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Abstract

Medical Body Area Network (MBAN) has emerged as a promising solution for mon-
itoring patient activities and actions, and supports a lot of healthcare applications.
A MBAN includes a set of sensor nodes deployed such, they can be located on, in,
or around the patient body. They are used to monitor physiological signs, which are
transmitted then to medical servers without hampering the patient activities. Security
is one of the main challenging issues in MBANs since the data nature is highly sensi-
tive. In order to ensure the reliable gathering of patient critical information, it is vital
to provide authentication to prevent an attacker from impersonating legitimate sensor
nodes. In this paper, we propose a patient body motion based authentication solution.
The routine activities, as walking or running, are characterized through a generic model
allowing to identify the patient sensor nodes. Through the security analysis, we show
its robustness against the well known attacks. In addition, we develop an analytical
model to measure the impact of physical and logical attacks on the proposed solution
with comparison to the existing protocols. We also evaluate the proposed solution
through simulations with respect of important criteria, namely the transmission over-
head, response time and energy consumption. The proposed solution demonstrates the
best results in performance with comparison to the existing protocols. Furthermore, we
have developed a prototype of the proposed solution, where it demonstrates promising
results in terms of true acceptation and false rejection.

Keywords: Security, Authentication, Body-motion, Healthcare, MBAN.

1. Introduction

Medical Body Area Networks (MBANs) are a major asset in the design of health
monitoring applications. They are considered as a promising technology for collecting
and gathering physiological signals to monitor the patient health. In MBANs, special
nodes are designed as lightweights, miniaturized sensors that could be placed on, in,
or around the patient body as tiny intelligent devices. They monitor the patient body
and collect different physiological parameters like heart rate, glucose level, blood oxygen
level, etc. The collected health information is then transmitted to a local processing
unit referred as a sink, which relays them to the hospital or any healthcare system
for diagnostic and permanent record. The collected medical data from the sensors
must be accessible anytime and anywhere. For instance, the Internet of things (IoT)
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Figure 1: MBAN general architecture.

[7, 8, 9] is a well adapted infrastructure for such applications. The MBANs address
several challenges in the health sector, such as the medical staff availability, the medical
resource limitation, the real time monitoring restriction and the growing health cost.
The MBANs have a huge potential to revolutionize the health sector and to provide a
comfortable life mode, where the patients are efficiently remote monitored during their
daily activities. With MBANs, the emergency aspect is improved, where the pathologies
can be detected early, and the health staff has the opportunity to monitor continuously
the health status of many patients simultaneously.

MBANs need to stay connected to other networks by using other technologies in
order to ensure that the patients data can reach the center of treatment, while the
subject is in a different place and the sensed data from the WBAN may ultimately
be sent to a centralized healthcare repository for permanent records. Figure 3 illus-
trates the MBAN general architecture. A typical MBAN architecture includes the first
tier (i) ”Intra-MBAN” which refers a small network around the patient body (about
1-2 meters) equipped a gateway (sink) bridging to another network types that can
be another node with some routing and data aggregate features, the second tiers (ii)
”Inter-MBANs” represent a wide network that can be an Internet network, where the
sink forwards the collected data to the base station after processing and aggregation and
the third tier (iii) ”Extra-MBAN” consists on several applications with server medical
or other healthcare personnel. Moreover, MBAN applications span a wide area in the
healthcare applications like Patients monitoring indoor Hospital environment, Contin-
uous and Remote healthcare, Real-time home care service with emergency supporting,
Body posture analysis in patient-aid rehabilitation, Preventing and managing chronic
diseases and Remote assistance and long term monitoring for patient under disabilities,
etc. For more details about the research effort in wireless communication standards for
healthcare environments, kindly refer to [19, 12, 11].

The MBAN applications have emerged as a successful paradigm. Unfortunately,
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Authentication protocols in MBANs

Physiological values based
solutions

Public-key
based solutions

Clustering
based solutions

Polynomial
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Mana et al. [33]
Venkatasubramanian et al. [38]
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Zhang et al. [31]

Pan et al. [29]
Tan et al. [39]
Liu et al. [32]
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Ali et al. [28]

He et al. [25]

Figure 2: Classification of existing solutions

they are subject of novel attack risks [13, 15]. Securing MBAN is a serious challenge,
which should be rigorously addressed in the healthcare applications, where the managed
data is highly sensitive and associated directly to the patient health. Authentication
is one of the important security services. In fact, there are several devices in charge
to collect physiological parameters about a particular patient and transmit them to a
remote server. In order to ensure a reliable gathering of the patient data, it is primordial
to authenticate first the legitimacy of the data source devices. Several authentication
solutions have been proposed in the literature. Most of the existing solutions are based
on cryptographic mechanisms that consume an important part of sensor resources which
are more limited in the framework of MBANs. For more information about the research
effort of the energy-aware security schemes in such networks, kindly refer to [16].

The rest of the paper is organized as follows. In Section 2, we review some relevant
authentication solutions in the framework of MBANs. In Section 3, we present the
detailed description of the proposed solution. In Section 4, we analyze the security of
the proposed solution. In Section 5 and 6, we evaluate its efficiency through modeling,
simulations and practical experiments. Finally, we conclude the paper in Section 7.

2. Related work

In the literature, various solutions have been proposed to meet the security require-
ments in MBANs. In this section, we review some relevant solutions which we classify
them as illustrated in Figure 2.

Venkatasubramanian et al. [38] have proposed a key agreement solution which allows
two sensor nodes in a MBAN to agree upon a common key generated using electrocar-
diogram (ECG). Rajasekaran et al. [30] have proposed to use the physiological values
to generate a symmetric shared cryptographic key between two neighboring nodes in
a MBAN, and then converts it into frequency domains and generates features. The
generated features are transformed into a cubic spline curve and the coefficients are
concatenated to form the key. The latter key is then transmitted to the receiver by
a fuzzy vault cryptographic method, where the receiver unlocks the vault (using cubic
spline interpolation) and finds the key. Venkatasubramanian et al. [35] have proposed
a PVS (Physiological Values based Security) for securing inter-sensor communication
in MBANs. The PVS solution distributes the key used for securing a particular mes-
sage along with the message itself hiding it using the physiological values. Zhang et al.
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[31] have proposed to use the ECG signal, and the Improved Jules Sudan (IJS) algo-
rithm (an improved fuzzy vault algorithm proposed in [40]) to secure the inter-sensor
communication and to setup the key agreement for the message authentication. In
the ECG-IJS solution, the sensor nodes need to store the polynomial coefficients and
a subset of polynomial coefficients is required to be sent to the receiver. The use of
physiological values has demonstrated the potential to eliminate the need for explicit
key distribution, allowing the sensor nodes to agree upon a key, as needed, and ensur-
ing their mutual authentication in a plug-and-play manner. However, it requires that
each sensor node can measure the same physiological value type. This assumption is
rather restrictive and makes this approach not suitable for many MBAN applications.
Zhao et al. [27] have proposed to use a hybrid multi-hop network structure, organized
in clusters, for two MBAN based applications: ”the health monitoring” and ”the drug
delivery”. Based on this, the authors have proposed a key management protocol to
secure inter-sensor communication. This solution requires a high number of keys to be
stored. Ali et al. [28] have proposed a cluster based secure key agreement protocol for
MBANs. The authors have considered the MBAN as a single cluster and the personal
server is considered as the cluster-head. To achieve the key agreement, HMAC-MD5
is applied to electrocardiography blocks. Pan et al. [29] have proposed a hybrid key
management based on Elliptic Curve Cryptography (ECC) to protect sensitive data in
stringent resource-constrained MBAN devices. This mechanism uses a modified Feistel
algorithm to encrypt and decrypt sensitive physiological value, and then uses ECC to
manage the key distribution, update and revocation. He et al. [25] have proposed a
polynomial based authentication protocol to develop a secure network admission and
transmission subsystem in MBANs to provide sensor node authentication and the es-
tablishment of pairwise shared keys. Although the proposed solution resists to many
attacks, it requires a considerable storage space for the polynomials used for the key
generation, the one-hop neighbor tables and the shared keys. Mana et al. [33] have
proposed a scheme to secure the communication links between the sensor nodes using
biometric data. Their approach generates symmetric cryptographic keys from the ECG
and distributes them between the sensor nodes over the MBAN to secure end-to-end
transmission. Tan et al. [39] have proposed a lightweight Identity-Based Encryption
method named IBE-Lite. This solution is an enhancement of the conventional identity
based encryption, which shares with it two properties, namely the ability to use an
arbitrary string to generate a public key and the ability to generate a public key sepa-
rately from the corresponding secret key. Liu et al. [32] have proposed a certificate-less
authentication scheme allowing remote MBAN users to access securely various medical
application services. In Table 1, we summarize per authentication session, the cost of
each solution regarding the storage, computation and the communication. For more
information about the protocol details of a particular solution, kindly refer to its corre-
sponding reference presented in the first column of the table.

The proposed solution aims to ensure the authentication in the framework of MBANs,
unlike the solutions proposed in [38, 28]. The proposed solution is a distributed pro-
tocol without cryptographic operations. The authentication is related to the patient
body motion, in which we project the sensor authentication process to a movement
model, unlike the solutions based on cryptographic mechanisms or physiological values
[33, 35, 30, 31, 29, 39, 32, 27, 25]. Moreover, we have incorporated a new technique
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of data communication based on the mobility estimation by taking in charge the en-
ergy aspect, which ensures a stable routing paths between the patients and the medical
remote server. We have developed a generic analytical model for the authentication pro-
cess with which we have evaluated the impact of attacks on all the reviewed solutions.
We have implemented intensive simulations by comparing all the reviewed solutions,
in which the proposed solution demonstrates the best results in terms of transmission
overhead, response time and energy consumption. Finally, we have implemented a pro-
totype of the proposed solution, which we have tested and validated through practical
scenarios.

3. The proposed solution

The advancement of the medical body area networks can be related to the develop-
ment of two aspects namely: the wearable medical devices and wireless communication
networks. Wearable devices are developed with the aim to monitor and to record real-
time individuals medical data unobtrusively and ubiquitously around the clock without
disrupting their normal daily lives, when previously only intermittent data could be
collected during their irregular visits to clinics or hospitals. Wearable sensor-based
medical systems may comprise different types of flexible sensors that can be integrated
into textile fiber, clothes, and elastic bands or directly attached to the human body. The
wearable sensors are capable of measuring physiological signs such as electrocardiogram
(ECG), electromyogram (EMG), heart rate (HR), body temperature, electrodermal ac-
tivity (EDA), arterial oxygen saturation (SpO2), blood pressure (BP) and respiration
rate (RR). On the other hand, advances in wireless communications technology have
overcome most of the geographical, temporal, and even organizational barriers to facil-
itate a completely roaming way of transferring medical data and records [3, 4, 5, 6, 10].

In the scope of this work, we consider a MBAN, where a set of η wearable sensor
nodes are deployed on a patient body to monitor physiological value. The sensor nodes
have the capability of measuring continuously the physiological values and to sense
multiple types of stimuli. They are deployed in such a way do not hamper the daily
routine of the patient. The sensor nodes transmit the sensed data to one stationary
sink device placed in the chest of the patient body. The sink device is responsible for
collecting and forwarding the patient data to a remote medical server. We illustrate
in Figure 3, the model of deployment adopted in this paper. We assume that the sink
device has more computation, energy supply, and storage capabilities than a regular
sensor node. We assume that the physical capture attack of sensor nodes is not possible
because the latter are under the patient control. However, an external attacker may
try to disrupt the inter-sensor communication by jamming the channels or may try to
impersonate legitimate sensor nodes or claim multiple identities. In this case, how the
sink device authenticates the legitimate sensor nodes and how it identifies if the received
data is transmitted by a deployed sensor node from the patient body. This challenge
has been formalized in [36] as ”the one-body authentication problem”. The proposed
solution addresses directly this issue and operates in two separated phases: (1) the
learning phase and (2) the authentication phase. The first phase consists of modeling
the patient postures through the different distances separating the sensor nodes to the
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Protocol Storage Computation Transmission

[38] 01× Node identity
20× Block of 64 bits
04× Key of 128 bits
20 × 20 Matrix

20× Hashed block using SHA-
256

01× Feature extraction
20× Hash operation
02× Key generation
04× MAC operation
02× XOR operation
01× Hamming distance of 2 ma-
trix
01× Data sensing

04× Round

[30] 01× Node identity
01× Key for each knot
01× Vault (knots and chaff points)

01× Feature extraction
01× Cubic spline interpolation
01× Vault, CRC computation
02× MAC operation
01× Data sensing

03× Round

[35] 01× Node identity
01× Physiological value of 128 bits
01× Key for encryption and decryp-
tion

01× MAC operation
01× XOR operation
01× CRC operation
01× Encryption
01× Decryption
01× Data sensing

02× Round

[31] 01× Node identity
01× ECG Feature
01× Key for each polynomial coef-
ficient

01× Feature extraction
01× Encryption
01× Decryption
02× MAC operation
01× Data sensing

02× Round

[25] 01× Node identity
01× Polynomial of degree t
01× Key shared with PWH
01× Table of the neighbor keys
01× Hashed value of the key

01× Encryption
02× Hash operation
01× XOR operation
01× Data sensing

04× Round

[27] 04× key of 128 bits 06× Hash operation
03× Encryption
03× Decryption
01× Data sensing

06× Round

[28] 01× Node identity
20× Block of 64 bits
01× Pairwise key of 128 bits
01× Key of 128 bits

01× Feature extraction
02× Key generation
06× HMAC operations
01× Encryption
01× Data sensing

03× Round

[29] 01× Node identity
01× Key of 128 bits
02× Key of 160 bits
01× Derived key

04× XOR operation
01× Encryption
01× XOR operation
01× HMAC operation
01× Data sensing

03× Round

[33] 01× Node identity
04× Key for each Node

01× Hash operation
01× MAC operation

07× Round

[32] 01× Key for each node
05× Node parameters

06× Arithmetic operation
01× Hash operation

02× Round

[39] 01× Node identity
01× Node parameters

02× Encryption
04× Arithmetic operation

02× Round

This paper 01× Node identity 01× Data sensing 01× Round

Table 1: Overall comparison of the reviewed solutions

6



Figure 3: Sensor nodes deployment

sink device over the time. The second phase consists of the sensor node authentication
under the developed model. In what follows, we give the description of each phase.

3.1. Learning phase

Body mobility plays an important role in the performance of the protocols in MBANs
due to the patient body movement, where the sensor nodes would move along with
patient being. During daily activities, the patient body exhibits different postures, like
standing, walking, sitting, running, etc. In MBANs, these postures change affects the
position of the sensor nodes, and hence, the distances separating them to the sink device.
To determine the different positions of the sensor nodes, the system should first identify
the posture and then the related movement. The patient body motion, when taking a
particular posture can be determined from real patient mobility traces. To model the
sensor node movement, the patient will be asked to go through a learning phase once
the sensor nodes are deployed by the medical assistant. The learning phase is executed
in offline by the system administrator. The posture should be defined and the patient
will be invited to exercise the movement, during which the sink device analyzes the
different cartesian distances estimated through the signal strength. For instance, we
present in the general case three types of postures:

(1) Standing: the patient is standing at rest, the arms at the sides, the palms facing
forward, and the feet tight and parallel. It is the standard anatomical position.
As illustrated in Figure 3, the distances between the sensor nodes and the sink
device are constant as the patient body is in a static position.

(2) Walking: during walking, the arms and the legs move in a defined trajectory
repeatedly. The limbs move in forward and backward directions. Therefore, the
sensor nodes placed on the limbs also move in these directions. In addition, as the
torso is less mobile, the sensor nodes placed on this area show a few variation in
their positions relating to the sink device. Figure 4 illustrates the patient body
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Figure 4: Patient body motion during walking

Figure 5: Patient body motion during running

motion during walking. At each instant, the patient body is characterized by
specific cartesian distances separating the sink device to the sensor nodes.

(3) Running: similar to walking, the arms and the legs perform a repetitive movement
in forward and backward directions. In addition, when running, the left arm and
the right leg are synchronized and move in these directions at the same time.
Therefore, the sensor nodes placed on the limbs of the patient body move in the
same trajectory. Figure 5 illustrates the patient body motion during running.
At each instant, the patient body is characterized by specific cartesian distances
separating the sink device to the sensor nodes.

In the learning phase, the sink device initiates the system by diffusing a request
Req = 〈t0,∆t, T 〉 to the sensor nodes. The request asks each sensor node to start upon
t0 time-unite transmitting the sensor node identity, continuously, every ∆t time-unite
during a period of T time-unite. At each instant ti, each sensor node Sj transmits
its identity to the sink device. Upon receiving, the sink device estimates for each
time ti, the cartesian distance dj i which separates it to the transmitter sensor node
Sj through the signal strength using for instance RSSI (Received Signal Strength In-
dication) or LQI (Link Quality Indication) [14]. For each sensor node, the sink device
collects a number T

∆t of cartesian distances stored as points. Let’s consider n+ 1 points
{(t0, y0), (t1, y1), ..., (tn, yn)} such as:

yi = dj i, ∀ i = 0..n (1)

Afterwards, the sink device interpolates a polynomial Fj of degree n for each sensor
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node Sj , such as:

Fj(ti) = dj i, ∀ i = 0..n (2)

The polynomial Fj characterizes the movement pattern of the sensor node Sj . This
polynomial is computed using the Newton interpolation method, such as:

Fj(t) = D0,0 +(t− t0) ·D0,1 +(t− t0) · (t− t1) ·D0,2 + ...+(t− t0) · · · (t− tn−1) ·D0,n (3)

where the coefficients Di,k are computed by:

Di,k =
Di+1,k −Di,k−1

tk − ti
, ∀ i = 0..n, ∀ k = 1..n, k > i (4)

where Di,i = yi, ∀ i = 0..n. We note that three of conventional interpolation
methods are equivalent, namely Lagrange, Neville and Newton-Aitken. They result to
same polynomial but differ in operating cost. We have opted for the Newton method
because additional points can be added to create a new interpolation polynomial without
the recalculation of coefficients [43].

The body movement is a biometric feature which is unique and related only to one
patient at a given time. Therefore, the set of Fj , ∀ j = 0..η of all the possible postures
of a patient characterizes in a unique manner its feature. Thus, this set of parameters
represents the credential of the patient when considering external authentication. These
parameters are stored in both sides, namely in the patient sink device and the remote
medical server. If an external authentication is required, the latter parameters can
be used as a common key ensuring the key security services through the conventional
methods. However, in this paper, the scope is limited in the sensor node authentication,
due to their challenging characteristics of the sensor resources. The next phase describes
the authentication process on the patient body.

3.2. Authentication phase

The proposed solution aims to verify the legitimacy of the sensor nodes wishing to
communicate with the sink device. Upon receiving the sensed data from the sensor
nodes, the sink device estimates for each Sj , the distance d′j using the transmission

signal strength. Then, it computes ti using the reverse polynomial function F−1
j (d′j)

corresponding to each sensor node Sj . The sink device can authenticate the legitimacy
of all the sensor nodes {S1, S2, ..., Sη} being at the respective distances {d′1, d′2, ..., d′η},
only if:

F−1
1 (d′1) ≈ F−1

2 (d′2) ≈ ... ≈ F−1
η (d′η) (5)

Afterwards, the sink device can identify individually each sensor node Sj through d′j .
In this manner, is not possible for an external equipment in the vicinity to impersonate
a valid sensor node. We denote PS the probability of successful authentication of the
patient body sensor nodes. The probability PS represents the probability that the actual
cartesian distances of all the sensor nodes coincide with the same value of the reverse
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polynomial output. This probability depends on the estimated cartesian distances and
is measured by:

PS =

η−1∏
j=1

1− |F−1
j (dj)−F−1

j+1(dj+1)|
F−1
j (dj) + F−1

j+1(dj+1)
(6)

The proposed solution aims also to authenticate individually in a direct way a given
sensor node Sj . Upon receiving the sensed data from the latter at the instant ti, the
sink device estimates d′j and resolves the equation F(t) = d′j . The sensor node Sj will
be correctly authenticated if and only if it exists t′ among all the possible solutions,
such as:

t′ ≈ ti
∆t

mod n (7)

3.3. Data communication

An important requirement in MBANs is the energy efficiency. To guarantee a reli-
able gathering of medical data, the communication process should be efficient against
the frequency of movement and in energy-consumption. Several data communication
protocols with mobility support are proposed in the literature for both ad-hoc and sen-
sor networks. However, they are not suitable for MBANs due to the different movement
pattern. To address this issue, several research works highly depend on the existing
mobility models [24, 17, 18]. The drawback of such solutions is that they may work
well with a specific model, but perform poorly with another. Other works have been
based on their developed mobility models as the solutions proposed in [34, 20, 21] and
few solutions have focused on the mobility parameters integration in the data commu-
nication process [23, 26]. The majority of these solutions has shown weaknesses to face
the mobility and energy constraints. For this purpose, we incorporate a data commu-
nication technique to overcome the frequent changes on the network topology due to
the posture changes and variation of the wireless link. We consider the architecture
illustrated in Figure 6. This architecture is composed of a set of MBANs supervised
by a single base station, which is in charge to transmit the medical data to the remote
medical server via the Internet. The collected data of a patient are delivered to the
base station through a set of intermediate sink devices of different other patients using
a multiple-hop communication. The proposed technique is based on the patient mobil-
ity index and the sensor nodes energy states. The mobility estimation is performed in
the neighboring topology change in function of the link availability. We introduce two
metrics denoted by IL and OL representing, respectively, the number of in-links and
out-links. These links could be or not available during an interval [t, t+ δ] between the
patients at each round. We use the same estimation approach given in [37]. At each
round, each sink device Si computes the mobility index MIi(t) at the instant t such as:

MIi(t) = α · OLi(t)

Li(t− δ)
+ (1− α) · ILi(t)

Li(t)
(8)

where Li is the available link number and α represents the mobility coefficient,
which can be adjusted according to the application requirements. Afterwards, the sink
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Figure 6: Data communication

device Si sends the computed index to the neighbors in order to be used in the stable
neighboring selection process. Based on this concept, our aim is to select the most stable
neighbor to forward the medical data. Furthermore, to balance the energy consumption,
the residual energy Ej(t) at the instant t of the neighbor is also considered by selecting
the best patient neighbor in terms of residual energy state. When forwarding, the sink
device Si computes C(t) for all the reachable sink devices, such as:

C(t) =
MIj(t)

Ej(t)
(9)

Finally, the sink device selects the patient neighbor with the minimum value of C(t).
This process is repeated hop-by-hop until the data reaches the base station.

4. Security analysis

In this section, we analyze the security of the proposed solution. First, we give an
overall analysis of its robustness against conventional attacks, namely the imperson-
ation, Sybil, man in the middle, replay and denial of service attacks. Next, we analyze
the impact of the attacks on the network. In order to support this part of analysis,
we have developed an analytical model which compares the proposed solution with the
solutions presented in Section 2.
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4.1. The robustness of the authentication mechanism

The impersonation attack happens when the identity information is used to carry
out a non-authorized action. Unlike the existing approaches, the proposed solution does
not use cryptographic parameters in the authentication process. The unique parameter
used is the signal strength at the right instant following the right node mobility model.
Therefore, a non-authorized equipment has no way to impersonate a legitimate sensor
node. Sybil attack happens when a node is diverted to claim multiple identities. The
proposed solution resists well against this type of attack, because the attacker must
generate several signals with different power at a given instant.

All the sensor nodes of the MBAN are within the sink device range. The authenti-
cation process is, then, performed directly between the sink device and the sensor node
without intermediate nodes. An attacker trying to stand between the two latter nodes
will have no way to impersonate neither of them. It is hard to launch a man in the
middle attack in such case, because both the nodes receive the messages transmitted
by the attacker. An attacker cannot reuse messages from a session in another one since
the signal strength is different from an instant to another due to the mobility, i.e., the
actual position of the interlocutor.

The denial of service attack is not considered by the proposed solution in the sense
that we cannot prevent this attack from occurring. However, the proposed solution
provides authentication even when this attack occurs or is combined with another attack.
For example, if an attacker flood a sensor node with unnecessary requests in order to
conduct an impersonation attack, neither the authentication, nor an attempt to retrieve
the patient data can be successful, because it cannot be able to transmit the data with
a specific signal strength.

4.2. Impact of attacks

In order to analyze the impact of attacks, we propose a generic analytical model of
the process of internal node authentication in MBAN. The main aim of this model is to
measure the probability of attacks. In this context, we classify the possible attacks into
two categories, namely physical and logical attacks. The physical attack represents the
interruption of communication, such as packet dropping attack or buffering attack to
harm the network operation. The logical attack represents the failure when verifying
the cryptographic parameters, such as signatures, hash values, etc. We consider a
successful of the authentication process if the authentication session does not undergo
both physical and logical attacks. The sensor nodes execute the authentication process
either between them or with the sink device. This process is initiated in all the cases
by an authentication request. Then, a certain number of communication rounds are
performed in order to authenticate the data source node. The exchanged messages
include in the most cases of the protocols a set of encrypted parameters supported by
a set of operations, such as encryption, key generation, hash operation, etc., performed
on both sides. We denote by υ the communication round number, which varies from a
solution to another.

We model the authentication process using the Markov chain [42]. The Markov chain
is a technique for statistical modeling of a random process, in which the system state
changes through progression. It is composed by a set of states A = {A1, A2, ..., AN}
and transition probabilities among the system states. The process starts with one of
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these states and moves successively from one state to another. If the system is currently
in the state Ai, then it moves to Aj in the next step with a probability, denoted by
Pij . This probability does not depend upon which states the system was in before
the current state. A Markov chain has the property that the probability of transition
between any two states depends entirely on circumstances in the state from which the
transition originates and not on the previous history of the process. Given a sequence
of states A1, A2, ..., AN , the Markov property is given as:

P = (AN+1 = x|AN = xN , ..., A1 = x1) = P (AN+1 = x|AN = xN ) (10)

We model as states the different transmissions and receptions between the two nodes
in an authentication session. The proposed model characterizes the authentication
process in order to estimate the probability of authentication success and failure. We
introduce two metrics r and s which denotes, respectively, the probability of physical
attack for an individual message transmission and the probability of logical attack for an
individual message verification. The state transition model represents the manner how
the node is authenticated according to the generated data packet in the network. Before
the authentication is achieved, the process may pass through other transient states.
Note that the latter represent the possible transmissions and receptions states until the
authentication process becomes absorbed. We illustrate in Figure 7 the proposed model
and we present in Table 2 the corresponding notations. The system starts from the initial
state W denoting the waiting state, where a source node generates an authentication
request. Hence, the system may pass to the state T1 with a probability q or pass
again to the state W with a probability 1 − q. The probability q depends mainly on
the application context, which is different from an application to another. The system
may pass to the failure state PA with a probability r if a physical attack is launched,
otherwise, it passes to the state R1 with a probability 1−r. Upon the verification of the
received parameters, the system passes to the state LA with a probability s if a logical
attack is detected, otherwise, it passes to the state E2 with a probability 1 − s. The
process is repeated as the indicated communication round number υ. From the state
Rυ, the system may pass to the successful state S with probability 1− s if the υ − 1th

received parameters are correctly verified.
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Figure 7: Transition graph

Notations Description

W Waiting state

Ti Transmission state

Ri Reception state

PA Physical attack state

LA Logical attack state

S Successful authentication state

q Probability of request authentication reception

r Probability of packet dropping

s Probability of verification failure

PS Probability of successful authentication

PPA Probability of physical attack

PLA Probability of logical attack

Table 2: Notations

From the proposed model is computed the probability of successful authentication,
physical and logical attacks, denoted by PS , PPA and PLA, respectively. The probability
of successful authentication represents the probability P{W −→ S}, which is calculated
as:

PS = q ·
(

(1− r) · (1− s)
)υ
·
(

(1− q)µ + 1

)
(11)

where µ denotes the number of iterations the system remains in the waiting state.
The parameter µ is expected to be high in case of specific types of medical applications,
such as real-time medical motoring, military medical applications, etc. The probability
of physical attack PPA represents the probability P{W −→ PA}, which is calculated
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as:

PPA = q · r ·

(
1− (1− r)υ · (1− s)υ

)
·
(

(1− q)µ + 1

)
1− (1− r) · (1− s)

(12)

The probability of logical attack PLA represents the probability P{W −→ LA},
which is calculated as:

PLA = q · (1− r) · s ·

(
1− (1− r)υ · (1− s)υ

)
·
(

(1− q)µ + 1

)
1− (1− r) · (1− s)

(13)

In what follows, we quantify the impact of attacks on the proposed solution with
comparison to the reviewed solutions under the analytical model. Depending on the
solution design, the parameter υ takes different values. This allows classifying the
solutions into six classes as presented in Table 3.

Class υ Solutions

A 1 The proposed solution

B 2 [32], [35], [31] and [39]

C 3 [30], [28] and [29]

D 4 [38] and [25]

E 6 [27]

F 7 [33]

Table 3: Classification of the solutions regarding υ

Indeed, we note a close relationship between the probability q to receive an authen-
tication request and the waiting iteration number µ. More the value of µ is high more
the probability to receive an authentication request is decreased, in which µ is inversely
proportional to q. In order to maintain the coherence of the implied parameters we
represents q in function µ, such as q = 1

µ .
First, we were interested to study the impact of the metrics r and s. In function of

the latter metrics, we compare the different classes of solutions regarding the impact of
both physical and logical attacks, which are illustrated in Figures 8 and 9, respectively.
We set µ = 1 in order to absorb the impact of this parameter in contrast of r and s.
The probability PPA increases when the probability r increases, and in the same way,
the probability PLA increases when the probability s increases. Beside the parameters
r and s, the impact of physical and logical attacks depends strongly on υ. In the class
A belongs the proposed solution, which gives the most optimal results and outperforms
the other classes, where their value range of PPA and PLA are higher. This is due to
the communication round number, which increases the risk of attack at each exchange
between the communicating nodes. For instance, the class F provides the worst results
due to the high value of υ which equals to 7. Second, we were interested to study the
impact of the metric µ. In function of the latter, we compare the different classes of
solutions regarding the impact of both physical and logical attacks, which are illustrated
in Figures 10 and 11, respectively. As we can note, there is an inverse relationship
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between the probabilities of attacks and µ. When the waiting time is reduced, the
network will be a subject of attacks, like in real-time sensitive applications. The class
A, in which belongs the proposed solution, gives the best result and outperforms the
other classes, where their value range of PPA and PLA are lower.

5. Efficiency analysis

In this section, we analyze the efficiency of the proposed solution. We have con-
ducted intensive simulations to evaluate the performances of the proposed solution,
which we have compared with all the solutions reviewed in Section 2. In what follows,
we present the simulation environment, the performance metrics, and finally we discuss
the obtained results.

5.1. Simulation parameters

We have developed the simulations using the programming language Java. The aim
of this evaluation is to position the efficiency the proposed solution in contrast to the
others. The simulation duration is of 150 second with 6 sensor nodes deployed on the
patient body supervised by a single sink device placed at the center. We consider a
deployment area of 10m×10m, where the sensor nodes are deployed in a deterministic
manner at fixed positions. Each sensor node has a radio range of 1m and an initial
energy source of 0.5 Joule. To measure the energy consumed by the sensor nodes
during transmission, we have used the radio model proposed by Heinzelman et al. [41].
The energy consumption cost for the transmission of a k-bit data packet over a distance
d meter is computed in joule by:

E = k · (Eelec + Eamp · d2) (14)

where Eelec denotes the electronic energy and Eamp the transmitter amplifier. When
receiving a k-bit packet, it consumes in joule:

E = k · Eelec (15)

In the simulation scenario, the sensor nodes measure continuously the physiological
values, which are managed with different sizes regarding the nature of the sensed data.
The simulator identifies the data size following the identity of the sensor node generator.
The simulation starts with the learning phase, where the sink device recovers at each
slot of time ∆t of 1 second, the distances separating it to the other sensor nodes.
The learning phase is executed during a time period T of 10 second for three types
of posture, namely standing, walking and running. The network topology changes
due to the patient body movement. In this context, we have implemented the body
mobility model MoBan (Mobility BAN) [34]. This model considers the global movement
of MBAN by introducing the different patient body posture and permits individual
mobility of the deployed sensor nodes on the patient body. In Table 4, we summarize
the main simulation parameters.
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(f) Class F
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Figure 8: Physical attack probability in function of r and s for the different classes of solutions
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(f) Class F
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Figure 9: Logical attack probability in function of r and s for the different classes of solutions
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Figure 10: Physical attack probability in function of µ for r = 0.2 and s = 0.2
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Figure 11: Logical attack probability in function of µ for r = 0.2 and s = 0.2
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Parameter Value

Number of sensor nodes (η) 6

Number of sink devices 1

Sink device position Patient body center

Simulation area 10m×10m

Simulation time 150 second

Learning phase period by posture (T ) 10 second

Maximal transmission range 1m

Data generation rate 1 Mbit/second

Initial energy per sensor node 0.5 Joule

Energy consumed by the electronic circuit (Eelec) 16.7 nJoule

Amplification energy (Eamp) 1.97 nJoule

Table 4: Simulation parameters

5.2. Performance metrics

We were interested on three important performance metrics, namely the transmis-
sion load, the response time and the energy consumption. Unlike the other solutions,
which require to store at least one key, the proposed solution does not prevent any
extra parameter to store on the sensor nodes apart their proper identifiers. For this
reason, the metric of the storage load is not considered in the performance evaluation.
Through the transmission load, we quantify how well the proposed solution optimizes
the communication. Reducing the transmission load allows to decrease considerably the
negative impact of the generated radio signals by the sensor nodes on the patient health.
Through the response time, we analyze the reactivity in order to promote the real-time
criterion, which is highly required in emergency healthcare applications. Through the
energy consumption, we evaluate the endurance of the MBAN in terms of lifetime.
Prolonging the network lifetime decreases considerably the frequency of sensor node
relocation on the patient body. The energy consumption is computed from the total
amount of energy consumed in the MBAN over all the sensor nodes.

5.3. Transmission channel reliability impact

Figure 12 illustrates the transmission load in function of the transmission channel
reliability rate. We note that the proposed solution achieves the best results compared
to other protocols with a considerable transmission load performance when the reliabil-
ity is about 20%. However, for the other solutions the transmission load is high. The
proposed solution uses only the collected medical data by the sensor nodes unlike the
other solutions. In the latter, further to the measured data, they require to exchange
several cryptographic parameters (encryption key, identifiers, MAC, etc.) to perform
the authentication process. Figure 13 illustrates the response time in function of the
transmission channel reliability rate. Regarding the obtained results, the proposed so-
lution achieves again better results compared to other solutions with a basic response
time of 65 millisecond in the case of reliable channels. For instance, in [27], the data
packets are transmitted through several paths to reach their destination, thus leading
higher response time that continues to grow with the retransmissions number. In the
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Figure 12: Transmission load in function of the transmission channel reliability
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Figure 13: Response time in function of the transmission channel reliability
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Figure 14: Energy consumption in function of the transmission channel reliability

proposed solution, the data are transmitted through a single-hop toward the sink de-
vice, and hence offering a good effect in terms of response time. Figure 14 illustrates
the energy consumption in function of the transmission channel reliability rate. The
obtained results show that the energy consumed in the proposed solution is lesser than
the other protocols. In this way, it allows an effective management energy consumption,
and hence prolonging the network lifetime. Although the transmission channel inherent
characteristics and the nature of links, which is generally power limited in the case of
MBANs, the proposed solution provides an effective results in terms of transmission
load, response time and energy consumption.

5.4. Transmission frequency impact

Figure 15 illustrates the transmission load in function of the transmission frequency.
The proposed solution demonstrates better results compared to the other protocols.
The other solutions present a considerable increase in terms of load transmission due to
the exchanged data amount among the sensor nodes in the authentication process. For
instance, the solution [38] presents a high increase of transmission load due to the ex-
changed data which are of size to 640 bytes in order to establish a common key. Figure
16 illustrates the response time in function of the transmission frequency. The obtained
results show that the proposed solution provides better performances compared to other
protocols with a tolerable increase where the exchanged packet frequency becomes ex-
cessively high. We note a slight gap between the solutions [30] and [31]. Indeed, the
latter solutions are based on fuzzy vault technique to exchange the shared key. In [30],
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Figure 15: Transmission load in function of the transmission frequency
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Figure 16: Response time in function of the transmission frequency
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Figure 17: Energy consumption in function of the transmission frequency
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the secret key is concealed in the vault with distorted dots (chaff points), which will
be also issued. In contrast, [31] uses a different technique, where the points are dis-
torted, and hence, offering shorter response time. In [33], the response time is high
because of the high number of packets transmitted through several intermediate sensor
nodes before reaching the destination. Figure 17 illustrates the energy consumption in
function of the transmission frequency. The energy consumed following the proposed
solution is lesser than the other solutions. In the latter, the sensor nodes consume an
important part of energy due to the transmission load. The obtained results show the
effectiveness of the proposed solution for the medical applications requiring emergency
in the treatment and communication.

5.5. Detection precision

We have evaluated the performances of the proposed solution in foreign equipment
detection, which are located within the communication range of MBAN. In this context,
we have measured the detection, false rejection and false acceptance rates based on the
number of the selected periods during the learning phase. The detection rate denotes
the ratio of the detected attack number to all the launched ones. The false rejection
rate denotes the ratio of the number of non-authenticated legitimate sensor nodes to all
the authentication requests. The false acceptance rate denotes the ratio of the number
of authenticated non-legitimate sensor nodes to all the authentication requests. Figure
18 illustrates the obtained results with stranger equipments presence. We note that
whatever the number of periods ∆t, the detection rate is about 97%, which represents a
an acceptable rate. Moreover, we note that the false rejection rate is relatively low and
its growth in the number of periods ∆t is very low. This result is quite understandable
insofar as the number of periods ∆t increases, the time interval becomes smaller. The
distance between a sensor node and the sink device in two consecutive periods becomes
very close and a slight difference may fail the authentication process. This slight increase
in the false rejection rate is however acceptable as long as the false acceptance rate
remains approximatively null.

6. Implementation

In this section, we present the description of the proposed solution implementation
and the obtained results in terms of true acceptation and false rejection.

6.1. Description

The prototype which we have developed consists of a data generator device remotely
connected to a smartphone which acts as the sink. We illustrate in Figure 19 the global
view of the performed experiments. The data generator is prototyped by three units,
namely a microcontroller, a wireless communicating module and an energy source. We
have used an Arduino Nano, which is characterized by a weight of 7g, a microcontroller
ATmega328, an architecture AVR, an operating voltage of 5V, a flash memory of 32KB
of which 2KB is used by the bootloader, a SRAM of 2KB, a clock speed of 16MHz, an
EEPROM of 1KB, a power consumption of 19mA, and a PCB size of 18mm×45mm
[2]. The data generator device emulates the sensed data by the sensor of health mon-
itoring, like ECG, temperature, blood pressure, blood oxygenation, etc. For the data
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transmission, we have used a Bluetooth HC-05. The latter is a Bluetooth SPP (Serial
Port Protocol) module, designed for transparent wireless serial connection setup. The
module is compatible with Arduino Nano and can transfer data at the baud rate of
9600.

In the sink side, we have developed an Android program for transmission distance
estimation, learning and authentication. Indeed, several characteristics make the smart-
phone more suitable in the MBAN applications such as the large capacity of storage,
the high speed and precision of processing chip, the high capacity of the battery, and
the powerful communication function. Especially, with an open operating system and
the ability of installing and uninstalling new applications [22]. We have developed this
part using Android Studio IDE 2.3. It is specifically designed for Android develop-
ment based on the JetBrains and IntelliJ IDEA software and is a successor to Eclipse
Android Development Tools (ADT) as Google’s primary IDE for Android application
development [1]. We have developed the sink program part on a Samsung Galaxy S5
mini characterized by a 1400 MHz CPU frequency, Android OS 4.4, a 1.5GB of RAM,
and a Bluetooth 2.0 EDR.

After receiving the data via the socket connection between the smartphone and the
Bluetooth module from the data generator, it processes the received data to extract
the signal strength (RSSI). Based on the latter, the program computes the transmission
distance at each time during the activity period, generates the polynomial function
and stores it in its locally. Afterwards, the authentication process uses this polynomial
function to determine if the received data at a particular instant is generated or not by
the legitimated device.

6.2. Obtained results

A user has been equipped with a data generator placed on its left arm. During the
test, the data generator device is connected to the sink program. In the experiment,
the user has performed a walking activity for a period of time T = 1 minute, where
the data are transmitted at each ∆t = 6s by the data generator. This step allowed
to learn the user behavior, and afterwards, the user was invited to the authentication
phase, in which the sink tries to identify the data generator through its RSSI. This
experiment is repeated 10 times by measuring for each one the true acceptation and the
false rejection. The obtained results are illustrated in Figure 20. The results show that
whatever the number of periods ∆t, the true acceptation rate varies between 91, 66%
and 100%, which is an acceptable interval. This result is quite understandable insofar
as the user is walking, the distance between the data generator device and the sink
device in two consecutive periods becomes close or away, and a slight difference may
fail the authentication process. However, this slight increase in the false rejection rate
is acceptable.

7. Conclusion

The area of MBANs is attractive in the research community due to its applications in
the medical fields improving the service quality and allowing remote patient monitoring.
The authentication is a challenging issue in MBANs due to the use of computational and
resource limited sensor nodes. Any security protocol designed for use in MBANs should
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Figure 19: The prototype components.
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Figure 20: Accuracy of the proposed solution.

be robust against attacks, energy-efficient and should have a low impact on the network
lifetime. In this paper, we have proposed a patient body motion based authentication
solution which is very practical for mobile healthcare environments. The proposed so-
lution provides a tradeoff between the efficiency and security. We have demonstrated
its robustness against impersonation, Sybil, man in the middle and replay attacks. In
order to evaluate the impact of physical and logical attacks on the proposed solution,
we have developed an analytical model using Markov chain, where it demonstrates the
best results compared to the other solutions. Again, in order to evaluate the efficiency
of the proposed solution, we have developed simulations with comparison to all the
reviewed solutions, followed by real experimentations. The results indicate better per-
formance of the proposed solution in terms of transmission overhead, response time,
energy consumption and accuracy.
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