehensive understanding of the above knowledge. However, KCAR does not need such heuristic knowledge
and can flexibly adapt the sensor sizes without loosing the segmentation accuracies to the F'SS techniques;
therefore, we argue that KCAR is better than the FSS techniques in segmentation.

6.3.2. Partition Percentage

We expect that KCAR will combine more relevant sensor events into one segment, leading to fewer
fragments. This is evaluated in the partition percentage — the percentage of the number of the segmentations
over the total size of sensor events. Since the FSS techniques divide the whole trace proportionally (e.g.,
50% for FSS-2), we only compare the partition percentage with the FTS techniques. The results in Table 2
show that KCAR is more effective in gathering sensor events together.

‘ Segmentation Technique ‘ Number of Segments (Percentage) ‘

KCAR 80,515 (7.76%)
FTS-30 148,048 (14.26%)
FTS-60 96,713 (9.32%)

Table 2: Comparison of partition percentages between KCAR and FTS techniques
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Figure 12: Boundary detection accuracies between KCAR and FTS/FSS techniques
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t-test on segmentation accuracies between KCAR, FTS and FSS
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Figure 13: Statistical significance test on boundary detection accuracies between KCAR, FTS, and FSS techniques

6.3.3. Resembling Scores
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Number of sensor events in segments Number of sensor events in segments Number of sensor events in segments

Figure 14: Distribution of numbers of sensor events in segments between KCAR and FTS techniques

The length and complexity of the activities vary; that is, some activities last a short period, while others
last longer and trigger more sensor firings. We assume that a diverse distribution in the number of sensor
events and the temporal period of fragments resembles more closely real activities. Figure 14 compares
the distribution of the number of sensor events in segments between KCAR and FTS algorithms that are
configured with 30 and 60 second windows respectively. We can see that the long tail distribution observed
for KCAR has a much wider range of the numbers of sensor events contained in each segment and thus
exhibits better diversity.

Figure 15 shows the ratio of various time intervals of segments acquired from the FSS algorithms. Due
to space limitations, we present the results of the FSS techniques from 10 to 60. We want to evaluate how
closely the fragments resemble what happens in the real-world. As we cannot get the ground truth of how
many sensor events really contribute to a concurrent activity, we only compare the time interval distribution
of the recorded activities with that of the fragments produced by the KCAR and FSS techniques. Here we
borrow a standard statistical method, Chi-Squared scores, to perform the comparison on a pair of histograms,
where the smaller the score, the closer the histograms.

In Figure 16 we present the Chi-Squared scores between each time interval distribution of the recorded
activities in the IAA data set and the distributions of the segments resulting from the KCAR and FSS-1 to
FSS-60 techniques. The first two figures in Figure 16 show the time interval distribution on the segments
produced by the KCAR algorithm, and the interval distribution of the recorded activities in the IAA data
set. The results in the rightmost figure show that KCAR has gained the smallest score, suggesting that the
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Figure 15: Distribution of time intervals of segments in F'SS techniques

segmentations produced by KCAR better resemble the time interval distributions of the true activities. The
Chi-Squared scores of the F'SS techniques gradually decrease with the increasing size of sensors, and reach
to the lowest value (0.52) on FSS-48, which is very close to the score on KCAR (0.51). This implies that the
time interval distributions across such a number of sensor events best match the interval distribution of the
activity instances, which could indicate why, in this smart environment, the interval across a large number
of sensor events matches the interval of the majority of activity instances. However, the segmentation of the
FSS-48 technique is much less accurate than KCAR, as shown in Figure 12 and 13.

Distribution of time intervals of KCAR Distribution of time intervals of recorded Chi-Squared scores of time intervals between
segmentations activities in IAA activities and i in different
035 02 techniques
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Figure 16: Distribution of time intervals of recorded activities and Chi-Squared scores between it and distributions of KCAR
and FSS techniques

By combining the comparisons on the three segmentation measurements, we conclude that KCAR can
partition a real-time sensor sequence with interwoven, concurrent activities to a higher accuracy than the
FTS/FSS techniques. It can also produce a smaller number of segments that better resemble real-world
situations, rather than the uniformity offered by the FT'S/FSS techniques.

6.4. Evaluation of Activity Recognition

Figure 17 presents the confusion matrix, where each cell is read as the percentage of correct predictions
over actual occurrences. The results show that KCAR can accurately recognise the activities with explicit
constraints. For example, the Work, Sleep, Watch TV, Hygiene, Cook, and Home activities imply staying
in distinguishable location constraints that are exclusive from any other activities, so they are very well
recognised. Contrarily, activities like Wander and Eat that involve movement in a coarsely constrained
location are less recognised. One underlying reason could be that the current data set is positioning sensor
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R1_Sleep | R1_Work | R1_Wander | R2_Sleep | R2_Work | R2 Wander | Hygiene | Bath | H K Eat |Watch_TV| Caook Home

R1_Sleep 0.915 0.133 0.375 0.059 0.01 0 0.006 | 0.017 0.003 0.018 0.008 0.002 0
R1_Work 0.02 0.839 0.255 0.023 0.001 0 0.003 | 0.019 0.003 0.006 0.002 0 0.001
R1_Wander| 0.005 0.003 0.319 0.01 0.004 0.05 0.003 | 0.006 0.003 0.003 0.004 0.002 0.002
R2_Sleep 0.011 0.006 0.051 0.809 0.046 0.442 0.004 0 0 0 0.003 0 0.001

R2_Work 0.006 0.007 0 0.007 0.921 0.292 0.004 | 0.014 0 0 0.004 0.001 0
R2_Wander| 0.002 0.002 0 0.001 0.006 0.2 0.002 0 0 0.001 0.001 0 0.001

Hygiene 0.004 0.001 0 0.004 0.001 0.008 0.937 0 0 0 0.001 0 0

Bath 0.004 0 0 0.002 0 0 0.029 | 0.905 0 0.001 0 0 0

H keep 0.012 0.004 0 0.036 0.003 0.008 0.002 | 0.027 0.933 0.313 0.155 0.014 0
Eat 0.005 [ 0 0.014 [ 0 0 0.004 [ 0.288 0.07 0.019 0.002

Watch_TV 0.009 0.002 0 0.013 0.001 0 0.001 | 0.007 0.053 0311 0.719 0.003 0
Cook 0.004 0.002 0 0.008 0.001 0 0.006 0 0 0.055 0.023 0.951 0.012
Home 0.004 0.001 0 0.015 0.004 0 0.004 | 0.002 0.003 0.005 0.009 0.007 0.98

Figure 17: Confusion matrix of KCAR recognising concurrent activities

focused, and we believe that the availability of more informative sensors (e.g., object sensors) will help to
increase the recognition accuracy for these activities. For example, object sensors on the bed or on the
keyboard of the computers might be able to help further distinguish whether the user is actually sleeping,
using the computer, or simply wandering around.

Comparison of recognition accuracies between KCAR and FTS techniques
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Figure 18: Comparison of F-measurements between KCAR and FTS-30/60 techniques in recognising concurrent activities

To further demonstrate the effectiveness of our segmentation algorithm we compare the recognition
accuracy between the KCAR and the above FTS and FSS segmentation algorithms. We perform the same
recognition algorithm on the segmented sensor sequences acquired from these algorithms, and their F-
measurements of recognising concurrent activities are presented in Figure 18 and Figure 19. The results
show that our semantic segmentation technique helps to increase the recognition accuracy compared to
these two static sliding window approaches. We also note that the FSS techniques work better than the
FTS techniques and the smaller the size of a sensor sequence, the better the recognition accuracy. The
phenomena could be relevant to the features of the activities recorded in this data set. By looking at
Figure 16 again, we will find that the majority of the activities last a short period (i.e., 1 or 2 minutes), so
between these two static approaches, segmentations of a smaller size tend to contain less noisy or interleaving
sensor events and thus lead to a better accuracy.
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Comparison of recognition accuracies between KCAR and FSS techniques
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Figure 19: Comparison of F-measurements between KCAR and FSS-1 to -60 techniques in recognising concurrent activities
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Figure 20: Comparison of F-measurements between KCAR and the original PMK algorithm in recognising concurrent activities
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We compare the F-measurement of recognition between KCAR and the original PMK algorithm in
Figure 20. The accuracies on the Wander activities have been increased from 0 while the accuracies on their
counterparts such as the R1_Sleep and R1_Work activities have not been compromised. This means that
KCAR does help to balance sporadic sensor noise in distinguishing coarsely- and finely-specified activities.

t-test on recognition accuracies
between KCAR and PMK, FTS/FSS techniques
0.014
0.012

0.01

0.008

value

p

0.006

0.004

0.002

Q\\‘(‘q@ -“Ze'\ FSS-10 FSS-20 FSS-30 FSS-40 FSS-50 FSS-60

PMK, FTS-30, FTS-60, and FSS-1 to FSS-60 techniques

Figure 21: Statistical significance test on recognition accuracies between KCAR, FTS, and FSS techniques

We perform Welch’s t-test to measure the improvement of KCAR over the above techniques. We take
the F-measurements on each activity of KCAR and compare with the F-measurements resulted from the
original PMK, FTS, and FSS techniques. The p-values presented in Figure 21 show that KCAR achieves
the statistically significant improvement over these techniques, because all of them are smaller than 0.05,
indicating that KCAR provides a statistically significant improvement with 95% certainty. The improvement
over the original PMK algorithm is smaller, due to the low occurrences of the Wander activities (shown in
Table 1).

Multi-user concurrent activities Single-user sequential activities
Occurrence ratio 65.9% 34.1%
Recall 93.6% 86.6%

Table 3: Occurrence ratio and recognition accuracies on multi-use concurrent and singular activities

Finally, we focus on the analysis of KCAR in recognising multi-user concurrent activities. Table 3
presents the overall accuracies of recognising single and concurrent activities. More than one activity is
being simultaneously performed by different users in 66% of the time in the IAA data set, and the accuracy
of recognising these activities is 93.6%. The reason that the accuracy of recognising concurrent activities is
higher than that of single activities is that most of the time we recognise more than one activity. There are
times where activities have been inferred while there is no corresponding activity recorded in the ground
truth.

7. Conclusion

This paper proposes KCAR as a novel approach to recognise multi-user concurrent activities from an
unsegmented continuous sensor sequence. By partitioning the interwoven sensor sequence for each ongoing
activity, KCAR turns the complex task of concurrent activity recognition into an easier one of single user
sequential activity recognition. It leverages strengths both in ontological reasoning and statistical methods
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on similarity measure and matching of hierarchical concepts. It benefits from generality, low engineering
effort, and no requirement for training data.

By exploring the semantics of sensor events in the ontological model, KCAR can automatically segment
a continuous sensor sequence into meaningful partitions. Compared to two classic static sliding window
approaches, KCAR can detect the boundary of concurrent activities more accurately, and produce a smaller
number of partitions that better resemble real activities. The underlying principle is to only separate sensor
events that must be separated, but it does not guarantee the grouped sensor events map to just one user or
one activity. In addition, the current segmentation algorithm works well on positioning and objects sensors,
and we will look into how to formally define correlations between different types of sensors so that we can
segment other types of sensor data.

In terms of activity recognition, KCAR adapts the PMK algorithm to support reasoning on activities that
are profiled with constraints of varying granularity and the presence of sporadic sensor noise. The average
recognition accuracy achieved for concurrent activities is 93.6%. Currently, KCAR aims towards coarse-
grained activities that have very distinguishable semantics from the given domain ontologies; that is, the
activities that are performed in different locations, or that involve objects in distinct categories. It cannot
further pinpoint activities for individual users. For example, it can only infer Cook and Work occurring
at the same time, but cannot derive how many users are involved in these two activities or determine
which user(s) are cooking or working. Neither can it separate finer-grained activities such as stirring a pan
or retrieving ingredients. In the future we will look into finer-grained similarity measurements and other
machine learning techniques to distinguish individual user’s behaviour patterns when they perform the same
activities, as identified in Section 6. One possible direction is to use the frequency and gap of sensor events
to characterise the temporal features of different users performing the same activity.
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