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Abstract

This paper deals with congestion and interference control in wireless sensor networks (WSN), which is essential for improving

the throughput and saving the scarce energy in networks where nodes have different capacities and traffic patterns. A scheme

called IACC (Interference-Aware Congestion Control) is proposed. It allows maximizing link capacity utilization for each node by

controlling congestion and interference. This is achieved through fair maximum rate control of interfering nodes in inter and intra

paths of hot spots. The proposed protocol has been evaluated by simulation, where the results rival the effectiveness of our scheme

in terms of energy saving and throughput. In particular, the results demonstrate the protocol scalability and considerable reduction

of packet loss that allow to achieve as high packet delivery ratio as 80% for large networks.
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1. Introduction

In a wireless sensor network, sensors gather information about the environment and notify the base-station. Ap-

plications may require the notification to be continuous, periodic, or on event occurrence1. In some event-based

(resp. continuous) applications, nodes may transmit significant volumes of data towards the sink upon event occur-

rence (resp. permanently), e.g., video tracking, surveillance applications. As sensors share the same wireless channel,

contention on the available bandwidth is inevitable. In a real environment, the packet collision caused by links in-

terference or packets loss due to congestion on inter-paths and intra-path nodes dramatically affects the application

throughput and causes high energy consumption. Congestion control consists of two parts: i) the congestion and

interference detection, and ii) a rate control mechanism establishment, which adjusts the reporting rate. Different
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metrics are used in literature for detecting congestion, such as buffer length, packet inter arrival time, packet service

time, channel load, etc1.

The existing approaches, in their mitigating or avoiding forms, underuse the throughput that the network capacity

can offer to the application. The mechanisms based on rate regulation between nodes use AIMD (Additive increase

multiplicative decrease) methods to balance the offered capacity, but ignore nodes interference, the principal cause

of loss. On the other hand, scheduling based methods do not take into account physical-link-capacity differences

between nodes. In this paper, we propose a scheduling scheme that takes into account dynamic link interference and

capacity. It provides efficient and fair rate partitioning over congested links. The proposed protocol identifies the hot

spot points by measuring locally, at every node, the interfering neighbor links that cannot be simultaneously active in

the whole schedule. Finally, the rate of each link and the number of slots given to each node is determined by taking

into account the depth of the node and its link capacity.

The paper is organized as follows. Section 2 presents the related works on congestion control and avoidance. In

Section 3, the problem is formulated with a thorough network model. The proposed protocol IACC (Interference-

Aware Congestion Control) is presented in Section 4. Section 5 shows the simulation results. Finally, Section 6

concludes the paper.

2. Related Work

ESRT2 (Event-to-Sink Reliable Transport) is a centralized rate allocation control protocol where the sink controls

nodes rate in event driven-applications. Nodes are assumed to be located at one hop from the sink. ESRT defines

event reliability as the number of data packets required for reliable event detection from the whole set of nodes, while

minimizing energy consumption. Each node sends at a fixed rate until receiving rate update instruction from the sink.

The sink uses the perceived goodput and congestion level (based on the buffer length) to update rates. This method

ensures fairness, but not efficiency of throughput.

CODA3 (Congestion Detection and Avoidance) is a mitigation rate control protocol, where each node detects con-

gestion using both channel and buffer loads. The node controls its rate in an AIMD manner. CODA considers two

strategies: i) open-loop back pressure for transient congestion, where the concerned node broadcasts the message to its

neighbours that further propagate these messages to upstream nodes, depending on their buffer occupancy, and ii) an

end-to-end acknowledgement-based approach (also named closed-loop for persistent congestion). However, CODA

does not focus on per-source fairness.

In CCF4, each node uses packet transmission duration to estimate the channel capacity. It then divides this capacity

between its sub-tree nodes. A major drawback of CCF is that the remaining capacity from no-sending nodes goes

unused.

In ARC5, rate adjustment is done through an AIMD, which is proportional to the number of descendant nodes.

The congestion is passively detected when a node finds that its parent does not forward its traffic. ARC tries avoiding

interference by introducing a jitter before sending. This allows desynchronizing neighbours.

QCRA6 attempts to determine optimal and fair sources transmission rate at the sink using information about topology,

link loss rates, and communication pattern. Its heuristic results to a coarse-grained TDMA schedule between neigh-

bours using CSMA. Loss rate is used to assign nodes’ sending rates. QCRA decisions are periodic with epochs at the

order of few tens of minutes.

MCCP7 uses successive data and schedule intervals. During data interval, nodes send data using a schedule re-

ceived from their next hop nodes. As one packet can be sent at a slot, slot length represents the reporting rate. With

short length slots, the rate is increased. During the schedule intervals, nodes generate the schedule for the next data

interval. Packet delivery time and buffer size are used to attribute time slots. But slot attribution in this scheme does

not specify any contention avoidance.
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TARA (Topology-Aware Resource Adaptation)8 uses resource control to ensure application fidelity. It defines the

link congestion sum as the sum of link’s traffic and interfering links’ traffic. TARA uses graph-coloring approach for

capacity estimation. It defines the topology interference degree and constructs the spatial interference graph.

In Flush9, large data is divided into packets and sent in a pipelined transmission. The sink schedules transfers

to avoid inter-flows interference. It uses end-to-end ACKs to ensure reliability, and hop-by-hop rate control. Flush

dynamically chooses the sending rate using bandwidth measurements and interference information to avoid intra-path

interference, which depends on the interference range at each node. Flush is very restrictive as only one source at a

time can transmit. It does not describe the scheduling heuristic but just the capacity sharing part. CADT10 protocol is

similar to FLUSH but with many flows. CADT applies AIMD rate control using immediate downstream nodes buffer

and the concerned node link state.

In11, authors proposes a TDMA schedule to ensure maximum throughput and fair rate allocation by taking into

account the requirement imposed on network lifetime. The authors use lexicographic Max-Min to formulate the rate

allocation along with fairness, maximum throughput, and slots reuse in the purpose to reach a minimum frame length.

3. Network Model and Problem Formulation

We assume that all nodes have synchronized clocks and each node has a single half-duplex radio transceiver.

Communication between nodes is modeled by an undirected graph G = (V, E), where V is the set of nodes, with a

base-station B ∈ V , and E is the edges set of G. Based on the observation that the links between nodes do not have the

same capacity, every edge (u, v) ∈ E is supposed having a specified capacity Cu,v to transmit packets from node u to

node v.

The data are gathered over a tree structure GT = (V, ET ) rooted at B, such that ET ⊆ E represents the tree edges.

The problem that we tackle in this paper is how to gather the data, without collisions and congestions, from a set

of source nodes called VS (i.e., VS ⊆ V) through the tree structure, while maximizing the network throughput. All

source nodes are supposed to continually generate data. Time is divided into contiguous frames, where each frame

is constituted of a set of slots {σ1, σ2, . . . σl} having the same duration δ. During each slot σi, the data packets are

generated or transferred from a set of children nodes to their parents. S(u) denotes the set of slots used by a node

u ∈ V to generate data, receive the data from its children, or transmit to its parent w. τσ(u), λσ(u), μσ(u) denote the

rates of data generation, reception, and transmission during a slot σ ∈ S(u), respectively.

The Maximum Throughput Congestion and Collision Prevention (TCCP) problem is how to find the appropriate

slot distribution S along with the appropriate functions τσ(u), λσ(u), μσ(u) for every node u ∈ V and every slot

σ ∈ S(u), such that the throughput is maximized, and collisions and congestions are prevented. An instance of the

TCCP problem must satisfy the following conditions:

1. The data are generated only by the source nodes, i.e., ∀u � VS ,∀σ ∈ S(u) : τσ(u) = 0.

2. The rate of data transmission from a node u to its parent w (i.e., (u,w) ∈ ET ) should not exceed the capacity Cu,w.

Formally, ∀σ ∈ S(u) : μσ(u) ≤ Cu,w.

3. Each node has a half-duplex radio transceiver and then it cannot transmit and receive simultaneously: ∀σ ∈
S(u) : λσ(u)μσ(u) = 0.

4. Collision-free constraint: Two nodes u and v cannot transmit at the same time slot σ in one of the following

cases:

• Node u is parent of v or vice versa;

• Nodes u and v have different parents, say w and z, respectively. A collision occurs iff w or z is within the

transmission range of v or u, respectively.

In these two cases, to prevent the collision between nodes, u and v, the following collision-free constraint should

be verified:
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∀σ ∈ S(u) ∩ S(v) : μσ(u)μσ(v) = 0

5. Congestion-free constraint: To prevent the congestion, we should verify that the amount of the transmitted data

should be greater than the amount of the received and generated data. That is, the congestion-free constraint can

be expressed as follows:

∑
σ∈S(u)

μσ(u) ≥
∑
σ∈S(u)

(λσ(u) + τσ(u))

4. Protocol Description

In order to facilitate the presentation of IACC, Fig.1 will be referenced throughout the discussion, as an illustrative

example. In the figure, a solid arrow between two nodes, a and b, indicates that b is the parent of a in the commu-

nication tree. The dotted lines represent the graph connectivity, i.e., the presence of a communication link between

a pair of nodes. The number besides the solid arrow (a, b) in Fig.1(b) represents a’s physical link capacity on the

communication tree. The number besides the solid arrow (a, b) in Fig.1(c) represents the number of packets required

to be forwarded by node, a, to ensure the fairness. Whereas, the number besides the solid arrow (a, b) in Fig.1(d)

represents the number of slots required for node, a, to ensure the fairness. The number besides the solid arrow (a, b)

in Fig.1( f ) represents the assigned slots for each node in the network. All the network nodes in Fig.1 are considered

as sources. In what follows, the communication tree is supposed to be constructed using some routing protocol, such

as12, which serves as input to the proposed solution.

IACC consists of two steps aiming to establish an appropriate schedule that takes into account the real network

capabilities. Firstly, the link capacity between each node and its parent is estimated. The estimated capacities are

forwarded from the network nodes to the base-station. Secondly, the scheduling is established to ensure the fairness

while preventing congestions and collisions in the network. The estimated capacities help IACC to establish a schedule

that allocate for every node the appropriate time to transmit, and the appropriate rate.

4.1. Link Quality Estimation

The congestion control in IACC is based on real measurements of radio links capacity. To obtain an estimation of

these capacities, every node, u, assesses radio link relating it to its parent, w, by sending a burst of packets during a

determined amount of time, T . Every packet is sent after the reception of the previous packet’s acknowledgement,

or after a time-out from the former submission. The link capacity, Cu,w, is then approximated by the total number of

acknowledged packets divided by the period T . Upon completion of this phase, node u sends to the base station the

estimated link capacity, as well as the ID of its parent. This message is forwarded via the tree structure. This phase

and the previous one are depicted in Fig.1(b).

4.2. Schedule Construction

This step is executed by the base station after collecting link capacity messages on the communication tree. The

process of rate scheduling is then divided into two sub-phases: Rate Distribution and Slots Assignments.

4.2.1. Rate Distribution
For each node u, the aim is to distribute its available bandwidth such that:

• all source nodes under the responsibility of node u are enabled to fairly send their data.

• congestion is avoided by computing an appropriate sending rate for u. This rate does not exceed the capacity of

the router nodes present in the path towards the base station.
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(a) Network topology (b) Physical capacities (c) Required packets during one

frame

(d) Number of required slots per

frame

(e) Interference graph (f) slots assignment

Fig. 1. Illustrative example to show how IACC is applied

To guarantee the fairness condition, the base station computes the number of source nodes in the underneath sub-

tree of u, which is denoted by ηu. This is shown in Fig.1(c). Therefore, node u should be allowed to send at least

ηu packets during a single frame. Since the frame is divided into slots of duration δ, node u will be assigned at least

su =

⌈
ηu

δCu,w

⌉
slots, where w is the parent of u. This is shown in Fig.1(d).

When the remainder of the euclidean division
ηu

δCu,w
is not null, the last slot will not be fully used. To enhance

efficiency, the remaining capacity of all these slots is divided fairly between the nodes in the sub-tree that have these

remaining capacities.

4.2.2. Slots Assignments
After computing the appropriate needs of each node in terms of slots per frame, IACC starts the slot assignment

process. This process aims at orchestrating the starting time of each slot so that to avoid collisions and let the non

interfering links to transmit simultaneously. An interference graph GI = (VI , EI) is first built. For the previous

example, the corresponding interference graph is shown in Fig.1(e). The set of vertices VI = ET corresponds to the

set of radio links between nodes and their parents in the tree structure. Two links, say (i, j) and (k, l) are connected in

EI if they are in interference with each other.

The algorithm of slot assignment is based on an iterative process. In every iteration n, IACC searches in, GI , for

the maximal independent set, say In, which contains the vertices with the higher number of edges. This is in the

purpose to cut the interference graph into many sub-graphs that allow fast reuse of slots. Since the radio links in In

are not interfering, the set of nodes {u | (u, v) ∈ In} can transmit in slot n. When a slot is assigned to a node u, its

required number of slots per frame is decreased. When this number becomes null, the vertices relating node, u, with

its corresponding edges in, GI , are removed. The iterations stop when the graph GI becomes empty.

The presented algorithm ensures fairness while it avoids congestion and collisions. The resulted slots assignment

is shown through the example of Fig.1( f ). However, in some situations, it does not achieve an optimal efficiency and

links can be underused. Indeed, the nodes that have consumed their required number of slots (removed from GI) can

take extra slots. This is provided if they do not create interference with links in In for the next steps. So in every
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(a) Network Density=5 (b) Network Density=25

Fig. 2. Packet Reception Ratio

step, all the removed links from GI are compared to the links in In. These new added slots for these links are marked

separately. After emptying the GI , all the added slots are kept if the direct upstream link has an added slot, starting

from the root’s children. To ensure congestion control, the capacity of the added slots is divided fairly between the

concerned links.

5. Protocol Evaluation

In this section IACC is evaluated by simulation using TOSSIM13. The number of nodes was varied up to 256.

Before running the network simulator, a random connected graph with an expected node degree d ∈ {5, 25} has been

generated for every number of nodes. Similarly to14, an edge between two nodes, u and v, is stochastically selected

with a probability: P =
d
N

. This is called edge probability. Further, a random capacity is assigned to each edge in the

communication graph. In TOSSIM, this is done by defining a ”gain” value between two communicating nodes, which

corresponds to the reception power measured in dBm. After extensive experiments, we have observed that for every

”gain” value of the link between two nodes, it corresponds a reception probability. Therefore the link probability is

obtained by sending packets burst between two neighboring nodes and evaluating the average packet reception ratio,

as shown in Section 4.1.

We have considered an application that periodically generate 500 packets, with a 400 seconds pause time. Each

packet contains 29 bytes in its payload. This is a typical scenario for monitoring applications that use periodic traffic

sampling (snapshot of the monitored zone in a video surveillance application). All nodes in the network act as sources

for traffic generation, i.e. VS = V \ {B}. The simulation stops when every node successfully transmits 2000 packets.

Each generated packet is put in a waiting queue, from which the transport protocol picks up a packet from the tail.

We have compared the performance of IACC with a baseline approach that uses a fixed rate algorithm in which

packets are consumed periodically from the queue with a predefined constant rate. They are transmitted with best

effort towards the base station. In the experiments, these rates have been varied from 10pkt/s to 50pkt/s. Each

experiment is repeated 33 times and the results are presented with 95% confidence interval. The following metrics

were evaluated: the packet reception ratio, the number of retransmissions and the average throughput.

5.1. Packet Reception Ratio

The average Packet Reception Ratio is the ratio between packets successfully received at sink, to the total number

of packets generated by the sources. This metric reflects the impact of interference and congestion on the packets
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(a) Network Density=5 (b) Network Density=25

Fig. 3. Emission attempts

goodput. In Fig.2(a) and 2(b), the packet reception ratio in the proposed protocol (IACC) outperforms the base line

approach for almost all the defined rates. This is because IACC assigns the appropriate rate for every node while

avoiding interferences, whereas the base line approach applies the same rate for every node in the network without

considering interferences.

5.2. Number of Retransmissions

It is notable that the more the number of retransmissions per packet increases, the more energy will be consumed.

This dramatically affects the network lifetime. In Fig.3(a) and 3(b), the average energy consumed for packet trans-

mission is presented by the average sending attempts. The average number of retransmission in IACC is too close

from the optimal number (one transmission). This can be justified by the control applied by this protocol, which

ensures packets delivery with minimum loss even in a dense network. However, in the fixed rate protocols the average

number of retransmission increases with the number of nodes. In low network density, the number of retransmission

exceeds 5, where in denser network, this number exceeds 25. This is due to the number of interferences that can occur,

especially in dense networks.

5.3. Throughput

The average throughput at the sink is the number of packets received during a time unit. The fixed rate protocols

try to send their packets as soon as they are queued. We remarked that the first transmitted packets are received

within a short delay, then the remaining are just lost. Therefore, using uniform traffic generation with the traditional

definition of the throughput (that does not capture packet loss) will lead to biased performance results in favour of this

lossy protocols. This justifies the interwining transmission and idle periods in our scenarios. IACC shows a smooth

degradation when the number of nodes grows, as depicted in figures 4(a) and 4(b).

6. Conclusion and Future Work

In dense high rate wireless sensor networks using CSMA based communications, nodes contend for a shared

medium. In addition, links suffer from capacity variation during network lifetime due to interference. This causes

higher buffer occupancy and hence packet losses on intermediate nodes, in the presence of network congestion. A

novel data transport mechanism that addresses the link variation and network congestion has been proposed in this
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(a) Network Density=5 (b) Network Density=25

Fig. 4. Throughput

paper. The proposed protocol integrates an efficient capacity based, intra-path and inter-paths congestion and interfer-

ence aware scheduling scheme. Extensive simulation has shown its efficiency in terms of throughput, packet delivery

ratio and energy (packet emission attempts) compared to different fixed rates sending for different network densities.

As future work, we plan to extend the proposed congestion control scheduling scheme with a scheme that ensures

reliability and packet loss recovery. As another enhancement, we plan to consider the congestion and interference

mitigating in order to overcome transient congestion situation caused by buffer loss or link bad quality. Reaction to

persistent change in interference and capacity parameters, that may happen during application lifetime, is also in our

perspectives. Proper selection of a threshold that reflects significant change of the network state may be useful. This

will enable on-demand scheduling invocation rather than periodic invocation6. A deeper comparison with state of the

art protocols such8,9, and a real testbed experiment are also in our agenda.
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