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Abstract

Performance guarantees for congestion control schemes in cognitive radio sen-
sor networks (CRSNs) can be helpful in order to satisfy the quality of service
(QoS) in different applications. Because of the high dynamicity of available
bandwidth and network resources in CRSNs, it is more effective to use the
stochastic guarantees. In this paper, the stochastic backlog and delay bounds
of generic rate-based additive increase and multiplicative decrease (AIMD) con-
gestion control scheme are modeled based on stochastic network calculus (SNC).
Particularly, the probabilistic bounds are modeled through moment generating
function (MGF)-based SNC with regard to the sending rate distribution of CR
source sensors. The proposed stochastic bounds are verified through NS2-based
simulations.

Keywords: Stochastic network calculus, backlog bound, delay bound,
cognitive radio sensor networks, rate-based congestion control, AIMD

1. Introduction

Inefficient usage of spectrum in traditional wireless networks has lead to use
of dynamic spectrum access (DSA) solutions. Cognitive radio (CR) technology
is a capable tool to provide DSA and significantly improve performance and
spectral efficiency in the next generation wireless networks [1]. A wireless net-
work with CR-equipped nodes is called a cognitive radio network (CRN) [2]. A
CR node senses the spectrum channels to find some vacant channels, i.e., the
channels that are not occupied by primary users (PUs). Primary users in CRNs
are the licensed users that have higher priority to use the licensed channels and
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CR users can only use the licensed channels in the absence of PUs. After spec-
trum sensing, the CR node selects an appropriate channel among the vacant
channels in order to data transmission (spectrum decision) and if it is needed, a
spectrum handoff is occured (spectrum mobility). Since a CR node senses the
channels periodically, if a PU enters into its licensed channel, the CR node de-
tects the presence of PU and leave the channel immediately in order to minimize
the interference on the transmission of PUs [2]. Cognitive radio is widely used
in the different types of traditional wireless networks. Using of CR in tradi-
tional wireless sensor networks (WSNs) defines a new type of wireless networks
called cognitive radio sensor networks (CRSNs) [3]. The DSA capability of CR
sensors can reduce the collision, congestion and retransmission probabilities in
the applications of WSNs with bursty traffic. Moreover, opportunistic spectrum
access of CR sensors improves the transmission efficiency which leads to save
and reduce the power consumption of resource-limited sensors in CRSNs [3].

The dynamicity of available bandwidth in CRSNs because of PUs’ activity
and the operations of spectrum sensing and handoff, has crucial impacts on
the performance of MAC, network and transport layer protocols. The main
objective of CRSNs cannot be appropriately realized if the effects of unique
features of CRSNs are not considered in the evaluation and the tunning of the
parameters of different layers protocols. Hence, the performance evaluation of
the protocols based on the CR-related parameters is critical in order to provide
the quality of service (QoS) objectives in CRSNs. In this paper, we focus on
the performance of congestion control schemes in CRSNs.

Providing the transport layer-based QoS can be important in various appli-
cations of CRSNs. The performance metrics of transport layer should be studied
and modeled to satisfy various QoS guarantees in CRSNs. There are some stud-
ies [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] about the performance evaluation of transport
layer in CRSNs and CRNs. Most of these papers evaluate the performance of
transport layer protocols in CRNs and CRSNs based on simulations. In [14], the
sending rate distribution of rate-based congestion control schemes is modeled
in CRSNs. The [15] investigates the optimality of rate-based AIMD and AIAD
congestion control schemes in CRSNs. However, there is no analytical modeling
of rate-based congestion control schemes in the terms of stochastic backlog and
delay bounds in CRSNs.

Stochastic network calculus (SNC) is a min-plus algebra based theory in
order to model the probabilistic backlog and delay bounds of different network
elements [16]. SNC is originated from its deterministic version as introduced by
Cruz [17, 18] and is developed in [19]. There are some SNC-based performance
evaluation studies in CRNs [20, 21, 22, 23, 24]. However, there is no SNC-based
study on the congestion control schemes in CRNs and CRSNs. Modeling the
stochastic backlog and delay bounds of rate-based congestion control schemes
based on the SNC can be used to provide QoS in various applications of CRSNs.
To the best of our knowledge, there is no modeling of stochastic delay and
backlog bounds of rate-based congestion control schemes for CRSNs based on
SNC in the current literature. Among the rate-based schemes, we focus on
the popular one, i.e., generic additive increase multiplicative decrease (AIMD)
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[25]. In this paper, the stochastic backlog and delay bounds of rate-based generic
AIMD congestion control scheme are modeled in CRSNs. The stochastic bounds
are modeled through moment generating function (MGF)-based SNC [26] based
on our previous work on the modeling of the sending rate distribution of CR
source sensors in CRSNs [14]. The proposed bounds are verified through various
NS2-based simulations.

In the rest of paper, the system model of CRSN is described in Section
3. Section 4 explains the sending rate distribution of CR source sensors. The
stochastic backlog and delay bounds are modeled in Section 5. Analytical re-
sults and simulation-based verifications are presented in Section 6. Finally, we
conclude the paper in Section 7.

2. Related Work

To the best of our knowledge, there is no modeling of stochastic backlog and
delay bounds of rate-based congestion control schemes for CRSNs and CRNs
based on stochastic network calculus. In [4], the impacts of CR-related pa-
rameters on the performance of congestion control schemes are investigated in
CRSNs. The challenges of real-time transport over CRSNs in various spectrum
environments of smart grid applications are studied in [5]. The throughput and
efficiency of TCP protocol in CRNs are investigated simulation-based in [6].
Authors in [7] study the impact of PU’ activity, spectrum sensing time and the
number of wireless channels on the TCP throughput. In [8], the behavior of
TCP throughput, the size of congestion window and the value of round trip
time (RTT) are studied with regard to the heterogeneity of spectrum channels,
the spectrum sensing frequency, PU’ traffic. In [9], the impact of spectrum
sensing time and the changes of the available bandwidth of CR nodes on the
behavior of TCP congestion control are studied. A study on the TCP perfor-
mance degradation in CRNs with regard to the congestion window size, RTT
behavior and retransmission timeout (RTO) is done in [10]. In [11], based on
the PU’ activity and the number of available wireless channels, the performance
of TCP throughput is evaluated. An equation-based transport protocol for
CRNs is introduced in [12]. Authors in [13] investigate on the TCP end-to-end
delay, throughput and packet drop probability with regard to the packet size
and various CR-related parameters. However, most of these studies investigates
the performance evaluation of transport layer in CRNs and CRSNs based on
simulation and there is no analytical modeling of rate-based congestion control
schemes.

Some researchers study on the performance evaluation modeling based on
stochastic network calculus in CRNs. In [20], the effects of spectrum sens-
ing errors and various retransmission schemes in CRNs are investigated based
stochastic network calculus. In this study, the backlog and delay bounds for pri-
mary and secondary users are modeled. The authors of [21] propose a stochastic
arrival curve for spectrum sensing error process and a stochastic service curve
for a Gilbert-Elliott fading wireless channel in CRNs. Based on the proposed
arrival and service curves, the capacity limits of CRNs under wireless fading
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channel are modeled. The [22] proposes an SNC-based approach to find the
capacity of CRNs under the period and Poisson traffic types with delay con-
straints. In [23, 24], the delay bounds for cognitive radio users and primary
users in CRNs with parallel Markov modulated On-Off channels are analyzed
based on stochastic network calculus. However, there is no stochastic backlog
and delay bounds modeling of rate-based congestion control schemes in CRSNs
and CRNs.

In [14], the sending rate distribution of rate-based congestion control schemes
in CRSNs is modeled based on a semi-Markov chain and the congestion prob-
ability of network. The congestion probability of network is calculated based
on the proposed models of the queue length distribution and delay overhead of
MAC layer. In [15], the optimality of rate-based congestion control schemes is
investigated in CRSNs. In this study, the optimal rate-based congestion con-
trol schemes are obtained in order to maximize the new defined metric called
Rate-Congestion Ratio (RCR). The maximization of the RCR leads to max-
imize the mean sending rate of congestion control scheme and minimize the
congestion probability of network simultaneously. However, the stochastic de-
lay and backlog bounds of rate-based congestion control schemes in CRSNs are
not considered.

3. System Model

In wireless sensor networks, breaking the low quality and long distance wire-
less links into multiple short distance and high quality links is a usual strategy
in order to facilitate the event delivery from source sensor nodes to the sink
station. Such breaking the links is done through relay nodes. Using the relay
nodes in multiple hops can decrease the path loss and increase the lifetime of
power supply-limited sensor nodes in WSNs [27].

In our analysis, a cognitive radio sensor network is composed of several CR
source sensors and CR relay nodes in multiple hops. Forwarding the sensed data
from CR source sensors toward the sink station is done through the CR relay
nodes. The relay nodes can be grouped into multiple groups based on the their
distance from the sink and source sensor nodes. Fig. 1 illustrates the CRSN
model. The network consists of three types of nodes: CR source sensor nodes,
CR relay nodes and the sink station. The CR relay nodes are grouped into H
hops and the number of relay nodes at hop h is denoted by Nh. The number of
source nodes in the event area is N0 that sense the area in order to send some
information toward the sink station.

Each CR node has two main modes, spectrum sensing mode and data trans-
mission mode, that switches between these modes periodically. In the spectrum
sensing mode, a CR node senses the licensed spectrum to detect the activity of
primary users (PUs). The duration of being in spectrum sensing mode is called
sensing time and is denoted by ts. It is assumed that sensing is done ideally
and there is no sensing error. Spectrum sensing is done periodically with the
period of τ . After spectrum sensing, the CR node enters into the data trans-
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Figure 1: CRSN model. CR source sensor nodes send data through the CR relay nodes toward
the sink station. Primary users’ activity affect the data communication of CR nodes at each
hop in the wireless channels.

mission mode and transmit data on a vacant channel for the duration of data
transmission td = τ − ts.

The activity of primary users can be modeled by a two-state birth/death
process with the mean birth rate of β and mean death rate of α [28]. The birth
rate is equivalent to the entrance rate (β) of PUs in their licensed channels.
Also, the death rate is equivalent to the departure rate (β) of PUs from their
licensed wireless channels. A separate and independent primary user operates
at each wireless channel based on the traffic model of PUs.

A congestion control scheme is composed of three main units: congestion
detection, congestion notification and congestion avoidance [29]. Congestion
detection is the detection of some events which may cause congestion in the
network. In the literature, several events such as queue length, packet rate,
node delay, channel status and reliability parameters are used to detect the
congestion in WSNs [29]. In this paper, the queue length of nodes (most used
congestion detection parameter in congestion control schemes) is assumed as
the congestion detection parameter. It is assumed the congestion notification
is done ideally without any packet loss from the sink station toward the source
nodes. Usually, the congestion avoidance is done through rate adjustment al-
gorithms in WSNs. Regulating the sending rate of source sensors based on the
reception of congestion notification is called rate adjustment. There are two ba-
sic types of rate adjustment algorithms [29]: simple rate adjustment and exact
rate adjustment. In the simple rate adjustment algorithms, the rate adjusting
is done based on a single congestion bit. The additive increase multiplicative
decrease (AIMD) scheme is one of the popular variations of simple rate adjust-
ments. In the exact rate adjustments, the rate adjusting operation is performed
based on the exact congestion level of the network. In this paper, we consider
the generic AIMD rate adjustment as the congestion avoidance scheme which
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is executed in the sink station. The rate adjusting decisions are made in the
sink station and sent to the CR source sensors periodically with a predefined
constant period. The minimum value of the adjusted rate is assumed one packet
per time unit. We assume that the CR source sensors have a higher bound of
R packets per time unit on their sending rate because of the limitations of the
sink station. In many applications of sensor networks, the sensor nodes gen-
erate and send constant bit rate (CBR) data toward the sink station such as
environmental monitoring and data gathering [30]. Hence, the application layer
sending rate of CR source sensors is considered constant bit rate with the rate
of Ra packet per time unit.

4. The steady-state sending rate distribution of a CR source sensor
in CRSNs

The sending rate of a generic rate-based AIMD scheme is adjusted as follows
[14]

r(t+ 1) =

{
max(1, b r(t)DECc) with probability Ωr(t)
min(r(t) + INC, R) with probability 1− Ωr(t)

(1)

where t ∈ {0, 1, 2, . . .} is the discrete time instances; the r(t) ∈ {1, 2, . . . , R}
is the adjusted sending rate of sources at time t and Ωr(t) is the congestion
probability in the shared portion of network between the source nodes and
the sink station while the source nodes are sending with the rate r(t). The
congestion probabilities are calculated in our previous work [14] for CRSNs. The
r(t+1) is the new adjusted sending rate of the source nodes. The AIMD scheme
increases the sending rate additively by INC factor if there is no congested node
in the network at the duration of one time unit and decreases the sending rate
multiplicatively by DEC if at least a congestion is detected. The AIMD schemes
with the INC and DEC factors are represented by AIMD(INC,DEC).

Based on the Equ. 1, the AIMD scheme is at one of the states {z1, z2, . . . , zR}.
For each state zi (i ∈ {1, 2, . . . , R}), the rzi = i is the regulated sending rate
of scheme at state zi. A CR source sensor sends with each regulated rate for
the duration of one time unit. Therefore, the sojourn time of being in the
various states is constant value of one time unit. Consequently, we model the
AIMD scheme state process Z(t) by a semi Markov chain (SMC) with the states
{z1, z2, . . . , zR} and transition probability matrix TR×R where R is the number
of states. The Tzi,zi∗ is the state transition probability from the state zi to the
state zi∗ . This matrix is constructed with regard to the values of congestion
probabilities (Ωi). For the AIMD(INC,DEC) scheme, the elements of transition
matrix TR×R are

Tzi,zmin{i+INC,R} = 1− Ωi ∀i ∈ {1, 2, . . . , R}
Tzi,zmax{bi/DECc,1} = Ωi ∀i ∈ {1, 2, . . . , R}.

(2)

The embedded DTMC of an SMC is obtained when the behavior of the SMC
is observed at the discrete instances that the state transitions occur [31]. The
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embedded DTMC of the proposed SMC is a finite state, aperiodic, irreducible
Markov chain; hence a unique steady-state distribution can be found for this
embedded DTMC [31]. Based on the DTMC, we have a system of linear equa-
tions with R independent equations and R unknown variables. By solving the
linear equations system, the steady state distribution of the embedded DTMC,
i.e., P = (P1, P2, . . . , PR), is obtained.

The sojourn time of all states are equal to one time unit because the sending
rate is adjusted to new value at each time unit, i.e., Tz1 = Tz2 = . . . . = TzR = 1
time unit where Tzi is the sojourn time of the state zi. Therefore, the steady
state distribution of SMC is equal to the steady state distribution of embedded
DTMC because

πi =
PiTzi∑R
i=1 PiTzi

=
PiTzi
Tzi

= Pi i = 1, 2, ..., R (3)

where P = (P1, P2, . . . , PR) is the steady state distribution of embedded DTMC
and π = (π1, π2, . . . , πR) is the steady state distribution of SMC. Since the
regulated sending rate of a CR source sensor at state zi is i packets per time
unit, i.e., rzi = i, the π = (π1, π2, . . . , πR) is equivalent to the sending rate
distribution of source nodes.

5. Stochastic backlog and delay bounds

In this section, the stochastic backlog and delay bounds of rate-based AIMD
congestion control scheme are modeled based on the stochastic network calculus.
The bounds are modeled based on the sending rate distribution of source nodes.

The basic theories of stochastic network calculus [16] model the backlog and
delay bounds of a server based on the stochastic service curve and arrival curve
of the server. A rate-based congestion control scheme can be considered as a
server that its service rate is equivalent to its adjusted sending rate. Hence,
we have the service rate distribution of a server instead of its service curve.
Consequently, we can use the MGF-based backlog and delay bound theories. In
[26], backlog and delay bounds are calculated based on the moment generating
functions (MGF) of arrival process and service process. In Subsection 5.1, the
related definitions and theories are explained.

5.1. Basic Definitions and Theories

Definition 1. The (cumulative) arrival process of a server is denoted by
A(0, t) which is the (cumulative) amount of traffic (in the number of packets)
arriving at server in the time interval [0, t] [16].

Definition 2. The (cumulative) service process of a server is denoted by
S(0, t) which is the (cumulative) amount of service provided (in the number of
packets) by the server in the time interval [0, t] [16].
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Definition 3. The moment generating functions (MGFs) of A(0, t) and
S(0, t) are defined as [16]

MA(θ, t) = E[eθA(0,t)] ∀θ ∈ (0,∞) (4)

MS(θ, t) = E[eθS(0,t)] ∀θ ∈ (0,∞) (5)

where E[X] is the expectation of random process X.
Let us explain more in detail how to calculate the MGF of a cumulative

process. Suppose that the cumulative process S(0, t) has a finite number of
values s1 < s2 < . . . < sk with the probabilities p1(t), p2(t), . . . . , pk(t) for the
interval [0, t]. The value of E[eθS(0,t)] is calculated as follows:

MS(θ, t) = E[eθS(0,t)] =

k∑
i=1

pi(t)e
θsi . (6)

Theorem 1. The stochastic backlog and delay bounds of a server with
cumulative arrival process A(0, t) and cumulative service process S(0, t) are
(arrival and service processes are statistically independent and stationary) [26,
32]

P (b(t) > B) ≤ e−θB
∞∑
s=0

MA(θ, s)MS(−θ, s) ∀θ ∈ (0,∞) (7)

P (d(t) > D) ≤
∞∑
s=D

MA(θ, s−D)MS(−θ, s) ∀θ ∈ (0,∞) (8)

where b(t) and d(t) are the amounts of backlog and delay at time t ≥ 0 respec-
tively. Also, the MA(θ, s) and MS(θ, s) are the moment generating functions
of A(0, s) and S(0, s) respectively (The Appendix section provides the proof of
this theory).

5.2. Backlog and delay bounds of generic AIMD congestion control scheme

The block diagram of a rate-based AIMD congestion control scheme as a
server with its arrival process A(0,t) and service process S(0,t) is depicted in
Fig. 2. A CR source sensor adjusts its rate based on the AIMD congestion
control scheme and the received congestion notification from the sink node with
regard to Equ. 1.

It is assumed that CR source sensors generate and send constant bit rate
(CBR) data with the rate of Ra packets per time unit [30]. Hence, we have

A(0, t) = Rat

MA(θ, t) = eθRat.
(9)

Recall that a rate-based AIMD scheme is modeled as a server so that its
service is the sending of packets. The states process of an AIMD scheme, i.e.,
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Figure 2: Rate-based AIMD congestion control scheme. The A(0,t) and S(0,t) are the arrival
process and service process of congestion control scheme respectively. A CR source sensor
adjusts its rate with regard to AIMD scheme and the received congestion notification from
the sink node.

Z(t), is modeled by an SMC with transition probability matrix TR×R and
steady state distribution vector π = (π1, π2, . . . , πR) where Z(t) = zi if the
state of AIMD scheme is zi at time t. Hence, the AIMD scheme states process
Z(t) is a homogeneous Markov process with transition probability matrix T and
steady state distribution vector π. Also, the sending rate of AIMD scheme (the
service rate of server) at state zi is rzi = i packets per time unit; therefore, the
sending rate process r(t) = rZ(t)(t) is a Markov modulated process [31]. The
sending rate process, i.e., the service rate of server, can be calculated as follows

S(0, t) = S(0, 1) + S(1, 2) + . . .+ S(t− 1, t)

= r(1) + r(2) + . . .+ r(t)

=

t∑
t′=1

r(t′)

(10)

and the value of MS(θ, t) can be calculated through Theorem 2.

Theorem 2. Let Z(t) be a homogeneous Markov process of states {z1,
z2, . . . , zR} with transition probability matrix T and steady state distribution
vector π. For the Markov modulated process r(t) = rZ(t)(t), the MGF of

S(0, t) =
∑t
t′=1 r(t

′) is obtained by [33]

MS(θ, 0) = 1

MS(θ, t) = π(V(θ)T)t−1V(θ)1R ∀t ∈ {1, 2, 3, . . .}
(11)

where V(θ) is a diagonal matrix that is obtained as follows

VR×R(θ) = diag(eθrz1 , eθrz2 , . . . , eθrzR ) ∀θ ∈ (0,∞) (12)
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and 1R is a column vector with all its R elements equal to one.

Let ε ∈ (0, 1] be the permissible probability that the backlog and delay
violate the desired bounds, i.e., P (b(t) > B) ≤ ε and P (d(t) > D) ≤ ε. With
regard to Theorem 1 and Theorem 2, the backlog and delay bounds of the
rate-based AIMD scheme are calculated as follows [32]

B = inf
θ>0

{
1

θ
(ln

∞∑
s=0

MA(θ, s)MS(−θ, s)− ln ε)

}
(13)

D = inf
θ>0

{
inf

{
τ :

1

θ
(ln

∞∑
s=τ

MA(θ, s− τ)MS(−θ, s)− ln ε) ≤ 0

}}
(14)

where MA(θ, s) and MS(−θ, s) are obtained through the Equ. 9 and Equ. 11
respectively. To calculate the value of MS(−θ, s) = π(V(−θ)T)s−1V(−θ)1R,
the values of T elements are obtained by Equ. 2. Also, the π is obtained
by calculating the steady state distribution of the proposed SMC in Section
4. Since rzi = i packets per time unit for all i ∈ {1, 2, . . . , R}, the matrix
V(−θ) = diag(e−θ, e−2θ, . . . , e−Rθ).

6. Simulation results and verifications

The proposed models of stochastic backlog and delay bounds are verified
using simulations through CogNS simulation framework [13] that is a simulation
framework for cognitive radio networks based on Network Simulator 2 (NS2)
[34]. In this way, we have developed the rate-based congestion control schemes
in the transport layer of the CogNS framework.

6.1. Simulation settings

Simulation settings and the CRSN parameters are summarized in Table 1.
The CRSN area is 500×500 m2. The network consists of 6 CR source sensors
and 12 CR relay nodes (in 4 hops with 3 nodes at each hop) and a sink station.
The number of wireless channels is 6 with the same bandwidth of 1 Mbps.
One primary user per channel operates with the entrance rate (β) and the
departure rate (α). The values of α and β are varied in various experiments.
The data transmission duration (td) of CR nodes are 1 second and the value
of sensing time (ts) is varies in various simulations. A simple CSMA/CA-base
multichannel protocol is considered as MAC protocol. The routing protocol and
queue management strategy are the AODV protocol and the droptail strategy
respectively. The generic rate-based AIMD scheme is considered as transport
protocol. The packet size is set to 120 bytes. The time unit of AIMD scheme, i.e.,
congestion notification period of sink station, is set to 1 second. The maximum
sending rate of AIMD scheme (R) is 200 packets per second. The INC and
DEC factor of AIMD scheme are varies in various experiments. The queue size
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Table 1: CRSN configuration and simulation settings
Parameter Value/type

Network area 500 × 500 m2

Nodes spatial distribution
H = 4, N0 = 6,
N1 = N2 = N3 = N4 = 3

The number of wireless channels 6
The bandwidth of wireless channels 1 Mbps
PUs’ activity (α, β) variable in different experiments
Sensing time (ts) variable in different experiments
Operating time (to) 1 sec
MAC protocol Simple CSMA/CA-based multichannel protocol
Routing protocol Ad-hoc On-demand Distance Vector (AODV)
Queue management strategy Droptail
Transport protocol Generic rate-based AIMD scheme
Rate adjustment factors (INC,DEC) variable in different experiment
Unit time of AIMD scheme 1 sec
Permissible probability that the backlog
and delay violate the desired bounds (ε)

0.01

Packet size 120 bytes
Maximum allowable sending rate (R) 200 packets/sec
Queue size 100 packets
The queue length threshold for
congestion detection

90 packets

The traffic rate of application layer (Ra) variable in different experiments

of nodes is 100 packets and the queue length threshold for the detection of
congestion is 90 packets. The traffic rate of application layer (Ra) is varies in
different experiments. The permissible probability that the backlog and delay
of AIMD scheme violate the desired bounds, i.e., ε, is determined 0.01.

6.2. Verification of backlog and delay bounds models

To verify the backlog and delay bounds, it is needed to compare the analyt-
ical results with simulation results for different experiments. Table 2 shows the
parameters of four experiments which are considered to present the verification
of the backlog and delay bounds models. The traffic rate of application layer
(Ra), the sensing time of CR nodes (ts), the activity parameters of primary
users (α, β) and the rate adjustment factors of AIMD scheme (INC,DEC) are
considered as variable parameters in the experiments I, II, III, IV respectively.
In these experiments, the values of other parameters are set as denoted in Table
1.

Table 2: Different experiments to present the verification of backlog and delay bounds models
Exp. # Ra [packets per second] ts [second] (α, β) (INC,DEC)

I
{37, 40, 43,
46, 49, 52, 55} 0.1 (3,1) (1,3)

II 40
{0.02, 0.1, 0.2,
0.3, 0.4, 0.5} (3,1) (1,3)

III 36 0.1
{(5,1), (3,1), (1,1),
(1,3), (1,5)} (1,3)

IV 50 0.1 (3,1)
{(1,4), (1,3), (1,2),
(2,2), (3,2), (4,2)}

In the experiment I, the backlog and delay bounds are verified and investi-
gated for different values of application layer traffic rate Ra ∈ {37, 40, 43, 46,
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49, 52, 55} packets per second. In the experiment II, for the various values of
sensing time ts ∈ {0.02, 0.1, 0.2, 0.3, 0.4, 0.5} second, the values of backlog
and delay bounds are studied and verified. Different values of PUs’ entrance
and departure rates (α, β) ∈ {(5,1), (3,1), (1,1), (1,3), (1,5)} are considered in
the experiment III. Experiment IV investigates the values of delay and backlog
bounds for different AIMD schemes with factors (INC,DEC) ∈ {(1,4), (1,3),
(1,2), (2,2), (3,2), (4,2)}. The sensing time is set to 0.1 second for the exper-
iments I, III, IV. The primary users’ activity is considered as (α, β) = (3, 1)
for the experiments I, II, IV. The AIMD(1,3) scheme is considered in the ex-
periments I, II, III. The application layer traffic rate is set to 40, 36 and 50
packets per second in the experiments II, III and IV respectively. Recall that,
in all experiments, the value of ε (the permissible probability that the back-
log and delay violate the desired bounds) is set to 0.01. Hence, the stochastic
backlog (B) and delay (D) bounds are defined as P (b(t) > B) ≤ ε = 0.01 and
P (d(t) > D) ≤ ε = 0.01 respectively. The simulation-based and model-based
results of experiments I, II, III and IV are presented in figures 3, 4, 5 and 6
respectively.

By increasing the application layer traffic rate (increasing the arrival traffic
of AIMD server), the backlog and delay bounds increase. In Fig. 3(a) and
Fig. 3(b), the stochastic backlog and delay bounds of AIMD(1,3) scheme which
are obtained from the simulations are compared with those obtained from the
proposed backlog and delay bounds models. In Fig. 3(a), the value of stochastic
backlog bound B is depicted for various values of Ra. The model-based values of
B are calculated 35, 65, 104, 152, 209, 275 and 350 packets and the simulation-
based values are obtained 25, 51, 81, 130, 180, 253 and 345 packets for the
values of Ra ∈ {37, 40, 43, 46, 49, 52, 55} packets per second respectively that
verify the backlog bound model. Also, in Fig. 3(b), the stochastic delay bound
D is illustrated for different values of Ra. Based on the model of delay bound
(Equ. 14), the value of D is calculated 1, 2, 3, 4, 5, 6 and 7 second(s) for
the considered values of Ra respectively. The obtained delay bounds through
simulations are 0.97, 1.37, 2.44, 3.32, 4.28, 4.86 and 6.38 second(s) for the values
of Ra respectively that verify the delay bound model.

The increase of the sensing time increases the backlog and delay bounds;
because the increase of sensing time leads to more delay overhead of nodes
MAC layer; hence, the congestion probability of network nodes increase. Con-
sequently, the adjusted sending rate of AIMD scheme (service rate of AIMD
server) is reduced that leads to the increasing of backlog and delay bounds of
AIMD scheme. In Fig. 4(a), the value of stochastic backlog bound B is depicted
for different values of ts. The analytical values of B are calculated 48, 65, 91,
136, 162 and 171 packets and the simulation-based values are 40, 51, 90, 127,
150 and 165 packets for the values of ts ∈ {0.02, 0.1, 0.2, 0.3, 0.4, 0.5} second
respectively that that verify the backlog bound model. Also, in Fig. 4(b), the
stochastic delay bound D is illustrated for different values of ts. The analytical
value of D is calculated 2, 2, 3, 4, 5 and 5 second(s) for the values of ts ∈ {0.02,
0.1, 0.2, 0.3, 0.4, 0.5} second respectively. The obtained delay bounds through
simulations are 1.12, 1.37, 2.27, 3.3, 3.82 and 4.22 seconds for the considered
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values of ts respectively that verify the proposed delay bound.
By increasing the activity of primary users, the available bandwidth of wire-

less channels decreases for CR nodes. Therefore, the congestion probability of
CR nodes is raised that leads to the decreasing of the adjusted rate of AIMD
scheme. Consequently, we have greater backlog and delay bounds. In Fig. 5(a),
for different values of (α, β), the values of stochastic backlog bound B are de-
picted. The calculated values of backlog bound B based on the proposed model
are calculated 19, 25, 31, 83 and 147 packets for the value (α, β) ∈ {(5,1), (3,1),
(1,1), (1,3), (1,5)} respectively. The values of backlog bounds through simu-
lations are obtained 15, 20, 28, 66 and 135 packets for the considered values
of PUs’ activity that verify the stochastic backlog bound model. Also, in Fig.
5(b), the values of stochastic delay bound D are illustrated for the various val-
ues of (α, β). The D is analytically calculated 1, 1, 1, 3 and 5 second(s) and
is obtained 0.42, 0.58, 0.77, 2.16 and 3.77 seconds based on simulation for the
values of (α, β) ∈ {(5,1), (3,1), (1,1), (1,3), (1,5)} respectively. The obtained
results verify the stochastic delay bound model.

Increasing the INC factor and decreasing the DEC factor of AIMD scheme
raise the adjusted rate of AIMD scheme (service rate of AIMD server). Hence,
the backlog and delay bounds will be smaller. In Fig. 6(a), the values of
stochastic backlog bound B are depicted for various AIMD schemes. The model-
based values of B are calculated 415, 227, 29, 11, 7 and 6 packets and the
simulation-based backlog bounds are obtained 368, 214, 17, 5, 4 and 2 packets
for the AIMD schemes with factors (INC,DEC) ∈ {(1,4), (1,3), (1,2), (2,2),
(3,2), (4,2)} respectively that verify the backlog bound model. In Fig. 6(b), the
stochastic delay bound D is illustrated for different AIMD schemes. The model-
based values of D are calculated 9, 5, 1, 1, 1 and 1 second(s) and the simulation-
based values are obtained 7.6, 4.51, 0.56, 0.12, 0.08 and 0.06 second(s) for the
AIMD schemes with factors (INC,DEC) ∈ {(1,4), (1,3), (1,2), (2,2), (3,2), (4,2)}
respectively that verify the delay bound model.

7. Conclusions

In this paper, the performance of rate-based AIMD congestion control scheme
has been evaluated based on the stochastic network calculus (SNC). In this way,
the stochastic backlog and delay bounds have been modeled based on the send-
ing rate distribution of CR source sensors using the moment generating func-
tion (MGF)-based SNC. The proposed probabilistic bounds have been verified
through several NS2-based simulations. Future study in this research field can
be the finding of optimal AIMD congestion control schemes in order to minimize
the backlog and delay bounds and congestion probability for CRSNs in various
applications.

8. Appendix

Proof of Theorem 1 [32] : For a server with arrival process A(0,t) and service
process S(0,t) that are statistically independent and stationary, the stochastic
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Figure 3: The verification of stochastic backlog and delay bounds models by the simulations
in the experiment I
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(b) Stochastic delay bound (D) vs. sensing time ts

Figure 4: The verification of stochastic backlog and delay bounds models by the simulations
in the experiment II
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Figure 5: The verification of stochastic backlog and delay bounds models by the simulations
in the experiment III
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Figure 6: The verification of stochastic backlog and delay bounds models by the simulations
in the experiment IV
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delay and backlog bounds are calculated as follows [16]:

P {b(t) > B} ≤ P
{

max
0≤s≤t

{A(s, t)− S(s, t)} > B

}
(15)

P{d(t) > D} ≤ P
{

max
0≤s≤t

{A(s, t)− S(s, t+D)} > 0

}
(16)

where b(t) and d(t) are the amounts of backlog and delay at time t ≥ 0 respec-
tively. By applying the Chernoff bound [16] on the right hand side of Equ. 15,
we have for ∀θ > 0:

P

{
max

0≤s≤t
{A(s, t)− S(s, t)} > B

}
(17)

≤ e−θBE[e
θmax0≤s≤t {A(s,t)−S(s,t)}

] (18)

≤ e−θB
∑t
s=0 E[eθA(s,t)−θS(s,t)] (19)

= e−θB
∑t
s=0 E[eθA(0,s)−θS(0,s)] (20)

≤ e−θB
∑∞
s=0MA(θ,s)MS(−θ,s) (21)

consequently, MGF-based stochastic backlog bound is calculated as follows:

P (b(t) > B) ≤ e−θB
∞∑
s=0

MA(θ, s)MS(−θ, s) ∀θ ∈ (0,∞). (22)

Similarly, by applying the Chernoff bound [16] on the right hand side of Equ.
16, we have for ∀θ > 0:

P

{
max

0≤s≤t
{A(s, t)− S(s, t+D)} > 0

}
(23)

≤ E[eθmax0≤s≤t {A(s,t)−S(s,t+D)}] (24)

≤
t∑

s=0

E[eθA(s,t)−θS(s,t+D)] (25)

≤
∞∑
s=D

MA(θ, s−D)MS(−θ, s) (26)

consequently, the MGF-based stochastic delay bound is obtained as follows:

P (d(t) > D) ≤
∞∑
s=D

MA(θ, s−D)MS(−θ, s) ∀θ ∈ (0,∞). (27)
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