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cUniversità di Modena e Reggio Emilia, Italy
dUniversidade Federal do Ceará, Brazil

Abstract

We live in a world where demand for monitoring natural and artificial phenomena is growing. The practical importance
of Sensor Networks is continuously increasing in our society due to their broad applicability to tasks such as tra�c and
air-pollution monitoring, forest-fire detection, agriculture, and battlefield communication. Furthermore, we have seen
the emergence of sensor technology being integrated in everyday objects such as cars, tra�c lights, bicycles, phones,
and even being attached to living beings such as dolphins, trees, and humans. The consequence of this widespread use
of sensors is that new sensor network infrastructures may be built out of static (e.g., tra�c lights) and mobile nodes
(e.g., mobile phones, cars). The use of smart devices carried by people in sensor network infrastructures creates a new
paradigm we refer to as Social Networks of Sensors (SNoS). This kind of opportunistic network may be fruitful and
economically advantageous where the connectivity, the performance, of the scalability provided by cellular networks
fail to provide an adequate quality of service. This paper delves into the issue of understanding the impact of human
mobility patterns to the performance of sensor network infrastructures with respect to four di↵erent metrics, namely:
detection time, report time, data delivery rate, and network coverage area ratio. Moreover, we evaluate the impact of
several other mobility patterns (in addition to human mobility) to the performance of these sensor networks on the
four metrics above. Finally, we propose possible improvements to the design of sensor network infrastructures.

Keywords: Wireless Sensor Networks (WSNs), Human Mobility, Opportunistic Networks, Social Networks of
Sensors (SNoS), Mobile Ad-Hoc Networks (MANETs)

1. Introduction

Since their introduction in the 1950s as a US military application to track Soviet submarines (known as the Sound
Surveillance System, SOSUS) [1], sensor networks have taken on an increasing practical relevance [2] and the number
of deployed sensor network infrastructures is now di�cult to quantify [3]. Further, the recently-introduced paradigm
of the Internet of Things (IoT) shows that we are moving toward a world where “smart” physical objects augmented
with computing and sensing capabilities will be seamlessly integrated to many aspects of our lives [4]. When con-
nected and mobile, these sensors form a mobile opportunistic network of sensors; while static sensors are attached to
the physical infrastructure, mobile sensors are carried by social entities (such as humans). In this work, we refer to
such a network as a “Social Network of Sensors” (SNoS). The “Social” aspect arises due to the patterns of interactions
originated by the movements of the actors carrying the “objects” endowed with sensing capability (sensors) [5]. In
fact, people’s movements are far from random and inherently embed the social aspects related to human interactions
[6, 7].
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One aspect of SNoS that makes it di↵erent from traditional sensor network infrastructures is that some of these
sensors can be mobile as a consequence of the social movement of individuals (e.g. humans, vehicles). This means
that movement is achieved without requiring any energy from the sensor to achieve mobility. Individuals carry devices
such mobile phones, smart watches, and tablets which are endowed with sensing capabilities [8, 9].2 As a consequence
of such mobility, these nodes can be very e↵ective in a SNoS infrastructure given that they can be opportunistically
exploited to dynamically patrol and monitor the environment (e.g., tra�c monitoring, monitoring of crime, prevention
of forest-fires, tornado-warning systems, detection of chemical and biological traces as well as radioactivity). Mobile
nodes in SNoS can be extremely valuable in locations where—in the future—enough smart objects can opportunis-
tically exploit the environment or where the deployment of dense-enough wireless static sensor nodes would not be
possible or economically feasible. In fact, the existence of mobile nodes can be used to improve network coverage
e�ciency or to eliminate “blind spots of coverage” caused by low availability of sensors [10, 11].

In recent years, a considerable amount of research work has been devoted to understanding how some degree
of mobility, typically via mobility mechanisms embedded in sensor nodes [12], may improve the e↵ectiveness of
sensing coverage and data dissemination [13]. From a di↵erent perspective, many researchers faced the issue of
exploiting humans carrying smart phones as sensor nodes, and analyze how and to which extent they can e↵ectively
achieve sensing goals [8]. However, the issue of how a network of mobile sensors integrated with fixed sensor-
network infrastructures can produce an overall impact on sensing performance and data delivery has not been deeply
investigated. Moreover, neither the scaling of such network with respect to the number of mobile nodes nor the
optimization at the level of network design has been proposed. Indeed, in the design of sensor infrastructures, the
mobility is surely coupled with fixed sensors, because di↵erent mobility patterns may lead to di↵erent interaction
patterns between mobile sensors and static sensors. These interaction patterns reflect are the consequence of the
interaction between social actors in the SNoS, thus the understanding of di↵erent mobility patterns in the context of
sensor networks should help us design more e�cient infrastructures.

The understanding of human trajectories are an important component in a number of major subjects, such as
urban planning, tra�c forecasting, epidemics modeling, and of course, our proposed SNoS. Specifically, a class of
mobility models, generally known as random walks, has been quite successful at reproducing the statistical properties
of movements at a long-term limit. The main mechanism consists of a series of successive random events, alternating
displacements (i.e. movements) and changes of direction. Therefore, we compare the performance of four of the most
studied mobility models in literature. Brownian Motion [14] is used as a reference null model, because it is widely
used in formal proofs due to its analytic tractability. Lévy Flight [15, 16] has been used to model both animal and
people spatial patterns. CTRW (Continuous-Time Random Walk) [17] enabled the modeling of temporal patterns of
trajectories. The Individual Mobility (IM) model as proposed by Song et al. [18] represents the state-of-the-art in
human mobility modeling. The mobility models have been selected not only because of their relevance to the field,
but also due to their accuracy in reproducing large-scale regularities in human trajectories.

The main idea of this work is to characterize and analyze the performance in a SNoS composed of both mobile
and static sensors in order to understand the design choices that could be made in deploying SNoS infrastructures in
metropolitan environments. In the model we propose we assume that:

• Mobile sensors are carried by people, and the human mobility patterns that drive their movements have been
modeled around the typically social mobility patterns of metropolitan environments. Although sensors could
also be carried by cars or other mobile entities, in urban environments (e.g. Manhattan), the mobility of people
tend to dominate others kinds of mobility.

• Static sensors are assumed to be deployed uniformly throughout the environment. This is realistic for metropoli-
tan environments, where one could assume sensors to be deployed (or recruited) via specific design choices.

Using a number of simulations, we evaluated the behavior of a SNoS regarding the number of mobile sensors and four
di↵erent mobility patterns in metropolitan environments. For that, four metrics have been benchmarked: detection
time, report time, sensing coverage area, and data delivery rate. Detection time measures the responsiveness of

2At the time of writing of this paper, some popular smartphone brands were already equipped with a myriad of sensors. E.g., The Samsung
Galaxy S5 had geomagnetic, temperature, humidity, air pressure, and many other sensors.
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the network in recognizing new events. Report time captures the delay in information flow between two locations
(generally called as source or detection location, and sink, where the event needs to be reported to). Coverage area
describes the e�ciency in covering the environment without leaving blind spots. Last, delivery rate is the fraction
of events reported within a time constraint. We observe that mobile sensors can notably help delivery of the data
to specific sinks (nodes responsible for collecting events detected by the network), and that the decision on where
to place sink nodes is crucial to the performance of the overall SNoS infrastructure. Furthermore, we show how to
extract the minimum number of mobile sensors required to achieve a good trade-o↵ between performance and cost
by detecting the threshold density of mobile sensors after which there is nearly no benefit to performance. The main
results of this work can be summarized as follows. First, the e↵ect of mobility models to the performance of sensor
networks is crucial in sparse network becoming less relevant as the sensor density increases. Second, the sensor
radii (communication range) is more important than the density of sensors in the environment. Third, the Individual
Mobility model [18, 19] (the most accurate model to date) performs poorly compared to other mobility models, which
may pose a big challenge in the engineering of sensor network infrastructures.

The rest of the paper is organized as follows: Section 2 discusses related work in sensor networks, participatory
sensing, and mobility dynamics; Section 3 describes our SNoS model , the design of the SNoS simulator, and how we
compare the performance of di↵erent mobility models; Section 4 illustrates and discusses the simulation results and
our main findings; Section 5 summarizes this paper and provides the basis for future works.

2. Related Work

This work relates to three di↵erent research areas: (i) sensor networks, which deals with spatially distributed
sensors used to monitor physical and environmental conditions; (ii) participatory sensing, which refers to the ability
to create sensing infrastructures out of smart phones already distributed with people, and (iii) mobility dynamics,
which aims at modeling and understanding patterns of mobility and how they can be used to model mobility of
objects in the real-world.

2.1. Sensor Networks

Most of the works on sensor networks are on coverage, protocols, and algorithms to optimally deploy sensors
[20–24]. The main di↵erence among these works is on how the desired positions of sensors are computed. Typically,
mobility is only exploited to achieve a static optimal configuration in an enlarged sensing environment, rather than
in an environment where the dynamics of sensors’ movements are exploited as an added characteristic of the sensor
infrastructure [25].

Liu et al. [10, 26] formally proved, under simplified assumptions, that sensor mobility can be exploited to e↵ec-
tively reduce the detection time of a stationary intruder and improve network coverage when the number of sensors is
limited. The basic concept behind their work is that, given a fixed number of sensors, the coverage area is inherently
bound by the density of sensors. However, if sensors are allowed to move, the area that can be covered increases
because sensors are now able to reach locations in the environment that would otherwise never be covered. In any
case, the mobility models investigated are based on simple assumptions about mobility, and nothing is said about the
potential impact of more realistic mobility models. In [12], Chin et al. investigate the problem of target detection and
they evaluate the detection latency using a mobile sensor network with coordinated sensing but uncoordinated mobil-
ity. They found out that mobility improves detection latency compared to a static network with the same number of
nodes as the mobile one. The sensing range of the sensors is based on a probability function; the further the sensor
is from a target, the less likely the sensor will detect the event. Our model uses the simpler Boolean approach, which
assumes that if the event is within the radius of a sensor, the event will always be detected.

Understanding the impact of mobility patterns is also of relevance in the design of forwarding protocols. Bild
et al. [27] exploited the predictability of mobility patterns of people to improve the reliability and scalability of
routing on Mobile Ad-Hoc Networks (MANETs). Scalability is important because most routing protocols do not
scale to very large networks without traditional fixed infrastructures (obviously hard to be made available in hostile
environments). Since they used a mobility model very similar to ours, we believe that most of their results also
apply to our work, the consequence is that it may be possible to build MANETs of wireless devices (phones) at
a city scale. More recently, human mobility has been studied in the context of metropolitan environments [28].
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Authors confirmed some of the results obtained in smaller test environments. In particular, wireless networks that
exploit human mobility exhibit a power-law distribution for contact and inter-contact times. Moreover, they showed
the characteristics of the connectivity properties of human mobility, such as the small world phenomenon and the
non-homogeneous betweenness centrality of sensor nodes, that is, some devices are better to act as forwarders.

2.2. Participatory Sensing

Participatory sensing is concerned with the possibility of using users’ personal devices to form a sensor network
[8, 9]. This is another area that recently emerged in the scientific community in which the impact of user mobility
is very important. Participatory sensing relies on users holding smart (e.g., with sensing capabilities) phones to
act as sensor nodes, i.e. by dynamically involving them in acquiring information about specific phenomena in an
environment. Our approach tries to incorporate the best of the traditional sensor network sensing and of participatory
sensing, by defining a hybrid system in which mobile human-carried devices and fixed sensing devices cooperate to
improve coverage and data distribution.

In pure participatory sensing systems, the location and movement of people have a dramatic impact on the coverage
of the sensed phenomena. This bi-directional relationship aspect between human and opportunistic networks has been
covered for the case of IoT by Guo et al. [29]. On one hand, the opportunistic behavior becomes the main media to
sense and monitor the human dynamics (e.g., mobility patterns can be learned from the GPS traces) and conversely,
the performance of opportunistic IoT systems is a↵ected by such dynamics. For example, discovery of an event
cannot be guaranteed in participatory sensing, because one cannot exert control on the position of users or on their
willingness to participate. At most, based on the analysis of mobility patterns, one can reason about the sensing area
and on the minimal percentage of users that must be involved to probabilistically ensure coverage of such an area.
Having the opportunistic, distributed sensing and computing characteristics, our model falls in the broader category
of Mobile Crowd Sensing and Computing (MCSC) systems. Guo et al. [30] thoroughly review unique features and
applications areas of MCSC systems. It also introduces a framework to build MCSC systems based on 5 layers: 1–
crowd sensing; 2–data transmission; 3–data collection infrastructure; 4–crowd data processing; 5–applications. Our
work aims to provide support in solving the issues at the data transmission level by providing a model to test protocols
scaling under di↵erent mobility models and spatial distributions, but without having to deal with low level details of
wireless technologies. Furthermore, it helps to test the robustness of data delivery among highly mobile devices. It
also contributes at the data collection infrastructure layer, because it allows to test the deployment of nodes in the
network which is useful to predict the scalability of the system and to pinpoint issues in coverage of the area. Our
approach by accounting for the existence of fixed sensor nodes, goes in the direction of a more realistic future scenario,
in which the opportunistic synergy of infrastructural sensing devices and of users will increase sensing coverage and
exploit the best of human mobility.

Some recent approaches to participatory sensing propose to increase the percentage of people participating in
sensing activities or to a↵ect their mobility patterns so as to reduce coverage problems. Many approaches rely on
monetary incentives [31] to improve user participation, although some recent proposals also suggest a↵ecting partici-
pation and mobility patterns by means of a gaming approach [32], the recent Pokemon Go game3, is a clear example
of people movements being drive buy incentive in the game. Even though our current work does not account for the
possibility to influence the mobility patterns of users, this is definitely an interesting area of future development and
useful to the design of sensor networks. Jaimes et al. [33] provides an extensive survey on participatory sensing that
we highly recommend to interested readers.

2.3. Mobility Dynamics

Random walks are a powerful tool to model individual mobility; in our work, we show that these models can
be useful to better analyze the impact of mobility in SNoS [34]. One of the first patterns of movements studied by
scientists was the model that is generally referred to as Brownian motion, because it was observed in 1827 by the
botanist Robert Brown, and later explained by Albert Einstein [14]. This process consists of an alternation of fixed

3New as of July 2016
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size steps in arbitrary directions. A Brownian motion is, in some sense, the limit in distribution of a symmetric random
walk Mn defined in terms of a series Z of n random variables Z1,Z2, . . . ,Zn with M0 = 0:

Mn =
nP

i=0
Zi Zi =

(
1 with P(1) = 1

2 ,
�1 with P(�1) = 1

2 .
(1)

In other words, Brownian motion can be approximated by a random walk when the number of steps n ! 1. It is
often assumed that Brownian motion does not have a practical relevance as a mobility model but it has been shown
to be useful in describing the flight pattern of some insects [35]. In spite of not being an appropriate model of human
mobility, simple random walks as described here, engender a number of more complex mobility models and have also
been used in research literature for the analytic tractability.

In 1947, the French mathematician Paul Pierre Lévy proposed a new type of random process based on a specific
kind of probability distribution known as heavy-tailed. More precisely, in a Lévy flight the probability P(�r) of
finding a step of length �r decays with

P(�r) ' |�r|�1�↵, (2)

for 0 < ↵ < 2. The proposed method has been shown to be extremely useful to model the dynamics of critical
phenomena in physics [36]. Moreover, scientists have used Lévy walk to describe the flight pattern of wandering
albatrosses [37], the foraging pattern of spider monkeys [38], and also human mobility [16].

The aforementioned random processes can only capture the spatial properties of the movements. An extension
of such processes that is capable to capture both the spatial and the temporal patterns of motion is the family of
Continuous Time Random Walks (CTRW). CTRW is a random walk that includes random waiting times {�t1,�t2, . . .}
between movements (jumps) {�r1,�r1, . . .} represented by mutually independent identically distributed (iid) random
variables. Thus, the number of jumps n taken by a particle in a time interval �t is also a random variable in CTRW.
Both the displacements �ri and waiting times �ti are drawn from two probability density functions, respectively P(�r)
and P(�t). A case where the distribution of waiting times has infinite variance (e.g., power law) is treated in [39] and
it has been used by Brockmann et al. [40] to describe the scaling laws for the flow of bank notes, and then to infer
the dynamics of human travels. Jump lengths distribution and waiting time distribution in human mobility have been
found to follow a power law

P(�r) ⇠ (�r)�(1+↵) P(�t) ⇠ (�t)�(1+�), (3)

with ↵ = 0.59 ± 0.02 and � = 0.60 ± 0.03. Gonzalez et al. [41] further improved the result by showing that the
mobility of humans is characterized by a time-independent travel distance and a significant probability to re-visit
previously visited locations. Their findings suggest that human trajectories are even better approximated if the jump
length distribution follows a truncated power law

P(�r) ' (�r + �r0)�1�↵ exp(
��r

k
). (4)

Enabled by the increased availability of location data [42], a number of recent studies have focused on proposing
sound and realistic human mobility models. Today, it is generally understood that human mobility patterns are non-
random. This property has been studied by Song et al. [18] who explored the limits of predictability in human
dynamics; the authors found a 93% predictability in user mobility and showed that it is independent of the distance
users cover on a regular basis even if travel patterns di↵er considerably. These results are especially relevant because
they tell us that human movements are not random thus the predictability can be exploited to increase performance and
e�ciency of sensor network protocols (e.g., routing data to sinks). Song et al. [19] have proposed a model for human
mobility based on preferred locations where the jump length �r and the wait time �t follow a power-law distribution
with exponential cuto↵s as given in the following equations:

P(�r) = (�r + �r0)�1�↵ exp(��r
k1

), P(�t) = (�t)�1�� exp(��t
k2

), (5)

where ↵ and � control the scaling of jump length and wait time respectively, k1 is the cuto↵ value of the jump length,
k2 is the cuto↵ value of the wait time, and �r0 is the minimum jump length. Furthermore, the model incorporate two
generic mechanisms, exploration and preferential return, both unique to social human mobility and missing from the
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traditional random-walk (Lévy-flight or CTRW) models. The two mechanisms are as follows:

Exploration: a scaling law is proposed to indicate that the tendency to explore additional locations decreases with
time. Indeed, the longer we observe a person’s trajectory, the higher is the probability that he visited all nearby
locations. Each jump can be an exploration jump with probability

Pnew = ⇢S ��, (6)

where S is the number of distinct visited locations by the person (maybe carrying a sensor), while ⇢ and � are
parameters that characterize human mobility.

Preferential Return: humans show significant propensity to return to previously visited locations, such as their home
or workplace; this happens with the complementary probability

Pret = 1 � Pnew. (7)

The above means that a person goes back to a visited location i choosing it with a probability ⇧i = fi, proportional
to the number of visits fi made by that person to that location. As a person visits new locations, the number of
distinct visited location S increases, thus reducing the probability of a new exploration jump (Equation (6)). This
model—even in its simplicity—is able to capture most of the characteristics of human mobility, thus we chose it as
our reference human mobility model.

Some recent works in human mobility modeling are based on Network Science to represent social ties, by consid-
ering these as a primary drive of individuals’ movements. Social relations are described as a network, where nodes
represent individuals and weighted links represent the strength of the social connections. The main idea is that the
next location chosen by the user depends on the position of people with whom the user shares social ties. For instance,
the HCMM model [43] applies and extends this idea by adding a location preference and incorporating power-law
distribution of the jumps. In order to capture the periodical pattern in movements, GeSoMo [44] introduced the con-
cept of time-varying networks, that is, the social strength of relationships among users (i.e. the weight of the edges in
the social network) changes with time. Although these models give a thorough representation of human movements
in a very particular scenario, they lack generality and they are usually too complex for mathematical reasoning and
formal analysis. Furthermore, they require a large number of parameters, which are unknown, and tuning to accurately
represent the chosen scenario. As such, we neglect to model the microscopic details of individual movements and
focus only on regular everyday human mobility patterns [45].

3. Simulating Social Network of Sensors (SNoS)

In this section we propose a model for simulating Social Networks of Sensors. We were motivated to introduce
our model, because most of the theoretical results in sensor networks and mobility do not match to real setups, that
is, they use random motion and uniform sensor deployment which tends to be unrealistic for a Metropolitan scenario.
At the same time, we tried to avoid the complexity and lack of broad applicability of truly realistic simulations. In
practice, the choice of a simulator depends on two factors: the environment in which implement the simulation, and
the model of the simulation. There exist several environments that enable to simulate with di↵erent degree of fidelity
the layers of the ISO/OSI network stack, such as ns2-3 [46, 47], OMNeT++ [48], dtnsim [49], dtnsim2 [50], and
the ONE [51]. Simulations based on these environments, such as [52] and [53], often require real-world traces that
have low spatial and temporal granularity, lack a high number of individuals, or the population in them is fixed and
highly specialized. Furthermore, these studies tend to focus mostly on the routing protocols. Another issue is that in
dealing with such a fine detail in the simulation, the models are prevented from scaling to large number of devices or
over large time periods. The CCPAC simulator [54] for opportunistic mobile networks (OMNs) attempts to improve
scalability, but then it ends up concentrating on only one thing, the routing process in OMNs. No other part of the
network stack is simulated.

Therefore, to provide a trade-o↵ between accuracy and generality in the representation of a sensor network, we
introduce some social aspects, and we create a new sensor network paradigm we named Social Networks of Sensors
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(SNoS). With this approach, the temporal and spatial granularity can be set as high as what is needed for good
simulation. Also, the number of nodes and their behavior is easily varied for di↵erent scenarios and sensitivity
analysis. Sensors are not deployed a priori nor move randomly in our approach. Instead, we attach sensors to people
in order to get mobility for free (as a result of the natural movement of people), which leads the movement of sensors
to follow that of the population; they follow a pattern characteristic of human mobility. This pattern is especially
important to consider, because sensors that interact with each other also reflect the pattern of interaction of the entities
to which they are attached, i.e. sensor’s interaction patterns reflect human social behavior. By introducing the SNoS
paradigm, we argue we can gain a better understanding of the performance and the design issues that arise in such
sensor networks.

There are many scenarios where social dynamics may have an impact on Social Networks of Sensors. The kind
of network we envision here can be found in smart cities. In these cities there are mobile and static sensors com-
municating with each other. This kind of environment is usually characterized by a relatively high sensor density
and many types of mobile entities (e.g., people, cars, bikes). SNoS networks have a number of design challenges.
Performance-costs trade-o↵s are quite stringent, indeed while critical events (e.g., fires, thefts, leakages) should be
detected as fast as possible and area coverage should be maximized, the number of sensors that can be deployed is
likely very limited, and power consumption poses a limit on the sensing range. Moreover, given the size of the net-
work (as number of sensors and area to be covered) and the need to be both resilient to failures and reliable in terms
of availability, it is recommended that control be decentralized and self-organized. Finally, another major challenge
to deal with is the heterogeneity in terms of connectivity, the computational power, and the power requirements of the
entities in the network. The solution we propose is to exploit human mobility along with the current infrastructure to
reach a reasonable tradeo↵ between performance and costs. Indeed, sensors carried by vehicles or people increase the
coverage by exploring new locations as time passes.

Our simulations focus on two aspects. First, we compare the performance of di↵erent mobility models in a SNoS
with both fixed and mobile sensors, paying special attention to human-like mobility. In particular, we benchmark
three issues in sensor networks: (i) the time tD to detect an event (source) in the environment, (ii) the time tR to report
that event to a specific location (sink) in the environment, and (iii) the fraction fa(t) of sensing-coverage area. Our
ultimate goal is to find how much the mobility model a↵ects performance, and if there is a threshold in sensor density
after which the mobility model is less relevant to the performance. Second, we show how to deploy a SNoS realistic
environment (based on population density) and the scaling of performance that can be expected.

3.1. The Model

We start with a representation of the environment. We envision a mix of mobile and fixed sensors in a metropolitan
environment where people carry sensors forming a SNoS, but fixed sensors are attached to the city infrastructure [55];
Figure 1 depicts a city with fixed sensors (light, temperature and sound) coupled with people distributed in the city
who assumed to carry smart devices with sensor capabilities. The city model consists of a square lattice of side `
(representing the metropolitan area) divided in square patches of one unit area (representing blocks); we have used
this approach because it avoids us worrying about side-e↵ects to our results due to the geography of the city. In this
environment, we deployed two types of sensors: static sensors are distributed along the regular lattice while mobile
sensors are distributed based on a negative exponential probability from the center of the city as proposed by Clark in
his population density model [56]:

P(� 6 d) = 1 � e��d, (8)

where P(� 6 d) represents the probability that the distance of a sensor is at most d from the center of the city
(simulation environment). Our intent is to cover the simulation area in a very similar way as cities are organized,
that is, most people are in the urbanized center while some live in the surrounding areas near the city and frequently
move into the center. Focusing on metropolitan environments, we set to work under conditions that resemble densities
of typical metropolitan areas, therefore we computed the reference city density RD = 2000 ppl/km2, as the average
density of 690 cities of the developed world with a population greater than 500,000 people as indicated in [57].

We assume a Boolean sensing network (where the event is either detected or not) with a fixed sensor radius r both
for mobile and static sensors, we can argue that an event can be detected if and only if the event is located at a distance,
d 6 r. Once the area of the environment (`2) is fixed, we can calculate the number of static sensors ns required to
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person

light sensor

temperature sensor

sound sensor

Figure 1: A sketch of a city where fixed sensors are found as part of the infrastructure and people walk around possibly carrying sensing devices.
The combination of both fixed and mobile devices forms a SNoS.

guarantee full coverage of the metropolitan area as:

ns = k2, k = (` + r)/r, (9)

where r (⌧ `) represents the radius of transmission in a square lattice of side `. Let us define A as the area of the
square environment, and a the area of a unit of area. Then, the number of mobile sensors nm required to reach a
desired sensor density � = (ns + nm)/A is given by:

nm =
x · RD · A

a
� ns, (10)

where x 2 X ✓ [0, 1] represents the fraction of reference density we consider.
Now, to simulate the detection and reporting of an event, we include two special markers in the environment: the

event and the sink. The event is what we want to detect (e.g., a fire, an explosion), whereas the sink is the place to
where report the event (e.g., a police station). The event lasts for the entire length of the simulation. This assumption
can be explained as such: in a system the e↵ects of the event survive longer than the event itself, thus they can be
detected to infer the event. We placed the sink and the event in the environment at a distance D from each other and
D/2 from the center of the environment. Thus, the value D corresponds to the diameter of a circle centered in the
middle of the environment (city), such that approximately 80% of mobile sensors are included within this circle. By
placing the event and the sink at distance D , we argue that they are located in the periphery/suburbs of the city. Such
setup represents an average scenario where a message has to be transmitted from one side of the environment to the
other (Figure 2). We chose this approach of fixing event and sink to remove one variable from the simulations which
would arise in case of a random deployment of these two markers.

Mobile sensors move at a constant speed, and they follow one of the mobility models we introduced before. We
chose a constant speed because we assume mobile sensors are carried by pedestrians. People can walk at di↵erent
speeds, but the speed is in the range of 3-5 km/h (7 km/h is the max speed for a walker, past that most people
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(a) Center of the City (b) Mobile Sensor Radius

Figure 2: (a) Setup of a simulation with 441 static nodes (violet) and 1,559 mobile nodes (dark green). The event is marked with a red cross and the
sink with a blue flag. (b) Setup of a simulation environment with 441 static nodes and 265 mobile nodes (green), where we show mobile sensors
with their radius of transmission.

start running) [58, 59]. Since we are focusing on the general performance scaling relationship, instead of accurately
modeling every aspect, we can consider the impact on the results limited. Furthermore, while pedestrians can take
other kind of vehicles that can actually speed up their movements, we can consider our assumption as a relatively
safe worst case scenario assumption. As the simulation progresses, the mobile sensors move according to a specified
model exploring the environment. Thus, the fraction of the covered area fa(t), t 2 N increases; fa(t) is defined as the
number of covered locations divided by the total number of possible locations `2, where ` is the side of the square
lattice representing the environment (as in Figure 2). A location is considered visited if it has been reached by at
least one sensor node during the execution of the simulation. At some point in time, a sensor should detect the event.
From that point onward, the sensor starts spreading the information about the detected event to other sensors with a
store-and-forward mechanism. The information of the event is stored by the sensors and forwarded to other sensors
when they are within the communication range of each other with a store-and-forward mechanism. The forwarding
protocol the sensors use to spread the message is the well known epidemic protocol [60].

3.2. The Simulation

The SNoS model has been implemented in NetLogo [61], a multi-agent programmable modeling environment;
our implementation is freely available online [62]. The simulator is fully parameterized, and it supports several spatial
distributions of sensors (e.g., lattice, uniform, exponential, normal) and di↵erent kinds of random walks (e.g., Wiener
[14], Rayleigh flight, Cauchy flight, Lévy walk [15], Lévy with an exponential cuto↵ [63], CTRW [17], IM [18],
recency model [64]). However, in this paper we do not present all the mobility models mentioned because the focus
of the paper is mostly on human-like movements.

3.2.1. Parameters Used in the Simulation
The length ` of the side of the square simulated environment is set to ` = 100. However, we had to modify

the model of spatial distribution by truncating the exponential distribution so that all sensors are placed within the
city urban area. In order to achieve this truncation, we first concentrated on the Cumulative Distribution Function
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(CDF) of the exponential distribution (Equation (8)). In our simulations, we set P(�  d = `/2) = 0.95. That is, the
probability that a sensor is found between the center of the city and one of the sides of the environment is 95% (since
the environment representing the city is a square with side `, as depicted in Figure 2). This choice means that we have
an exponential distribution with mean µ = �`

2 log 0.05 . We have to implement a truncation because a little bit less than
5% of the sensors would be placed outside the simulation environment if we strictly follow Equation (8) (some of
them will fall in the corners of the environment). When deploying the sensors in the simulation environment, if they
happen to fall outside the environment, their position is recalculated (truncation), and then they are redeployed.

The simulator is executed using di↵erent kinds of random walks—Brownian motion, Lévy walk, and CTRW—and
these are compared against the Individual Mobility model proposed by Song et al. [19]:

• Song’s model has several parameters. The scaling parameters represent exponents of power-laws distributions
for the jump length and wait time, while cuto↵ parameters control the point at which exponential cuto↵s take
place (Equation (5)). The preferential return is governed by the parameters ⇢ and � (Equation (6)). For our
model we used the parameter values as suggested by [19]: the jump-length scaling parameter ↵ = 0.55, the
jump-length exponential cuto↵ k1 =

`
10 , the wait-time scaling parameter � = 0.8, the wait-time exponential

cuto↵ k2 (it has been tested with two di↵erent values as explained later in the section), the scaling of preferential
return � = 0.21, and the preferential return probability weight ⇢ = 0.6. Finally, di↵erently from [19], �r0 = 1
due to the process we used to generate the displacement [65].

Song’s model requires a transient period to build a list of previously visited locations. In our case we chose
the transient to be 6000 ticks, which corresponds to the time for the mobile sensors to reach an average of
hNi ⇠ 100 distinct visited locations. After that threshold, P(N) decrease exponentially (see the supplementary
material of [18]).

• Brownian motion is the simplest model used. We assume a constant jump length of 1 unit, while direction is
chosen randomly at every jump.

• Lévy walk uses the same scaling parameters of Song’s model for the distribution of jump lengths. However,
Lévy walk does not have a wait time between jumps.

• CTRW uses the same parameters as Song’s model for scaling and exponential cuto↵ for jump length and wait
time. This fact facilitates the quantification of the impact of cuto↵s and preferential return, because there are
less parameters to take into account in the comparison analysis.

In order to compare simulation units to real-world measurements, we started by matching the size of the simulation
environment to a meaningful size of a city. We set the size of the square lattice ` = 100 u = 10 km, which makes
the simulation area to be A = 100 km2. Once the environment had an actual size we set the sensor radius to match
real-world technologies, in our case we chose Bluetooth that has a range of about 10 meters, which is equivalent to
r = 0.1 in the simulation environment. In order to compute the sensor density in terms of ppl/km2, we defined the unit
area a inside simulation environment as a square of 10 ⇥ 10 patches (1 km2 in actual area). Given this setup, we now
know that one discrete unit of space u in the environment is u = 100 m. The concept of time in NetLogo simulations is
discrete such that at every tick, sensors check if the event is in their radius. Those that have knowledge of the detected
event check if there are other sensors in their radius, and if so they spread the information further in a ripple e↵ect.
The simulation stops when one of the sensors with the information about the event finds the sink node. We then tried
to match the time unit (1 tick) with an equivalent unit in the real world. If we assume that mobile sensors move at a
constant speed of 1 u/tick = 100 m/tick, and that they are carried by pedestrians with an average constant speed of
5 km/h, then 1 tick equals 1.2 minutes in real time which gives us that 1 hour is equivalent to 50 ticks. We can now
give a meaning to the wait-time cuto↵ k2. We used 2 configurations: the first has k2 = 5 ticks to show the impact of
sensor radius on performance while the second case uses k2 = 17 h as found in [19].

The next step is to compute the number of mobile sensors nm. Note that from Equation (9), we know that achieving
a perfect coverage with only static sensors is not feasible, because it would require more than a million static sensors
to cover our simulation environment with a sensor radius r = 0.1. Not only that, but also static sensors will only have
a minimal impact on performance because they are limited in number and therefore do not cover much area. Hence,
mobile sensors represent the only practical way to implement a SNoS at a city level. The objective here is not to find

10



the number of mobile sensors to achieve best possible performance, but to reach a certain event delivery ratio in a
given amount of time, as a tradeo↵ between performance and the e↵ort needed to involve a lot of people. We can
obtain the number of mobile sensors as a function of the population density of the city from Equation (10). We choose
di↵erent percentages, X = {0.01, 0.015, 0.02, 0.025, 0.035, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15 }, of reference density
RD = 2000 ppl/km2 and observed the event delivery ratio to the sink. That is, how many runs out of 50 ended before
reaching the time limit, given di↵erent time constraints (4h, 5h, 6h, 8h, 10h).

3.2.2. Test of the Implementation
The results of our implementation show an accurate behavior in following Song et al.’s model. Testing has been

performed allowing a very long run time to confirm the asymptotic behavior (max S (t) ⇠ 700). The number of distinct
visited locations over time should follow S (t) ⇠ tµ, with µ = �/(1 + �); with the configuration described here our
implementation is rather accurate and gives µ ' 0.71 versus the theoretical result µ ' 0.66. Our results also exhibit
the expected Zipf’s law, fk ⇠ k�⇠ in the visitation frequency distribution of the k-the most visited locations with
little di↵erences (slight tendency to underestimate ⇠ exponent) compared to data showed in Song et al.’s work. The
di↵erences are possibly due to aggregation phenomena caused by Voronoi diagrams in Song’s approach or due to
di↵erent spatial resolution.

3.2.3. Limits of the Implementation of the Model
Every simulation has to reach a balance between accuracy and generality. They tend to be quite optimistic due

to many factors (e.g., perfect scaling, no overhead in information transmission, simplified mobility models, Boolean
sensing range). This is also the case here.

A first issue is the forwarding mechanism based on epidemic protocol, which in practice is ine�cient and would
waste both bandwidth and memory. However, there are protocols that have close to optimal performance while being
much more e�cient [66, 67]. Furthermore, the scope of this work is to study the performance from a general scaling
perspective more than a quantitative approach, therefore we consider this assumption reasonable. Another issue is
the homogeneous mobility (e.g., each sensor is statistically equivalent, and it moves at a constant speed), which
does not reflect the real-world heterogeneity, because people can use public transportation as well as other mode
of transportation. The impact of such assumption may be relevant in some scenarios because, as shown in Section
4, sensor speed can be the performance bottleneck in a su�ciently dense network. However, we can consider it a
relatively safe assumption, because it represents a worst case scenario, and there is research showing that the actual
impact is modest [68, 69]. Furthermore, the model allows to simulate only a single center city while many multi-center
cities exist. In fact, the current implementation does not allow to distribute sensors according to multiple centers. Still,
each one of the centers can be studied separately eventually. Finally, only one event and one sink can be deployed,
even though the location is not limited to the deployment used in this work, and they are static thus the deployment is
fixed a priori.

4. Simulation Results

This section is organized as follows. First, we introduce a static network in order to show the performance of
such setup. Although very expensive, its performance cannot be matched by a network of mobile sensors. However,
the prohibitive cost makes its implementation impractical. Then, we analyze the performance that should be ex-
pected from mixed networks, with in-depth analysis of the human mobility model. Last, we propose some interesting
solutions and approaches to SNoS design.

4.1. Static Networks

In order to benchmark the e↵ect of mobile sensors, we decided to first look at the performance of a network made
of only static sensors where any node has a (indirect) connection to any other node in the environment. Recall that
we have a fixed size environment, we first calculated the minimum number of sensors necessary to cover the entire
environment. This number is given by Equation (9), where r represents the radius of transmission in a square lattice
of side `. If we assume r = 5 and ` = 100, then ns = 441. Then, we run the simulator many times to get a pattern
of spread of the information defined as the number of sensors knowing the information of the event as a function of
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(c) ns = 40401, r = 0.5

Figure 3: Setups of a network with only static sensors connected in a mesh (ns = 441, ns = 1681, and ns = 40441 respectively). Each column
represents 20 runs and depict the number of nodes that have received the information about the event at that time. The red dots represent the average
number of sensors knowing the event over the 20 runs. The lines are the linear regression lines of the averages. Adjusted Adj-R2 and p-values are
respectively Adj-R2

441 = 0.997, p441 ⇠ 10�6, Adj-R2
1681 = 0.9935, p1681 ⇠ 10�12, Adj-R2

40441 = 0.9872, p40441 ⇠ 10�16.

time. The configuration here is similar to the one described for Figure 2 where D = 60. Figure 3 shows the spread
under this static-only assumption.

Most executions of the simulator stop when the simulator reaches tick number 5, tsim ' 5. It is very clear from
Figure 3 that the performance of a static network is very good if we consider the time it takes for the event to spread—
it indeed spreads rapidly. But one has to also look at other costs. The configuration depicted assumes ns = 441. Given
the nature of the square lattice, if we decrease the radius of the sensors so that r = 2.5 then tsim ' 10 ticks which
is 2 times longer than the reference setup. While the increase in time is linear and inversely proportional to sensor
radius, the number of sensors increase quadratically. Thus, the number of static sensors would have to quadruple to
a minimum of ns = 1681 when sensor radius is halved to 2.5. The same reasoning apply when we set r = 0.5 and
ns = 40401. The time tsim is in fact about 10 and 5 times respect to the previous setups, but the number of sensors is
respectively 100 and 25 times. Indeed, Equation (9) can be approximated by:

ns ⇠
`2

r2 . (11)

In the real world, one is constantly faced with budget constraints which makes some of setups as depicted in
Figure 3 unrealistic. In fact, deploying a large scale infrastructure is very expensive, and it requires a relevant man-
agement overhead. If we take the experiment to a scenario as the one explained in Section 3.1, the ability to generate
such setups is even harder. An approach to overcome budget limitations is to exploit current infrastructures and attach
sensors to mobile agents (e.g., people’s smartphones, vehicles) to achieve acceptable performances while keeping
costs under control.

4.2. Mobility Model Performance

The analysis in a mixed environment is more complex because we must distinguish between static nodes ns and
mobile nodes nm. In general, the performance of a sensing network is directly a↵ected by how good is the coverage
of an area to discover an event and meet other sensors. In fact, the mobility of the nodes influences how many
(unique contacts) and how often (inter-contact time) sensors meet each other. Therefore, mobility models that cover
the environment better should also perform better.

4.2.1. Detection Time and Report Time
We can observe that detection time follows a law of the kind tD(nm) = an�b

m where a and b are constants (Fig-
ure 4(a)). The scaling relationships happens to be independent of the model and thus it is the same for all four di↵erent
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mobility models except for the values of the constants a and b. Notice also that, if we add less than 5% of mobile
sensors then the sensor density is too low, the space is not well covered, and it leads to a very high detection time.
However, the detection time drops sharply, and the performance gain is not so prominent anymore when sensor density
reaches 10% of RD. The diminishing returns is accentuated by the fact that the scaling relationship is a long tailed dis-
tribution, thus the asymptotic behavior is reached much more slowly than in the case of an exponential decay. Report
time tR(nm) is also defined by an equation similar to tD(nm) and again followed by all mobility models (Figure 4(b)).
The mobility model performance with respect to Detection Time and Report Time metrics can be summarized as
follows:

• Song’s human mobility model is the one performing the worst, because sensors are not free to move, but
are constrained by the preferential return. In fact, the sensors tend to stay close to the original position of
deployment, and only slowly di↵use in the environment. The waiting time between jumps further slow down the
di↵usion process. If we distribute the mobile sensors uniformly in the environment to counteract the preferential
return, the performance is closer to the one of Lévy walk, but still worse because the preferential return limits
the ability of the sensors to visit new locations and to meet new sensors (Figure 6). However, the non uniform
distribution and the preferential return do not impact the scaling of performance when the distance between sink
and event, which is linear (Figure 7(a)).

• There is no big di↵erence between Lévy walk and CTRW, that is waiting time does not heavily impact detection
and report time. This is the result of having many sensors, so at each point in time a large fraction of them is
moving.

• We might be tempted to argue that the impact of waiting time to performance in a SNoS is relatively limited.
In fact, the wait-time distribution is such that most pauses have a limited time length with few long pauses,
therefore at any instant in time most sensors are able to move. However, increasing the wait-time cut o↵
degrade performance in a subtle way, because it impacts the variance of performance, which is relevant for
delivery under time constraints.

• The wait-time cuto↵ is not able to explain the performance di↵erence between CTRW and Song’s model. The
key is the presence of preferential return mechanism in Song’s model. This leads to hot spots of visitations, and
if the sink is not in one of these hot spots then the chance of a sensor finding it decreases over time.

• The Brownian mobility model has a bottleneck in the length of the jump once sensors are spread across the en-
tire environment as shown by the asymmetry between detection time and report time (Figure 4); in the former,
Brownian motion is faster than Song’s model, while in the latter it is slightly slower. Given these consider-
ations, there are reasons to be skeptical on the practical relevance of theoretical results using random walks
like Brownian motion or random way-point, because these models di↵ers significantly from human mobility
patterns.

• As the sensor density increases the di↵erence in performance among di↵erent mobility models also decreases
becoming essentially irrelevant. We must stress that this decrease is not a consequence of the interaction with
static sensors, because static sensors are almost irrelevant given their small sensing radius and limited number
(Figure 9). Instead, the phenomenon is due to the influence that higher density has on mobile sensor inter-
contact time. This result is important, because it tells us that in a su�ciently dense network, the performance is
not bounded by a specific mobility model but by sensor speed and protocol in charge of delivering information.

4.2.2. Network Coverage Area
If we look at “coverage” as the main factor, the mobility model used has a greater impact, because the covered area

depends heavily from the mobility of sensors. As sensors move, they are able to “see” areas of the environment that
would otherwise not be seen. This accounts for a fraction of the area visited/covered by the mobile sensors. Figure 5
shows the fraction of the area covered at the end of the simulation (i.e. tsim = tD + tR ) as we increase the number of
mobile sensors. The performance measured with respect to Coverage Area metric can be summarized as:

• Lévy walk and CTRW have the best coverage since there is no preferential return or cut o↵ in jump length thus
sensors spread rapidly in the environment following a super di↵usive process [36].
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• Song’s model behaves like a sub-di↵usive process [41], thus should have a worse coverage than Brownian
model. The fraction of covered area versus the number of mobile sensors for Song’s mobility model follows a
law of the kind a + b ln(nm), where a and b are constants (Figure 5(a)). This is caused by a saturation process.
That is, it is increasingly harder to achieve a greater coverage by simply adding more sensors, because sensors
are not uniformly distributed in the environment and they are constrained by preferential return; hence the edges
of the environment are less likely to be covered compared to locations in the center of the environment. This
property combined with a spatial distribution of people that is not uniform hinder the performance of the whole
network because not all areas will be covered with the same intensity. However, we must clarify that, if we
allow the simulation to run indefinitely, there will be a time instant tsim such that the fraction of covered area
will be fa(tsim) = 1. If we remove such constraints by deploying the sensors uniformly, we can observe that
individual mobility model has performance that are similar to the one of Lévy walk and CTRW (Figure 7(b)).

• If we assume for a moment that sensors are distributed randomly and uniformly in the space, then the fraction
of the area As(t) covered by sensors at each instant in time t is:

As(t) = 1 � e��⇡r2
, (12)

where � is the density of the Poisson process used to deploy sensors and r is sensor radius [10]. Notice also
that sensors tend to spread in the environment and eventually reach an uniform distribution despite the initial
exponential distribution. Then, as we can see in the equation for As(t) the exponential decay depends linearly
on the density but quadratically on the sensor radius, thus the fraction of covered area is influenced more by
sensor radius than sensor density.

• Due to the large amount of people and high density of metropolitan cities, with just a relatively small percentage
of the population it is possible to build a SNoS with a very good coverage. However, performance relative to tD

and tR does not scale as well as we increase the number of mobile sensors hence it poses a problem, because it
limits the e�cacy of the network and its usefulness to cases where a high delay of information delivery can be
tolerated (e.g., tracking of animals, street/place mapping).

4.2.3. Data Delivery Rate
In order to be functional a network must be able to deliver the information between nodes. Moreover to perform

adequately, it must do it in a reasonable time. The delivery rate, which is defined as the fraction of events reported
within a time constraint, is able to capture these two aspects. Thus, we studied the behavior of such metric as a
function of the reference density RD for di↵erent time constraints (Figure 8). We observed the following:

• Once a small density threshold is exceeded, the event delivery ratio increases sharply; this could depend on the
nature of the epidemic spreading of the event. That is, the percolation threshold of the network is small, thus
even if very few sensors find the event directly, it rapidly spreads over the network to reach the sink.

• Once we reach an upper threshold, the event delivery ratio tends to saturate. Therefore, it is not convenient to
aim for a perfect delivery ratio, because the e↵ort to obtain it (the number of mobile sensors required) grows
faster than the percentage of reported events in time tsim.

• The first two observations match well with the fact that data is fitted very well by a Gompertz function [70].
Gompertz function is a sigmoid function where the growth is slower at the start and end, but the upper asymptote
of the function is approached much more gradually by the curve than the lower asymptote. In contrast, in the
simple logistic function both asymptotes are approached by the curve symmetrically. The equation of Gompertz
function re-parameterized according to [71] is:

A · exp
⇢
� exp

hµ · e
A

(� �%RD) + 1
i�
, (13)

where e = exp(1), A is the upper asymptote, � is the length of the lag phase (the phase before the exponential
growth), and µ is the max growth rate. In our case, A = 100 and � is a density, instead of a time, that may
represent the percolation threshold of the network. Both � and µ depend on the time constraint on tsim.

14



(a) Detection Time (b) Report Time

Figure 4: Detection Time tD follows the law tD ⇠ anb
m. Report Time tR follows the law tR ⇠ cnd

m. The red lines represent the fit lines following
such power law equations. All mobility models follow the same scaling relationship, which is a consequence of sensor spatial distribution instead.

(a) Fraction of Area when r = 0.1 (b) Fraction of Area IM model

Figure 5: Maximum fraction of covered area versus nm for di↵erent mobility models. In Song’s model the Fraction of Covered Area fa(tsim) is
proportional to fa(tsim) ⇠ a + bln(nm). This means that a saturation occurs while we approach a total coverage. The area covered when r = 0.2 is
smaller because the time of the simulation tsim is shorter, however it retains the same scaling law.
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(a) Detection Time (b) Report Time

Figure 6: (a) The detection time both with non uniform and uniform mobile sensor distribution. As a comparison metric we also included the Lévi
walk. The uniform distribution performs much better than exponential because the density of sensors at the periphery, where the event is located, is
higher than in the exponential distribution case. However, the preferential return slow down the visitation of new locations, therefore IM model is
still slower than Lv́y. (b) The report time actually gets worse because while there is an improvement on the outer periphery, there is also a decrease
in performance when forwarding the event closer to the center of the environment. There, the density of sensors actually decreased compared to
the case with exponential distribution.

(a) Detection Time and Report Time (b) Fraction of Area

Figure 7: (a) The scaling of performance when the distance between sink and event changes is linear (b) The fraction of area covered when the
sensors are distributed uniformly is close to 100%, as we would expect given the number of mobile sensors deployed.
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• Unfortunately, the wait-time cuto↵ has a big impact on the delivery ratio under time constraints (Figure 8). It
can be explained by the fact that it increases both the average value (although slightly) and the variance (almost
doubles) of tsim, thus the network does not perform consistently. The variance of tsim is negatively impacted by
the long tailed wait-time distribution. This behavior represents a major problem since it a↵ects the max grow
rate µ, which imply that the delivery ratio increases slower than wanted as we add sensors. The solution is
either to increase sensor density (increase costs) or relax time constraints (accept lower performance) or both.
However, performance are bound to saturate. Therefore, we introduce some design principles in Section 4.3 to
improve performance.

• The density required to achieve the necessary performance tells us the fraction of the population of the city that
should be involved to build the desired network. This is especially important since it imposes a lower limit on
the size and density of the population of the city. We can expect that in small cities it is not possible to achieve
some acceptable performance in a SNoS. Data for some of the biggest cities in the USA is shown in Table 1;
it should be noted that USA cities have usually a lower density than other metropolis especially if compared to
South America or Asia metropolis, thus they represent a worst case scenario.

Table 1: Densities D of some of the biggest cities in the USA with the density required to achieve the sensor density of the case %RD = 10. Even
for some big cities a relatively large percentage of the population need to be involved thus the deployment and implementation of the SNoS must
be carefully designed.

City D(ppl/km2) 10 RD
D

New York, NY-NJ-CT 1800 11.11
Los Angeles, CA 2400 8.33
Chicago, IL-IN-WI 1300 15.38
Philadelphia, PA-NJ-DE-MD 1100 18.18
Boston, MA-NH-RI 800 25.00
Miami, FL 1800 11.11

4.3. Improving Performance

Network performance is of great interest and presently could be the biggest obstacle in the actual implementation
of a SNoS because it seems that network latency remains high no matter how many mobile sensors we use. In fact,
authors in [72] show that these kinds of networks expect transmission latency in the order of minutes to about half an
hour. However, our simulations clearly show that the delay is between 2 and 4 hours even at the highest density, and
independently of the mobility model. In order to overcome this limitation, we have worked on approaches that could
vastly improve this aspect. There are two complementary approaches: optimize the deployment of the infrastructure
and work on sensor properties.

4.3.1. Improving the Infrastructure
First, since most of mobile sensors are near the center of the city, it is unnecessary to have static sensors in that

place given that it is already covered very well. Thus we should move some of those sensors in periphery area. The
amount Ns of static sensors which can be relocated is

Ns =
ns ⇤ ⇡ ⇤D2

4A
, (14)

where symbols have the meaning described in Section 3. This approach leads to cost savings if we choose not to
deploy those expendable static sensors, or it leads to improvements in performance and coverage if we move the static
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(a) Delivery Ratio of IM model with r = 0.1 (b) Delivery Ratio of IM model with r = 0.2

(c) Delivery Ratio of Wiener Mobility Model (d) Delivery Ratio of Lévy Mobility Model

Figure 8: Event delivery ratio is fit very well by the Gompertz function. Song’s model performance can be improved to match Lévy walk by
doubling sensor radius. Brownian mobility model perform better than IM due to less variance of tsim.
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sensors in the periphery. Another technique could consist in building short paths from the periphery to the center so
that if they are hit by a sensor that knows about the event, it immediately propagates where the density of mobile
sensors is greater thus greatly reducing report time.

Second, due to the urban population density distribution and the greater relevance of report time over detection
time, to maximize performance. The best sink deployment is in the center of the city. This also leads to more uniform
distance from event to sink in case the event is placed randomly in the space thus reducing the variance of tD and tR.
However, the model for population density we used does not take into account multi-centered cities [73]; in this case,
we recommend to place a sink in each and every center.

Third, there are two thresholds. A lower bound threshold that ensures that mobile sensors achieve a high enough
density and a higher bound threshold over which it is not worth the addition of more mobile sensors because they do
not give a significant improvement of performance. Of course, these thresholds could vary as a function of the cost
of mobile sensors, that is, there still exists a tradeo↵ between cost and performance. Moreover, our analysis does not
take into account sensor faults, that is part of the sensors may be going o✏ine with a given probability. Deployment
must take in account some over-provisioning.

4.3.2. Improving Sensor Properties
The first idea is derived from the fact that the presented setup uses mobile and static sensors that have the same

connectivity range. In this configuration, static sensors have no more relevant meaning, because they do not signifi-
cantly participate in detection and delivery, they simply do not cover any meaningful area. Instead, we could deploy
expensive static sensors that exploit the current infrastructure, so that they do not have power constraints, and they
can have a bigger sensing radius. This way, static sensors can function as the gateways for data spreading to mobile
sensors. However, note how performance is actually una↵ected (Figure 9 and Figure 5(b)). The lack of performance
improvement is due to the fact that the communication between mobile sensors and static sensors is asymmetric. In
fact, while static sensors can spread the event at a further distance to mobile sensors, the static sensors must be in range
of a mobile sensor to receive the information. Therefore, the probability of a mobile sensor to spread the information
to a static sensor is una↵ected, and the impact of static sensors remain statistically insignificant. In order for such
setup to work it is required that sensors have beam-forming capabilities [74].

The second idea, which is complementary to the first one, is to rely on the current network infrastructure for static
sensors so that they constitute a connected network, working at “0 latency” and representing a short path to the sinks.
This approach has also the benefit to vastly reduce the memory pressure on mobile sensors because they can hand o↵
as much data as they can to the static sensors. Static sensors then become responsible for forwarding data to the sink
using a wired infrastructure. In a city with many Wi-Fi hotspots, we believe this may be very e↵ective.

Finally, we can mitigate the impact of sensor radius using a di↵erent technology for wireless communications.
Notice that doubling sensor radius (from r = 0.1 to r = 0.2) leads to an almost 4 times performance improvement
when sensor density is low, as predicted by Equation (12). However, such gain becomes linear when sensor density
increases (Figure 9). Indeed, Bluetooth is infrequently used by smartphone users, while most of the time Wi-Fi is
turned on and hence more accessible. Moreover, in these kinds of devices, battery consumption is not something
that is really enforced since users charge their devices almost daily. Wi-Fi has a greater range and performance than
Bluetooth and it retains backward compatibility while improving performance in each new version. It also allows
the creation of ad-hoc networks and development of automatic configuration protocols (e.g., Zeroconf). Ubiquity and
current availability make Wi-Fi the best candidate for an e�cient SNoS.

5. Conclusions and Future Works

We found that the detection time tD and the report time tR performance follow a scaling law relationship in the
number of mobile sensors and that in dense networks the di↵erences in performance among mobility models fade out.
Moreover, we showed that the sensor radius has a bigger impact on performance than sensor density, thus it should
be maximized whenever possible. Furthermore, the delivery ratio to the sink is negatively influenced by wait time
and preferential return, thus the Individual Mobility model, which is the closest to human mobility, has a performance
that is significantly worse than the other mobility models tested. Finally, we propose some design patterns to improve
performance.
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(a) Detection Time (b) Report Time

Figure 9: E↵ect of sensor radius on SNoS performance, when sensors move accordingly to Song’s model. We can increase radius of every sensor,
or we can increase only sensor radius rs of static sensors. Detection time performance is not influenced by an increase in sensor radius of static
sensors, unless the event is deployed in their sensing range, which is not the case here.

Given the great flexibility of the model we implemented, future works will focus on three aspects: di↵erent
mobility models and spatial distributions combinations that could lead to better performances; scenarios where these
combinations can be applied to obtain real-world benefits (e.g., in a forest or in the ocean we could attach sensors
to animals, in a battlefield sensors might be air-dropped or attached to soldiers); protocols that take into account
the patterns of human mobility and data aggregation [75] need to be developed to improve information spreading
e�ciency while maintaining performance.
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