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Abstract: This paper presents an effective semi-analytical approach for predicting lower-order dynamics of a five degrees-of-freedom 

(DOF) hybrid robot named TriMule, which is composed of a 3-DOF parallel mechanism plus a 2-DOF A/C wrist. In this method, the 

governing equations of motion of limbs within the parallel mechanism are first formulated by finite element analysis (FEA) and then 

reduced to super-element models. This is followed by exploiting a general stiffness model of multiple DOF joints connecting the 

super-elements. These two threads lead to the reduced dynamic model of the parallel mechanism while keeping the full set of 

lower-order modes retained. Finally, the dynamic model of entire system is established by merging the models of parallel mechanism 

and wrist. The computational results show that the lower-order natural frequencies, mode shapes of the entire system, and the 

frequency response functions (FRFs) of the robot tool center point (TCP) estimated by the proposed approach have very good 

agreement with those obtained by a full order FE model and experimental modal tests. The merits of this approach lie in that the 

established model allows the full set of lower-order dynamics of the entire system to be predicted effectively and accurately by only 

using fourteen generalized coordinates.  

 

Keywords:  Parallel kinematic machines; Substructure synthesis; Dynamics of multi-body systems 

 
 

1. Introduction 

Dynamic behavior is one of the most important performance factors of parallel kinematic machines (PKMs) especially 

for those developed for machining purposes, drilling and/or milling for example, where the end-effector is excited by 

dynamic loadings caused by tool-workpiece interaction. Since dynamics of PKMs is highly pose-dependent, it essentially 

requires a model that enables the full set of lower-order dynamics to be predicted efficiently and accurately, an important 

issue for dimensional/structural optimization as well as for cutting stability analysis [1-3] under the framework of 

digitalized design. 

In the last few decades, intensive studies have been carried out for dynamic modeling of PKMs. The methods 

available at hand can roughly be classified into three categories, i.e. full order Finite Element Analysis (FEA) [4-7], 

lumped parameter methods [8-11] and semi-analytical methods [12-27]. Combining fundamental robotics with structural 

dynamics, it has been well recognized that the semi-analytical approach is particularly useful for the predesign stage 

thanks to its much lower computational cost compared to full order FE models. Along this track, several approaches have 

been proposed, known as Matrix Structure Analysis (MSA) [12-16], Virtual Joint Method (VJM) [17-20] and Component 

Mode Synthesis (CMS) [21-24]. In the MSA method, the flexible links are frequently treated as spatial beam elements. In 

the VJM method, the flexible links are simplified as a number of discrete lumped mass-springs using the finite segment 

concept [28]. In the CMS method, the degrees-of-freedom (DOFs) of a flexible link modeled by a full order FE model are 

significantly reduced using substructure synthesis technique while keeping the lower-order modes almost unchanged. 

This approach has been successfully applied to dynamic modelling and cutting stability analysis of a PKM based 

machine tool [22], demonstrating a great potential for the improvement of computational efficiency compared with FEA.  

More recently, several interesting attempts have been made toward achieving ‘simpler’ dynamic models having 

smaller number of DOFs. For example, Briot el al. [25] proposed a general and systematic approach for predicting the 

first six modes of parallel mechanisms. In this method, the Rayleigh-Ritz approximation was employed to form the bases 

that link the deflection twist of the end-effector with a set of generalized coordinates. Zhang et al. [26] proposed an 

approximate approach for dynamic modeling of a 3-PRS parallel mechanism designed for high speed machining. In this 

method, the Cartesian mass matrix was derived by assuming all links as rigid bodies, while the Cartesian stiffness matrix 

was modeled by considering compliances along/about the screw axes of static wrenches imposed by the limbs upon the 

platform. The authors claimed that the proposed model enables the first and second order natural frequencies to be 

predicted with sufficient accuracy. Drawing mainly upon work-energy method, Dong et al. [27] presented an approach 

for dynamic modeling of the well-known Tricept robot developed for both milling and optical polishing. In this method, 

static condensation technique was employed that leads to a 9-DOF dynamic model containing the 6-dimensional 
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deflections of the end-effector and three rotational deflections about the axes of a 3-DOF wrist. Although axial 

compliances of three actuated limbs were fully considered, their idle motions were treated as rigid body motions. This 

over-simplified treatment, however, cause the ignorance of lower-order bending modes that would have significant 

bearings on the FRFs at the robot TCP.  

Combining screw theory with modal reduction technique, this paper deals with dynamic modeling of a 5-DOF hybrid 

robot named TriMule. Its particular goal is twofold: (1) to develop an approach that enables the full set of lower-order 

modes affecting frequency response functions of the robot TCP to be predicted accurately and effectively using a 

minimum set of generalized coordinates that include those reflecting the first-order elastic bending modes; (2) to develop 

a general method for stiffness modelling of passive joints, an important issue in dynamic modelling of parallel 

mechanisms. After this brief review to the dynamic modelling of PKMs in Section 1, the description of the TriMule robot 

is introduced in Section 2. Section 3 starts with the formulation of the reduced dynamic model of the parallel mechanism 

by developing the super-element models of all substructures and the general stiffness model of multiple DOF joints 

connecting the super-elements. Then, it follows dynamic modelling of the entire system via merging the elastic potential 

and kinetic energies of the parallel mechanism and wrist. In Section 4, a full-size TriMule robot is taken as an exemplar 

for illustrating the effectiveness of the proposed approach by calculating the lower-order dynamic behaviors and 

comparing them with those obtained by a full order FE model. The conclusions are drawn in Section 5. 

 

2. System Description 

Fig.1 shows a 3D view of the TriMule robot under consideration, which essentially consists of a 1T2R (T-Translation, 

R-Rotation) spatial parallel mechanism for positioning and an A/C wrist attached to the platform for orientating. The 

1T2R parallel mechanism consists of a 6-DOF UPS limb plus a 2-DOF planar parallel mechanism comprising two 

actuated RPS limbs and a passive RP limb in the middle. The base link of the planar parallel mechanism is connected 

with the machine frame by a pair of R joints. Here, R, P, U, and S denote revolute, prismatic, universal and spherical 

joints, and the underlined P denotes an actuated prismatic joint. Note that the S and U joints are formed by the 

appropriate number of R joints having mutually orthogonal axes. For convenience, we number three actuated limbs as 

limbs 1, 2 and 3, and the passive limb as limb 4. For the detailed description of the robot, please refer to [29, 30].  

 

        

Fig.1. 3D view of the TriMule robot                     Fig.2. Schematic diagram of the TriMule robot 

 

Fig.2 shows the schematic diagram of the hybrid robot, where some special points at machine frame, platform, wrist 

and end-effector are represented by O , P , Q  and C . The reference frame, denoted by , is placed at O  with its 

x axis coincident with the axis of the R joint connecting the base link with the machine frame, and its z  axis normal to 

the equilateral triangle 1 2 3B B B . A body fixed frame, denoted by C , is attached to the end-effector at C, a milling 

spindle for example, with its w axis coincident with the tool axis, and its u axis parallel to the A-axis of the wrist. The 

unit vectors of joint axes shown in Fig.2 satisfy the relationships below 
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Hereafter, we assume that all vectors and matrices are expressed in  unless indicated otherwise. 
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3. Dynamic Modeling of the Hybrid Robot 

For dynamic modeling, we lock all actuated joints such that the entire system can be visualized as an instantaneous 

structure at a given configuration. Then, we formulate dynamic models of the parallel mechanism and the hybrid robot as 

a whole sequentially and concentrate on developing an effective method that enables the lower-order dynamics of the 

end-effector to be retained using a minimum set of generalized coordinates.  

 

3.1 Modeling of the parallel mechanism 

3.1.1 Super-element modeling of substructures 

The first step in dynamic modeling of parallel mechanism is to decompose it into five substructures and then build 

their super-element models by FEA and modal reduction technique. In order to do so, the base link and the four 

limb-bodies are sequentially numbered from 0 to 4, as depicted in Fig.3. For convenience, set a number of nodes, denoted 

by ' 'N  with the appropriate local subscripts at key points of a substructure. Among them the nodes denoted also by 

' 'A  are the interface (or external) nodes that link the substructure with others or with the machine frame via single or 

multiple DOF joints.  

 

 
Fig.3. Substructures within the parallel mechanism 

 

With this convention, we first formulate the super-element model of the thi  ( 1, 2,3i  ) telescopic actuated 

limb-body as detailed in Fig.4, which comprises a thrust rod and a sleeve connected via an internal P joint driven by a 

screw-nut-motor assembly. In the modelling, the sleeve is treated as a spatial elastic beam having four nodes 1, 4,~i iN N , 

the thrust rod as that having three nodes 5, 7,~i iN N , and the servo motor as a lumped mass situated at 1,iN . Note that 

2,iN  is connected internally with 5,iN  by a linear spring to model axial compliance of the screw-nut assembly. Also, 

note that there exists a relative axial deflection between 3,iN  ( 4,iN ) and 5,iN  ( 6,iN ) while remaining their deflections 

in other directions identical. Two interface nodes ,j iA  ( 1,2j  ) are assigned such that they connect the limb-body with 

the machine frame or the base link by a U or R joint at 1,iA , and with the platform by an S joint at 2,iA . 

 

 
Fig.4. Finite element model of the actuated limb-body 

Sleeve 

Thrust rod 

Screw-nut 

-- nodes on the thrust rod 

-- nodes on the sleeve 

 4, 6,i iN N

 2, 7,i iA N

3, 5,( )i iN N

1,iN

 1, 2,i iA N

--1-DOF linear spring --lumped inertia 

1,if

2,if

 2,4 1,4N A

6,4 3,4( )N A

7,4 4,4( )N A

8,4 5,4( )N A

1,4N

5,4 2,4( )N A

2,1A
1,1A

1

4

2,0A

3,0A

1,0A

4,0A

5,0A 0

3

2,3A

1,3A

2,2 1,2( )N A

1,2N

7,2 2,2( )N A

2

3,2 5,2( )N N

4,2 6,2( )N N

3,4 4,4( )N N



4 

Modeling the two spatial elastic beams by FEA and assembling them using the geometric and physical boundary 

conditions mentioned above, leads to the dynamic model of the limb-body 

, , , ,

T T

, , , ,

xx i x i xx i x ii i i

x i i x i ii i
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where ,xx iM , 
,x iM  and 

,iM  (
,xx iK , ,x iK and ,iK ) represent the partitioned mass (stiffness) matrices associated 

with the generalized coordinates  
T

T T

i ix η ; 6

,j i f  and 6

,j i ξ  ( 1,2,  1,2,3j i  ) are the nodal force and 

deflection vectors at 
,j iA ; iη  is the collection of the nodal deflections of all the internal nodes. 

According to the modal reduction method [31-33], let  
T

T T

i ix η  be expressed as 

12i i
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where 1,i  and 2,i  are the first-order internal bending modes about two orthogonal axes normal to the axial axis of the 

limb-body, 3,i  is the first-order internal extension/compression mode along the axial axis. These internal modes can be 

determined by solving the eigenvalue problem 
, ,i i i    K M 0  provided that ,j i ξ 0  ( 1,2j  ); ,k ip  is the 

internal modal coordinate associated with ,k i  ( 1,2,3k  ).  

Consequently, substituting Eq. (3) into Eq. (2), and left-multiplying the transpose of the relevant coordinate 

transformation matrix given in Eq. (3), results in the super-element model of the limb-body 
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Then, we consider dynamic modelling of the passive limb-body that comprises a central tube and a platform rigidly 

connected to the tube as indicated in Fig.5. The central tube is treated as a spatial elastic beam having three nodes 

1,4 3,4~N N , and the platform as a rigid body having five nodes 4,4 8,4~N N . Five interface nodes ,4jA  ( 1 ~ 5j  ) are 

set for the limb-body to connect with the base link by a compound RP joint at 1,4A , with the wrist by an actuated R joint 

at 2,4A , and with three actuated limbs by S joints at 3,4A , 4,4A  and 5,4A , respectively. 

 

 
Fig.5. Finite element model of the passive limb-body 
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Using the identical method for formulating Eq. (4), yields the super-element model of the limb-body  
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where 4M  and 4K  represent the mass and stiffness matrices associated with the generalized coordinates  
T

T T

4 4x p ; 

6

,4j f  and 6

,4j ξ  ( 1 ~ 5j  ) are the interface nodal force and deflection vectors at ,4jA ; 
1,4p , 2,4p  and 3,4p  

are the internal modal coordinates associated with the first-order torsional and bending modes of the limb-body, 

respectively; 
,4j

  r  is the skew-symmetric matrix of ,4 2,4 ,4j jA Ar .  

Finally, with the convention of symbolic notations used in Eq. (5), the dynamic model of the base link shown in Fig.6 

can be formulated with ease by treating it as a rigid body because of its much higher rigidity compared with other 

substructures involved 

 

 
Fig.6. Rigid body model of the base link 
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where 6 6

0

M  is the mass matrix of the base link evaluated at 1,0A ; 6

,0j f  and 6

,0j ξ  ( 1 ~ 5j  ) are the 

nodal force and deflection vectors at ,0jA ; ,0 1,0 ,0j jA Ar .  

 

3.1.2 Stiffness modeling of multiple-DOF passive joints 

This section presents a general method for stiffness modeling of multiple-DOF passive joints commonly used in the 

spatial mechanism having closed loops. This model therefore is applicable to the joint stiffness modeling of the parallel 

mechanism under consideration. Without loss of generality, let 
,u iA  and 

,v jA  be two interface nodes belonging to 

substructures iS  and jS , and be connected by the thn  ( 1,2, ,n N ) passive joint having nM  DOF, as depicted in 

Fig.7. Since 
,u iA  and 

,v jA  are coincident at the equilibrium pose, let nA  be the point having the same coordinates. 

Place a reference frame n  at nA  with its three orthogonal axes being parallel to those of .  

A method is now developed to derive the general expression of stiffness matrix of the thn  passive joint in terms of 

stiffness matrices of nM  serially connected elastic elements whose compliances are defined in a set of local body-fixed 

frames m,n  ( 1,2, , nm M ). Each elastic element represents compliances of either a 1-DOF revolute or prismatic 

joint with the joint axis coincident with the m,nz  axis of m,n . Evaluated in m,n , let 5

,m n α , 5

,m n β  and 

5 5

,m n

K  be the reaction vector, deflection vector and stiffness matrix of the thm  element in the thn  passive joint. 

Then, the Hooks’ law gives 
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Fig.7. 

nM -DOF passive joint at 
nA  

 

On one hand, in the light of screw theory and Newton’s third law, the nodal force vector 6

, ,n u i v j   f f f  

between two substructures at nA  ( ,u iA , ,v jA ) can be expressed as a linear combination of 6 nM  independent unit 
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where 6

,
ˆ
l n f  is the thl  ( 1,2, ,6 nl M  ) unit constraint wrench and ,l n  is its intensity.  

On the other hand, let 6
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,u iA  and 
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6
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,v j ξ  be the nodal deflection vectors at 
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,v jA , respectively. For the nM -DOF passive joint 
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e r
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where 6e

n ζ  represents elastic deflections while r

nζ  arises from the combined rigid body motions necessary to 

satisfy geometric compatibility conditions among the substructures when the actuated joints are locked. Note that ,
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Hence, the principle of virtual work gives 
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joint, the third column of ,m n
T  should be removed, otherwise the sixth column of ,m n

T  should be removed for an 

revolute joint. ,m n
T  is of the form below 

, , , 6 6
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,

m n m n m n

m n

m n


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R r R
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                               (13) 

where 3 3

,m n

R  represents the orientation matrix of m,n  with respect to n , ,m nr  denotes the position vector 

pointing from the origin of n  to that of n,m .  

Substituting Eq. (7), Eq. (10) and Eq. (12) into Eq. (8), leads to the stiffness model of the thn  passive joint  

 
,

6 6

,

u i

n n n n

v j

 
    

 

ξ
f K ζ K

ξ
1 1                                  (14) 

T

n n n nK W K W , 

1

T 1 T

, , ,

1

nM

n n m n m n m n n

m







  
    

  
K W T K T W  

where 6 6

n

K  denotes the Cartesian stiffness matrix of the thn  passive joint, and 
   6 6n nM M

n

  
K  is referred 

to as the interface stiffness matrix that has the same structure to the stiffness matrix of a nM  DOF serial kinematic 

chain. 

 

3.1.3 The reduced dynamic model of the parallel mechanism 

Assembling super-element models of all substructures and the stiffness models of all passive joints by a lookup table 

that relates the local identifiers of interface nodes with the global identifiers of the passive joints involved, results in the 

partitioned dynamic model of the parallel mechanism. 

sym sym

P P P P P P P Pq qP P P

qq q qq q

         

 

 

        
        

         
       
       

0

0

M M M K K Kξ ξ f

M M q K K q

M η K η

                   (15) 

 
T

T T T 6

1 2 3 q q q q ,  
T 2

1, 2,i i ip p q , 1, 2,3i   

where 
P P M , 

PqM , 
P M , qqM , qM  and M  (

P P K , 
PqK , 

P K , qqK , qK  and K ) represent the 

partitioned mass (stiffness) matrices associated with the generalized coordinates  
T

T T T

Pξ q η ; 6

2,4P  f f  and 

6

2,4P  ξ ξ  denote the interface nodal force and deflection vectors at P  ( 2,4A ); 6q  denotes the collection of 

all the internal modal coordinates corresponding to the first-order bending modes of three actuated limbs; η  denotes the 

collection of the rest interface nodal deflection vectors and internal modal coordinates not belonging to either Pξ  or q . 

In order to describe lower-order dynamic behaviors of the system using a minimum set of generalized coordinates, 

static condensation technique [34] is now applied to Eq. (15) by taking Pξ  and q  as the master coordinates, and η  as 

the slave coordinates. This treatment leads to the reduced dynamic model of the parallel mechanism while keeping its 

symbolic notions given in Eq. (15) unchanged for convenience. 

sym sym

P P P P P Pq q P PP

qq qq

             
         

           

M M K K ξ fξ

qM Kq 0
                        (16) 

where 

T

6 6

6 6:
sym

sym

P P P P

P P P

q

q

qq q

qq

    

  





    
      

      
           

M M M
M M

M M
M

MB B

1 0 1 0

0 1 0 1  
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T

6 6

6 6:
sym

sym

P P P P

P P P

q

q

qq q

qq

    

  





    
      

      
           

K K K
K K

K K
K

KB B

1 0 1 0

0 1 0 1 , 

T

1 P

q

 






 

   
  

K
B K

K
 

 

3.2 Dynamic Modeling of the Hybrid Robot  

Equipped with the reduced dynamic model of the parallel mechanism developed in Section 3.1 at hand, this section 

formulates the dynamic model of the hybrid robot as a whole using screw theory and work-energy method.  

As remarked in Ref. [27], the lower-order modes of the A/C wrist are primarily dominated by torsional compliances 

of its two actuated R joints and inertias of its two rotary parts if the structural rigidities of these parts are assumed to be 

much higher than those of the actuated R joints. The validity of this assumption has been verified by FE analysis 

addressed in [27]. Therefore, it is rational to model the wrist as a 2-DOF lumped mass-spring system shown in Fig.8 by 

taking account only of the torsional compliances of the transmission assemblies, with the other parts regarded as rigid 

bodies. Then, taking account of the deflection vector Pξ  of the platform at P , the addition theorem of instantaneous 

motions allows expressions of the absolute deflection vector 6

j ξ  of part j  ( 4j   for the C axis and 5j   for 

the A axis) at the same point, i.e.  

 

 
Fig.8. Lumped model of the A/C wrist 

 

4 4 4
ˆ

P  ξ ξ ξ                                         (17) 

5 4 4 5 5
ˆ ˆ

P    ξ ξ ξ ξ                                      (18) 

with 

4

4

ˆ  
  
 

ξ
s

0
, 

5

5

ˆ  
  
 

ξ
s

0
 

where j  and 6ˆ
j ξ  ( 4,5j  ) are the amplitude and unit twist of the thj  axis with js  being its unit vector. 

Accordingly, the following relationships hold 

5

4 6 4

5 6

 
     

     
     

 

ξ
ξ T

q
ξ

ρ

1 0

1 0 0
, 4 5

ˆ  
 

T ξ0                               (19) 

5

6 5

6

P

 
    

     
     

 

ξ
Tξ

q
q

ρ

1 0

0 1 0
, 5 4 5

ˆ ˆ   
 

T ξ ξ                             (20) 

 
5

2

 
 

  
 
 

ξ

ρ q

ρ

0 0 1 , 
4

5





 
  
 

ρ                                   (21) 

P

5s

5

C

Q

wl

vl

4s

4k4

w
v

5k
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At this stage, replacing the work delivered by Pf  on Pξ  using elastic potential and kinetic energies of the A/C 

wrist, allows elastic potential and kinetic energies of the hybrid robot as a whole to be expressed as 

TT

4 4 4

PM WRIST

55 5

1 1

sym2 2

P P PqP P

qq

T T T
            

                           

M M ξ M ξξ ξ

MMq q ξ ξ
               (22) 

T

T

PM WRIST

1 1

sym2 2

P P PqP P

qq

V V V
  



    
       

     

K Kξ ξ
ρ K ρ

q qK
, 

4

5

k

k


 
  
 

K                (23) 

where 6 6

j

M  ( 4,5j  ) denotes the mass matrix, evaluated at P  in , of rotary part j , and 
jk  ( 4,5j  ) 

denotes torsional stiffness coefficient of the transmission assembly of rotary part j , respectively.  

In addition, let 6

C ξ  be the deflection vector evaluated in C  such that  

1

5 C

ξ T ξ                                          (24) 

with 

  
  
 

R r R
T

R0
,  v wl l  r v w  

where R  denotes the orientation matrix of C  with respect to , and CPr .  

Finally, substituting Eqs. (19)-(21), (24) into Eqs. (22) and (23), and letting 6

C f  be the external wrench 

evaluated at C  in C , a cutting force for example, results in the dynamic model of the hybrid robot. 

 Mx Kx f                                         (25) 

 
5

T 1 T T

5 4 4

4

T 14 14

5

T T

4 4 4 5 5sym

P P P P P

P

P P

j q

j

qq q

    



 

   





  
   

  
  
 
 
 
  

T M M T T M T M T M T

M M M T

T M T T M T

 

T 1 T T

5

T 14 14

5

T

5 5sym

P P P P P

P

P P

q

qq q

    



  

   



 
 

  
 

  

T K T T K T K T

K K K T

K T K T

 

 
T

T T T 14

C x ξ q ρ ,  
T

T T T 14

C f f 0 0  

The dynamic model given in Eq. (25) is of fourteen generalized coordinates, including those for describing the first 

bend modes of three actuated limbs. This reduced model can be used to investigate the pose-varying dynamics of the 

hybrid robot in terms of modal analysis, contour error prediction, and cutting stability analysis of, for example, a milling 

process.  

 

4. Verification 

In this section, a full-size TriMule robot (see Fig.1) is taken as an exemplar to verify the effectiveness of the proposed 

approach. Equipped with parameters of the model developed in Eq. (25), the lower-order mode shapes and natural 

frequencies at the reference configuration (see Fig.9) are first evaluated and then compared with the results obtained by a 

full order FE model built by SAMCEF. Then, frequency response functions (FRFs) of the end-effector with/without 

considering the bending modes of three actuated limbs are investigated. Finally, natural frequencies across the reference 

plane of the task workspace are predicted with confidence. 

Fig.9 shows the task workspace of the TriMule robot, which is defined as a cylinder of radius R  and height 1h  plus 

a spherical crown of height 2h  that is internally tangent to the reachable envelope of point P. The reference 
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configuration is defined as that when 3,1 3,2 3,3q q q  , 3,4 min max0.5( )q q q   and 
4 5 0   . Here, maxq  and minq  

are the maximum and minimum lengths of the RP limb; 
j  ( 4,5j  ) is the rotary angle of the jth actuated R joint of 

the wrist. The reference plane is defined as the cross section of the cylinder. The dimensional and workspace parameters 

of the robot are given in Table 1. 
 

Table 1 Dimensional and workspace parameters of the TriMule robot. 

a (m) xb (m) yb (m) d (m) H (m) 1h (m) 
2h (m) R (m) 

0.135 0.320 0.570 0.190 1.000 0.240 0.220 0.600 

 

Table 2 A lookup table and the compliance matrices of elastic elements in the passive joints. 

n  1

,m n


K  (

910  m N  or rad (N m)  ) nW  

 

R joint of support bearings ( 1n  ) 

4 4 3 3

4 3 3

1 3 3
1,1

3

0.50 3.78 10 4.35 10 1.14 10 4.21 10

2.51 9.09 10 3.92 10 8.76 10

2.95 7.65 10 1.17 10

1.95 2.77 10

sym 1.72

   

  

  



        
 

     
    
 

 
 
 

K  
1,4 2,4 3,4

1

2,4 3,4

 
  
 

s s n
W

s n

0 0

0 0 0
 

3,4 1,4 2,4 n s s  

 

R joint in RPS limbs ( 2,3n  ) 

3 2 3

3 2 2

1 3
1,

1.22 1.11 10 1.69 10 7.93 10 0.36

1.76 4.32 10 5.98 10 1.23 10

1.22 0.39 7.93 10

245.83 3.72

sym 245.87

n

  

  

 

    
 

     
   
 

 
 
 

K  
1, 2, 3,

1, 3,

i i i

n

i i

 
  
 

n s s
W

n s

0 0

0 0 0
 

1, 2, 3,i i i n s s , i n  

 

RP joint in RP limb ( 4n  ) 

1 1

1,4 1,2

 K K  

4 3 2 2

4 3 3

1 2 2
2,4

7.69 1.44 10 1.76 10 5.07 10 3.12 10

7.68 8.14 10 9.73 10 9.46 10

344.82 5.07 10 5.07 10

343.65 0.12

sym 555.56

   

  

  

      
 

    
    
 
 
 
 

K  

1,4 2,4

4

3,4 1,4

 
  
 

0 0

0 0

n s
W

s n
, 

1,4 2,4 3,4 n s s  

 

U joint in UPS limb ( 5n  ) 

5 3 3

3 2 2

1 2 2
1.5

1.07 5.71 10 1.47 10 2.90 10 0.26

2.22 4.53 10 1.12 10 9.64 10

1.25 7.07 10 1.21 10

82.90 0.20

sym 81.72

  

  

  

       
 

     
    
 
 
 
 

K  

1 1

2,5 1,2

 K K  

1,1 2,1 3,1

5

3,1

 
  
 

0

0 0 0

s s n
W

n
 

3,1 1,1 2,1 n s s  

 
S joint in RPS and UPS limbs 

( 6,7,8n  ) 

3 3 3

2 2 2

1 2
1.

2

1.85 1.58 10 1.47 10 7.93 10 0.17

1.85 1.69 10 1.12 10 6.64 10

1.35 0.39 1.28 10

62.50 1.23 10

sym 62.50

n

  

  

 



      
 

    
   
 

 
 
 

K  

3 3 2

3

1 2 2
2,

3

3

6.48 1.5 10 4.65 10 1.23 10 0.26

10.08 4.08 10 110.26 0.17

1.34 1.79 10 4.10 10

4.62 10 6.05

sym 7.57 10

n

  



  

     
 

   
   
 

 
  

K  

3 4 2 2

3

1 2
3,

3

3

2.43 1.72 10 1.79 10 3.60 10 4.75 10

5.66 2.35 10 0.24 0.17

1.93 1.73 10 0.18

1.08 10 1.21

sym 2.54 10

n

   



 

        
 

  
   
 

 
  

K  

4, 5, 6,i i i

n

 
  
 0 0 0

s s n
W  

6, 5, 4,i i i n s s , 5i n   

1,4 1,0( )A A3,4s
1,4n

2,4s

1,1s
1,1A

2,1s

3,1n

2,4 2,( )i iA A

5,is

6,in4,is

5i n 

,0 1,( )i iA A

2,is

3,is 1,in

i n

1,0A

2,4s

 1,4 1,2 1,3,s s s

3,4n

5,0A

4,0A
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Table 3 Stiffness coefficients and inertial parameters of substructures in the parallel mechanism. 

 
Base link ( 0i  ) 

Inertial parameters ( 2kg, m, kg m ): 

0 115m   

 0 diag 1.172 8.106 8.628I  

 
Actuated limb ( 1,2,3i  ) 

Axial stiffness of P joint (
910  N m ): 

 
1

1 1 1

screw, nut rear s, i ik k k k


      

 s, 3, 1 2 i ik EA q l l   , nut 0.30k  , rear 0.58k   

1 0.9 ml  , 2 0.36 ml  , 
81.01 10  NEA    

Cross section parameters (m): 

1 0.06D  , 
1 0.04d  , 

2 0.09D  , 
2 0.076d   

 
Passive limb ( 4i  ) 

Inertial parameters of platform ( 2kg, m, kg m ): 

P 64m  ,  P diag 0.595 0.598 0.562I  

Cross section parameters of central tube (m): 

3 0.131D  , 
3 0.106d  , 

3 1.24l   

Material properties: 

Density 
37800 kg/m  , Elasticity 210 GpaE   

Poisson ratio 0.28   

 

Table 4 Stiffness coefficients and inertial parameters of rotary parts in the wrist. 

 
Rotary part of C-axis 

Inertial parameters ( 2kg, m, kg m ): 

4 32m  , 4

0.403 0.07 0.053

0.496 0.026

sym 0.357

 
 


 
  

I  

Torsional stiffness (
610  N m rad ): 4 0.337k   

 
Rotary part of A-axis 

Inertial parameters (
2kg, m, kg m ): 

5 36.5m  , 5

0.487 0.036 0.011

0.434 0.023

sym 0.192

 
 


 
  

I  

Torsional stiffness (
610  N m rad ): 5 0.385k   

0.22 mwl  , 0.12 mvl   

 

Table 2 shows a lookup table that links the passive joints with the interface nodes on substructures, and the relevant 

stiffness matrices of elastic elements in passive joints of the parallel mechanism. Tables 3 and 4 show relevant stiffness 

coefficients and inertial parameters of substructures of the parallel mechanism and rotary parts of the wrist, respectively. 

These data were obtained variously from design handbooks, product catalogs, and CAD/CAE software. 
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Fig.9. Task workspace of the TriMule robot 

 

 
Fig.10. The first eighth lower-order mode shapes calculated by the proposed method 

 

 
Fig.11. The first eighth lower-order mode shapes calculate by the FE model 
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Fig.10 shows the first eight mode shapes of the TriMule robot predicted by the proposed model at the reference 

configuration. Clearly, the 1st and 2nd modes are the bending vibrations caused by the axial deformation of the UPS limb 

as well as that of two RPS limbs. The 3rd-5th modes are the bending vibrations of three actuated limbs. The 6th mode is 

torsional vibrations of the RP limb and C-axis of the wrist, and the 7th mode is torsional vibration of the A-axis of the 

wrist. The 8th mode is translational vibration along the axial of the passive limb. To verify the computational accuracy of 

the proposed approach, an FE model is established by using commercial software SAMCEF. The corresponding stiffness 

and inertial parameters and boundary conditions in the model are set as consistent as possible to those used in the 

proposed model, leading to the FE model having 4 7.21 10  DOFs. Fig.11 shows the mode shapes predicted by the FE 

model, showing that results match well with those obtained by the proposed semi-analytical model. 

Then, the Modal Assurance Criterion (MAC) [35] is employed to verify the consistency between mode shapes 

obtained by two models  

 
  

2
T

FE, TH,

T T

FE, FE, TH, TH,

 MAC
i j

ij

i i j j


Φ Φ

Φ Φ Φ Φ
                                (26) 

where 
FE,iΦ  and 

TH, jΦ  are the ith and jth ( , 1,2, ,8i j  ) mode shapes calculated by the FE model and the proposed 

semi-analytical model, respectively. Fig.12 shows clearly that the values of diagonal elements are much larger than those 

of the non-diagonal elements (0.93 against 0.3), confirming the validity of the proposed model for predicting the 

lower-order dynamics of the robot.  

 

 
Fig.12. MAC of the first eighth mode shapes between the semi-analytical model and the FE model 

 

Considering the pose dependent lower-order dynamic behaviors of hybrid robot, the natural frequencies at three 

typical configurations, i.e.  10P d H h  ,  1 1P R d H h   and  2 10P R d H h   are calculated by 

the method proposed here and the semi-analytical method proposed in Ref.[27]. Both will be examined by a full order FE 

model. It can be seen from Table 5 that the maximum discrepancies between the proposed model and FE model are less 

than 6% at the reference configuration and are less than 8% at the other two configurations. The computational accuracy 

of the proposed method is higher than that obtained by the method proposed in Ref. [27]. It is important to note that the 

3rd-5th order modes caused by the local bending of three actuated limbs cannot be captured by the method proposed in 

Ref. [27].  

Having been convinced by the effectiveness of the proposed model, the influence of bending modes of three actuated 

limbs on frequency response functions (FRFs) of the end-effector is investigated. Fig.13 shows FRFs of the tool center 

point (TCP) along the u , v  and w  axes of C . They are obtained by the FE model, and proposed semi-analytical 

models with and without considering the bending modes (i.e., the 3rd-5th modes) of the actuated limbs (model 1 and 

model 2 as shown in Fig.13). The damping ratio for all modes is set to be 0.03 identically in three different models. 

Clearly, the FRFs calculated by the model considering the bending modes match very well with those calculated by the 

FE model, confirming the necessity to take into account these bending modes for precisely reflecting the lower-order 

dynamics of the robot.  

 

 

 

 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0

0.2

0.4

0.6

0.8

1

M
o

d
e 

N
u

m
b

er
 

Mode number 



14 

 

Table 5 Natural frequencies calculated by the semi-analytical models and a full order FE model at different configurations. 

Configuration\Mode order 1st 2nd 3rd 4th 5th 6th 7th 8th 

P  

FE 32.51 33.12 46.48 50.08 55.13 80.99 95.45 131.63 

SA 1 33.74 34.16 47.53 51.42 57.34 85.22 99.10 139.03 

1  3.78 3.14 2.26 2.68 4.01 5.22 3.82 5.62 

SA 2 34.28 35.13 - - - 86.02 99.31 142.54 

2  5.44 6.07 - - - 6.21 4.04 8.29 

1P  

FE 25.93 29.71 44.66 48.12 54.03 79.09 91.30 127.63 

SA 1 26.97 30.88 45.89 49.52 56.35 84.32 96.62 137.46 

1  4.01 3.94 2.75 2.91 4.29 6.61 5.83 7.70 

SA 2 27.61 31.67 - - - 85.97 96.70 140.49 

2   6.48 6.60 - - - 8.70 5.91 10.08 

2P  

FE 25.21 31.27 43.64 48.96 54.99 78.44 92.05 128.22 

SA 1 26.29 32.55 44.96 50.47 57.13 83.98 97.22 137.68 

1  4.28 4.09 3.02 3.08 3.89 7.06 5.62 7.38 

SA 2 26.97 33.40 - - - 84.60 97.49 141.51 

2   6.98 6.81 - - - 7.85 5.91 10.36 

SA 1: semi-analytical model proposed in this paper; SA 2: semi-analytical model proposed in Ref.[27]. (Unit: Hz) 

1 (
2 ): discrepancy between SA 1(2) and a full FE model. (Unit: %) 

 

 
Fig.13. FRFs of two semi-analytical models and a full FE model 

 

With the convincing results obtained at the reference configuration, dynamic behavior of the robot over the entire task 

workspace can be predicted. Fig.14 shows highly pose-varying natural frequency distributions across the reference plane, 

when keeping the spindle axis normal to the plane and the A-axis parallel to the x-axis. Clearly, all of them take the 

maximal values near the center of the plane and decrease monotonically down to the edge of the boundary.  
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Fig.14. Natural frequencies distributions across the reference plane of the workspace 

 

In order to demonstrate the computational efficiency of the proposed method, a comparison study is carried out on a 

workstation (Intel i5-3320M CPU and 8G RAM). It shows that the overall computational time used for solving 

eigenvalue problems at 720 poses is less than 18 seconds by using the proposed model compared with 43 seconds by 

using unreduced semi-analytical model. And 125 seconds is needed at a single configuration by using the FE model. As 

for FRFs analysis at a specific configuration, the overall computational time is less than 3.8 seconds for the proposed 

model compared with 13 seconds and 20 minutes for the unreduced semi-analytical model and FE model. These 

observations fully consolidate the usefulness of the proposed model for predicting pose-varying dynamic behavior, and 

thus for subsequently sensitivity analysis of dimensional and structural parameters as well as cutting stability analyses. 

Finally, the SIMO (single input and multiple output) experimental modal test is carried out at reference configuration 

of a prototype machine to verify the proposed semi-analytical method. Fig.15 (a) shows the experimental setup where a 

LMS dynamic analyzer is used to process the force and vibration signals measured by impact hammer (B&K 8207) and 

accelerometer (PCB 356A26). Fig. 15(b) shows the locations of the excitation and pick-up points where the signals 

measured in the body-fixed local frames are transformed to the global frame so that the embedded curve fitting algorithm 

provided by the dynamic analyzer can be implemented to generate the appropriate FRFs and mode shapes. 

In comparison of Fig. 13 with Fig. 16, it is easy to see the main features of the FRFs and mode shapes obtained by the 

experiment modal analysis can be fully captured by the semi-analytical method proposed though the natural frequencies 

of the realistic machine are lower than those obtained by the semi-analytical method.  

 

 
Fig.15. Experimental setup for FRF test: (a) Experimental setup, (b) Excitation and pick-up points 
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Fig.16. Experimental results of the TriMule hybrid robot: (a) FRFs at the end-effector, (b) Mode shapes 

 

5. Conclusions 

This paper presents an effective approach to predict the lower-order dynamics of a 5-DOF hybrid robot named 

TriMule that comprises a 3-DOF parallel mechanism and 2-DOF wrist. The conclusions are drawn as follows 

(1) A semi-analytical approach has been presented for dynamic modeling of hybrid robots. By combining FEA with 

modal reduction technique, super-element models of both actuated and passive limb substructures within the parallel 

mechanism are first formulated. Then, a general stiffness model of multiple DOF passive joints connecting the 

substructures is derived using reciprocal/dual properties of twist/wrench system imposed upon these joints. These 

treatments lead to a reduced dynamic model of the parallel mechanism. Finally, merging the elastic potential and kinetic 

energies of the parallel mechanism and wrist, results in a dynamic model of the hybrid robot having fourteen generalized 

coordinates, including those for describing the first bending modes of three actuated limbs. These minimum set of 

generalized coordinates enable the full set of lower-order modes of hybrid robot to be predicted with sufficient accuracy 

and efficiency. Meanwhile, the method of stiffness modeling of multiple DOF passive joints proposed here is so general 

that it would potentially be useful for the dynamic modeling of other types of hybrid robots.  

(2) By taking a full-size 5-DOF TriMule robot as an exemplar, the effectiveness of the proposed approach has been 

demonstrated by a comparison study against FEA software and experimental modal analysis. The results of eigenvalue 

and frequency response function analyses show that the full set of lower-order dynamics can be predicated with sufficient 

computational accuracy and huge computational time savings (over FEA) across the entire workspace. The proposed 

approach is thereby very useful in optimal design, contour error prediction as well as in cutting stability analysis of this 

brand new hybrid robot under the framework of digital twin technology. 

Acknowledgement 

This work is partially supported by National Key R&D program of China (Grant No. 2017YFB1301800), National 

Natural Science Foundation of China (grants 51622508 and 51420105007) and EU H2020-RISE-ECSASDP (grant 

734272). 

 

0 40 80 120 160 200
10

-8

10
-7

10
-6

10
-5

 

 

Measured

Fitted

0 40 80 120 160 200
10

-8

10
-7

10
-6

10
-5

 

 

Measured

Fitted

0 40 80 120 160 200
10

-8

10
-7

10
-6

10
-5

 

 

Measured

Fitted

Y –Dir. 

3f 5f 7f

8f

1f

X –Dir. 

2f

6f
4f

Z –Dir. 

3f 5f 7f 8f1f

M
ag

n
it

u
d
e 

(m
/N

) 
M

ag
n
it

u
d
e 

(m
/N

) 
M

ag
n

it
u

d
e 

(m
/N

) 

Frequency (Hz) 

(a) 

1f 2f

(b) 

3f 4f

5f 6f

7f 8f



17 

References 

[1]  J. Tlusty, J. Ziegert, S. Ridgeway, Fundamental comparison of the use of serial and parallel kinematics for machines tools, CIRP Ann. - Manuf. 

Technol. 48 (1999) 351–356. 

[2]  M. Weck, D. Staimer, Parallel kinematic machine tools - Current state and future potentials, CIRP Ann. - Manuf. Technol. 51 (2002) 671–683. 

[3]  L. Uriarte, M. Zatarain, D. Axinte, J. Yagüe-Fabra, S. Ihlenfeldt, J. Eguia, A. Olarra, Machine tools for large parts, CIRP Ann. - Manuf. Technol. 

62 (2013) 731–750. 

[4]  Y. Altintas, C. Brecher, M. Week, S. Witt, Virtual Machine Tool, CIRP Ann. - Manuf. Technol. (2005). 

[5]  H. Son, H.J. Choi, H.W. Park, Design and dynamic analysis of an arch-type desktop reconfigurable machine, Int. J. Mach. Tools Manuf. 50 

(2010) 575–584.  

[6]  D. Zhang, Z. Gao, Performance analysis and optimization of a five-degrees-of-freedom compliant hybrid parallel micromanipulator, Robot. 

Comput. Integr. Manuf. 34 (2015) 20–29. 

[7]  Y. Ma, W. Niu, Z. Luo, F. Yin, T. Huang, Static and dynamic performance evaluation of a 3-DOF spindle head using CAD–CAE integration 

methodology, Robot. Comput. Integr. Manuf. 41 (2016) 1–12. 

[8]  D. Hong, S. Kim, W.C. Choi, J.B. Song, Analysis of machining stability for a parallel machine tool, Mech. Based Des. Struct. Mach. 31 (2003) 

509–528.  

[9]  I. Tyapin, G. Hovland, The Gantry-Tau parallel kinematic machine-kinematic and elastodynamic design optimisation, Meccanica. 46 (2011) 

113–129. 

[10]  J. Wu, X. Chen, T. Li, L. Wang, Optimal design of a 2-DOF parallel manipulator with actuation redundancy considering kinematics and natural 

frequency, Robot. Comput. Integr. Manuf. 29 (2013) 80–85.  

[11]  V.T. Portman, V.S. Chapsky, Y. Shneor, Evaluation and optimization of dynamic stiffness values of the PKMs: Collinear stiffness value 

approach, Mech. Mach. Theory. 74 (2014) 216–244. 

[12]  G. Piras, W.L. Cleghorn, J.K. Mills, Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible 

links, Mech. Mach. Theory. 40 (2005) 849–862. 

[13]  Y. Zhao, F. Gao, X. Dong, X. Zhao, Dynamics analysis and characteristics of the 8-PSS flexible redundant parallel manipulator, Robot. Comput. 

Integr. Manuf. 27 (2011) 918–928. 

[14]  A. Cammarata, D. Condorelli, R. Sinatra, An Algorithm to Study the Elastodynamics of Parallel Kinematic Machines With Lower Kinematic 

Pairs, J. Mech. Robot. 5 (2012) 011004. 

[15]  A. Cammarata, I. Caliò, D. D׳Urso, A. Greco, M. Lacagnina, G. Fichera, Dynamic stiffness model of spherical parallel robots, J. Sound Vib. 384 

(2016) 312–324. 

[16]  B. Lian, L. Wang, X.V. Wang, Elastodynamic modeling and parameter sensitivity analysis of a parallel manipulator with articulated traveling 

plate, Int. J. Adv. Manuf. Technol. (2019). 

[17]  C.M. Gosselin, D. Zhang, Stiffness analysis of parallel mechanisms using a lumped model, Int. J. Rob. Res. 17 (1998) 17–27.  

[18]  S. Briot, A. Pashkevich, D. Chablat, On the optimal design of parallel robots taking into account their deformations and natural frequencies, Proc. 

ASME Des. Eng. Tech. Conf. 7 (2009) 367–376. 

[19]  S.-K. Zhu, Y.-Q. Yu, Pseudo-Rigid-Body Model for the Flexural Beam With an Inflection Point in Compliant Mechanisms, J. Mech. Robot. 9 

(2017) 031005.  

[20]  P. Bilancia, G. Berselli, L. Bruzzone, P. Fanghella, A CAD/CAE integration framework for analyzing and designing spatial compliant 

mechanisms via pseudo-rigid-body methods, Robot. Comput. Integr. Manuf. 56 (2019) 287–302. 

[21]  X. Wang, J.K. Mills, Dynamic modeling of a flexible-link planar parallel platform using a substructuring approach, Mech. Mach. Theory. 41 

(2006) 671–687.  

[22]  M. Law, S. Ihlenfeldt, M. Wabner, Y. Altintas, R. Neugebauer, Position-dependent dynamics and stability of serial-parallel kinematic machines, 

CIRP Ann. - Manuf. Technol. 62 (2013) 375–378. 

[23]  D. Liang, Y. Song, T. Sun, X. Jin, Rigid-flexible coupling dynamic modeling and investigation of a redundantly actuated parallel manipulator 

with multiple actuation modes, J. Sound Vib. 403 (2017) 129–151.  

[24]  L. Wu, G. Wang, H. Liu, T. Huang, An approach for elastodynamic modeling of hybrid robots based on substructure synthesis technique, Mech. 

Mach. Theory. 123 (2018) 124–136. 

[25]  S. Briot, A. Pashkevich, D. Chablat, Reduced elastodynamic modelling of parallel robots for the computation of their natural frequencies, 13th 

World Congress in Mechanism & Machine Science (2011) 1–8. 

[26]  J. Zhang, J.S. Dai, T. Huang, Characteristic Equation-Based Dynamic Analysis of a Three-Revolute Prismatic Spherical Parallel Kinematic 

Machine, J. Comput. Nonlinear Dyn. 10 (2014) 021017.  

[27]  C. Dong, H. Liu, T. Huang, D.G. Chetwynd, A Screw Theory-Based Semi-Analytical Approach for Elastodynamics of the Tricept Robot, J. 

Mech. Robot. 11 (2019) 031005. 

[28]  E. Wittbrodt, I. Adamiec-Wójci, S. Wojciech, Dynamics of Flexible Multibody Systems, Springer Berlin Heidelberg, 2006. 

[29]  T. Huang, C. Dong, H. Liu, X. Qin, J. Mei, Q. Liu, M. Wang, Five-degree-of-freedom parallel robot with multi-shaft rotary brackets, Pub. No. 

WO/2017/005015 A1, 2017. 

[30]  T. Huang, C. Dong, H. Liu, T. Sun, D.G. Chetwynd, A simple and visually orientated approach for type synthesis of overconstrained 1T2R 

parallel mechanisms, Robotica. (2018) 1–13. 

[31]  C. Farhat, M. Geradin, On a component mode synthesis method and its application to incompatible substructures, Comput. Struct. 51 (1994) 

459–473.  

[32]  M.I. Friswell, S.D. Garvey, J.E.T. Penny, Model reduction using dynamic and iterated IRS techniques, J. Sound Vib. 186 (1995) 311–323. 

[33]  G. Masson, B. Ait Brik, S. Cogan, N. Bouhaddi, Component mode synthesis (CMS) based on an enriched ritz approach for efficient structural 

optimization, J. Sound Vib. 296 (2006) 845–860. 

[34]  R.J. Guyan, Reduction of stiffness and mass matrices, AIAA J. 3 (1965) 380.  

[35]  D. J. Ewins, Modal testing: theory, practice, and application, Research Sstudies Press, Baldok, Hertfordshire, UK, 2000. 


