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Abstract

The increasing popularity of ambient assisted living solutions is claiming adaptive and scalable tools to

monitor activities of daily living. Currently, most sensor-based activity recognition techniques rely on

supervised learning algorithms. However, the acquisition of comprehensive training sets of activities in

smart homes is expensive and violates the individual’s privacy. In this work, we address this problem

by proposing a novel hybrid approach that couples collaborative active learning with probabilistic and

knowledge-based reasoning. The rationale of our approach is that a generic, and possibly incomplete,

knowledge-based model of activities can be refined to target specific individuals and environments by

collaboratively acquiring feedback from inhabitants. Specifically, we propose a collaborative active

learning method exploiting users’ feedback to (i) refine correlations among sensor events and activity

types that are initially extracted from a high-level ontology, and (ii) mine temporal patterns of sensor

events that are frequently generated by the execution of specific activities. A Markov Logic Network

is used to recognize activities with probabilistic rules that capture both the ontological knowledge

and the information obtained by active learning. We experimented our solution with a real-world

dataset of activities carried out by several individuals in an interleaved fashion. Experimental results

show that our collaborative and personalized active learning solution significantly improves recognition

rates, while triggering a small number of feedback requests. Moreover, the overall recognition rates

compare favorably with existing supervised and unsupervised activity recognition methods.
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1. Introduction

Sensor-based human activity recognition has been a hot topic in pervasive computing for several

years for its important applications in assisted living, e-health, and context-aware services. While
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simple activities like running or cycling can be easily recognized even only by acceleration data, the

research has focused on the recognition of complex activities of daily living (ADL) [1, 2].5

Most ADL recognition systems rely on supervised learning which requires a large training set of

sensor events with annotations mapping sequences of events to the specific activity that generated

them. Annotation can be done by direct observation, video recording, crowdsourcing, or by manual

data analysis, but in all cases it is an expensive process. Besides privacy issues in observing individuals

in their private spaces, the heterogeneity of the environments and the very diverse ways a complex10

activity can be performed by different individuals limit the value of the acquired training set. This is a

serious limitation to the large scale deployment of these systems. Active learning has been proposed to

mitigate this problem [3], but the majority of these techniques need anyway a starting labeled training

set. Alternative approaches propose the use of a structured knowledge representation of activities,

infrastructure, and events to guide the recognition process in an unsupervised way [4]. In order to be15

effective, they require a significant effort of knowledge engineers to build a comprehensive ontology,

and it remains questionable if such an ontology could actually cover an heterogeneous large set of

environments and individuals.

We address this problem by a novel framework, called newNECTAR, exploiting kNowledge-basEd

Collaborative acTive learning for Activity Recognition. newNECTAR does not require an initial train-20

ing set, since it relies on a (possibly incomplete) ontology to derive a first set of semantic correlation

values between activities and the sensor events that most likely will be observed when performing

those activities. These correlations together with a small set of general inference rules are formally

expressed as probabilistic formulas in a Markov Logic Network (MLN). Given a sequence of observed

sensor events, the MLN inference mechanism identifies the most probable sequence of ADLs that25

generated them. In order to cope with the incompleteness of the ontology and the heterogeneity of

environments and individuals, we introduce a collaborative active learning process to refine the corre-

lations derived by the ontology and the probabilistic rules of the MLN. The stream of sensor events

is segmented in real-time, and based on the uncertainty about the activity associated with the events

in the segment, a feedback may be asked to the subject about which activity is being performed.30

Feedback responses coming from different homes are collected and analyzed in a cloud infrastructure;

in particular, the system identifies frequent associations between activities and specific events or tem-

poral patterns of events. Based on this analysis, each home receives personalized information to refine

or insert new probabilistic rules in its MLN, hence refining the recognition model. The collaborative

active learning feature of newNECTAR also deals with the common situation in which a new device is35

installed in the infrastructure, by producing a new set of correlation values regarding the new device

events.

newNECTAR has been experimentally validated on a real world and publicly available dataset

involving multiple subjects performing ADLs in both sequential and interleaved fashion.
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The main contributions can be summarized as follows:40

• We propose a new active learning approach to ADL recognition that addresses the main problems

of current statistical and knowledge-based methods;

• The newNECTAR technique supports collaborative and personalized refinement of the recogni-

tion model based on the temporal data analysis of the user feedbacks;

• Our experiments show the gain obtained by collaborative active learning, the moderate effort45

required to the involved subjects, and the overall effectiveness of newNECTAR even compared

with supervised approaches.

The rest of the paper is structured as follows. Section 2 summarizes related work. Section 3

presents the newNECTAR architecture, while the techniques are explained in Section 4. Section 5

shows experimental results and Section 6 discusses open issues. Finally, Section 7 concludes the paper.50

2. Related Work

Acquiring comprehensive training sets of ADLs is expensive in terms of annotation costs and it

involves non trivial issues related to the privacy of the participating subjects [5]. Hence, several efforts

have been devoted to devise unsupervised or semi-supervised activity recognition techniques [6, 7, 8],

as well as transfer learning methods for activity models [9, 10].55

Unsupervised activity recognition methods do not require the acquisition of labeled training sets.

As a consequence, the model of activities must be either manually specified (e.g., through an ontology)

or mined from other sources (e.g., Web resources, or unlabeled datasets of activities). A popular

approach to the manual specification of activity models consists in the use of description logics or logical

rules to define the formal semantics of activities [6, 7, 8]. In those approaches, complex activities are60

defined in terms of their simpler components. Sequences of simple actions, recognized based on firing

of specific sensor events, are matched to activity definitions to identify the occurred activity. However,

those approaches rely on rigid assumptions about the execution patterns of ADLs [11]. On the contrary,

complex activities are characterized by large variability of execution. In order to cope with that

issue, other works investigated the use of less rigid formalisms to define ADLs. In [12], probabilistic65

description logics are used to define a multi-level ontology of domestic activities. Hybrid ontological-

probabilistic reasoning is used in [4] to recognize ADLs based on semantic correlations among sensor

events and activities. However, all those approaches require significant knowledge engineering efforts,

and are hardly scalable to the definition of a comprehensive set of ADLs in different contexts.

A different approach consists in mining activity models from Web resources [13, 14, 15]. Those70

methods analyze textual descriptions of activities mined from the Web in order to obtain correlations

among activities and objects used for their execution. That approach has been recently extended to
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exploit visual cues extracted from the Web, such as images and videos [16]. However, it is questionable

whether object-activity correlations are sufficient to recognize complex ADLs. Indeed, in this work

we rely not only on correlations, but also on temporal constraints on event occurrences, and on75

knowledge-based constraints on activity components.

A further approach is to infer activity models from unlabeled datasets. For example, in [17]

multi signal motifs mining on data acquired from body-worn sensors is used to recognize repeated

subsequences of sensor data, that represent the execution of a specific (unknown) activity. A similar

approach, but applied to domestic sensors, is proposed in [18]. In [19], data mining methods are used80

to cluster sequences of sensor events, such that each cluster represents an activity class. The inhabitant

is asked to provide the actual class of each cluster. In USMART [20], a knowledge-based method is

used to segment sensor event traces. Those segments are fed to a sequential pattern mining algorithm

to derive frequent sequences, which are thus associated with one or more activities exploiting semantic

based reasoning and then used for activity recognition. Compared to those unsupervised methods, in85

our work we exploit collaborative users’ feedback to assign a certain semantics to sets of sensor events.

Semi-supervised learning methods use unlabeled data to improve the model computed through a

training set. Different semi-supervised methods, including the ones presented in [21, 22, 23], address

the recognition of physical activities based on accelerometer data. Self-training and co-training are

used in [24] for recognition of ADLs. The same work also investigates the use of active learning,90

with the objective of asking the individuals to label the most informative sequences of sensor events.

In [25], the authors propose to use active learning to dynamically adapt the recognition model to the

changes of the home environment. In that work, an entropy based measurement is used to query

the most informative sequences of sensor events to update a Dynamic Bayesian Network. An active

learning method to iteratively refine the annotations of video provided by crowdsourcing services (like95

Mechanical Turk) is presented in [26]. That method relies on confidence scores about the annotation.

A similar approach is proposed in [27]. The three methods presented in [26] to choose the most

informative data points are based on (i) low confidence for the most probable activity class, (ii) small

difference between the confidence of the most and second most probable class, or (iii) high entropy

among the probability of classes. Experimental results in smart home settings show that the three100

methods achieve similar accuracy. The work presented in [3] proposes strategies to select the most

appropriate annotators in a crowdsourcing framework for active learning of ADLs. Differently from

those works, in this paper we propose collaborative active learning to share the burden of providing

ADLs labels among a community of inhabitants.

Other works propose transfer learning methods to reuse activity datasets acquired in different105

environments [9, 28]. However, effective portability of activity datasets is challenging, since datasets

of complex ADLs are strongly coupled to the environment in which they are acquired and to the

mode of execution of the individual [10]. Hence, in our work we consider a similarity measure between
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the context of the target environment (characteristics of home and inhabitant) and the one of the

environment from which the label is acquired, in order to cope with the different context conditions. A110

related issue is how to dynamically adapt the recognition system to changes in the sensor infrastructure.

With this regard, a technique was proposed to update the model of a supervised machine learning

algorithm with features of newly-discovered sensors [29]. In our work, we integrate information about

new sensors thanks to a collaborative active learning method.

Finally, we mention that extracting temporal knowledge from time series is a well-known and115

explored research area [30]. Association rules mining has been successfully applied to sensor networks

data in order to derive relevant event patterns [31]. Emerging patterns discovery [32] was proposed

to recognize sequential, interleaved and concurrent activities. In the field of activity discovery, spatio-

temporal frequent pattern mining [33] and stream mining [34] techniques have been explored. In our

work, we exploit collaborative active learning to mine from inhabitants’ feedback the most relevant120

associations between quantitative temporal constraints of sensor events and activities in order to

improve a possibly incomplete probabilistic knowledge-based activity model. Moreover, we personalize

the mining approach by considering the characteristics of individuals and environment.

With respect to our previous work [35], we significantly improved our collaborative active learning

framework by mining personalized temporal patterns of sensor events from the feedback.125

3. newNECTAR’s model and architecture

In this section, we present the data model and the system architecture of newNECTAR.

3.1. Model

In the following, we explain how we model sensor and activity data in newNECTAR, including

temporal aspects and semantic correlations.130

3.1.1. Activities and sensor events

In our model, we distinguish between an activity class and an activity instance, where the

former is an abstract activity (e.g., taking medicine) and the latter is the actual occurrence of an

activity of a given class during a certain time period. We denote with A the set of the considered

activity classes (e.g., A = {Eating, Cooking, Taking Medicines}).135

We denote with E the set of high-level event types that correspond to the set of monitored

operations (e.g., E = { opening the medicine drawer, closing the medicine drawer }). In addition, T

describes the set of all possible event timestamps. The set T is isomorphic to the set of natural

numbers N. We compute the temporal distance between two sensor events sei and sej as their

timestamps’ difference ti− tj ; The temporal distance is an integer representing the number of seconds140

between the occurrence of sej and the one of sei. Note that the distance will be a negative value if

sej occurred after sei.
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A temporal sequence of events is represented as:

〈 se1 = 〈et1, t1〉, . . . , sek = 〈etk, tk〉 〉,

where sei = 〈eti, ti〉 indicates that sei is an instance of the event type eti ∈ E occurred at timestamp

ti ∈ T.

3.1.2. Binary event temporal patterns145

Given two variables X and Y with values in event timestamps, and two integers min and max,

a quantitative binary temporal constraint C is represented as C = (min ≤ X − Y ≤ max). A

temporal constraint C overlaps a temporal constraint C ′ defined in terms of min′ and max′ if the

intersection of the intervals [min,max] and [min′,max′] is non-empty. We denote as t ∈ C an event

timestamp t that occurs within a temporal constraint C. A pair of sensor events (sei, sej) satisfies150

C if the inequality holds when substituting X and Y with ti and tj , respectively. A binary event

temporal pattern is a tuple 〈eti, etj , C〉, where eti, etj ∈ E and C is a temporal constraint. We

denote by ETP the set of possible event temporal patterns. A temporal sequence S of events is said

to match the pattern ETP = 〈eti, etj , C〉 if S contains a pair of sensor events of types eti and etj

whose respective timestamps satisty C. A binary event temporal pattern 〈eti, etj , C〉 overlaps a binary155

event temporal pattern 〈etk, etl, C ′〉 if C overlaps C ′, eti = etk and etj = etl.

3.1.3. Semantic correlations

Semantic correlations represent probabilistic dependencies among event types and activity classes.

Formally, given the type of a sensor event and an activity class, the semantic correlation function

SC : E ×A → [0, 1] gives the probability that the event is generated by performing an instance of160

that activity class. Hence, given any event type, we have that SC is a probability distribution over

all activity classes:

∀ et ∈ E
∑
ac∈A

SC(et, ac) = 1. (1)

3.2. Hybrid activity recognition method

The architecture of our hybrid activity recognition method is shown in Figure 1. Like in our

previous work [4], we define the semantics of activities and high-level events in an OWL 2 ontol-165

ogy. In particular, the ontology includes axioms stating that an instance of a given activity class

(e.g., “prepare soup”) must necessarily generate a set of high-level events (e.g., “take water”, “pour

water”). Moreover, it also includes other common-sense axioms regarding time and location; e.g.,

“every instance of cooking is executed in the kitchen”. Ontological reasoning is used offline to derive

semantic correlations based on the smart home setup. Periodically (e.g., daily), the MLNNC activ-170
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Figure 2: The collaborative active learning mechanism of newNECTAR

ity recognition layer is in charge of recognizing performed activities by modeling and reasoning

with detected events and semantic correlations through an extension of Markov Logic Networks with

numerical constraints [36].

3.3. Collaborative active learning architecture

The architecture of our collaborative active learning system is shown in Figure 2. We assume a set175

of different smart-homes equipped with unobtrusive sensing infrastructures. Environmental sensors

are deployed in each home in order to monitor the interaction of the inhabitant with home artifacts

but also context conditions (e.g., temperature) and presence in certain locations. Each home may

have a different set of deployed sensors and monitored items. A gateway in the home is in charge

of collecting and pre-processing raw data from the sensor network in order to reconstruct the most180

probable activities that generated them.
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3.3.1. Semantic integration

The semantic integration layer is in charge of applying pre-processing rules in order to detect

high-level events from raw sensor signals. For example, if at time t the medicine drawer sensor produces

the raw event open, then the high-level event at t is opening the medicine drawer. Reasoning on high-185

level events allows our system to be robust to minor changes in activity execution. For instance, if the

inhabitant decides to keep his/her medicines in a different drawer than before, it is sufficient to adjust

the above mentioned pre-processing rules, thus adapting the mapping between raw sensors data and

events.

3.3.2. Active learning190

Being manually designed by knowledge engineers with a specific application in mind, the ontological

model is necessarily limited to specific environments and activities. Thus, semantic correlations may

not be sufficiently comprehensive to cover different application domains. Moreover, some sensor event

types (e.g., motion sensors) do not convey any explicit semantic information; hence, no semantic

correlation can be inferred for these event types from the ontology. Since OWL 2 does not natively195

support temporal features, our ontology also lacks information about event temporal patterns that

are frequently associated to the execution of given activities. For these reasons, our system collects

feedback items from the smart-homes in order to: i) discover temporal event temporal patterns as

well as semantic correlations not inferred from the ontology, and ii) refine the values of existing

correlations. For acquiring a feedback, newNECTAR interactively queries the user to provide the class200

of his/her current activity. Acquired feedback is collaboratively shared among the smart-homes to

update semantic correlation values in a personalized fashion. For the sake of clarity, in the following we

name origin the environment (home and inhabitant) providing feedback, and target the environment

where feedback is used.

3.3.3. Activity segmentation205

The feedback acquisition mechanism relies on the concept of segments. Formally, a segment ~s =

〈sej , . . . , sek〉 is a temporal sequence of consecutive sensor events. Each event is assigned to exactly

one segment. In order to cope with interleaved activities, a single activity instance can span multiple

segments. Each segment belongs to exactly one activity instance. The class of each segment is the one

of its activity instance. As explained below, when newNECTAR determines that a segment’s events do210

not provide enough hints to reliably determine its class according to an information-theoretic metric,

it queries the user to obtain a feedback.

To this purpose, the online rule-based segmentation layer is in charge of segmenting the

continuous stream of sensor events. The segmentation method is based on semantic rules that consider

different aspects like time constraints, objects interaction, and change of location. The role of these215

rules is to group together those consecutive events which most likely originate from the same activity
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instance. As soon as a segment is finalized, it is processed by the query decision layer in order

to decide whether triggering a feedback query or not. That module processes the segment to apply

an information-theoretic metric considering the segment’s events and the semantic correlations. If

the activity class is uncertain according to that metric, the module triggers a feedback query. A220

user-friendly and unobtrusive interface is in charge of issuing the feedback query and collecting the

inhabitant answer.

3.3.4. TP and SC discovery

The acquired feedback is transmitted to a cloud service, where the tp and sc discovery

layer is in charge of: a) mining event temporal patterns (TP) that are frequently correlated to the225

execution of certain activities, and b) discovering reliable and personalized semantic correlations (SC)

between event types and activities. Personalization is based on the similarity between the origin and

target environment. The cloud service periodically sends personalized feedback items to each target.

Received feedback is used by the semantic correlations updater layer to discover novel semantic

correlations and to update the values of existing ones. Moreover, the temporal pattern updater230

is in charge of updating the MLN model to take advantage of discovered temporal event patterns.

For the sake of this work, we assume that the cloud service is trusted. However, in a real

deployment it would likely be a honest-but-curious third party. Proper privacy techniques are thus

needed to protect sensitive data and at the same time to preserve the cloud service functionalities.

4. newNECTAR under the hood235

In this section, we describe in detail each component of our system.

4.1. Activity recognition

Our activity recognition system relies on an ontological model of home environment, sensors,

activities and actors, and on probabilistic reasoning through an extension of Markov Logic Networks

(MLN) [37].240

4.1.1. Ontological model

Our ontology has been defined using the OWL 2 language. For the sake of space, we omit technical

details about the ontological model and ontological reasoning methods, which can be found in [4]. In

the following, we outline the main characteristics of our ontology. Ontological properties describe

relations among instances. For example, an ontological axiom states that “firing of an accelerometer245

a attached to a kitchen chair c indicates the occurrence of an action of class MoveKitchenChair”. In

our ontology, we express necessary conditions for a set of sensor events to be generated by a given

activity. For example, the sensor events generated by an instance of activity class PrepareHotMeal

must include an event of class UsingCookingInstrument. Other ontological axioms describe temporal
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and location-based constraints. As explained below, by reasoning with those ontological axioms, we250

can infer generic semantic correlations among sensor event types and activity classes, which are used

by the MLN module to associate sensor events to their activity instance.

4.1.2. Semantic correlation reasoner

Inference of semantic correlations relies on the property composition operator of OWL 2 [11]. In

particular, in the ontology, we defined an axiom stating that: “if an event of type et is produced by

a sensor that indicates the usage of an artifact possibly used for an activity of class ac, then et is a

predictive sensor event type for ac”. For each event type et, we compute the set of activities for

which et is a predictive event type:

predAct(et) = {ac | et is a predictive event for ac}

To enforce property (1), we set the values of the semantic correlation function SC for each combination

of event type et and activity class ac in the following way. We consider two cases. If et is predictive

of at least one activity class, we compute et’s correlations using the following formula:

SC(et, ac) =


1

|predAct(et)| if ac ∈ predAct(et)

0 otherwise

Otherwise, having no information about the associations between et and activity classes, we uniformly

distribute its correlation values to all possible activity classes:

SC(et, ac) =
1

|A|
,

where A is the set of all activity classes. It is easy to verify that in both cases property (1) (see

Section 3.1.3) is enforced.255

4.1.3. MLN activity recognition

MLN is a probabilistic first-order logic that naturally supports reasoning with uncertain axioms and

facts [37]. In our framework, we use an extension of MLN, named MLNNC , which supports numerical

constraints useful to reason with temporal information. In the following, we sketch the main inference

tasks for activity recognition; more details can be found in [4]. MLN supports the definition of both260

hard and soft axioms. The former are certainly true, and are mainly automatically extracted from

our ontology. The latter are associated to a weight that represents their probability of being true,

considering the inferred semantic correlations. We instantiate the MLN knowledge base by translating

the axioms of our ontology in hard MLN axioms. In this way, we ensure that the MLNNC knowledge

base is consistent with our OWL 2 ontology. Moreover, we add soft MLN axioms to represent common-265
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sense knowledge about typical activity execution. In particular, the extension of MLN with numerical

constraints allows us to express probabilistic common-sense knowledge about the typical time during

which activities are executed. Similarly, we define soft axioms about the maximum and minimum

duration of activities. At activity recognition time, we add facts that represent the observation of

occurred sensor events. Each fact SensorEvent(e, et, t) includes the event unique identifier e, the event270

type et and the timestamp t. We also add facts regarding initial hypothesis of activity instances, which

are computed by a heuristic algorithm considering semantic correlations. Each fact ActClass(ai, ac)

includes the corresponding candidate activity instance identifier ai and its most likely activity class

ac.

We add probabilistic axioms that relate sensor events to candidate activity instances according to275

the semantic correlation values of the corresponding event type and activity class. For instance, the

probabilistic axiom:

−0.619 BelongsTo(‘PourWater’, 1029, ai)

∧ActClass(ai, ‘PrepareSoup’)

states that, with weight -0.619, the sensor event of type ‘PourWater’ observed at timestamp 1029

belongs to an activity instance ai of class ‘PrepareSoup’. According to the MLN semantics of weights,

the axiom weight is computed applying the logit function to the corresponding probability value280

obtained by the semantic correlation function. For instance, the value -0.619 in the above formula is

obtained by applying logit to 0.35, which is the value of SC(‘PourWater’, ‘PrepareSoup’).

We also include probabilistic axioms to represent temporal patterns. In particular, given a binary

event temporal pattern 〈eti, etj , C〉 frequently associated to the execution of activity ac and C =

(min ≤ X − Y ≤ max), we add a soft rule:285

w SensorEvent(ei, eti, ti) ∧ SensorEvent(ej , etj , tj) ∧

ti − tj ≥ min ∧ ti − tj ≤ max→

OccurredIn(ei, ai) ∧ OccurredIn(ej , ai) ∧ ActClass(ai, a)

where w > 0 is the soft rule’s weight, ei, ej are sensor events occurred at ti, tj respectively, and ai is an

activity instance. For example, suppose that the temporal pattern consisting in the sequence of two

events of type FridgeOpened and StoveTurnedOn occurring at a temporal distance ranging from 5 to
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25 seconds is frequently associated to the execution of Cooking. That binary event temporal pattern

is encoded by the following rule:290

0.15 SensorEvent(ei, ‘FridgeOpened’, ti) ∧

SensorEvent(ej , ‘StoveTurnedOn’, tj) ∧ ti − tj ≥ 5 ∧ ti − tj ≤ 25→

OccurredIn(ei, ai) ∧ OccurredIn(ej , ai) ∧ ActClass(ai, ‘Cooking’)

The weight w of the rule corresponding to an etp is chosen using the method explained in Section 4.3.3.

Periodically (e.g., daily) our system analyzes the sensor events collected in that period to generate

the MLNNC model as described above. Finally, the MLN reasoning mechanism executes maximum a-

posteriori inference to compute the most probable assignment of (i) sensor events to activity instances,

and (ii) activity class to activity instances.295

4.2. Online segmentation and query decision

The segmentation of the continuous stream of sensor data is performed by the Online rule-

based segmentation layer based on knowledge-based conditions. For each produced segment, the

query decision layer thus computes its entropy considering the semantic correlations. If the entropy

of a segment exceeds a fixed threshold, the inhabitant is queried in order to provide an activity class300

to the segment. This allows us to limit the number of queries issued to the inhabitant.

4.2.1. Online rule-based segmentation

The online rule-based segmentation layer is in charge of deciding whether it is appropriate

to finalize the current segment and initiate a new one. For that purpose, it considers semantic con-

ditions in order to interpret the continuous stream of sensor events. This includes the observation of305

interactions with objects (C1 ), changes between rooms (C2 ), and unusual gaps in time between con-

secutive sensor events (C3 ). Whenever a new sensor event enew is observed, all these three conditions

are reviewed. If at least one of the conditions is fulfilled the current segment is finalized. Hence, the

sensor event enew is the first element of the new segment. Of course, the objective is to reconstruct the

ground truth segments based on the observed stream of sensor events. In the following, we describe310

the mentioned conditions in detail:

C1) This condition keeps track of the events that result from interaction with the objects in the home.

If at a certain point in time the subject stops to interact with all items, we consider this as an

indicator that an activity instance was completed and thus the current segment is finalized.

C2) Several activities are bound to a certain location or room. For that reason, if sensor events show315

that the inhabitant moves from a room to another, C2 considers this situation as an indicator

to finalize the current segment.
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C3) An increasing temporal distance between consecutive sensor events can be interpreted as a re-

duced probability that they describe the same activity instance. This is especially the case if

the subject leaves the observed home. Therefore, we keep track of the median distance between320

sensor events collected in the previous days, and we assume that two consecutive sensor events

belong to different segments if their temporal distance is twice as large as the median. When

no sufficient statistical information about previous sensor events is available, we use a manually

fixed threshold.

These conditions aim to generate segments which cover at most one activity instance: we prefer325

to split an activity instance in more segments instead of trying to build a segment that perfectly fits

an activity instance, as this would also increase the risk of including unrelated sensor events. Indeed,

we want to reduce the risk of associating the user’s answer with wrong sensor events. Moreover, this

segmentation strategy allows us to cope with interleaved activities.

As soon as a new segment is generated, it is forwarded to and processed by the query decision330

layer.

4.2.2. Query decision

Given a segment ~s, the query decision layer decides if it is necessary to query the inhabitant.

In particular, if the semantic correlations regarding the events in ~s are inconclusive when considered

together (i.e., they do not converge on a specific activity class), we ask the inhabitant which activity

he/she was actually performing. For that purpose, we introduce the concept of a segment’s bag:

Bag(~s) = {et | se = 〈et, t〉 ∈ ~s}

where ~s is a finalized segment and Bag(~s) is a bag (i.e., a multiset) which contains the types of

the events contained in ~s. It is important to note that the temporal order of events of a segment is

not reflected by its bag. Hence, for each bag Bag(~s), we compute for all the activity classes ac ∈ A

the likelihood that the segment ~s represents an activity instance of ac. This is computed as follows:

L(ac | ~s) =

∑
et∈Bag(~s) SC(et, ac)

|Bag(~s)|

where SC(et, ac) is the semantic correlation between et and ac.

After we compute L(ac | ~s) for all activity classes, we normalize these values in order to have a

probability distribution. Subsequently, the segment’s entropy is calculated on the distribution to

determine the system’s confidence for the segment:

H(~s) =
∑
ac∈A

P (X = ac | ~s) · log(
1

P (X = ac | ~s)
)
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where P (X = ac | ~s) results from the normalized L(ac | ~s) values.

Finally, if H(~s) is higher than a predefined threshold λ, the system ranks ~s as uncertain. In this335

case, the system queries the inhabitant in order to provide an activity label ac for ~s. Thus, the system

transmits immediately the segment feedback item 〈~s, ac, o〉 to the cloud service, where o is the

identifier of the origin.

Note that segments containing noisy events that occurred outside activities execution (e.g., trigger

of presence sensors) would likely lead to high entropy values. To overcome this issue, we rely on the340

semantic integration layer presented in Section 3 to reduce as much as possible the generation

of those noisy events, filtering out events that are not relevant to activity recognition according to our

ontological description of activities. Moreover, we also discard segments with few events in order to

further reduce noisy data; in particular, segments whose length is less than a threshold γ are discarded.

4.3. Collaborative adaptation345

In the following, we describe our collaborative adaptation framework, which relies on three main

components. The TP and SC discovery layer (which runs on the Cloud Service) collects and

aggregates the feedback received from origin homes and it periodically transmits personalized updates

to each target home. On the other hand, the Semantic Correlation Updater and Temporal

Pattern Updater, which run in the home’s gateway, are in charge of using personalized feedback350

items to refine the values of semantic correlations and temporal patterns, respectively.

4.3.1. TP and SC discovery

The TP and SC discovery layer is in charge of computing personalized feedback items based

on the received feedback. Personalization is based on the similarity between the origin and target

of a feedback. In order to measure the similarity, that module relies on a similarity function sim :355

H ×O → [0, 1], where H is the set of targets, and O is the set of origin environments. Of course, the

most appropriate definition of the target environment features, as well as the method to compute sim

values, depend on the addressed application.

Personalized SC feedback items. At first, the module preprocesses each segment feedback item 〈~s, ac, o〉

received from the participating homes, to obtain a multiset of SC feedback items. Each SC feedback360

item f = 〈et, ac, o〉 corresponds to a sensor event of the vector, where et is the event type, ac and o

are the activity class and the origin of the segment feedback item, respectively.

Example 1. Consider the segment feedback item 〈~s, ac, o〉, where:

~s = 〈〈et1, t1〉, 〈et2, t2〉, 〈et3, t3〉〉.
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That item is transformed in the following multiset of SC feedback items:

(〈et1, ac, o〉, 〈et2, ac, o〉, 〈et3, ac, o〉).

Based on the multiset F of SC feedback items obtained aggregating the items received from all the

participating homes, the module computes personalized SC feedback items for each target environment.

In particular, consider a target h. At first, for each event type et and activity class ac, the following

formula computes the personalized SC feedback support:

supp(et, ac, h, F ) =
∑

f=〈et,ac,o〉∈F

sim(h, o).

In order to exclude unreliable feedback, the cloud service transmits only personalized SC feed-

back items whose support is larger than a threshold σ. For each reliable personalized feedback, the

module computes its predictiveness value:

pred(et, ac, h, F ) =
supp(et, ac, h, F )∑

aci∈A
supp(et, aci, h, F )

,

which is the normalization of et’s support values, distributed over all the activity classes. The module

also computes estimated similarity as the median value of the similarity between the SC feedback

items’ origin and the target:

s(et, ac, h, F ) = median
f=〈et,ac,o〉∈F

sim(h, o).

Finally, the system communicates to the target home each personalized SC feedback item:

〈et, ac, p, s〉,

where et is an event type, ac is an activity class, p is the predictiveness, and s is the similarity.

Personalized TP feedback items. The cloud service also analyzes the collected segment feedback items

to obtain a set of temporal pattern (TP) feedback items. A TP feedback item is a tuple365

〈etp, ac〉, where etp is a binary event temporal pattern and ac is the associated activity class. In the

following, we explain how we mine segment feedback items to infer TP feedback items. Let S be the

set of all the segment feedback items collected by the origin homes. We assume that the set E of

the event types is totally ordered (e.g., lexicographically). An event pair occurrence 〈eti, etj , d, o〉,

where eti ≤ etj , represents the occurrence of two distinct sensor events ev(eti, ti), ev(etj , tj) within370

the same segment provided by an origin home o with a temporal distance d = ti − tj . The multi-set

of event pair occurrences given a particular activity class ac is denoted as follows:
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epo(ac) =
⋃

S=〈~s,ac,o〉∈S

{〈eti, etj , ti − tj , o〉|ev(eti, ti), ev(etj , tj) ∈ ~s, eti ≤ etj}

Given a pair of event types eti, etj ∈ E and an activity class ac, the broadest event temporal

pattern betp(eti, etj , ac) is an event temporal pattern 〈eti, etj , C〉 such that C is a binary quantitative

temporal constraint bounded by the minimum and the maximum temporal distances found in the375

event pair occurrences epo(ac) :

betp(eti, etj , ac) = 〈eti, etj , min
〈eti,etj ,d,o〉∈epo(ac)

d ≤ X − Y ≤ max
〈eti,etj ,d,o〉∈epo(ac)

d〉

where X and Y are two variables with values in event timestamps. Hence, we compute the set

tp(ac) of TP feedback items for a particular activity class ac in the following way:

tp(ac) = {〈betp(eti, etj , ac), ac〉 | ∀ 〈eti, etj , d, o〉 ∈ epo(ac)}

The support of a TP feedback item 〈etp, ac〉 for a target home h can be computed as:

supp(〈etp = 〈eti, etj , C〉, ac〉, h) =

∑
〈eti,etj ,d,o〉∈epo(ac)

sim(h, o)∑
〈etl,etm,dn,o′〉∈

⋃
ack∈A

epo(ack)

sim(h, o′)

Intuitively, the support of a TP feedback item 〈etp = 〈eti, etj , C〉, ac〉 is the percentage of event

pair occurrences where eti, etj occurred together in the same instance of ac, scaled by the similarity

between target and origins’ homes. To exclude unreliable feedback, the Cloud Service transmits380

only TP feedback items whose support is larger than a threshold σ′.

The Cloud Service further refines the TP feedback items whose support is larger than σ′. To

this aim, it groups together all those items whose binary event temporal patterns overlap. From these

items, it generates refined TP feedback items, whose binary constraints form a partition of the

binary constraints of the original TP feedback items.385

Example 2. Consider two TP feedback items 〈〈OpenFridge, CloseFridge, 1 ≤ X−Y ≤ 6〉, Cooking〉

and 〈〈OpenFridge, CloseFridge, 4 ≤ X − Y ≤ 20〉, Cleaning〉. It is easy to see that the event

patterns of the two feedback items overlap. These items are replaced with refined TP feedback items

that essentially partition the overlapping binary constraints of the original items:

• 〈〈OpenFridge, CloseFridge, 1 ≤ X − Y ≤ 3〉, Cleaning〉390

• 〈〈OpenFridge, CloseFridge, 4 ≤ X − Y ≤ 6〉, Cooking〉

• 〈〈OpenFridge, CloseFridge, 4 ≤ X − Y ≤ 6〉, Cleaning〉
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• 〈〈OpenFridge, CloseFridge, 7 ≤ X − Y ≤ 20〉, Cooking〉

For each refined TP feedback item, the system computes the confidence:

conf(〈eti, etj , C〉, ac〉) =
|{〈eti, etj , d, o〉 | 〈eti, etj , d, o〉 ∈ epo(ac), d ∈ C}|∑

ack∈A
|{〈eti, etj , d, o〉 | 〈eti, etj , d, o〉 ∈ epo(ack), d ∈ C}|

Intuitively, the confidence of a TP feedback item 〈etp = 〈eti, etj , C〉, ac〉 represents the conditional395

probability that the class of the current activity is a given the observation of two events ev(eti, ti),

ev(etj , tj) satisfying C.

For each TP feedback item we also compute the estimated similarity as the median value of the

similarity between TP feedback items’ origin and target:

s(etp = 〈eti, etj , C〉, ac, h) = median
〈eti,etj ,d,o〉∈epo(ac)

sim(h, o).

Finally, the system communicates to the target home each personalized TP feedback item:

〈etp, ac, p, s〉,

where etp is an event temporal pattern, ac is an activity class, p is the confidence value and s is the

estimated similarity.

4.3.2. Semantic correlation updater400

Periodically, each home receives an update from the cloud service consisting of a set P of

personalized SC feedback items. The semantic correlation updater algorithm analyzes P along

with the semantic correlations inferred by the ontology in order to refine SC values. We denote

OSC(et, ac) as the semantic correlation between et and ac computed by the ontology, while SC(et, ac)

is the one computed by our algorithm. U is the set of unpredictive event types:

U = {et | predAct(et) = ∅};

i.e., U contains all the event types that the current ontology does not consider predictive for any

activity.

The pseudo-code of the semantic correlation updater algorithm is shown in Algorithm 1. At

first, the algorithm initializes the current semantic correlations with the ones computed by the ontology.

The set newevents is initialized to the empty set. Then, the algorithm iterates on each personalized405

SC feedback item 〈et, ac, p, s〉 contained in P in order to update the semantic correlations produced

by the ontology. If et belongs to U , SC(et, ac) is set to its predictiveness value p. Moreover, if et is

observed for the first time during the current iteration (i.e., if it is not yet part of the set newevents),
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Algorithm 1: Semantic correlation updater
Input: A set of personalized SC feedback items P = {〈et1, ac1, p1, s1〉, 〈et2, ac2, p2, s2〉, . . . }, semantic correlation

function OSC computed by the ontology, and set U of unpredictive events
Output: Refined semantic correlation function SC
1: SC ← OSC
2: newevents ← ∅
3: for each 〈et, ac, c, s〉 ∈ P do
4: if et ∈ U then
5: SC(et, ac)← c
6: if et /∈ newevents then
7: newevents← newevents ∪ {et}
8: for each aci ∈ A s.t. aci 6= ac do
9: SC(et, aci)← 0

10: end for
11: end if
12: else if OSC(et, ac) = 0 then
13: acont ← an activity acj ∈ A s.t. OSC(et, acj) > 0

14: SC(et, acont)← SC(et,acont)
1+s·SC(et,acont)

15: SC(et, ac)← s · SC(et, acont)
16: for each aci ∈ A do
17: if aci 6= aont and aci 6= ac then
18: SC(et, aci)← SC(et, aci) · (1− SC(et, ac))
19: end if
20: end for
21: end if
22: for each et ∈ E , ac ∈ A do

23: SC(et, ac)← SC(et, ac) +
1−

∑
ac′∈A SC(et,ac′)

|A|
24: end for
25: end for
26: return SC

the semantic correlation value SC(et, aci) for any other activity class aci 6= ac is initialized to 0, and

et is added to the set of new events. Intuitively, since unpredictive event types have uniform semantic410

correlations for all the activities, they are usually queried more than other event types since they

contribute most in increasing the entropy value. This makes the predictiveness values provided by

the cloud service reliable to be used as semantic correlations for et, thus overriding the uniform

semantic correlations inferred by the ontology.

In the case of et /∈ U , we update the semantic correlations only if SC(et, ac) is 0. Indeed, if415

SC(et, ac) > 0 (i.e., et is already predictive for the activity ac in the ontology), we don’t update the

semantic correlations since we consider the correlations provided by the ontology as reliable.

Instead, whenever a new semantic correlation between et and ac is discovered from a personalized

SC feedback item and in the ontology et was predictive for an activity acont 6= ac but not for

ac, it is necessary to correspondingly scale all the other semantic correlations regarding et so that420 ∑
ack∈A

SC(et, ack) = 1.

Hence, we select an activity acont which is correlated to et according to the ontology (i.e., such that

OSC(et, acont) > 0). If there are multiple activities which are correlated to et according the ontology,

we select one at random since our semantic correlation reasoner uniformly distributes semantic

correlations among activities. Then we scale SC(et, acont) considering the estimated similarity value

s:

SC(et, acont) :=
SC(et, acont)

1 + s · SC(et, acont)
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Since the event types for which the ontology already provided a semantic correlation are seldom

queried, it is not reliable to use the predictiveness value to update the semantic correlations. This is

why we use the estimated similarity s instead. The next step consists in updating SC(et, ac):

SC(et, ac) := s · SC(et, acont)

Then, we update the semantic correlations of all the remaining activities acj (such that acj 6= acont

and acj 6= ac) in the following way:

SC(et, acj) := SC(et, acj) · (1− SC(et, ac)).

Finally, we normalize the SC values in order to ensure that SC is a probability distribution, as

required by property (1) introduced in Section 3. In particular, it can be easily verified that, by con-

struction of Algorithm 1, for each event type et, the following property holds: 0 ≤
∑
ac∈A

SC(et, ac) ≤ 1.

Hence, for each et ∈ E and ac ∈ A, the algorithm normalizes SC values applying the following oper-

ation:

SC(et, ac) := SC(et, ac) +

1−
∑
ac′∈A

SC(et, ac′)

|A|
.

After each update, the function SC(et, ac) computed by our algorithm thus replaces OSC(et, ac)

for both the query decision and MLNNC activity recognition layers.

4.3.3. Temporal pattern updater

The goal of this module is to transform each personalized TP feedback item received from the cloud

service into a soft rule to be added to the MLN model. The actual formalism to encode TP feedback

items into MLN rules has been explained in Section 4.1.3. Given a TP feedback item 〈etp, ac, p, s〉,

the weight w of the corresponding soft rule depends on the budget β > 0 associated by the system

to temporal patterns, on the item’s confidence p and on the item’s estimated similarity s:

w = β · p · s.

The budget is a system parameter that determines the influence of temporal patterns on the MLN425

model: the higher the budget, the strongest the influence of TP rules on the model. For the sake of

this work, the optimal value for the budget is chosen experimentally.

5. Experimental Evaluation

In order to evaluate our system, we use the well-known CASAS dataset [38, 39]. This dataset

includes eight high-level ADLs performed by 21 subjects in a smart-home. Several sensors were430
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deployed to monitor movements, use of water and interaction with objects, doors, and drawers. During

the data collection, one subject at a time was present in the smart-home environment. Each subject

was instructed to perform the following ADLs: fill medication dispenser (ac1), watch DVD (ac2), water

plants (ac3), answer the phone (ac4), prepare birthday card (ac5), prepare soup (ac6), clean (ac7), and

choose outfit (ac8). The activities were performed both in sequential and interleaved fashion, and435

their execution time and order were up to the subject. For a more detailed description, we refer the

reader to the original publication concerning the floor plan of the flat, the sensor positions, and a more

detailed description of the activities [39].

We used the CASAS dataset to simulate 21 apartments with identical sensing infrastructures but

inhabited by different subjects. This setup resembles the one of a residence for elderly people consisting440

of several similar apartments. We fixed the similarity sim(h1, h2) between each pair of apartments to

0.5, since the sensing infrastructures are identical (i.e., their similarity is 1), while the profiling of the

subjects is unknown.

During a pre-processing phase, we removed from the dataset the occurrences of those motion

sensors which we found out to be noisy ; i.e., producing measurements essentially independent from445

the performed activities. Most noisy motion sensors were those placed in locations irrelevant for the

activity recognition task. Other ones triggered too many events, possibly due to excessively high

sensitivity or too wide coverage area. Hence, we kept motion sensor events from 7 devices only2.

We performed leave-one-subject-out cross validation. In each fold, newNECTAR collects segment

feedback items from 20 subjects and uses them to a) update semantic correlations and b) discover450

temporal patterns for the remaining subject.

Table 1: Results (F1 score) of the proposed activity recognition method with collaborative active learning compared to
related work for recognizing interleaved activities.

Activity

Supervised UnsupervisednewNECTARNECTAR newNECTAR

machine
learn-
ing [40]

probabilistic
reason-
ing [16]

without AL [35] with AL

ac1 0.80 0.74 0.78 0.82 0.82

ac2 0.87 0.84 0.85 0.87 0.91

ac3 0.59 0.36 0.70 0.71 0.75

ac4 0.52 0.49 0.67 0.72 0.72

ac5 0.88 0.83 0.77 0.78 0.87

ac6 0.85 0.67 0.89 0.89 0.90

ac7 0.57 0.36 0.46 0.63 0.70

ac8 0.84 0.69 0.71 0.82 0.87

avg. 0.74 0.70 0.73 0.78 0.82

Table 1 summarizes our overall experimental results and shows that the application of our novel

collaborative active learning method increases the recognition performance of about 9% over newNEC-

2Those sensors are identified as M02, M03, M04, M05, M13, M23, and M24 in the dataset.
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TAR without active learning. Moreover, newNECTAR also outperforms our previous method NEC-455

TAR [35] by 4%, thus showing that mining temporal patterns from feedback can significantly improve

activity recognition.

In order to compare newNECTAR with state-of-the-art techniques, we also implemented the su-

pervised method proposed in [40] which relies on machine learning and time-based feature extraction.

As machine learning algorithm we used Random Forest, since it is commonly used in activity recog-460

nition systems [2, 41]. Figure 3 shows how Random Forest performs with respect to other classifiers.

0.60

0.65

0.70

0.75

0.80

F1
 sc

or
e

MLP
RF
SVM
NB

Figure 3: The impact of different classifiers on the recognition rate. MLP = MultiLayer Perceptron, RF = Random
Forest, SVM = Support Vector Machine, NB = Naive Bayes

We executed the experiments using that method with the same dataset using leave-one-subject-

out cross validation. Results show that newNECTAR outperforms the supervised method in terms

of average F1 (+8%). Individual activities are better or equal recognized, except for prepare birthday465

card (ac5, −1%). We also compare newNECTAR with an unsupervised method which was recently

proposed in [16]. That approach computes correlations between home infrastructure and activities by

mining images scraped from the Web. Similarly to newNECTAR, those correlations are provided to a

probabilistic reasoner in order to recognize activities on sensor data. Results show that newNECTAR

outperforms that method by having a significant higher recognition rate (+12%). Moreover, each470

individual activity is better recognized by newNECTAR.

Inspecting the results of newNECTAR we observe that, with the introduction of active learning,

the recognition rate always increases. In more detail, Figure 4 shows that the recognition rate of clean

has a significant increase (ac7, +24%). On the other hand, prepare soup (ac6) has a small improvement

of only 1%. A deeper investigation pointed out that activity ac6 was almost never queried, since its475

initial semantic correlations derived from our ontology were already sufficient to accurately recognize

it. Regarding the other activities, we report an improvement which varies from 4% to 16%. With

respect to our previous work [35], the recognition rate of the majority of the activities increased

by considering temporal patterns. However, the activities fill medication dispenser (ac1) and answer
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phone (ac4) maintained the same recognition rate. A deeper investigation pointed out that our system480

almost never found relevant temporal patterns for those two activities.

Figures 5a and 5b show respectively the confusion matrices for NECTAR and newNECTAR. This

comparison shows that newNECTAR allows to obtain a significantly lower number of false positives.

For instance, clean (ac7) is often confused with the remaining activities by NECTAR. This is due

to the fact that clean is not clearly bound to a certain location or sensorized object; hence, during that485

activity the inhabitant triggers several sensor events that indicate the execution of other activities. On

the other hand, newNECTAR considers reliable temporal patterns which allows to obtain a significant

lower number of false positives for that activity, thus improving significantly the recognition rate.

Analyzing the diagonal, newNECTAR generates a smaller number of true positives for prepare

birthday card (ac5). However, considering NECTAR, that activity has a precision of 0.66 and a recall490

of 0.97, with an overall F1 score of 0.78; on the other hand, newNECTAR eliminates a huge number

of false positives, allowing to reach for both precision and recall metrics the value of 0.87.

The above mentioned results were obtained setting the entropy threshold to 0.9. As this value

directly influences the number of queries issued by the system, it is an important parameter to consider.

Figure 6 clarifies that on average a user had to answer 6 questions to achieve the reported improvement495

of 9%. In the considered dataset, only one day of ADLs for each subject was available. We expect

that the average number of queries in a day for a specific user will significantly decrease over time,

thus converging to 0 queries after few days.

As Figure 7 shows, lowering or increasing the entropy threshold leads to worse recognition rate.

Increasing the entropy threshold means receiving less feedback from the participating inhabitants,500

and hence relying on less data to compute updates. On the other hand, asking more queries leads to

introducing noisy data which makes update less accurate.

It is important to note that, without any active learning mechanism, the recognition rate is just

73%, which means that even with a high entropy threshold the improvement is significant (+7%).
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Figure 4: Relative improvement (%) of using active learning considering both semantic correlations and temporal patterns
(newNECTAR) with respect to considering only semantic correlations (NECTAR). λ = 0.9, σ = 7.5, σ′ = 0.01, β = 0.3
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Figure 5: Confusion matrix using our method. λ = 0.9, σ = 7.5, σ′ = 0.01, β = 0.3
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Figure 6: How entropy affects the number of queries. σ = 7.5, σ′ = 0.01, β = 0.3

This is an indicator that useful information is part of queries with the highest entropy and that a less505

annoying system is still capable of significantly improve the recognition rate.
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Figure 7: How entropy affects F1 score. σ = 7.5, σ′ = 0.01, β = 0.3

Besides entropy, we also assessed the impact of the support values σ (for semantic correlations)

and σ′ (for temporal patterns), which ensure the reliability of the updates. Figure 8 outlines that

when σ drops under a certain value, the system uses unreliable feedback, obtaining a detriment of510
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recognition rates. On the contrary, using an excessively large value of σ, the system filters out relevant

feedback that could improve recognition rates. We empirically determined that the optimal value of

σ is σ = 7.5.
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Figure 8: How σ affects F1. λ = 0.9, σ′ = 0.01, β = 0.3.

On the other hand, varying the support value σ′ gives less intuitive outcomes, as Figure 9 shows.

Indeed, the optimal value σ′ = 0.002 is very low. Moreover, a zero support value still gives nearly515

optimal results. This is due to how we assign weights to temporal rules in our MLN model. Since

we assign to each temporal rule its confidence value scaled by the budget parameter β, temporal

patterns with a very low confidence are associated with a very low weight in our MLN model. This

makes unreliable temporal patterns only slightly influent in activity recognition. However, as Figure 9b

shows, the main drawback is that σ′ = 0 implies adding to the model an average of 400 temporal rules.520

This makes the activity recognition process very slow. The optimal value of σ′ = 0.002 implies adding

∼ 250 temporal rules to our MLN model, still making the recognition process very slow. Instead,

choosing σ′ = 0.01 gives us a recognition rate which is worse only by 0.1%, with the advantage of

a faster recognition process. Support values higher than 0.01 gives in general worse results, since

we exclude temporal patterns which are important to obtain a good recognition rate. However, it is525

important to note that, if computational time is a priority, having high values of σ′ still significantly

improve results with respect to not having active learning at all.

Finally, Figure 10 shows how the budget parameter β (used to scale the weights of the MLN rules

associated to temporal patterns) impacts on the recognition rate. Intuitively, high values of β lead

to high weights which makes temporal patterns too prevalent with respect to the other rules of our530

MLN model. On the other hand, small values of β lead to small weights associated with temporal

patterns, which consequently have less impact on activity recognition. The optimal value we evaluated

is β = 0.3.

In general, our results clearly show that collaborative active learning is a reliable tool to discover

new semantic correlations and temporal patterns, and at the same time to improve the recognition535

rate. This is especially the case for sensors that do not carry explicit semantic information with
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Figure 9: How σ′ impacts F1 score and the number of frequent pattern considered. λ = 0.9, σ = 7.5, β = 0.3.
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Figure 10: How budget affects F1 score. λ = 0.9, σ = 7.5, σ′ = 0.01.

respect to activities. For instance, our ontology did not cover the events related to motion sensors.

Our system was able to automatically learn the semantic correlation for those sensors’ types improving

the recognition rate.

Finally, we show results about the query rate (i.e., the percentage of queried segments) of newNEC-540

TAR. Since the CASAS dataset only considers one day of ADLs for each subject, we first computed

the query rate for the 20 subjects that we used to collect feedback at each fold of our cross-validation.

Those queries were triggered using the knowledge-based recognition model not yet affected by col-

laborative active learning. Since initially the model is inaccurate, it emerges that our system’s query

rate ranges between 17% and 43% (avg. 25%) depending on the subject. It is important to note545

that it is possible to trade a small amount of accuracy to significantly reduce the number of queries.

For instance, increasing the entropy threshold to σ = 1.2, the query rate drops between 5% and 33%

(avg. 21%) , with an overall F1 score which is only 1.8% lower than the one obtained with σ = 0.9.

We expect that the query rate will decrease over time by incorporating feedback in the recognition

model. In order to evaluate this aspect, we evaluated the impact of collaborative active learning on550

the number of queries triggered by the system. Hence, we computed the query rate for the subjects

which we used as test set, whose recognition model has been corrected by collaborative active learning.
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Results show that our method allows to significantly decrease the query rate that drops between 0%

and 20% (avg. 7%) considering entropy σ = 1.2. Unfortunately, due to the limited size of the dataset,

we could not consider additional data to further evaluate the decrease of the query rate.555

6. Discussion

6.1. Interaction with the inhabitant

In order to make our system practical in real scenarios, we aim to investigate important contextual

aspects that should be considered when evaluating whether to ask a feedback or not. These aspects

include the number of queries that have already been asked recently, the current mood of the subject560

and whether he/she can be currently interrupted. We aim to investigate if a game-theory based

approach could be used to derive a personalized query policy capable to balance the need of the

feedback and the estimated willingness of the subject to answer a query in a particular point in time.

Moreover, the interface used to query the user should be intuitive and user-friendly. We are

developing a prototype of such interface, which also includes a speech recognition module in order to565

let the inhabitant answer queries in natural language. Voice interface is particularly suitable for elderly

subjects, thus facilitating their interaction with our system. We will carry out extensive experiments

to understand the impact of this interface in real scenarios.

6.2. Privacy aspects

For the sake of this work, we assumed that the cloud service is trusted, while in a real scenario it570

can be considered an untrusted honest-but-curious third party. Hence, there is the need of protecting

the confidentiality and integrity of user and infrastructure profiles, as well as the information about

events and activities provided by the feedback. We intend to investigate solutions based on homomor-

phic encryption [42] and secure multi-party computation [43] in order to let the cloud service run

its algorithms on encrypted data.575

6.3. Ontology engineering

Even if our system relies on a generic and possibly incomplete ontology which considers general

relationships between activities and home infrastructure, the engineering effort is still noticeable. We

believe that this effort could be reduced by re-using and extending existing ontologies. However, one

could argue that it would be easier to manually estimate correlations among activities and sensor580

events based on common sense. However, manual modeling is unfeasible in realistic scenarios. For

instance, the dataset we used in our experiments involves 70 sensors and 8 activities, resulting in

560 different values of semantic correlations. Other real-world deployments are much more complex.

The collection and aggregation of feedback can also be exploited to revise the ontology with new

correlations between event types and activities which were not considered in the first place. Hence,585
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knowledge engineers could mine the collected feedback in order to decide whether and how to revise

the ontology with new axioms.

7. Conclusion and Future Work

In this paper we presented a novel framework which exploits collaborative active learning to im-

prove a generic ontological model of activities manually crafted by knowledge engineers. Experimental590

results show that our framework significantly improves the overall system’s accuracy, while issuing a

limited number of queries to the inhabitants. The current system re-evaluates the recognition model

from scratch every time an update is received. As future work, we plan to improve it by devising an

algorithm to continuously adjust correlations and temporal patterns as the updates are received.
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