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Abstract

In this paper we describe how to couple reputation systems with distributed consensus protocols to

provide a scalable permissionless consensus protocol with a low barrier of entry, while still providing

strong resistance against Sybil attacks for large peer-to-peer networks of untrusted validators.

We introduce reputation module ReCon, which can be laid on top of various consensus protocols

such as PBFT or HoneyBadger. The protocol takes external reputation ranking as input and then ranks

nodes based on the outcomes of consensus rounds run by a small committee, and adaptively selects

the committee based on the current reputation. ReCon can tolerate larger threshold of malicious nodes

(up to slightly above 1/2) compared to the 1/3 limit of BFT consensus algorithms.
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1. Introduction

Distributed consensus. Distributed consensus protocols, where several equal nodes establish an

agreement on a sequence of operations, have been known since at least the 1980s with the appearance

of the first distributed databases. Over time, protocols that tolerate faulty nodes (FT protocols [1, 2])

and later the ones that tolerate malicious nodes (BFT protocols, for Byzantine fault tolerance [3])

were developed [4, 5]. However, their application was limited as such databases have been typically

constrained to a single enterprise, which can use a trusted leader to facilitate the agreement.

The Byzantine Agreement protocols tolerate up to one third of all nodes being malicious. This is

satisfactory for a private system, but does not work when we design a public system with free mem-

bership. The situation changed drastically with the introduction of Bitcoin [6], which revolutionized
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consensus protocols by using the Proof-of-Work concept (PoW). A Bitcoin node solves a computation-

ally hard problem to decide which operations (transactions) to apply. The proof-of-work consensus

tolerates malicious nodes as long as they constitute no more than 51% of the computational power

or as some more conservative analysis estimates 25% of the computational power [7]. On the other

hand there are drawbacks to using a PoW protocols as well: the two most used protocols, Bitcoin

and Ethereum [8], support up to 10 transactions per second at most, which is a great difference to

thousands of transactions per second achieved in regular Byzantine Agreement protocols such as Ten-

dermint [9] or in private networks [10]; the electricity needed to perform cryptocurrency mining is

also reaching new heights, as now it is comparable to the consumption over a year of Ireland [11];

transaction confirmation time may take up to an hour (although it is still faster than wire transfer

across continents).

Another crucial issue for open consensus protocols is their vulnerability to Sybil attacks. If there

is no cost to join a network, that network will always be prone to classical Sybil attacks. There are

multiple protocols that provide safety in an open network against this kind of attack. For example, in

PoW this resistance is provided by the cost of mining. In Proof-of-Stake style systems the adversary

needs to obtain a large enough stake in the currency to perform such attacks. In general all the different

Proof-of-X style protocols require a proof in order to prevent Sybil attacks. We provide a new protocol

that leverages node reputation in order to enhance Sybil-resistance of consensus protocols.

Reputation systems are abundant in our society from online auctions and marketplaces like eBay,

Amazon, credit ratings like Standard & Poor’s, Fitch, Moody’s to social networks and even academic

citations. They are forgeable to different degrees, but in many cases it takes long time and effort to

earn reputation and often there is a monetary value associated with it. In some cases monetary stakes

can be used directly for ranking or reputation. One may also assume that reputation correlates with

the chance of honest behavior if the setting can detect and punish malicious behavior.

Our contributions. We design a proof-of-concept protocol which we call ReCon (Reputation

Consensus)– a protocol which can bootstrap from some hard to forge reputation source1, suggests

committee members based on their reputation, and this reputation is then updated over the rounds

of the consensus protocol. The protocol is built on top of a blockchain, where multiple attributes of

blockchains are utilized. In a nutshell, ReCon selects the committee in a randomized way to enable

1Maintaining such source of Sybil-resistant reputation is a separate interesting research topic.
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diversity and increase the cost of Sybil attack, slightly increases the committee member’s reputation

if a BFT round succeeds and significantly reduces the reputation if the round fails. Furthermore, the

reward mechanism is built in such away that it stops giving rewards after certain number of successful

consensus rounds - namely if all goes well keeping the status quo is the best. This is not fair to the

newly joined honest nodes, but also keeps any Sybil from increasing reputation of its nodes. The even-

tual reputation inversely correlates with maliciousness. We show that this method prevents not only a

simple adversarial strategy when malicious nodes always try to disrupt the protocol, but also smarter

one, when such nodes act only if they constitute 1/3 of the committee or even only after 2/3. Since

ReCon quickly penalizes the reputation rating of the validators which couldn’t reach consensus the

best adversarial strategy is to wait for supermajority of 2/3 of committee nodes. Our scheme is thus

secure in the environments where these situations are ruled out, ex. when the chance of obtaining 2/3

majority in any reputation-selected committee is very low (controlled by security parameter λ). As a

module, ReCon can be laid on top of many existing distributed consensus protocols such as PBFT [4],

HoneyBadgerBFT [12], or Zyzzyva [13] opening them to a larger pool of permissionless validators.

Even though our protocol doesn’t solve all the problems with the classical PoW chain, it does

provide an alternative which drastically reduces the cost of entry to the network and reduces the

energy waste, while still providing strong resistance against Sybil attacks.

We have implemented a proof-of-concept simulator of ReCon, which takes the number of nodes,

the committee size, the initial reputation and the prior ”maliciousness” probability as inputs and re-

turns the reputation distribution and the posterior probability of being malicious. We also examine the

case when external reputation is not available (this could be of interest if Sybil attacker is not present

at the early stages of the protocol - allowing the honest users time to acquire reputation) . Experiments

prove that our approach compares favourably to the other methods of detection of maliciousness by

sample testing and maximum likelihood. Computational complexity of the reputation module itself

is constant in each round and for each protocol node (update of reputations for a constant number of

validators, typically - 100).

The paper consists of the following sections. First we describe the current state of the art in

consensus protocols that either use some form of reputation or uses blockhains to provide an open

peer-to-peer consensus protocol (Section 1.1). Afterwards we present the preliminary requirements

and assumptions of our protocol (Section 2). We then provide the detailed description of the protocol

itself (Section 3), followed by our proof-of-concept simulation results (Section 4). Finally we consider
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the different attacks against the protocol based on our assumptions (Section 5).

1.1. Related Work

The literature on the reputation systems is vast and is beyond the scope of this paper. All webpage

ranking systems, for example, fall into this category with PageRank [14] being a classical example.

An interested reader is referred to flow-based reputation systems adapted for P2P networks (Eigen-

Trust [15]), subjective logic-based schemes [16], or privacy-preserving designs, both coin-based [17]

and not [18]. There are also works considering a rational entity in a Byzantine Agreement protocol

like the BAR Primer [19], which can be represented as a reputation protocol as well. Our work has

a more narrow focus as we do not consider individual ratings but work on the meta-protocol level by

analyzing global events – consensus decisions only. This allows sophisticated methods to apply easily

in the decentralized fashion.

There is a vast and quickly evolving body of work on consensus protocols for open peer-to-peer

protocols that use the blockchain primitives to achieve their goals. The first major category of these

protocols are the proof-of-X (PoX) protocols, originating from the PoW protocol. These protocols

try to utilize the idea of the PoW protocol while replacing the wasteful hashing with something that

is either useful or simply much less wasteful. The most well known variant is proof-of-stake (PoS),

where the lottery is not computation-based but instead uses the controlled stake per user. PoS is

implemented in the Ouroboros protocols [20, 21] or in Tendermint [? ]. Other solution include proof-

of-space, where the miner has to prove the existence of hard drive space, proof-of-burn where miners

have to transfer coins to an unspendable address and thus burning the coins, etc.

Another family of protocols usually referred to as Hybrid protocols are more similar to our con-

struction. These hybrid protocols often use a PoX construction which is then used to generate a

small committee. This small committee then runs some form of Byzantine Agreement protocol. Byz-

Coin [22] uses the most recent miners of a proof-of-work puzzle at every block to define the next

committee. Algorand [23] uses global randomness to create a new committee where the likelihood

to be selected is based on the controlled stake in the blockchain. Meanwhile some protocols gener-

ate multiple protocols at the same time, using either proof-of-work in the case of the Elastico [24]

protocol, or a plug-in of any kind of proof-of-X in case of OmniLedger [25].

Comparatively our construction uses a form of lottery as well to generate the committees, but this

lottery is based on reputation instead of well-established protocols that natively prevent Sybil attacks.
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2. Preliminaries

2.1. Generic

We work in the following model. The network is composed of N public nodes, which maintain a

consistent state by applying transactions of certain type in the same order. Transactions are supplied

to the network by clients in a pre-specified format, but we do not make any assumptions on their size

or structure, nor on the number of clients and their connectivity.

Each node is an equal participant in a consensus protocol, which specifies the action sequence so

that eventually the nodes agree on the transaction order (safety) and every valid transaction is accepted

at some point (liveness). A protocol is called Byzantine fault tolerant (BFT) if it provides safety

and liveness despite some malicious nodes violating the protocol secretly or openly. The number of

malicious nodes tolerated by a BFT protocol can not exceed bN−13 c (one of our goals is to go beyond

this bound). Protocols can involve random coin tosses or be deterministic.

Byzantine Agreement protocols typically operate in rounds. If the number of malicious nodes

exceeds bN−13 c, there may be no agreement (the round is wasted), or with equivocation the malicious

nodes can create two valid blocks, which is the equivalent of a fork in a blockchain protocol. Dealing

with these types of forks is discussed later in the paper (Section 3.8). If the malicious nodes constitute

more than b2N3 c, they can force an incorrect agreement – forgery (which usually leads to a malicious

takeover).

2.2. Assumptions

We assume smartly malicious nodes, which act so that in the case of round failure an external

observer can not detect who disrupted the protocol. Malicious nodes can communicate with each other

to detect if they constitute the necessary bN−13 c+ 1 nodes to disrupt the round, force an equivocation

or the 2/3 fraction for an incorrect agreement.

The network is considered to be asynchronous. As a non-probabilistic protocol can not provide

safety and liveness at the same time in an asynchronous network, these properties of ReCon are depen-

dent on the permissioned consensus protocol used. However the validators are selected via reputation-

based rule from a much larger permissionless set of nodes.

The BFT protocol requires the nodes to digitally sign each message in order to provide the re-

quired integrity and authentication. Even though early BFT designs used MACs, they all can use fast
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signatures such as Ed25519 or similar. Given that the transactions are signed in batches, the perfor-

mance overhead due to signatures is negligible. There has been previous work on how to create more

efficient BFT consensus using digital signatures in Byzcoin [22] and this approach is applicable to our

case as well (but without using the PoW to select the validators). Similar to Byzcoin this would allow

ReCon to have at least an order (and possibly two order) of magnitude improvement in transaction

throughput compared to Bitcoin.

We study both scenarios where malicious nodes are determined before the protocol run and thus no

honest node can become malicious, as well as a dynamic case in which nodes can become malicious

or can become honest (cleaned), new nodes entering the system at certain rate, etc.. We also study

the botnet takeover scenario, in which many nodes can become malicious (at random, including some

high reputation nodes), or Sybil attack scenario where many malicious nodes but with zero or low

reputation are injected at a fast rate.

The motivation for these assumptions is based on real life observations in open peer-to-peer

blockchain based consensus protocols, as openness allows any level of malicious behaviour, thus

the assumptions have to be as hard as possible. Our synchrony assumption is the hardest and thus the

protocol is secure against network-based attacks in any circumstances which also covers any observed

attacks in blockchain networks as well. The same logic led to our assumption of malicious nodes,

where the attacker’s goal is to thwart or take over the network, but it wants to achieve that in the least

detectable way. Furthermore with our assumptions, an external observer can not distinguish honest

and malicious nodes in a committee in case of a halted consensus.

2.3. Nodes

Node-to-node connection is authenticated with public keys. The corresponding PKI system is

maintained by the chain with transactions in the network. In order to register a new node, revoke or

refresh a key the user has to send a transaction with all the necessary data included. Such blockchain

based PKI systems were shown in [26, 27]. Nodes participating in successful rounds of the protocol

are rewarded by increase in their reputation score and potentially by cryptocurrency minted. Such

cryptocurrency rewards as well as reputation score (which might have value outside of the protocol)

motivate the economically rational behavior. Our protocol is permissionless, apart from the initial

commitment of registering the public keys by the nodes. Generic node-to-node communication of

distributing the new candidate transactions and the new blocks is done via the gossip protocol.

6



3. Reputation module

In this section we describe the reputation module ReCon, which can be plugged into any Byzantine

Agreement protocol with the following rules:

• The protocol consists of (arbitrarily many) rounds.

• At each round N nodes decide the fate of one or many transactions.

• At each round the nodes may reach the consensus or not, and both outcomes are visible to all

nodes.

• Each round a decision is made by a public committee C ofm nodes, which does not necessarily

include all the nodes. The committee decision is unforgeable2.

• All the committee messages are signed by the transmitting node.

• At the end of each round the results are published as the new block of the chain.

The protocol parameters can be found in Table 1. The default values in the table are not fixed, their

purpose is to provide a general view on the protocol. We explore the different choices for most of the

values in our simulations in Section 4. Furthermore Figure 1 is an example of a single round in our

protocol. An exponential committee selection function chooses the committee members based on the

node ranking per reputation, and if there are more than 2/3 honest nodes (with green), then the round

will succeed, and every committee member’s reputation increases, otherwise if the honest nodes are

less than 2/3, then the protocol halts and the members’ reputation is penalized.

3.1. External Reputation

ReCon instructs the protocol how to select the committee and maintains the reputation ranking

R : N → [0, 1], where N is the set of nodes, so that the nodes with high reputation have low

posterior probability of being malicious. The prior probability of being malicious is given to the

module and is called external reputation. If there is no external source of reputation, or, equivalently,

all nodes have equal probability α0 to be malicious, then we set: R(n) ≡ 0 ∀n ∈ N .

2The implementation of the secure committee broadcast is protocol-dependent [9, 22].
3If p is probability of forgery in one round (i.e. malicious 2/3 majority), then λ = −log p.
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Figure 1: The reputation curve after 10,000 rounds, and the exact chosen committee members in that round with the ’X’
markers (with green the honest and with red the malicious ones) using the exponential selection function. In this case 76
of the members are honest, which means the committee will reach consensus and the committee members’ reputation will
increase.
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Parameter Notation Default value
Total nodes N 5, 000

Committee size m 100

External
reputation

distribution
F

Discrete Uniform
Normal

Exponential
Ongoing reputation R −

Default malicious rate α0 0.4

Minimum malicious rate α1 0.05

Committee
selection rule

D
Exponential
Triangular

Security parameter3 λ 30

Table 1: The protocol parameters

If the probability of being malicious varies from α0 (default) to α1 (minimum possible), then we

normalize as

R(n) = 1− P (n)− α1

α0 − α1
,

where P (n) is the probability that node n is malicious. Equivalently,

P (n) = (α0 − α1)(1−R(n)) + α1.

We denote the initial distribution of R() by F , and consider various distribution functions (since

R() and P () are affine equivalent, their distribution functions are similar). For instance, when R()

follows the (0.5, 0.15)-normal distribution constrained to [0, 1], there are 23% malicious nodes in

the top 10% nodes by reputation. The value Ω stands for the overall fraction of malicious nodes in

N . ReCon outputs a new reputation ranking R, for which we experimentally estimate the posterior

maliciousness probability. The results for the top and bottom 10% of nodes by reputation are in

Tables 4-9.

3.2. Committee selection

The decision in a round is made by a committee, which runs a round of a BFT protocol on the

current set of transactions, and decides to either apply each of them or not. If the committee comes to

a consensus, the transactions are applied to the state. The committee is selected based on the current
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reputationR the nodes inherited or earned during the previous rounds. C[r] denotes the committee of

the r-th round.

The selection of the committee is based on some distribution D, where the higher reputation value

R(n) would result in a higher chance of selection (e.g. exponential distribution, exponential power

distribution, triangular distribution). Here P is the probability of being selected into a committee.

∀n, l ∈ N : R(n) ≥ R(l)⇒ P (n|D) ≥ P (l|D)

This selection algorithm (Figure 1) is implemented in the following way. First, we sort the nodes

based on their reputation in a descending order. Then, based on D, m random numbers are generated

in [0, N), and then taking the floor of all of them, we receive the selected nodes. In order to avoid

double selection we select the closest yet unselected node with a higher reputation. If such node does

not exist, then we do the same going towards the lower reputed nodes.

We consider two different selection distributions: exponential and triangular. Exponential gives

priority to the highly reputed nodes and can strongly suppress the lower ranked ones, depending on its

variance. The triangular distribution is the more fair one for the new low reputation nodes – it gives

priority proportionally to the reputation but at a cost of slower convergence and lower cost for a Sybil

attack.

Though the actual distributions prioritize the higher reputed nodes, they will still allow low reputed

nodes to be selected into the committees. In the exponential case, ξ = −log(0.05)/N . The distribution

itself is truncated to the [0, N) interval. This ξ value means that
∫ N
0 exp.dist.(ξ) = 0.95, or in other

words 95% is the chance of randomly getting an integer that is in the interval [0, N).

In a similar fashion, the triangular distribution is actually a distribution from 0 toN+ N
5 , truncated

to the [0, N) interval, to give chance to be included in a committee even to nodes that have a low

reputation value.

3.3. Rewards and penalties

The reputation module observes whether the committee has reached consensus. In the “smart

malicious” model we imply that these two outcomes are the result of the following configurations:

• The committee has reached consensus if there are fewer than m/3 (no influence) or more than

2m/3 (total control) malicious nodes in the committee.
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• The committee has not reached consensus if the number of malicious nodes is between m/3

(non-inclusive) and 2m/3 (inclusive).

Thus in our simulation we model the protocol execution as follows:

• IfC[r] has fewer thanm/3 malicious nodes, then the round is declared success and every node

in C[r] gets their reputation increased.

• If C[r] hasm/3 or more malicious nodes, but less than 2m/3 malicious nodes, then the round is

declared failure and every node inC[r] gets their reputation decreased. This event is undesirable

(round time is wasted) but not catastrophic.

• If C[r] has 2m/3 or more malicious nodes, then the round is declared forgery. Since we can

not detect externally if the decision is malicious or not, every node in C[r] gets their reputation

increased. However in most cases this would mean a hostile takeover and such event should be

avoided by the proper parameter choice in the protocol.

The exact rewards and penalties are calculated in the following way per node. In case of a reward,

the reward function for node n is

Rr(n) = R(n) +
(1− s)(1−R(n))

d
, d ≥ 1. (1)

The penalty function is

Rp(n) = R(n)− s ·R(n)

d
, d ≥ 1, (2)

where s is the proportion of success rounds in the last 100 rounds (if 56 were successful, then s =

0.56). The idea behind this adaptive parameter is the following. Our goal is to sort the participating

nodes based on their likelihood of maliciousness. Thus we choose values, that will increase and

decrease the reputation values by the same amount on average, but the nodes will be reordered based

on their behaviour.

The divisor d is for optimization, as for different selection functions a different d will result in

the best behaviour in our protocol. For example, in the case of exponential selection d = 10, but for

triangular selection d = 35. These values are the results from our empirical testing of the protocol,
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where we simulated the behaviour of the nodes (Section 4). Below we explain our choice of these

reward and penalty functions.

(1− s)(1−R(n))

d
≶
s ·R(n)

d

1− (s+R(n)) ≶ 0

s+R(n) > 1⇒ penalty > reward

s+R(n) < 1⇒ penalty < reward

In the case of s+R(n) > 1, notice that it is only true, if none of the values are 0, which means that

there are definitely several consensus successes. Also notice, that if s = 0, then the value of penalty

is 0, and if s = 1, then similarly the value of reward is 0.

These kind of changes in the values also provide us the feature, that if a node has a high reputation

and participates in a bad round, it will be penalized more than a lower reputed node in the same failed

round. It is true in the opposite direction as well, as the reward is higher for lower reputed nodes in

successful rounds.

3.4. Probability of a forgery

We have to consider what is the probability of having a forgery (P (k >
⌊
2m
3

⌋
), where m is the

committee size and k is the number of malicious nodes in a committee). We model this as a Bernoulli

trial where each member of the committee independently has probability p to be malicious node. With

this model the binomial distribution B(m, p) describes the committee selection. We also introduce a

security parameter λ which describes the upper bound on the probability of forgery as 2−λ (Tables 2).

Then:

P

(
k >

⌊
2m

3

⌋)
< 2−λ ⇐⇒ 1−

b 2m3 c∑
i=0

(
m

i

)
pi(1− p)m−i < 2−λ

Furthermore, we can observe these p parameter values from the protocol attributes as well. In Ta-

ble 3 we show what is the relative success rate (s, introduced in Section 3.3) of the protocol calculated

from the p parameter values found in Table 2. This also means that if the protocol achieves a higher

success rate then 24.5% it is safe with λ = 30.
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2−λ 2−30 2−60 2−120

p 0.364 0.248 0.124

Table 2: For m = 100, the λ security parameters and the corresponding p values, where p is the probability of selecting a
bad node.

2−λ 2−30 2−60 2−120

Successful rounds (s) 24.5% 97.5% 99.99999%

Table 3: For m = 100, the λ security parameters and the corresponding percentage of successful rounds based on the p
values from Table 2. It shows that for λ = 30 security parameter even if only 25% of the rounds reach consensus, the
protocol is still safe.

If we increase the committee size m, the value of p increases as well, where lim
m→∞

p = 2
3 .

This only shows the values for cases of uniform choice, but in our protocol we use a ranking

based on reputation and a weighted selection (Figure 1). In the following we show how to calculate

the p parameter from an external reputation system and the selection algorithm using the law of total

probability for a fixed N sized set. Let X be the event of selecting a bad node and Yn the event of

selecting the n-th node (the n-th based on the reputation ranking, see Section 3.2). Then:

p = P (X) =

N∑
n=1

P (X ∩ Yn) =

N∑
n=1

P (X|Yn) · P (Yn) where

P (X|Yn) := P (Zn) then

P (Zn) = P (n-th node is malicious)

p =
N∑
n=1

P (Zn) · P (Yn)

For the value of P (Zn) in case of an external reputation see Section 3.1, otherwise for an observed

state:

P (Zn) =


1 if n-th node is malicious

0 if n-th node is honest

3.5. Types of Blocks

The protocol allows 2 types of blocks to be added to the chain. The first type is the regular block

which contains the transactions agreed upon by the committee. However we want our protocols to

work beyond the 1/3 maliciousness limit of BFT protocols. To avoid protocol stalls over this threshold

13



we introduce a mechanism to detect stalls but which does not introduce strict synchrony. We use

a second type of block that acts as a timing epoch. To produce this block, we use the Verifiable

Delay Functions (VDFs, [28, 29, 30]), which are a new cryptographic technique that combines time-

lock puzzles with fast practical verification. In essence, these are proofs of sequential work, which

return unique results (thus - functions) that can not be solved faster than time T , but which allow fast

verification of the result.

In ReCon VDFs are used in the following way. The T value is set to be a large enough constant

(e.g. a few minutes), that would give more than enough time for an honest committee to reach consen-

sus. Then as soon as the committee is selected based on the previous block, any member4 of the entire

network can start computing the VDF based on the last block. If a consensus is reached in time it will

be distributed in the network and a new committee will be created for the next block. On the other

hand, if a node creates a block with a correct VDF before it sees a new block with a correct consensus,

it can gossip it in the network as the next block as a proof that the committee did not reach consensus

in time.

In order to keep the protocol fair, we have to choose the time T very carefully based on com-

prehensive testing on what is the expected time for an honest committee to reach consensus and to

avoid consequences of secret VDF computation optimization by the attacker which may allow him to

penalize honest committees5. With this technique, there is no direct known ∆ time that is given to the

committee to reach consensus, but instead and unknown ∆ time until the first block with a valid VDF

appears, acting as a timing epoch. This way we do not require strong synchrony, as the ∆ is unknown,

which is in line with protocols working in asynchronous networks like PBFT.

3.6. Source of randomness

In our protocol we use a deterministic PRNG as randomness for the selection of the committee.

The drawback of this approach is that successful committees might be able to manipulate the random-

ness with the list of chosen transactions (so called grinding). VDFs do provide unpredictable results,

which makes them even more useful for our protocol as a re-randomization seed, but if every commit-

tee is successful there is no VDF computation. In order to still have a regular influx of hard to predict

4Or alternatively a smaller set of high reputation nodes, not participating in the current committee - for extra Sybil
protection.

5Optimization free implementation of VDF is a non-trivial problem in itself. However if the protocol gains traction we
expect that there will be public optimized hardware to compute VDFs.
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randomness we suggest that VDF computation is also performed at regular intervals (e.g. every 50

blocks).

3.7. Fairness

We define the fairness F of a selection function to be the L1 distance between the uniform distri-

bution over N nodes and the selection distribution over the same interval, namely:

F =

∫ N

0
|f(x)− 1

N
|dx (3)

Where f(x) is the probability density function of the selection distribution. The idea behind the

definition is to describe how close is the selection distribution to the uniform distribution, which would

be considered as perfectly fair. It is the most fair, because as an observer of the protocol we do not

know which nodes are malicious, thus we should give the same probability to every node to be chosen

into a committee. This way our selection functions would produce the following fairness values when

N = 5, 000: Ftriangular = 0.357;Fexponential = 0.671.

This is also the reason why both of our selection functions (triangular and exponential) are selected

in such a way, that even the node with the lowest reputation will have a chance of being selected,

instead of completely ignoring the last few nodes. If we would design our selection function with the

last nodes only having close to zero chance of being selected, then the fairness values would be much

worse: Ftriangular = 0.5;Fexponential = 0.918.

One could consider other distributions as a selection function, e.g. a selection that would act as

a filter, which selects almost only from the highest reputed nodes. An example for that can be the
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exponential power distribution (Figure 3). This selection function, however, would be very unfair,

as the fairness value would be Fexponentialpower = 1.35 and the bottom nodes have no chance to be

selected for the committee.

Implicitly we consider a fairness value of above 1 as unfair based on our empirical data. However

such selection function might be useful during botnet takeover or Sybil attack events.

3.8. Dealing with forks

As we noted earlier, if the adversary has control over 1/3 of the committee, different scenarios

can happen. Even though each BFT protocol may have its own method to resolve these situations, we

list some solutions here.

The first option for the adversary is halting the protocol by not participating in the Byzantine

Agreement, and thus there will be no new blocks created in that round, as b2N3 c + 1 signatures are

required for a block to be accepted. In this case a valid VDF timeout block will be created. This might

lead to forks as well, if a consensus succeeds, but another member of the network created a VDF block

meanwhile. In this case we let the network handle the fork and simply use the longest chain rule for

choosing the valid chain.

The second one is equivocation. The adversary splits the honest nodes into two subgroups, such

that he has 2/3 majority with either of them combined with himself. Then he communicates different

transactions to these groups, thus creating two valid blocks in the same round. Both blocks contain

only valid transactions, as they need signatures from honest nodes, and honest nodes will only approve

valid transactions. However, as all protocol messages are signed, an evidence of signing both blocks

can be presented in the next committee rounds and the malicious nodes will have their reputation score

reset to 0.

Notice the difference between the fork by VDF blocks and a fork by equivocation. In case of

equivocation the committee creates two separate valid consensuses with overlapping verifiers, while

with a VDF only one of the blocks is a valid consensus at the same chain height. This approach makes

the protocol probabilistic, as there is a possibility for forks but keeps it asynchronous. It is well known

that a protocol can not be deterministic in an asynchronous setting, either the safety or liveness would

break. Considering this, forks in the blockchain temporarily break the safety of the protocol, but they

keep the liveness property in any circumstances while the protocol converges to a single chain and

restores the safety. This is the opposite compromise compared to classic BFT protocol like PBFT.
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3.9. Convergence

We say that the BFT protocol β-converges after l rounds if the success rate (fraction of successful

rounds) never goes below β after l rounds.

Concrete convergence parameters depend on the application. The values α0, α1 (from Table 1)

determine what success rate s can be guaranteed by the ReCon ranking, and the value l determines the

length of the bootstrap phase needed to rank the nodes.

4. Simulation Results

We ran our simulations6 for 10, 000 rounds7 with default values of total nodes8 N = {5, 000, 10, 000, 20, 000, 30, 000},

committee size m = 100 and various combinations of external reputation and selection rule. Every

combination is tested 100 times and the results are averaged.

We note that if there is an external reputation, we set α1 to 0.05. We also introduce a new variable,

namely Ω, which is the overall malicious rate of the nodes (so that inN nodes there are Ω·N malicious

ones).

We study three cases for the external reputation: (a) no external reputation, equivalent to the uni-

form zero reputation; (b) normally distributed reputation and (c) exponentially distributed reputation.

Normal distribution of reputation is natural in scenarios where ranking or reputation is determined by

many independent factors. We chose one with parameters N(0.5, 0.15) so that its restriction to the

[0, 1] interval covers more than 99% of events (the 3σ rule).

We take exponential distribution with ξ = 0.3, since according to [31] the reputation distribution

in an online consumer-to-consumer network as well as in most social networks is exponential.

4.1. External reputation: discrete (no information)

In this case every node has equal chance α0 of being malicious, and the initial reputation is zero

for all nodes. We consider two different selection rules and every 100 rounds we increase or decrease

the variance of the selection distribution by a certain value.

6The simulator is available with a user friendly interface at https://github.com/cryptolu/ReCon.
7Note that if we take a conservative estimate of 60 seconds per round, 10,000 rounds would take 166 hours. Thus a

bootstrap phase of a few thousand rounds is reasonable for the convergence of reputations.
8At the time of writing the maximum number of nodes in the Bitcoin network was around 10,000, while in Ethereum

around 30,000.
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First, we consider the exponential selection rule. We start with a variance of 1/N = ξ−2, and then

increase it every 100 rounds by 1
N−500i starting with i = 1. We do this until we reach a variance, for

which P (X < 5, 000) ≥ 0.9, where X is the random exponential variable with ξ = 1
N−500i . This

means that the exponential distribution is mostly restricted to the [0; 5, 000) interval. Thus at the start

of the protocol every node has a similar chance to gain reputation, and later more trusted nodes have

more significance.

Our results (Table 4) show that the protocol converges to a correct behaviour even if 45% of the

nodes are malicious. However, the success rate decreases as the initial malicious rate Ω grows.

Then we consider the triangular distribution for its more fair selection process, as even the node

with the lowest reputation score should have a real chance of participating in a committee (results in

Table 5). In this case, we start with a length of 10 time N , truncate it to N , and reduce this length by

N every 100 rounds. After a 1, 000 rounds, we settle with the aforementioned (Section 3.2) length of

N + N
5 truncated to N .

Ω
Success Rate

N = 5, 000 N = 10, 000 N = 20, 000 N = 30, 000

0.1 100% 100% 100% 100%

0.2 99.95% 99.8% 99.8% 99.8%

0.25 99.7% 99.5% 99.7% 98.7%

0.33 99.6% 99.5% 98.6% 98.2%

0.4 98.7% 98.2% 96.5% 95.3%

0.45 96.5% 94.2% 89.9% 76.9%

Table 4: No external reputation, exponential selection rule:
success rates after 10,000 rounds.

Ω
Success Rate

N = 5, 000 N = 10, 000 N = 20, 000 N = 30, 000

0.1 100% 100% 100% 100%

0.2 99.92% 99.9% 99.9% 99.9%

0.25 98.8% 98.1% 98% 96.7%

0.33 96.3% 95.9% 92% 87%

0.4 89.1% 85.8% 78% 60.1%

0.45 60% 50.3% 23.2% 9.9%

Table 5: No external reputation, triangular selection rule:
success rates after 10,000 rounds.

The difference in success rates can be explained with our introduced F fairness value. The trian-

gular distribution has a better fairness value, which means it will choose lower reputed nodes more

often, and such it can sort them better as well. On the other hand, the same can be said about the

exponential distribution, as it has a worse fairness value, and it will choose higher reputed nodes more

often, but because of that it will not be able to sort out the nodes that well.

4.2. External reputation with normal distribution

We repeat our previous tests with external reputation distributed normally and the maliciousness

probability varying from α0 to α1 = 0.05. First we consider the selection rule based on exponential

distribution (see Table 6).
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α0 Ω
Success Rate

N = 5, 000 N = 10, 000 N = 20, 000 N = 30, 000

0.4 0.225 99.99% 99.9% 99.9% 99.9%

0.6 0.325 99.8% 99.7% 99.6% 99.6%

0.7 0.375 99.5% 99.3% 98.8% 98.8%

0.8 0.425 98.8% 98.8% 98% 95.7%

0.9 0.475 93% 90% 84.8% 77%

1 0.525 50% 47.9% 41.4% 40.7%

Table 6: External normally distributed reputation, exponen-
tial selection rule: success rates after 10,000 rounds.

α0 Ω
Success Rate

N = 5, 000 N = 10, 000 N = 20, 000 N = 30, 000

0.4 0.225 99.98% 99.9% 99.9% 99.9%

0.6 0.325 98.1% 97.5% 97% 94.7%

0.7 0.375 97% 96.7% 93.5% 86.7%

0.8 0.425 91% 89.8% 79% 65.2%

0.9 0.475 50% 39.7% 9.2% 9.0%

1 0.525 1%∗ 1%∗ 0.8%∗ 0.7%∗

Table 7: Simulation results in the case of external normal
distribution, selection with triangular distribution. The last
simulation has an asterisk, as it produced a forgery in one of
the runs.

The results in Table 6 show, that even in heavily adversarial settings of Ω = 0.475 the protocol

0.93-converges and 0.5-converges for Ω = 0.525. The difference based on the selection distributions

between Tables 6,7 can be explained with the same reasoning as in the previous case. We can achieve

better success rates compared to Tables 4,5 because of the pre-sorting of the nodes based on the

external reputation. This is natural and demonstrates that trusted external reputation enhances Sybil

resistance of the protocol.

4.3. External reputation with exponential distribution

In the case of an external exponential reputation system, the number of rounds for convergence

values is bigger for the same α1, but the overall malicious rate is much higher. For α0 = 0.6 we have

Ω = 0.45, and in the case of α0 = 0.7 it is 0.53. Also notice that we do not achieve our required

success rate, but the 0.7 and 0.75 cases still converged to a lower value, and they never produced a

forgery in our simulations. First we show the results for the selection based on exponential distribution

(Table 8).

α0 Ω
Success Rate

N = 5, 000 N = 10, 000 N = 20, 000 N = 30, 000

0.4 0.307 99.6% 99.5% 99.4% 98.9%

0.5 0.381 99.1% 99.0% 98.9% 96.6%

0.6 0.456 97% 96.8% 93.4% 87.1%

0.7 0.529 51.2% 51.1% 50.7% 47.7%

0.75 0.565 28.5% 25.7% 18.7% 8.4%

0.8 0.605 5%∗ 3.6%∗ 0.1%∗ 0.1%∗

Table 8: External exponentially distributed reputation, expo-
nential selection rule. The last simulation has an asterisk, as
it produced a forgery in one of the runs

α0 Ω
Success Rate

N = 5, 000 N = 10, 000 N = 20, 000 N = 30, 000

0.4 0.307 97% 96.9% 93.6% 93.3%

0.5 0.381 93% 92.8% 82.2% 74.6%

0.6 0.456 67% 62.7% 31.1% 18.4%

0.7 0.529 1%∗ 1%∗ 0.1%∗ 0.1%∗

Table 9: Simulation results in the case of external exponen-
tial distribution, selection with triangular distribution. The
last simulation has an asterisk, as it produced a forgery in
one of the runs

In triangular selection case we have similar results as with the external normal reputation system.
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5. Attacks and their mitigation

We consider attacks, based on examples from real world financial blockchains, such as Bitcoin

and Ethereum. We also consider what is a good mitigation against them.

5.1. Botnet takeover

Our first example is a botnet takeover, where an attacker takes over the control of a large subset of

nodes, and tries to either block the protocol (DoS), or even create a forgery. The success of the attack

largely depends on the number of nodes taken over, but the results can be vastly different based on the

overtaken nodes’ reputation value.

5.1.1. Mitigation

We have simulated these attacks, and in the case of a large takeover of 1,000 random nodes,

where N = 5, 000, the success rate s of the protocol dropped heavily at first from above 95% to a

minimum of 40%, but it recovered in a few hundred rounds, and got close to its previous success rate.

As discussed in Section 3.4, even a success rate of 25% achieves λ = 30 security, as we can revert

the success rate into a binomial distribution. If a large enough subset is taken over, that can cause a

forgery, but that would mean the overall number of malicious nodes would be probably above 50%.

Note also that botnet takeover would be noticeable by the rapid drop in the success rate of the protocol

- which any node can efficiently and locally measure and which can be used to trigger a temporary

switch to less fair but more robust selection rules.

5.2. Sybil attack: saturation

In this version of the well-known Sybil attack, a large number of new malicious nodes (more then

N/5) join the protocol, and try to subvert the performance, or even create a forgery. However such

nodes would have zero initial reputation.

5.2.1. Mitigation

The protocol may require a new node to participate only in communications without any eligibility

for selection into a committee for a set amount of time (e.g. 2 weeks). Then every new node would

start from reputation value 0. This way for an attacker to gain a large enough probability of one of

its nodes being selected into a committee would require either buying and running many dedicated

servers, or controlling a botnet for weeks.
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It is also easily detected if a lot of nodes are joining the network at the same time and could be

also a trigger for a switch to more conservative selection rules.

5.3. Sybil attack: lie and wait strategy

A more dangerous version of a Sybil attack would be if the malicious nodes only act badly, if they

have 2/3 majority in a committee. At this point they just take over the network.

5.3.1. Mitigation

Due to random selection even nodes with high reputation might have to wait for long before getting

a chance of creating a forgery. Thus the adversary has to control a high number of nodes and have to

keep up them active until that round. This would be costly and we choose the security parameter λ so

that probability of this attack is negligible (ex. below 2−30 in any given round).

5.4. Attacks on randomness

Another attack would be simply DoS-ing the committee members, as their participation is publicly

known to all the nodes in the protocol. If an attacker is a node, and learns the members of the next

committee quickly enough, he can DoS a portion of them, which would stall the protocol.

5.4.1. Mitigation

A defense in case of a DoS attack could be generating multiple committees (in the limit every

node being in some committee), making it harder and more expensive for the attacker to DoS more

then 1/3 of the nodes in all of them. As for which committee will produce the actual block it could be

decided by an external unpredictable beacon (possibly based on VDF). Note that DoS attack would

be very noticeable by the sharp decrease of the success rate s of the protocol, and thus this mitigation

can be switched on only when it is really needed.

5.5. Honest majority

Another problem could be the fact, that we require only an honest majority in the committees, and

there is no rational reason for acting honestly.
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5.5.1. Mitigation

This can be mitigated in two different ways. Firstly, there are real world examples (e.g. Bitcoin or

Tor), where there is no direct reward for running a full node (or Tor relay), only the indirect reward,

that the user can personally monitor the validity of transactions. Even this way there are more then

10, 000 bitcoin full nodes currently in the network (more than 7,000 Tor relays).

Secondly, we can introduce a small reward for participating in a correct committee (for example,

by minting a cryptocurrency in the BFT process or by distributing transaction fees), which would

introduce some economic rationale for acting honestly. The problem with that is, that it would decrease

the cost of a Sybil lie and wait strategy (Section 5.3), as running nodes would not be that expensive,

or would even partly pay for themselves. Because of that these rewards would have to stay either

relatively small so that running even a highly reputed node would not pay for itself or the opposite,

so that attacking the network would be against the economic interest of the adversary (similar to the

current situation with mining in Bitcoin).

5.6. Detection based on the success rate

A lot of attacks are detectable by simply monitoring the success rate s (Section 3.3). If there is a

significant drop (e.g. 10% at least) in the number of successful rounds, the protocol can automatically

employ a stricter selection rule (e.g. exponential power rule), which would quickly penalize bad

nodes at the cost of being temporarily unfair to some of the honest nodes. Switching back to a more

democratic triangular selection rule when the success rate improves.

6. Conclusions

In this paper we have described a novel approach for more scalable permissionless blockchain

consensus protocols that are resilient against Sybil-attacks. Our protocol ReCon utilizes external rep-

utation ranking to select from a large set of nodes a small subset of validators for the fast permissioned

BFT protocol. This in turn would help to improve transaction throughput by one-two orders of magni-

tude compared to Bitcoin’s Nakamoto consensus. Our solution allows Bitcoin-style egalitarian peer-

to-peer networks of thousands of validator nodes without the energy waste of a proof-of-work based

blockchain. Our protocol also tolerates a larger threshold of malicious nodes than a BFT consensus -

1/2 instead of 1/3.
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Appendix A.

The protocol description as a pseudocode (Algorithm 1), where N is the number of nodes in the

network, m is the committee size and R is the reputation values. C[r] is the selected committee in

round r generated by the gen committee function. The new gossiped block blockr contains the exact

reward and penalty values based on the result of the consensus or VDF block. To keep the description

simpler we don’t specify which nodes compute the VDF, but this can be easily determined based on

the previous block. Important consideration is whether we allow any node to compute the VDF, or to

a small set of high reputation nodes (who are not in the current committee). The latter will provide

additional Sybil resistance.

Algorithm 1 ReCon Reputation module

procedure Round(r, blockr−1) . The main round function
C[r] := gen committee(N,m,R, blockr−1) . Apply reput. selection rule
If r is divisible by l, only create a VDF block, no committee selected
if distr cons(C[r], blockr) then . Whether the consensus is successful

gossip(blockr) . Contains all information from a successful consensus
Round(r + 1, blockr)

else
gossip(blockr) . Contains all information from a failed consensus
Round(r + 1, blockr)

end if
end procedure

procedure distr cons(C[r], new block) . Returns new block and a flag
if myNode in C[r] then start consensus alg(C[r], myNode)
end if
while !new block do wait() . Wait till new block is returned
end while
if fork(r) then . A fork has happened in some round k < r

Let mal nodes be the nodes that signed both chains
reset(mal nodes) . Set their reputation to 0, or even delete them

end if
if new block.type = CONSENSUS then . Consensus was reached

reward(C[r])
return TRUE

else if new block.type = V DF then . VDF was faster than consensus
penalise(C[r])
return FALSE

end if
end procedure
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