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Abstract 

Sampling-based methods for uncertainty and sensitivity analysis are reviewed.  The following topics are considered:  
(i) Definition of probability distributions to characterize epistemic uncertainty in analysis inputs, (ii) Generation of 
samples from uncertain analysis inputs, (iii) Propagation of sampled inputs through an analysis, (iv) Presentation of 
uncertainty analysis results, and (v) Determination of sensitivity analysis results.  Special attention is given to the 
determination of sensitivity analysis results, with brief descriptions and illustrations given for the following 
procedures/techniques:  examination of scatterplots, correlation analysis, regression analysis, partial correlation 
analysis, rank transformations, statistical tests for patterns based on gridding, entropy tests for patterns based on 
gridding, nonparametric regression analysis, squared rank differences/rank correlation coefficient test, two 
dimensional Kolmogorov-Smirnov test, tests for patterns based on distance measures, top down coefficient of 
concordance, and variance decomposition. 
 
Key Words:  Aleatory uncertainty, Epistemic uncertainty, Latin hypercube sampling, Monte Carlo, Sensitivity 
analysis, Uncertainty analysis. 
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1.  Introduction 

Uncertainty analysis and sensitivity analysis are es-
sential parts of analyses for complex systems.1-14  Spe-
cifically, uncertainty analysis refers to the determina-
tion of the uncertainty in analysis results that derives 
from uncertainty in analysis inputs, and sensitivity 
analysis refers to the determination of the contributions 
of individual uncertain analysis inputs to the uncer-
tainty in analysis results.  The uncertainty under con-
sideration here is often referred to as epistemic uncer-
tainty; alternative designations for this form of 
uncertainty include state of knowledge, subjective, re-
ducible, and type B.15-24  Epistemic uncertainty derives 
from a lack of knowledge about the appropriate value 
to use for a quantity that is assumed to have a fixed 
value in the context of a particular analysis.  In the con-
ceptual and computational organization of an analysis, 
epistemic uncertainty is generally considered to be dis-
tinct from aleatory uncertainty, which arises from an 
inherent randomness in the behavior of the system un-
der study.15-24  Alternative designations for aleatory 
uncertainty include variability, stochastic, irreducible, 
and type A. 

A number of approaches to uncertainty and sensi-
tivity analysis have been developed, including differen-
tial analysis,25-33 response surface methodology,34-43 
Monte Carlo analysis,44-55 and variance decomposition 
procedures.56-60  Overviews of these approaches are 
available in several reviews.61-68  

The focus of this presentation is on Monte Carlo 
(i.e., sampling-based) approaches to uncertainty and 
sensitivity analysis.  Sampling-based approaches to 
uncertainty and sensitivity analysis are both effective 
and widely used.69-83  Analyses of this type involve the 
generation and exploration of a mapping from uncertain 
analysis inputs to uncertain analysis results.  The under-

lying idea is that analysis results y(x) = [y1(x), y2(x), 
…, ynY(x)] are functions of uncertain analysis inputs x 
= [x1, x2, …, xnX].  In turn, uncertainty in x results in a 
corresponding uncertainty in y(x).  This leads to two 
questions:  (i) What is the uncertainty in y(x) given the 
uncertainty in x?, and (ii) How important are the indi-
vidual elements of x with respect to the uncertainty in 
y(x)?  The goal of uncertainty analysis is to answer the 
first question, and the goal of sensitivity analysis is to 
answer the second question.  In practice, the implemen-
tation of an uncertainty analysis and the implementation 
of a sensitivity analysis are very closely connected on 
both a conceptual and a computational level. 

The following sections summarize and illustrate 
the five basic components that underlie the implementa-
tion of a sampling-based uncertainty and sensitivity 
analysis:  (i) Definition of distributions D1, D2, …, DnX 
that characterize the epistemic uncertainty in the ele-
ments x1, x2, …, xnX of x (Sect. 2), (ii) Generation of a 
sample x1, x2, …, xnS from the x’s in consistency with 
the distributions D1, D2, …, DnX (Sect. 3), (iii) Propaga-
tion of the sample through the analysis to produce a 
mapping [xi, y(xi)], i = 1, 2, …, nS, from analysis in-
puts to analysis results (Sect. 4), (iv) Presentation of 
uncertainty analysis results (i.e., approximations to the 
distributions of the elements of y constructed from the 
corresponding elements of y(xi), i = 1, 2, …, nS) (Sect. 
5), and (v) Determination of sensitivity analysis results 
(i.e., exploration of the mapping [xi, y(xi)], i = 1, 2, …, 
nS) (Sect. 6).  The presentation then ends with a con-
cluding summary (Sect. 7). 

Only probabilistic characterizations of uncertainty 
are considered in this presentation.  Alternative uncer-
tainty representations (e.g., evidence theory, possibility 
theory, fuzzy set theory, interval analysis) are active 
areas of research84-92 but are outside the intended scope 
of this presentation. 
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2.  Characterization of Uncertainty 

Definition of the distributions D1, D2, …, DnX that 
characterize the epistemic uncertainty in the elements 
x1, x2, …, xnX of x is the most important part of a sam-
pling-based uncertainty and sensitivity analysis as these 
distributions determine both the uncertainty in y and 
the sensitivity of the elements of y to the elements of x.  
The distributions D1, D2, …, DnX are typically defined 
through an expert review process,93-100 and their de-
velopment can constitute a major analysis cost.  A pos-
sible analysis strategy is to perform an initial explora-
tory analysis with rather crude definitions for D1, D2, 
…, DnX and use sensitivity analysis to identify the most 
important analysis inputs; then, resources can be con-
centrated on characterizing the uncertainty in these in-
puts and a second presentation or decision-aiding 
analysis can be carried out with these improved uncer-
tainty characterizations. 

The scope of an expert review process can vary 
widely depending on the purpose of the analysis, the 
size of the analysis, and the resources available to carry 
out the analysis.  At one extreme is a relatively small 
study in which a single analyst both develops the uncer-
tainty characterizations (e.g., on the basis of personal 
knowledge or a cursory literature review) and carries 
out the analysis.  At the other extreme, is a large analy-
sis on which important societal decisions will be based 
and for which uncertainty characterizations are carried 
out for a large number of variables by teams of outside 
experts who support the analysts actually performing 
the analysis. 

Given the breadth of analysis possibilities, it is be-
yond the scope of this presentation to provide an ex-

haustive review of how the distributions D1, D2, …, DnX 
might be developed.  However, as general guidance, it 
is best to avoid trying to obtain these distributions by 
specifying the defining parameters (e.g., mean and stan-
dard deviation) for a particular distribution type.  
Rather, distributions can be defined by specifying se-
lected quantiles (e.g., 0.0, 0.1, 0.25, …, 0.9, 1.0) of the 
corresponding cumulative distribution functions 
(CDFs), which should keep the individual supplying 
the information in closer contact with the original 
sources of information or insight than is the case when 
a particular named distribution is specified (Fig. 1a).  
Distributions from multiple experts can be aggregated 
by averaging (Fig. 1b). 101 

This presentation draws most of its examples from 
an uncertainty and sensitivity analysis carried out for a 
two phase flow model (implemented in the BRAGFLO 
program)102-104 in support of the 1996 Compliance 
Certification Application for the Waste Isolation Pilot 
Plant.105-107  The uncertain variables considered in the 
example results (i.e., x1, x2, …, xnX with nX = 31) and 
their associated distributions (i.e., D1, D2, …, D31) are 
summarized in Table 1.  Additional information on the 
use of these variables in the two phase flow model and 
on the development of the associated uncertainty distri-
butions is available in the original analysis documenta-
tion.102, 108  

Additional information:  Sect. 6.2, Ref. 46; Refs. 
93-100, 109-119.  As an example, Ref. 100 describes 
the approach used in the extensive expert review proc-
ess that supported the U.S. Nuclear Regulatory Com-
mission’s (NRC’s) reassessment of the risk from com-
mercial nuclear power plants (i.e., NUREG-1150; see 
Refs. 82, 120-124). 
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Fig. 1. Characterization of epistemic uncertainty:  (a) Construction of CDF from specified quantile values (Fig. 

4.1, Ref. 101), and (b) Construction of mean CDF by vertical averaging of CDFs defined by individual ex-
perts with equal weight (i.e., 1/nE = 1/3, where nE = 3 is the number of experts) given to each expert (Fig. 
4.2, Ref. 101). 

 
Table 1. Uncertain Variables x1, x2, …, x31 and Associated Uncertainty Distributions D1, D2, …, D31 

Used in Illustration of Uncertainty and Sensitivity Analysis Procedures for Two Phase Flow 
Model (Table 1, Ref. 125) 

ANHBCEXP – Brooks-Corey pore distribution parameter for anhydrite (dimensionless).  Distribution:  Student’s 
with 5 degree of freedom.  Range:  0.491 – 0.842.  Mean, median:  0.644, 0.644. 

ANHBCVGP – Pointer variable for selection of relative permeability model for use in anhydrite.  Distribution:  Dis-
crete with 60% 0, 40% 1.  Value of 0 implies Brooks-Corey model; value of 1 implies van Genuchten-Parker model. 

ANHCOMP – Bulk compressibility of anhydrite (Pa−1).  Distribution:  Student’s with 3 degrees of freedom.  Range: 
1.09 × 10−11 to 2.75 × 10−10 Pa−1.  Mean, median:  8.26 × 10−11 Pa−1, 8.26 × 10−11 Pa−1.  Correlation:  −0.99 rank 
correlation [136] with ANHPRM. 

ANHPRM– Logarithm of anhydrite permeability (m2). Distribution:  Student’s with 5 degrees of freedom.  Range:  
−21.0 to −17.1 (i.e., permeability range is 1 × 10−21 to 1 × 10−17.1 m2).  Mean, median:  −18.9, −18.9.  Correlation:  
−0.99 rank correlation with ANHCOMP. 

ANRBRSAT – Residual brine saturation in anhydrite (dimensionless).  Distribution:  Student’s with 5 degrees of 
freedom.  Range: 7.85 × 10−3 to 1.74 × 10−1.  Mean, median:  8.36 × 10−2, 8.36 × 10−2. 

ANRGSSAT – Residual gas saturation in anhydrite (dimensionless).  Distribution:  Student’s with 5 degrees of free-
dom.  Range 1.39 × 10−2 to 1.79 × 10−1.  Mean, median:  7.71 × 10−2, 7.71 × 10−2. 

BHPRM – Logarithm of borehole permeability (m2).  Distribution:  Uniform.  Range:  −14 to −11 (i.e., permeability 
range is 1 × 10−14 to 1 × 10−11 m2).  Mean, median:  −12.5, −12.5. 
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Table 1. Uncertain Variables x1, x2, …, x31 and Associated Uncertainty Distributions D1, D2, …, D31 
Used in Illustration of Uncertainty and Sensitivity Analysis Procedures for Two Phase Flow 
Model (Table 1, Ref. 125) (Cont.) 

BPCOMP – Logarithm of bulk compressibility of brine pocket (Pa−1).  Distribution:  Triangular.  Range:  −11.3 to 
−8.00 (i.e., bulk compressibility range is 1 × 10−11.3 – 1 × 10−8 Pa−1).  Mean, mode:  −9.80, −10.0.  Correlation:  
−0.75 rank correlation with BPPRM. 

BPINTPRS – Initial pressure in brine pocket (Pa).  Distribution:  Triangular.  Range: 1.11 × 107 – 1.70 × 107 Pa.  
Mean, mode:  1.36 × 107 Pa, 1.27 × 107 Pa. 

BPPRM – Logarithm of intrinsic brine pocket permeability (m2).  Distribution:  Triangular.  Range:  −14.7 to −9.80 
(i.e., permeability range is 1 × 10−14.7 − 1× 10−9.80 m2).  Mean, mode:  −12.1, −11.8.  Correlation:  −0.75 rank cor-
relation with BPCOMP. 

BPVOL – Pointer variable for selection of brine pocket volume. Distribution:  Discrete, with integer values 1, 2, …, 
32 equally likely. 

HALCOMP – Bulk compressibility of halite (Pa−1).  Distribution:  Uniform.  Range:  2.94 × 10−12 to 1.92 × 10−10 
Pa−1.  Mean, median:  9.75 × 10−11 Pa−1, 9.75 × 10−11 Pa−1.  Correlation:  −0.99 rank correlation with HALPRM. 

HALPOR – Halite porosity (dimensionless).  Distribution:  Piecewise uniform.  Range:  1.0 × 10−3 to 3 × 10−2.  
Mean, median:  1.28 × 10−2, 1.00 × 10−2. 

HALPRM – Logarithm of halite permeability (m2).  Distribution:  Uniform.  Range:  −24 to −21 (i.e., permeability 
range is 1 × 10−24 to 1 × 10−21 m2).  Mean, median:  −22.5, −22.5.  Correlation:  −0.99 rank correlation with 
HALCOMP. 

SALPRES – Initial brine pressure, without the repository being present, at a reference point located in the center of 
the combined shafts at the elevation of the midpoint of MB 139 (Pa).  Distribution:  Uniform.  Range:  1.104 × 107 
to 1.389 × 107 Pa.  Mean, median:  1.247 × 107 Pa, 1.247 × 107 Pa. 

SHBCEXP – Brooks-Corey pore distribution parameter for shaft (dimensionless).  Distribution:  Piecewise uniform.  
Range:  0.11 – 8.10.  Mean, median:  2.52, 0.94. 

SHPRMASP – Logarithm of permeability (m2) of asphalt component of shaft seal (m2).  Distribution:  Triangular.  
Range:  −21 to −18 (i.e., permeability range is 1 × 10−21 to 1 × 10−18 m2).  Mean, mode:  −19.7, −20.0. 

SHPRMCLY – Logarithm of permeability (m2) for clay components of shaft.  Distribution:  Triangular.  Range:  −21 
to −17.3 (i.e., permeability range is 1 × 10−21 to 1 × 10−17.3 m2).  Mean, mode:  −18.9, −18.3. 

SHPRMCON – Same as SHPRMASP but for concrete component of shaft seal for 0 − 400 yr.  Distribution:  Trian-
gular.  Range:  −17.0 to −14.0 (i.e., permeability range is 1 × 10−17 to 1 × 10−14 m2).  Mean, mode:  −15.3, −15.0. 

SHPRMDRZ – Logarithm of permeability (m2) of DRZ surrounding shaft.  Distribution:  Triangular.  Range:  −17.0 
to −14.0 (i.e., permeability range is 1 × 10−17 to 1 × 10−14 m2).  Mean, mode:  −15.3, −15.0. 
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Table 1. Uncertain Variables x1, x2, …, x31 and Associated Uncertainty Distributions D1, D2, …, D31 
Used in Illustration of Uncertainty and Sensitivity Analysis Procedures for Two Phase Flow 
Model (Table 1, Ref. 125) (Cont.) 

SHPRMHAL – Pointer variable (dimensionless) used to select permeability in crushed salt component of shaft seal 
at different times.  Distribution:  Uniform.  Range:  0 − 1.  Mean, mode:  0.5, 0.5.  A distribution of permeability 
(m2) in the crushed salt component of the shaft seal is defined for each of the following time intervals: [0, 10 yr], 
[10, 25 yr], [25, 50 yr], [50, 100 yr], [100, 200 yr], [200, 10,000 yr].  SHPRMHAL is used to select a permeability 
value from the cumulative distribution function for permeability for each of the preceding time intervals with result 
that a rank correlation of 1 exists between the permeabilities used for the individual time intervals. 

SHRBRSAT – Residual brine saturation in shaft (dimensionless).  Distribution:  Uniform.  Range:  0 − 0.4.  Mean, 
median:  0.2, 0.2. 

SHRGSSAT – Residual gas saturation in shaft (dimensionless).  Distribution:  Uniform.  Range:  0 − 0.4.  Mean, 
median:  0.2, 0.2. 

WASTWICK – Increase in brine saturation of waste owing to capillary forces (dimensionless).  Distribution:  Uni-
form:  Range:  0 − 1.  Mean, median:  0.5, 0.5. 

WFBETCEL – Scale factor used in definition of stoichiometric coefficient for microbial gas generation (dimen-
sionless).  Distribution:  Uniform.  Range:  0 − 1.  Mean, median:  0.5, 0.5. 

WGRCOR – Corrosion rate for steel under inundated conditions in the absence of CO2 (m/s).  Distribution:  Uni-
form.  Range:  0 − 1.58 × 10−14 m/s.  Mean, median:  7.94 × 10−15 m/s, 7.94 × 10−15 m/s. 

WGRMICH – Microbial degradation rate for cellulose under humid conditions (mol/kg s).  Distribution:  Uniform.  
Range:  0 to 1.27 × 10−9 mol/kg s.  Mean, median:  6.34 × 10−10 mol/kg s, 6.34 × 10−10 mol/kg s. 

WGRMICI – Microbial degradation rate for cellulose under inundated conditions (mol/kg s).  Distribution:  Uni-
form.  Range: 3.17 × 10−10 to 9.51 × 10−9 mol/kg s.  Mean, median:  4.92 × 10−9 mol/kg s, 4.92 × 10−9 mol/kg s. 

WMICDFLG – Pointer variable for microbial degradation of cellulose.  Distribution:  Discrete, with 50% 0, 25% 1, 
25% 2.  WMICDFLG = 0, 1, 2 implies no microbial degradation of cellulose, microbial degradation of only cellu-
lose, microbial degradation of cellulose, plastic and rubber. 

WRBRNSAT – Residual brine saturation in waste (dimensionless).  Distribution:  Uniform.  Range:  0 − 0.552.  
Mean, median:  0.276, 0.276. 

WRGSSAT – Residual gas saturation in waste (dimensionless).  Distribution:  Uniform.  Range:  0 − 0.15.  Mean, 
median:  0.075, 0.075. 
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3.  Generation of Sample 

Several sampling strategies are available, including 
random sampling, importance sampling, and Latin hy-
percube sampling.44, 55  Latin hypercube sampling is 
very popular for use with computationally demanding 
models because its efficient stratification properties 
allow for the extraction of a large amount of uncer-
tainty and sensitivity information with a relatively small 
sample size. 

Latin hypercube sampling operates in the follow-
ing manner to generate a sample of size nS from the 
distributions D1, D2, …, DnX associated with the ele-
ments of x = [x1, x2, …, xnX].  The range of each xj is 
exhaustively divided into nS disjoint intervals of equal 
probability and one value xij is randomly selected from 
each interval.  The nS values for x1 are randomly paired 
without replacement with the nS value for x2 to produce 
nS pairs.  These pairs are then randomly combined 
without replacement with the nS values for x3 to pro-
duce nS triples.  This process is continued until a set of 
nS nX-tuples xi = [xi1, xi2, …, xi,nX], i = 1, 2, …, nS, is 
obtained, with this set constituting the Latin hypercube 
sample (Fig. 2).  

Latin hypercube sampling is a good choice for a 
sampling procedure when computationally demanding 
models are being studied.  The popularity of Latin hy-
percube sampling recently led to the original article 
being designated a Technometrics classic in experimen-
tal design.126  When the model is not computationally 
demanding, many model evaluations can be performed 
and random sampling works as well as Latin hypercube 
sampling. 

If large sample sizes are required to provide appro-
priate coverage of low probability/high consequence 
subsets of values for x, then importance sampling may 
be a more effective sampling procedure than either ran-
dom or Latin hypercube sampling.127-135  However, 
importance sampling complicates sensitivity analysis 
(Sect. 6) as the individual sample elements do not have 
equal weight (i.e., likelihood of occurrence).  Often, 
some type of importance sampling is used to sample 
from aleatory uncertainty (e.g., possibly implemented 

through the use of event trees as is typically the case in 
probabilistic risk assessments for complex engineered 
facilities such as nuclear power plants) and Latin hy-
percube sampling is used to sample from epistemic 
uncertainty.  The NUREG-1150 analyses (see Refs. 82, 
120-124) are an example of this approach to the propa-
gation of uncertainty. 

Control of correlations is an important aspect of 
sample generation.  Specifically, correlated variables 
should have correlations close to their specified values, 
and uncorrelated variables should have correlations 
close to zero.  In general, the imposition of complex 
correlation structures is not easy.  However, Iman and 
Conover have developed a broadly applicable proce-
dure to impose rank correlations on sampled values that 
(i) is distribution free (i.e., does not depend on the as-
sumed marginal distributions for the sampled vari-
ables), (ii) can impose complex correlation structures 
involving multiple variables, (iii) works with both ran-
dom and Latin hypercube sampling, and (iv) preserves 
the intervals used in Latin hypercube sampling.136, 137  
Details on the implementation of the procedure are 
available in the original reference;136 illustrative results 
are provided in Fig. 3. 138 

The analysis involving the variables in Table 1 
used three independently generated (i.e., replicated) 
Latin hypercube samples of size nS = 100 each.  The 
purpose of the replication was to provide a basis for 
testing the stability of uncertainty and sensitivity analy-
sis results obtained with Latin hypercube sampling 
(Sects. 7, 8, Ref. 108).  The Iman/Conover restricted 
pairing technique indicated in the preceding paragraph 
was used to control correlations within the individual 
samples.  The analyses with the three replicated sam-
ples were sufficiently similar that each analysis would 
have independently lead to the same insights with re-
spect to model behavior.125  However, to make full use 
of all model evaluations, final presentation results103, 
104 were calculated with the three replicated samples 
pooled together to produce a single sample of size nS = 
300. 

Additional information:  Sect. 6.3, Ref. 46; Refs. 
44, 50, 54, 55, 139. 
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Fig. 2. Example of Latin hypercube sampling to generate a sample of size nS = 5 from x = [U, V] with U normal 

on [−1, 1] (mean = 0.0; 0.01 quantile = −1; 0.99 quantile = 1) and V triangular on [0, 4] (mode = 1):  (a, b) 
Upper frames illustrate sampling of values for U and V, and (c, d) Lower frames illustrate two different 
pairings of the sampled values of U and V in the construction of a LHS (Fig. 5.3, Ref. 101). 
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Fig. 3. Examples of rank correlations of 0.00, 0.25, 0.50, 0.75, 0.90 and 0.99 imposed with the Iman/Conover 

restricted pairing technique for an LHS of size nS = 1000 (Fig. 5.1, Ref. 138). 
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4.  Propagation of Sample Through 
the Analysis 

Propagation of the sample through the analysis to 
produce the mapping [xi, y(xi))], i = 1, 2, …, nS, from 
analysis inputs to analysis results is often the most 
computationally demanding part of a sampling-based 
uncertainty and sensitivity analysis.  The details of this 
propagation are analysis specific and can range from 
very simple for analyses that involve a single model to 
very complicated for large analyses that involve com-
plex systems of linked models.82, 107  

When a single model is under consideration, this 
part of the analysis can involve little more than putting 
a DO loop around the model that (i) supplies the sam-
pled input to the model, (ii) runs the model, and (iii) 
stores model results for later analysis.  When more 

complex analyses with multiple models are involved, 
considerable sophistication may be required in this part 
of the analysis.  Implementation of such analyses can 
involve (i) development of simplified models to ap-
proximate more complex models, (ii) clustering of re-
sults at model interfaces, (ii) reuse of model results 
through interpolation or linearity properties, and (iv) 
complex procedures for the storage and retrieval of 
analysis results. 

Additional information:  The NUREG-1150 analy-
ses,82, 120-124 the analyses carried out in support of the 
Compliance Certification Application for the Waste 
Isolation Pilot Plant,105-107 and analyses carried out in 
support of the Yucca Mountain Project’s development 
of a facility for the deep geologic disposal of high level 
radioactive waste140-142 provide examples of complex 
analyses that have used Latin hypercube sampling in 
the propagation of epistemic uncertainty. 
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5.  Presentation of Uncertainty  
Analysis Results 

Presentation of uncertainty analysis results is gen-
erally straight forward and involves little more than 
displaying the results associated with the already calcu-
lated mapping [xi, y(xi)], i = 1, 2, …, nS.  Presentation 
possibilities include means and standard deviations, 
density functions, cumulative distribution function 
(CDFs), complementary cumulative distribution func-
tions (CCDFs), and box plots.  Presentation formats 
such as CDFs (Fig. 4a), CCDFs (Fig. 4a) and box plots 
(Fig. 4b) are usually preferable to means and standard 
deviations because of the large amount of uncertainty 
information that is lost in the calculation of means and 
standard deviations (see Table 2 for definitions of de-
pendent variables used to illustrate uncertainty and sen-
sitivity analysis procedures).  Owing to their flattened 

shape, box plots are particularly useful when it is de-
sired to the display and compare the uncertainty in a 
number of related variables. 

The representational challenge is more complex 
when the analysis outcome of interest is a function 
rather than a scalar.  For example, time-dependent sys-
tem properties are common analysis outcomes.  As an-
other example, a CCDF that summarizes the effects of 
aleatory uncertainty is a standard analysis outcome in 
risk assessments.  An effective display format for such 
analysis outcomes is to use two plot frames, with first 
frame displaying the analysis results for the individual 
sample elements and the second frame displaying sum-
mary results for the outcomes in the first frame (e.g., 
quantiles and means) (Fig. 5). 

Additional information:  Sect. 6.4, Ref. 46; Ref. 
143, 144. 
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Table 2. Definition of Dependent Variables Calculated by BRAGFLO Program for Two Phase Flow and 
Used in the Illustration of Uncertainty and Sensitivity Analysis Procedures 

BNBHDNUZ – Cumulative brine flow (m3) down borehole at Market Bed (MB) 138 (i.e., from cell 223 to cell 575  
in Fig. 3, Ref. 102). 

BRAABNIC – Cumulative brine flow (m3) out of north anhydrites A and B into disturbed rock zone (DRZ) (i.e., 
from cell 556 to cell 527 in Fig. 3, Ref. 102). 

BRAABSIC – Cumulative brine flow (m3) out of south anhydrites A and B into DRZ (i.e., from cell 555 to cell 482 
in Fig. 3, Ref. 102). 

BRAALIC – Cumulative brine flow (m3) out of all MBs into DRZ (i.e., BRAALIC = BRM38NIC + BRAABNIC + 
BRM39NIC + BRM38SIC + BRAABSIC + BRM39SIC). 

BRM38NIC – Cumulative brine flow (m3) out of north MB 138 into DRZ (i.e., from cell 588 to cell 587 in Fig. 3, 
Ref. 102). 

BRM38SIC – Cumulative brine flow (m3) out of south MB 138 into DRZ (i.e., from cell 571 to cell 572 in Fig. 3, 
Ref. 102). 

BRM39NIC – Cumulative brine flow (m3) out of north MB 139 to DRZ (i.e., from cell 540 to cell 465 in Fig. 3, 
Ref. 102). 

BRM39SIC – Cumulative brine flow (m3) out of south MB 139 into DRZ (i.e., from cell 539 to cell 436 in Fig. 3, 
Ref. 102). 

BRNREPTC – Cumulative brine flow (m3) into repository (i.e., into regions corresponding to cells 596 – 625, 638 – 
640 in Fig. 3, Ref. 102). 

REP_SATB – Brine saturation in upper waste panels (i.e., average brine saturation calculated over cells 617 – 625 in 
Fig. 3, Ref. 102). 

WAS_PRES – Pressure (Pa) in lower waste panel (i.e., average pressure calculated over cells 596 – 616 in Fig. 3, 
Ref. 102). 

WAS_SATB – Brine saturation in lower waste panel (i.e., average brine saturation calculated over cells 596 – 616 in 
Fig. 3, Ref. 102) 

Notation:  The designator E0 is used to indicate results calculated for undisturbed conditions, and the designator E2 
is used to indicate results calculated for disturbed conditions due to a drilling intrusion that penetrates the lower 
waste panel of the repository 1000 yr after repository closure.  Further, the designator R1 indicates results calculated 
for the first of the three replicated Latin hypercube samples described in Sect. 3, and the designators R1, R2, R3 
collectively are used to indicate results calculated with the three replicates pooled together. 
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Fig. 5. Representation of uncertainty in analysis results that are functions:  (a, b) Pressure as a function of time 

(Figs. 7.5, 7.9, Ref. 101), and (c, d) Effects of aleatory uncertainty summarized as a CCDF (Fig. 10.5, Ref. 
101). 
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6.  Determination of Sensitivity 
Analysis Results 

Determination of sensitivity analysis results is usu-
ally more demanding than the presentation of uncer-
tainty analysis results due to the need to actually ex-
plore the mapping [xi, y(xi)], i = 1, 2, …, nS, to assess 
the effects of individual elements of x on the elements 
of y.  A number of approaches to sensitivity analysis 
that can be used in conjunction with a sampling-based 
uncertainty analysis are briefly summarized in this sec-
tion.  In this summary, (i) xj is an element of x = [x1, x2, 
…, xnX], (ii) y is an element of y(x) = [y1(x), y2(x), …, 
ynY(x)], (iii) xi = [xi1, xi2, …, xi,nX], i = 1, 2, …, nS, is a 
random or Latin hypercube sample from the possible 
values for x generated in consistency with the joint 
distribution assigned to the xj’s, (iv) yi = y(xi) for i = 1, 
2, …, nS, and (v) xij and yi are elements of xi and yi, 
respectively.  Sensitivity analyses usually consider the 
effects of all elements of x on individual elements of y; 
for this reason and for notational simplification, the 
subscripted variables xj, j = 1, 2, …, nX, are used to 
represent the elements of x but the unsubscripted vari-
able y is used to represent an arbitrary element of y. 

6.1 Scatterplots 

A plot of the points [xij, yi] for i = 1, 2, …, nS (i.e., 
a scatterplot of y versus xj) can reveal nonlinear or 
other unexpected relationships between analysis inputs 
and analysis results (Fig. 6).  Scatterplots are a natural 
starting point in a complex analysis that can help in the 
development of a sensitivity analysis strategy using one 
or more additional techniques.  Often, the examination 
of scatterplots is all that is needed to understand the 
relationships between the uncertainty in analysis inputs 
and the uncertainty in analysis results.145 

Most analyses start with two dimensional scatter-
plots.  However, when strong three-way interactions 
between variables are present, three-dimensional scat-
terplots (i.e., scatterplots involving three variables) can 
provide informative displays of analysis results (Fig. 7).  
The three-dimensional scatterplot in Fig. 7 involves one 
sampled variable (i.e., xj = WPRTDIAM) and two calcu-
lated variables (i.e., yk = WAS_PRES and yl = 
REL_VOL).  The result in Fig. 7 was calculated by a 
model that uses the calculated value for WAS_PRES 
under undisturbed conditions as an input and then de-
termines the volume of material (i.e., REL_VOL) re-
leased to the surface at the time of a drilling intrusion 
due to a pressure-driven spallings event; WPRTDIAM is 

one of the uncertain (i.e., sampled) variables used in 
this calculation.145  Specifically, Fig. 7 contains a plot 
of the points (xij, yik, yil) for i = 1, 2, …, nS.  As exami-
nation of Fig. 7 shows, (i) WAS_PRES acts as a switch 
that determines if REL_VOL is nonzero, and (ii) 
WPRTDIAM determines the magnitude of the nonzero 
values for REL_VOL.  Because of the large number of 
possible three-way variable combinations in most 
analyses, some initial insights with respect to variable 
interactions usually needs to be developed before a 
reasonable selection of three-dimensional scatterplots 
can be made. 

Additional information:  Sect. 6.6.1, Ref. 46; see 
Ref. 146 for additional plotting formats, including cob-
web plots which provide a representation of multidi-
mensional results (e.g., [xi, yi] = [xi1, xi2, …, xi,nX, yi], i 
= 1, 2, …, nS) in a two-dimensional plot. 

6.2 Correlation 

Correlation provides a measure of the strength of 
the linear relationship between xj and y.  Specifically, 
the (Pearson or sample) correlation coefficient (CC) 
c(xj, y) between xj and y is defined by 
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The CC c(xj, y) has a value between −1 and 1, with a 
positive value indicating that xj and y tend to increase 
and decrease together and a negative value indicating 
that xj and y tend to move in opposite directions.  Fur-
ther, gradations in the absolute value of c(xj, y) between 
0 and 1 correspond to a trend from no linear relation-
ship between xj and y to an exact linear relationship 
between xj and y.  As an example, the CCs associated 
with the scatterplots in Fig. 8 are c(HALPOR, 
REP_SATB) = 0.75 (Fig. 8a) and c(WGRCOR, 
REP_SATB) = −0.41 (Fig. 8b). 

The CC c(xj, y) is closely related to results ob-
tained in a linear regression relating y to xj. Specifi-
cally, c(xj, y) is equal to the standardized regression
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Fig. 6. Examples of scatterplots obtained in a sampling-based uncertainty/sensitivity analysis (Figs. 8.1, 8.2, 

Ref. 101). 
 

 
Fig. 7. Example of three dimensional scatterplot obtained in a sampling-based uncertainty/sensitivity analysis 

(Fig. 13, Ref. 145). 
 
coefficient in the indicated regression, and the absolute 
value of c(xj, y) is equal to the square root of the corre-
sponding R2 value (see Sect. 6.3).  As a correlation of 0 
only indicates the absence of a linear association be-
tween xj and y, it does not preclude the existence of a 
well-defined nonlinear relationship between xj and y 
(e.g., y = sin xj). 

Additional information:  Sect. 6.6.4, Ref. 46. 

6.3 Regression Analysis 

Regression analysis provides an algebraic repre-
sentation of the relationships between y and one or 
more of the xj’s.  Unless stated otherwise, regression 
analysis is usually assumed to involve the construction 
of linear models of the form 

0ˆ j jy b b x= +  (6-2) 
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Fig. 8. Illustration of correlation coefficients:  (a) c(xj, y) = 0.75 with xj = HALPOR and y = REP_SATB (left 

frame), and (b) c(xj, y) = −0.41 with xj = WGRCOR and y = REP_SATB (right frame). 
 
for a single independent variable (i.e., xj) and  

0
1

ˆ
nX

j j
j

y b b x
=

= + ∑  (6-3) 

for multiple independent variables (i.e., x1, x2, …, xnX).  
The regression coefficients in Eqs. (6-2) and (6-3) are 
determined such that the sums 

( ) ( ) 22
0

1 1
ˆ

nS nS

i i i j ij
i i

y y y b b x
= =

⎡ ⎤− = − +⎣ ⎦∑ ∑  (6-4) 

and 

( )
2

2
0

1 1 1
ˆ ,

nS nS nS

i i i j ij
i i j

y y y b b x
= = =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− = − +

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑  (6-5) 

respectively, are minimized.  As a result, the regression 
models in Eqs. (6-2) and (6-3) are often referred to as 
least squares models due to the minimization of the 
sums of squares in Eqs. (6-4) and (6-5). 

An important property of least squares regression 
models is the equality 

( ) ( ) ( )2 2 2

1 1 1
ˆ ˆ .

nS nS nS

i i i i
i i i

y y y y y y
= = =

− = − + −∑ ∑ ∑  (6-6) 

For notational convenience, the preceding equality is 
often written 

SStot = SSreg + SSres, (6-7) 

where 
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and the three preceding summations are called the total 
sum of squares (SStot), regression sum of squares 
(SSreg) and residual sum of squares (SSres), respec-
tively. 

Since SSres provides a measure of variability about 
the regression model, the ratio 

( ) ( )2 22

1 1
ˆ

nS nS

reg tot i i
i i

R SS SS y y y y
= =

= = − −∑ ∑  (6-8) 

provides a measure of the extent to which the regres-
sion model can match the observed data.  Specifically, 
when the variation about the regression model is small 
(i.e., SSres is small relative to SSreg), then the corre-
sponding R2 value is close to 1, which indicates that the 
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regression model is accounting for most of the uncer-
tainty in y.  Conversely, an R2 value close to 0 indicates 
that the regression model is not very successful in ac-
counting for the uncertainty in y.  When the individual 
xj in the regression model in Eq. (6-3) are independent, 
the R2 value for the regression model can be expressed 
as 

2 2 2 2
1 2 ,reg tot nXR SS SS R R R= = + + +…  (6-9) 

where 2
jR  is the R2 value that results from regressing y 

on only xj.  Thus, 2
jR  is equal to the contribution of xj 

to the R2 value for the regression model in Eq. (6-3) 
when the xj’s are independent. 

The regression coefficients bj, j = 1, 2, …, nX, are 
not very useful in sensitivity analysis because each bj is 
influenced by the units in which xj is expressed and 
also does not incorporate any information on the distri-
bution assigned to xj.  Because of this, the regression 
models in Eqs. (6-2) and (6-3) are usually reformulated 
as 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆj j j j jy y s b s s x x s− = −  (6-10) 

and 
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respectively, where 
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and y  and jx  are defined in conjunction with Eq. 
(6-1).  The coefficients bjŝj/ŝ in Eqs. (6-10) and (6-11) 
are referred to as standardized regression coefficients 
(SRCs). 

When the regression models in Eqs. (6-2) and 
(6-10) involving only xj are under consideration, the 
SRC bjŝj/ŝ provides a measure of variable importance 
based on the effect on y relative to the standard devia-
tion ŝ of y of moving xj away from its expected value 

jx  by a fixed fraction of its standard deviation ŝj.  Fur-

ther, when the xj’s are independent, the inclusion or 
exclusion of an individual xj from the regression mod-
els in Eqs. (6-3) and (6-11) has no effect on the SRCs 
for the remaining variables in the model.  Thus, as long 
as the xj’s are independent, the SRCs bjŝj/ŝ in Eq. (6-
11) provide a useful measure of variable importance, 
with (i) the absolute values of the coefficients bjŝj/ŝ 
providing a comparative measure of variable impor-
tance (i.e., variable xu is more important than variable 
xv if |buŝu/ŝ| > |bvŝv/ŝ|) and (ii) the sign of bjŝj/ŝ indicat-
ing whether xj and y tend to move in the same direction 
or in opposite directions.  However, when xj’s are not 
independent, SRCs do not provide reliable indications 
of variable importance (Sect. 6.6.7, Ref. 46). 

For purposes of sensitivity analysis, there is usu-
ally no reason to construct a regression model contain-
ing all the uncertain variables (i.e., x1, x2, …, xnX) as 
indicated in Eqs. (6-3) and (6-11).  Rather, a more ap-
propriate procedure is to construct regression models in 
a stepwise manner.  With this procedure, a regression 
model is first constructed with the most influential vari-
able (e.g., 1x  as determined based on R2 values for 
regression models containing only single variables).  
Then, a regression model is constructed with 1x  and the 
next most influential variable (e.g., 2x  as determined 
based on R2 values for regression models containing 1x  
and each of the remaining variables).  The process then 
repeats to determine 3x  in a similar manner and con-
tinues until no more variables with an identifiable effect 
on y can be found.  Variable importance (i.e., sensitiv-
ity) is then indicated by the order in which variables are 
selected in the stepwise process, the changes in cumula-
tive R2 values as additional variables are added to the 
regression model, and the SRCs for the variables in the 
final regression model.  An example of a sensitivity 
analysis of this form is presented in Table 3. 

A display of regression results of the form shown 
in Table 3 is very unwieldy when results at a sequence 
of times are under consideration.  In this situation, a 
more compact display of regression results is provided 
by plotting SRCs as functions of time for all xj that ap-
pear to have a significant effect on y at some point in 
the time interval under consideration (Fig. 9a). 

This section only considers linear regression mod-
els.  However, linear regression models also include 
models of forms such as 

( ) ( )0
1 1

ˆ , .
nX nX nX

j j j jl jl j l
j j l j

y b b f x b f x x
= = =

= + +∑ ∑ ∑  (6-12) 
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Table 3. Example of Stepwise Regression Analysis to Identify Uncertain Variables Affecting the Un-
certainty in Pressure (WAS_PRES) at 10,000 yr in Fig. 5a (Table 8.6, Ref. 101) 

Stepa Variableb SRCc R2d 
1 WMICDFLG 0.718 0.508 
2 HALPOR 0.466 0.732 
3 WGRCOR 0.246 0.792 
4 ANHPRM 0.129 0.809 
5 SHRGSSAT 0.070 0.814 
6 SALPRES 0.063 0.818 

a Steps in stepwise regression analysis. 
b Variables listed in the order of selection in regression analysis. 
c SRCs for variables in final regression model. 
d Cumulative R2 value with entry of each variable into regression model. 
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Fig. 9. Time-dependent sensitivity analysis results for uncertain pressure curves in Fig. 5a:  (a) SRCs as a function 

of time, and (b) PCCs as a function of time (Fig. 8.3, Ref. 101). 

This inclusion exists because the preceding model is 
linear in its coefficients (i.e., b0, the bj, the bjl); in es-
sence, the indicated transformations involving the xj 
(i.e., fj(xj), fjl(xj, xl)) are simply defining a new set of 
analysis inputs to be used in a regression-based sensi-
tivity analysis.  Results can be improved in some analy-
ses by well-chosen variable transformations of the form 
indicated in Eq. (6-12).  However, in large analyses 
involving many uncertain analysis inputs (i.e., xj) and 
many possibly time-dependent analysis results (i.e., 
many different elements of y), the a priori determina-
tion of suitable transformations can be difficult.  Also, 
care can be taken to suitably account for any correla-
tions that may be introduced by the chosen transforma-
tions (i.e., fj(xj) and fjl(xj, xl) may be highly correlated). 

Nonlinear regression provides an alternative to lin-
ear regression that can be useful in some analyses.  In 
nonlinear regression, at least some of the model coeffi-
cients are operated on by nonlinear functions.  For ex-
ample, 

( ) ( )0 1 2 1 3 4 2ˆ exp siny b b b x b b x= + +  (6-13) 

is a nonlinear model because b2 and b4 appear in ex-
pressions that are operated on by nonlinear functions.  
A major challenge in the use of nonlinear regression in 
sensitivity analysis is the determination of a suitable 
form for the nonlinear regression model.  The following 
two alternatives to nonlinear regression for use in the 
presence of nonlinear relationships between model in-
puts (i.e., the xj) and model results (i.e., the elements of 
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y) that place fewer a priori demands on the analyst are 
described later in this presentation:  rank transformations 
(Sect. 6.5) and nonparametric regression (Sect. 6.8). 

Additional information:  Sects. 6.6.2, 6.6.3, 6.6.5, 
Ref. 46.  Further, general information on regression 
analysis is available in a number of texts (e.g., Refs. 
147-151). 

6.4 Partial Correlation 

The partial correlation coefficient (PCC) between 
xj and y can be defined in the following manner.  First, 
the two regression models indicated below are con-
structed: 

0 0
1 1

ˆ ˆ and  .
nX nX

j p p p p
p p
p j p j

x c c x y b b x
= =
≠ ≠

= + = +∑ ∑  (6-14) 

Then, the results of the two preceding regressions are used 
to define the new variables ˆj jx x−  and ˆy y− .  The PCC 
between xj and y is the CC c( ˆj jx x− , ˆy y− ) (see Eq. (6-
1)) between ˆj jx x−  and ˆy y− .  As for SRCs, PCCs are 
often defined for variables that are functions of time and 
presented as time-dependent plots (Fig. 9b). 

The PCC characterizes the linear relationship be-
tween xj and y after a correction has been made for the 
linear effects on y of the remaining elements of x, and 
the SRC characterizes the effect on y that results from 
perturbing xj by a fixed fraction of its standard devia-
tion.  Thus, PCCs and SRCs provide related, but not 
identical, measures of variable importance.  In particu-
lar, the PCC between xj and y provides a measure of 
variable importance that tends to exclude the effects of 
the other elements of x, the assumed distribution for xj, 
and the magnitude of the impact of the uncertainty in xj 
on the uncertainty in y.  In contrast, the SRC relating xj 
to y is more influenced by the distribution assigned to xj 
and the magnitude of the impact of the uncertainty in xj 
on the uncertainty in y.  However, when the elements of 
x are independent, PCCs and SRCs give the same rank-
ings of variable importance.  Specifically, an ordering 
of variable importance based on the absolute value of 
PCCs is the same as an ordering based on either the 
absolute value of CCs or the absolute value of SRCs 
(Sect. 6.6.4, Ref. 46).  A cosmetic benefit of using 
PCCs is that PCCs tend to be spread out in value more 
than SRCs and thus produce results that are easier to 
read (e.g., compare Figs. 9a and 9b); however, the 
downside to this is that a variable can appear to have a 

larger effect on the uncertainty in y than is actually the 
case.   

As for analyses based on SRCs, analyses based on 
PCCs can give very misleading results when correla-
tions exist between the elements of x.  Specifically, if x 
contains two highly correlated variables, then each 
variable will cancel the other’s effect when PCCs with 
y are calculated. 

Additional information:  Sect. 6.6.4, Ref. 46; Ref. 
152. 

6.5 Rank Transformations 

A rank transformation can be used to convert a 
nonlinear but monotonic relationship between the xj and y 
into a linear relationship.  With this transformation, the 
values for the xj and y are replaced by their corresponding 
ranks.  Specifically, the smallest value for a variable is 
assigned a rank of 1; the next largest value is assigned a 
rank of 2; tied values are assigned their average rank; and 
so on up to the largest value, which is assigned a rank of 
nS.  Use of the rank transformation results in rank (i.e., 
Spearman) correlation coefficients (RCCs), rank regres-
sions, standardized rank regression coefficients (SRRCs) 
and partial rank correlation coefficients (PRCCs).  In the 
presence of nonlinear but monotonic relationships be-
tween the xj and y, use of the rank transform can substan-
tially improve the resolution of sensitivity analysis results 
(Table 4). 

Additional information:  Sect. 6.6.6, Ref. 46; Ref. 
153. 

6.6 Statistical Tests for Patterns 
Based on Gridding 

Analyses based on raw or rank-transformed data 
can fail when the underlying relationships between the 
xj and y are nonlinear and nonmonotonic (Fig. 10).  The 
scatterplot in Fig. 6b is for the pressure at 10,000 yr in 
Fig. 10a versus the uncertain variable BHPRM.  The 
partial correlation analyses summarized in Fig. 10b fail 
at later times because the pattern appearing in Fig. 6b is 
too complex to be captured with a partial correlation 
analysis based on raw or rank-transformed data; analy-
ses with SRCs or SRRCs also fail for the same reason.  
An alternative analysis strategy for situations of this 
type is to place grids on the scatterplot for y and xj and  
then perform various statistical tests to determine if the 
distribution of points across the grid cells appears to be
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Table 4. Comparison of Stepwise Regression Analyses with Raw and Rank-Transformed Data for Cu-
mulative Brine Inflow to Vicinity of Repository over 10,000 yr from Anhydrite Marker Beds 
(BRAALIC) Under Undisturbed (i.e., E0) Conditions in Fig. 4b (Table 8.8, Ref. 101). 

Raw Data Rank-Transformed Data 
Stepa 

Variableb SRCc R2d Variableb SRRCe R2d 
1 ANHPRM 0.562 0.320 WMICDFLG −0.656 0.425 
2 WMICDFLG −0.309 0.423 ANHPRM 0.593 0.766 
3 WGRCOR −0.164 0.449 HALPOR −0.155 0.802 
4 WASTWICK −0.145 0.471 WGRCOR −0.152 0.824 
5 ANHBCEXP −0.120 0.486 HALPRM 0.143 0.845 
6 HALPOR −0.101 0.496 SALPRES 0.120 0.860 
7    WASTWICK −0.010 0.869 

a Steps in stepwise regression analysis. 
b Variables listed in order of selection in regression analysis. 
c SRCs for variables in final regression model. 
d Cumulative R2 value with entry of each variable into regression model. 
e SRRCs for variables in final regression model. 
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Fig. 10. Illustration of failure of a sensitivity analysis based on rank-transformed data:  (a) Pressures as a function 

of time, and (b) PRCCs as a function of time (Fig. 8.7, Ref. 101) 

nonrandom.  Appearance of a nonrandom pattern indi-
cates that xj has an effect on y.  Possibilities include 
tests for (i) common means (CMNs), (ii) common dis-
tributions or locations (CLs), (iii) common medians 
(CMDs), and (iv) statistical independence (SI).  De-
scriptions of these tests follow. 

The CMNs test is based on dividing the values of 
xj (i.e., xij, i = 1, 2, …, nS) into nI classes and then test-
ing to determine if y has a common mean across these 
classes (Sect. 3.1; Ref. 154).  The required classes are 
obtained by dividing the range of xj into a sequence of 
mutually exclusive and exhaustive subintervals contain-

ing equal numbers of sampled values (Fig. 11a).  If xj is 
discrete, individual classes are defined for each of the 
distinct values.  For notational convenience, let c, c = 1, 
2, …, nI, designate the individual classes into which the 
values of xj have been divided; let Xc designate the set 
such that i ∈ Xc only if xij belongs to class c; and let nIc 
equal the number of elements contained in Xc (i.e., the 
number of xij’s associated with class c). 

The F-test can be used to test for the equality of the 
mean values of y for the classes into which the values 
of xj have been divided (e.g., the intervals defined on 
the abscissa of the scatterplot in Fig. 11a).  Specifically, 
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if the y values conditional on each class of xj values are 
normally distributed with equal expected values, then 
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2 2
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2 2

1 1
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i c
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(6-15)

 

follows an F-distribution with (nI − 1, nS − nI) degrees 
of freedom, where  /c i ci c

y y nI∈= ∑ X  and y  is de-
fined in conjunction with Eq. (6-1).  Given that the 
indicated assumptions hold, the probability 

( |Fprob F F> 1, )nI nS nI− −  of obtaining an F-statistic 
of value ~F  that exceeds the value of F in Eq. (6-15) can 
be obtained from an F-distribution with (nI – 1, nS − nI) 
degrees of freedom.  A low probability (i.e., p-value) of 
obtaining a larger value for F suggests that the observed 
pattern involving xj and y did not arise by chance and 
hence that xj has an effect on the behavior of y. 

The CLs test employs the Kruskal-Wallis test sta-
tistic T, which is based on rank-transformed data and 
uses the same classes of xj values as the F-statistic in 
Eq. (6-15) (pp. 229-230, Ref. 155).  Specifically,  
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c c
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T R nI nS nS s
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where 

( )

( ) ( ) ( )2 22

1

,

1 4 1 ,

c i
i c

nS

i
i

R r y

s r y nS nS nS

∈

=

=

⎡ ⎤
⎢ ⎥= − + −
⎢ ⎥⎣ ⎦

∑

∑

X
 

and r(yi) denotes the rank of yi.  If the y values condi-
tional on each class of xj values have the same distribu-
tion, then the statistic T in Eq. (6-16) approximately 
follows a χ2 distribution with nI − 1 degrees of freedom 
(pp. 230 - 231, Ref. 155).  Thus, the probability 

( | 1)2prob T T nI
χ

> −  of obtaining a value ~T  that 
exceeds T  in the presence of identical y distributions 
for the individual classes can be obtained from a χ2 
distribution with nI − 1 degrees of freedom.  A small 
value for probχ2 ( | 1)T T nX> −  (i.e., a p-value) indi-
cates that the values for y’s conditional on individual 
classes have different distributions and thus, most 

likely, different means and medians.  Hence, a small p-
value indicates that xj has an effect on y. 

The CMDs test is based on the χ2-test for contin-
gency tables, which can be used to test for the equality 
of the median values of y for the classes into which the 
values of xj have been divided (pp. 143-178, Ref. 155).  
First, the median y0.5 for y is estimated using all nS 
observations.  Specifically, 

( )

[ ]( ) [ ]( )

2

0.5
2 2 1

if 2 is an integer

2 otherwise,

nS

nS nS

y nS
y

y y +

⎧
⎪= ⎨⎡ ⎤+⎪⎢ ⎥⎣ ⎦⎩

 

  (6-17) 

where y(i), i = 1, 2, …, nS, denotes the ordering of the 
y-values such that y(i) ≤ y(i+1) and [~] designates the 
greatest integer function.  The individual classes of xj 
values are then further subdivided on the basis of 
whether y values fall above or below y0.5 (Fig. 11a).  
For class c, let nI1c equal the number of y values that 
exceed y0.5, and let nI2c equal the number of y values 
that are less than or equal to y0.5. 

The result of this partitioning is a 2 × nI contin-
gency table with nIrc observations in each cell (i.e., in 
cell (r, c), where r and c designate “row” and “col-
umn,” respectively, in the corresponding contingency 
table).  The following statistic can now be defined: 

( )
2 2

1 1
,

nI

rc rc rc
c r

T nI nE nE
= =

= −∑∑  (6-18) 

where 
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1 1

2

1 1

nI
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nE nI nS nI nS nS

nI nI nS

= =

= =

⎛ ⎞⎛ ⎞
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⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑
 

and corresponds to the expected number of observa-
tions in cell (r, c).  If the individual classes of xj values 
have equal medians, then T approximately follows a χ2 

distribution with (nI − 1)(2 − 1) = nI − 1 degrees of 
freedom (p. 156, Ref. 155).  Thus, the probability of 
obtaining a value T  that exceeds T in the presence of 
equal medians is given by probχ2 ( | 1)T T nI> − .  A 
small value (i.e., p-value) for probχ2 ( | 1)T T nI> −  
indicates that the y’s conditional on individual classes 
have different medians and hence that xj has an influ-
ence on y.  
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Fig. 11. Grids used to test for nonrandom patterns:  (a) Partitioning of range of xj for CMNs and CLs tests and 

ranges of xj and y for CMDs test (Fig. 8.8, Ref. 101), and (b) Partitioning of ranges of xj and y for SI (Fig. 
8.9, Ref. 101). 

The SI test also uses the χ2-test to indicate if the 
pattern appearing in a scatterplot appears to be nonran-
dom.  The SI test uses the same partitioning of xj values 
as used for the CMNs, CLs and CMDs tests.  In addi-
tion, the y values are also partitioned in a manner analo-
gous to that used for the xj values (Fig. 11b).  For nota-
tional convenience, let r, r = 1, 2, …, nD, designate the 
individual classes into which the values of y are di-
vided; let Yr designate the set such that i ∈ Yr only if yi 
belongs to class r; and let nDr equal the number of ele-
ments contained in Yr (i.e., the number of yi’s associ-
ated with class r). 

The partitioning of xj and y into nI and nD classes 
in turn partitions (xj, y) into nI nD classes (Fig. 11b), 
where (xij, yi) belongs to class (r, c) only if xij belongs 
to class c of the xj values (i.e., i ∈ Xc) and yi belongs to 
class r of the y values (i.e., i ∈ Yr).  For notational con-
venience, let Orc denote the set such that xij ∈ Orc only 
if i ∈ Xc (i.e., xij is in class c of xj values) and also i ∈ 
Yr (i.e., yi is in class r of y values), and let nOrc equal 
the number of elements contained in Orc.  Further, if xj 
and y are independent, then 

( )( )rc r c r cnE nD nS nI nS nS nD nI nS= =  (6-19) 

is an estimate of the expected number of observations 
(xj, y) that should fall in class (r, c).   

The following statistic can be defined: 

( )2
1 1

.
nI nD

rc rc rc
c r

T nO nE nE
= =

= −∑∑  (6-20) 

Asymptotically, T follows a χ2-distribution with (nI − 
1) (nD − 1) degrees of freedom when xj and y are inde-
pendent (pp. 158 – 153, Ref. 155). Thus, probχ2 
[ |T T>  ( 1)( 1)]nI nD− −  is the probability (i.e., p-
value) of obtaining a value of ~T  that exceeds T when 
xj and y are independent.  A small p-value indicates that 
the pattern in the scatterplot arose from some underly-
ing relationship involving xj and y rather than from 
chance alone.  As shown by comparison of Eqs. (6-18) 
and (6-20), the CMDs and SI tests differ only in the 
partitionings used for the y values. 

The four tests described in this section are illustrated 
in Table 5 for y = WAS_PRES at 10,000 yr under undis-
turbed conditions (Fig. 5a) and disturbed conditions (Fig. 
10a).  Scatterplots illustrating the partitioning for xj = 
BHPRM and y = WAS_PRES under disturbed conditions 
are given in Fig. 11.  For perspective, rankings based on 
CCs and RCCs are also presented in Table 5.  The rela-
tionships between y = WAS_PRES and the dominant sam-
pled variables under undisturbed conditions are fairly 
linear, with the result that all ranking procedures (i.e., 
CMNs, CLs, CMDs, SI, CCs, RCCs) give the same order-
ing of variable importance for the top four variables.  In 
contrast, the relationship between y = WAS_PRES and xj = 
BHPRM under disturbed conditions is both nonlinear and 
nonmonotonic (Fig. 11), with the result that the tests
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Table 5. Comparison of Statistical Tests for Patterns Based on Gridding for Pressure (WAS_PRES) at 
10,000 yr under Undistributed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., E2) Condi-
tions (Fig. 10a) (adapted from Tables 4 and 21 of Ref. 47). 

Variablea CMNs: 1×5b 

Rank  p-val 
CLs: 1×5c 

Rank  p-val
CMDs: 2×5d

Rank  p-val
SI: 5×5e 

Rank  p-val
CCsf 

Rank  p-val 
RCCsg 

Rank  p-val
Pressure, Undisturbed (i.e., E0) Conditions at 10,000 yr (Fig. 5a) 

WMICDFLG 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000
HALPOR 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000
WGRCOR 3 0.0000 3 0.0000 3 0.0025 3 0.0003 3 0.0000 3 0.0000
ANHPRM 4 0.0195 4 0.0187 4 0.0663 4 0.0049 4 0.0241 4 0.0268
ANHBCVGP 18 0.8062 16 0.7686 14 0.6442 5 0.0194 20 0.8084 15 0.7686

Pressure, Disturbed (i.e., E2) Conditions at 10,00 yr (Fig. 10a) 
BHPRM 1 0.0000 1 0.0000 1 0.0000 1 0.0000 10 0.3651 6 0.1704
HALPRM 2 0.0000 2 0.0000 2 0.0000 2 0.0002 1 0.0000 1 0.0000
ANHPRM 3 0.0002 3 0.0000 3 0.0007 4 0.0049 2 0.0000 2 0.0000
ANHBCEXP 4 0.0405 4 0.0602 4 0.0595 14 0.4414 7 0.1786 8 0.2373
HALPOR 5 0.0415 5 0.0940 5 0.0700 11 0.3142 3 0.0090 3 0.0184
WGRCOR 17 0.5428 9 0.2242 14.5 0.5249 3 0.0002 20 0.7676 17 0.6560

Table includes only variables that had a p-value less than 0.05 for at least one of the procedures although the variable rankings for a specific 
procedure are based on the p-values obtained for that procedure for all variables considered in the analysis (see Table 1; variable BHPRM not 
included in analyses for undisturbed conditions). 
Variable ranks and p-values for CMNs test with 1 × 5 grid; see Eq. (6-15).  Exceptions for CMNs, CLs, CMDs and SI tests:  because variables 
ANHBCVGP and WMICDFLG are discrete with 2 and 3 values, respectively (see Table 1), nI = 2 and 3 rather than 5 for these two variables. 
Variable ranks and p-values for CLs test with 1 × 5 grid; see Eq. (6-16). 
Variable ranks and p-values for CMDs test with 2 × 5 grid; see Eq. (6-18). 
Variable ranks and p-values for SI test with 5 × 5 grid; see Eq. (6-20). 
Variable ranks and p-values for CC; see Eq. (6-24), Ref. 47. 
Variable ranks and p-values for RCC; see Eq. (6-38), Ref. 47. 

 
based on gridding (i.e., CMNs, CLs, CMDs, SI) all 
identify BHPRM as being the dominant variable influ-
encing the uncertainty in WAS_PRES; in contrast, the 
effect of BHPRM was completely missed by tests based 
on CCs and RCCs. 

The CMNs, CLs, CMDs and SI tests discussed in 
this section are all based on p-values that derive from 
statistical tests predicated on assumptions that are cer-
tainly not satisfied in their entirety in sampling-based 
sensitivity analyses.  Thus, it is possible that the viola-
tion of these assumptions could be leading to misrank-
ings of variable importance.  Such a possibility can be 
explored by using a Monte Carlo procedure to assess if 
the use of formal statistical procedures to determine p-
values is producing misleading results (Ref. 156; Sect. 
14.5, Ref. 157).  Specifically, nR samples of the form 

( ), , 1, 2, , ,ij ix y i nS= …  (6-21) 

can be generated by pairing the nS values for xj ran-
domly and without replacement with the nS values for 

y.  This random assignment is repeated nR times to pro-
duce nR samples of the form in Eq. (6-21) for each un-
certain input xj under consideration.  In this example, 
nR = 10,000 and nS = 300.  For a given procedure (i.e., 
CMNs, CLs, CMDs, SI), each of the nR samples can be 
used to calculate the value of the statistic used to de-
termine the corresponding p-value.  The resulting em-
pirical distribution of the statistic can then be used to 
estimate the p-value for the statistic actually observed 
in the analysis.  Comparison of the p-value obtained for 
a given set of statistical assumptions with the p-value 
obtained from the empirical distribution of the corre-
sponding statistic provides an indication of the robust-
ness of the variable rankings with respect to possible 
deviations from the assumptions underlying the formal 
statistical procedure.  As examination of Table 6 
shows, the variable rankings illustrated in this section 
are quite robust with respect to possible deviations 
from the underlying statistical assumptions on which 
they are predicated. 

Additional Information:  Sects. 6.6.8, 6.6.9, Ref. 
46; Refs. 47, 158-160. 
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Table 6. Comparison of Variable Rankings Obtained with Formal Statistical Procedures and Monte 
Carlo Procedures for Statistical Tests for Patterns Based on Gridding for Pressure 
(WAS_PRES) at 10,000 yr Under Undisturbed (i.e., E0) Conditions (Adapted from Table 8 of 
Ref. 47; see Table 23, Ref. 47, for a similar comparison for pressure at 10,000 yr under dis-
turbed (i.e., E2) conditions) 

CMN: 1 × 5b CMNMC: 1 × 5c CL: 1 × 5b CLMC: 1 × 5c Variablea 
Name Rank p-Val Rank p-Val 

Variablea 
Name Rank p-Val Rank p-Val 

WMICDFLG 1.0 0.0000 2.0 0.0000 WMICDFLG 1.0 0.0000 2.0 0.0000 
HALPOR 2.0 0.0000 2.0 0.0000 HALPOR 2.0 0.0000 2.0 0.0000 
WGRCOR 3.0 0.0000 2.0 0.0000 WGRCOR 3.0 0.0000 2.0 0.0000 
ANHPRM 4.0 0.0195 4.0 0.0214 ANHPRM 4.0 0.0187 4.0 0.0212 
SHPRMASP 5.0 0.1439 5.0 0.1495 SHPRMASP 5.0 0.1237 5.0 0.1277 
WRBRNSAT 6.0 0.1506 6.0 0.1526 WRBRNSAT 6.0 0.2042 6.0 0.2053 
SHRGSSAT 7.0 0.2488 7.0 0.2497 ANRBRSAT 7.0 0.2710 7.0 0.2710 
ANRBRSAT 8.0 0.3034 8.0 0.3027 SHRGSSAT 8.0 0.3153 8.0 0.3167 

… … … … … … … … … … 
WGRMICI 23.0 0.9705 23.0 0.9717 WGRMICI 23.0 0.9649 23.0 0.9663 
WGRMICH 24.0 0.9975 24.0 0.9973. WGRMICH 24.0 0.9865 24.0 0.9839 
TDCCd  0.970 TDCCd  0.971 
      

CMD: 2 × 5b CMDMC: 2 × 5c SI: 5 × 5b SIMC: 5 × 5c Variablea 
Name Rank p-Val Rank p-Val 

Variablea 
Name Rank p-Val Rank p-Val 

WMICDFLG 1.0 0.0000 1.5 0.0000 WMICDFLG 1.0 0.0000 1.5 0.0000 
HALPOR 2.0 0.0000 1.5 0.0000 HALPOR 2.0 0.0000 1.5 0.0000 
WGRCOR 3.0 0.0025 3.0 0.0018 WGRCOR 3.0 0.0003 3.0 0.0003 
ANHPRM 4.0 0.0663 4.0 0.0690 ANHPRM 4.0 0.0049 4.0 0.0038 
SHPRMASP 5.0 0.2427 5.0 0.2401 ANHBCVGP 5.0 0.0194 5.0 0.0178 
SHPRMCON 6.0 0.2674 6.0 0.2718 WRGSSAT 6.0 0.1229 6.0 0.1196 
ANRBRSAT 7.0 0.3386 7.0 0.3329 SHPRMCON 7.0 0.1487 7.0 0.1529 
HALPRM 8.0 0.3883 8.0 0.3967 WASTWICK 8.0 0.1850 8.0 0.1829 

… … … … … … … … … … 
WGRMICH 23.0 0.9554 23.0 0.9439 WGRMICH 23.0 0.9437 23.0 0.9429 
WGRMICI 24.0 0.9702 24.0 0.9664 ANRGSSAT 24.0 0.9763 24.0 0.9791 
TDCCd  0.986 TDCCd  0.988 
a Twenty-four (24) variables included in analysis; highly correlated variables and variables not relevant to E0 conditions not included. 
b Variable rankings obtained with a maximum of five classes of x values (i.e., nI = 5; see Footnote b, Table 5) and analytic determination of p-

values. 
c Variable rankings obtained with a  maximum of five classes of x values (i.e., nI = 5; see Footnote b, Table 5) and Monte Carlo determination of 

p-values. 
d Top down coefficient of concordance (TDCC, see Sect. 6.12) with variable rankings obtained with a maximum of five classes of x values (i.e., 

nI = 5; see Footnote b, Table 5) and analytic determination of p-values. 
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6.7 Entropy Tests for Patterns 
Based on Gridding 

Measures of entropy provide another grid-based 
procedure to assess the strength of nonlinear relation-
ships between the xj and y.  Specifically, the following 
quantities can be defined (pp. 480 – 484, Ref. 157): 

 ( )H y  = ( ) ( )
1

ln
nD

r r
r

nD nS nD nS
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−∑ , (6-22) 
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nI nS nI nS
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  = ( ) ( ), j jH y x H x− , (6-26) 

( )jU x y  = ( ) ( ) ( )j j jH x H x y H x⎡ ⎤−⎢ ⎥⎣ ⎦
 

  = ( ) ( ) ( ) ( ),j j jH y H x H y x H x⎡ ⎤+ −⎣ ⎦ , 

 (6-27) 
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where (i) H(y) and H(xj) are estimates of the entropy 
associated with y and xj, respectively, (ii) H(y, xj) is an 
estimate of the entropy associated with y and xj, (iii) 
H(xj|y) and H(y|xj) are estimates of the expected en-
tropy of xj conditional on y and the expected entropy of 
y conditional on xj, respectively, (iv) U(xj|y) and U(y|xj) 
are measures (i.e., uncertainty coefficients) of the con-
tributions of y to the entropy associated with xj and of xj 
to the entropy associated with y, respectively, (v) U(y,x) 
is an entropy-based measure of the strength of the asso-
ciation between xj and y, (vi) the remaining expressions 
are the same as defined in Sect. 6.6, and (vii) the de-
fined quantities in Eqs. (6-22) – (6-29) are conditional 
on the grid structure in use. 

The quantities U(y|xj) and U(y, xj) can be used as 
sensitivity measures, with U(y|xj) providing a measure 
of the effect of the uncertainty in xj on the uncertainty 
in y and U(y, xj) providing a measure of the joint be-
havior of xj and y.  Both quantities equal zero when 
there is no relationship between y and xj that is identifi-
able with the grid structure in use and equal one when 
there is a perfect association between y and xj with the 
grid structure in use.  Values between zero and one are 
indicative of intermediate levels of association.  Spe-
cifically, 

( ) ( ), 0j jU y x U y x= =  (6-30) 

if 

( )rc r cnO nS nD nI=  (6-31) 

for r = 1, 2, …, nD and c = 1, 2, …, nI, and 

( ) ( ), 1j jU y x U y x= =
 

(6-32)
 

if each interval of values for xj is associated with only 
one interval of values for y and each interval of values 
for y is associated with only one interval of values for 
xj.  Necessary, but not sufficient, conditions for the 
equality in Eq. (6-31) are (i) nI = nD, and (ii) nIc = nDc, 
c = 1, 2, …, nI(= nD). 



 

35 

When the nI and nD intervals into which the values 
for xj and y are divided contain equal numbers of sam-
pled values (i.e., nS/nI and nS/nD values for the inter-
vals associated with xj and y, respectively), then the 
following simpler expressions result: 

( ) ( ) ( ) ( )ln , lnjH x nI H y nD= = , (6-33) 

( ) ( ) ( ), ln ,j jH y x H y x nI= −  (6-34a) 

( ) ( ) ( ), ln ,jH x y H y x nD= −  (6-34b) 

( ) ( ) ( ) ( ) ( )ln ln , lnj jU y x nI nD H y x nD⎡ ⎤= + −⎣ ⎦ , 

  (6-35) 

( ) ( ) ( ) ( ) ( )ln ln , lnj jU x y nI nD H y x nI⎡ ⎤= + −⎣ ⎦ , 

  (6-36) 
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Further, 

( ) ( ) ( ) ( ) ( ), 2 , lnj j j jU y x U x y U y x H y x nI= = = −  

  (6-38) 

if nI = nD. 

As shown by comparison of Eqs. (6-35) and (6-
37), use of either U(y|xj) or U(y, xj) will produce identi-
cal rankings of variable importance based on the size of 
H(y, xj) when the same values for nI and nD and also 
for nIc = nS/nI and nDr = nS/nD are used in the deter-
mination of U(y|xj) and U(y, xj) for each of the inde-
pendent variables under consideration.  Specifically, 
U(y|xj) and U(y, xj) increase in size as the entropy H(y, 
xj) associated with joint distribution for xj and y de-
creases.  Thus, U(y|xj) and U(y, xj) are really sensitivity 
measures that quantify variable importance on the basis 
of the entropy H(y, xj) associated with xj and y.  Spe-
cifically, the smaller the entropy H(y, xj), the more im-
portant xj is assessed to be in affecting the value of y.  
As shown in Eq. (6-38), U(y|xj) and U(y, xj) have iden-
tical numerical values when nI = nD and nIc = nDr = 
nS/nD. 

A closely related measure of association is given 
by 

( ) ( ) ( ) ( )( ){ }
1

2, 1 exp 2 , ,j j jR y x H x H y H y x⎡ ⎤= − − + −⎣ ⎦  

  (6-39) 

which has (i) a value of zero if there is no association 
between xj and y in the sense indicated in Eq. (6-30), 
(ii) a value that approaches one as nI and nD increase if 
there is perfect association between xj and y in the 
sense indicated in conjunction with Eq. (6-32), and (iii) 
intermediate values for intermediate levels of associa-
tion (Ref. 161).  If xj and y have a bivariate normal dis-
tribution, then R(y, xj) approaches the absolute value of 
the correlation coefficient between xj and y as the sam-
ple and grid sizes increase.161 

As suggested by Mishra and Knowlton,162 the SI 
test (i.e., a χ2-test on the same grid used to define en-
tropy measures) can be used to identify important vari-
ables, and then the entropy measures U(y, xj), U(y|xj) 
and R(y, xj) can be used to provide a numerical repre-
sentation of variable importance.  The result of this 
approach is illustrated in Table 7, with the top two sets 
of results corresponding to the use of nI = nD = 5, and 
the lower two sets corresponding to the use of nI = 10 
and nD = 5.  As should be the case, the values for U(y, 
xj) and U(y|xj) are the same when nI = nD and are 
somewhat different when nI ≠ nD.  Further, there is 
little difference in the variable rankings based on the SI 
test and on the entropy measures U(y, xj), U(y|xj) and 
R(y, xj).  Although U(y, xj), U(y|xj) and R(y, xj) result in 
the same rankings of variable importance because of 
the underlying dependence on H(y, xj), the normaliza-
tion associated with the definition of R(y, xj) produces 
results that are more widely spread over the interval [0, 
1].  Although not presented, similar normalizations 
referred to as Cramer’s V and the contingency coeffi-
cient, respectively, are also possible for the χ2-statistic 
T in Eq. (6-20) associated with the SI test (see Sect. 
13.6, Ref. 157).  The right most columns in Table 7 
labeled “KS Test” and “KSMC Test” relate to a sensi-
tivity analysis procedure based on a two-dimensional 
Kolmogorov-Smirnov test that will be discussed in 
Sect. 6.10. 

The similarity between the ranking of variable im-
portance with the SI test and with entropy-based meas-
ures is quite striking (Table 8).  For all practical pur-
poses, the χ2-statistic T defined in Eq. (6-20) associated 
with the SI test and the entropy-based measures U(y, 
xj), U(y|xj) and R(y, xj) defined in Eqs. (6-28), (6-29) 
and (6-39) give the same rankings of variable impor-
tance.  However, when discrete variables such as 
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Table 7. Examples of Entropy Measures to Identify Uncertain Variables Affecting the Uncertainty in 
Pressure (WAS_PRES) at 10,000 yr under Undisturbed (i.e., E0) Conditions (Fig. 5a) and Dis-
turbed (i.e., E2) Conditions (Fig. 10a) 

SI Testb Entropyc Cond. Entropyd R-Statistice 

Variablea 
χ2 p-value Rank U(y, xj) Rank U(y|xj) Rank R(y, xj) Rank 

Pressure, Undisturbed (i.e., E0) Conditions at 10,000 yr (Fig. 5a):  nI = 5, nD = 5 
WMICDFLG 198.6 0.0000 1 0.2868 1 0.2361 1 0.7296 1 
HALPOR 127.2 0.0000 2 0.1350 2 0.1350 2 0.5930 2 
WGRCOR 42.5 0.0003 3 0.0485 3 0.0485 3 0.3800 3 
ANHPRM 34.3 0.0049 4 0.0420 4 0.0420 4 0.3560 4 
ANHBCVGP 11.7 0.0194 5 0.0172 15.5 0.0123 25 0.1970 25 

Pressure, Disturbed (i.e., E2) Conditions at 10,000 yr (Fig. 10a):  nI = 5, nD = 5 
BHPRM 337.2 0.0000 1 0.3700 1 0.3700 1 0.8340 1 
HALPRM 43.7 0.0002 2 0.0526 2 0.0526 2 0.3940 2 
WGRCOR 43.7 0.0002 3 0.0456 3 0.0456 3 0.3690 3 
ANHPRM 34.3 0.0049 4 0.0405 4 0.0405 4 0.3500 4 

Pressure, Undisturbed (i.e., E0) Conditions at 10,000 yr (Fig. 5a):  nI = 10, nD = 5 
WMICDFLG 198.6 0.0000 1 0.1868 1 0.2361 1 0.7296 1 
HALPOR 140.2 0.0000 2 0.1240 2 0.1510 2 0.6200 2 
WGRCOR 56.3 0.0167 3 0.0515 4. 0.0626 4 0.4270 4 
ANHPRM 53.3 0.0314 4 0.0547 3 0.0664 3 0.4390 3 

Pressure, Disturbed (i.e., E2) Conditions at 10,000 yr (Fig. 10a); nI = 10, nD = 5 
BHPRM 402.3 0.0000 1 0.3490 1 0.4240 1 08630 1 
WGRCOR 69.0 0.0008 2 0.0616 2 0.0749 2 0.4630 2 
HALPRM 63.0 0.0035 3 0.0601 3 0.0731 3 0.4580 3 
ANHPRM 63.0 0.0035 4 0.0594 4 0.0722 4 0.4550 4 
a Table includes only variables that had a p-value less than 0.05 for SI test. 
b χ2 value, p-value and variable rank for SI test with 5 × 5 grid for nI = 5, nD = 5 and 10 × 5 grid for nI = 10, nD = 5; see Eq. (6-20).  Exception:  

because variables ANHBCVGP and WMICDFLG are discrete with 2 and 3 values, respectively (see Table 1), nI = 2 and 3 rather than 5 for 
these two variables. 

c Entropy U(y, xj) and variable rank; see Eq. (6-29). 
d Conditional entropy U(y|xj) and variable rank; see Eq. (6-28). 
e R-statistic R(y, xj) and variable rank; see Eq. (6-39). 

 
ANHBCVGP and WMICDFLG are under consideration, 
there can be some differences between rankings based 
on p-values for the χ2 statistic and rankings based on 
either the χ2 statistic itself or entropy measures because 
of the effects of the resultant different degrees of free-
dom associated with different variables on the p-values 
for the χ2 statistic.  Clearly, there is a close algebraic 
connection between T and the entropy-based measures 
U(y, xj), U(y|xj) and R(y, xj).  As previously illustrated, 
p-values for the χ2-statistic provide a way to discern 
influential from noninfluential variables for both the SI 
test and the entropy-based measures.  Although not il-
lustrated, the Monte Carlo procedure discussed in con-
junction with Eq. (6-21) and Table 6 for the empirical 

determination of p-values could be used to directly de-
termine p-values for U(y, xj), U(y|xj) and R(y, xj). 

Additional information:  pp. 480 – 484, Ref. 157; 
Refs. 161-164. 

6.8 Nonparametric Regression 

There are drawbacks to the parametric regression 
techniques indicated in Sect. 6.3 that can reduce their 
effectiveness in some sensitivity analyses.  First, it is 
necessary to provide an a priori specification of the 
form of the regression model (e.g., linear as in Eqs. (6-
3) and (6-12), nonlinear as in Eq. (6-13), or linear with 
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Table 8. Detailed Comparison of χ2-statistic T and Entropy U(y, xj) Used to Identify Uncertain Variables 
Affecting the Uncertainty in Pressure (WAS_PRES) at 10,000 yr under Undisturbed (i.e., E0) 
Conditions (Fig. 5a) and Disturbed (i.e., E2) Conditions (Fig. 10a) 

 
Pressure, Undisturbed (i.e., E0) 

Conditions at 10,000 yr  
(Fig. 5a):  nI = 5, nD = 5 

 
Pressure, Disturbed (i.e., E2) 

Conditions at 10,000 yr  
(Fig. 10a):  nI = 5, nD = 5 

SI Test Entropy SI Test Entropy 
Variablea 

χ2b df 
c p-valued U(y, xj)

e Variablea 
χ2b df 

c p-valued U(y, xj)
e 

WMICDFLG 198.6 ( 1.0) 8 0.0000 ( 1.0) 0.2868 ( 1.0) BHPRM 337.2 ( 1.0) 16 0.0000  ( 1.0) 0.3700 ( 1.0) 

HALPOR 127.0 ( 2.0) 16 0.0000 ( 1.0) 0.1350 ( 2.0) WGRCOR 43.7 ( 2.0) 16 0.0002 ( 2.0) 0.0456 ( 3.0) 

WGRCOR 42.5 ( 3.0) 16 0.0003 ( 3.0) 0.0485 ( 3.0) HALPRM 43.7 ( 3.0) 16 0.0002 ( 3.0) 0.0526 ( 2.0) 

ANHPRM 34.3 ( 4.0) 16 0.0049 ( 4.0) 0.0420 ( 4.0) ANHPRM 34.3 ( 4.0) 16 0.0049 ( 4.0) 0.0405 ( 4.0) 

WRGSSAT 22.7 ( 5.0) 16 0.1229 ( 6.0) 0.0230 ( 5.0) SHRGSSAT 25.0 ( 5.0) 16 0.0698 ( 5.0) 0.0268 ( 5.0) 

SHPRMCON 21.8 ( 6.0) 16 0.1487 ( 7.0) 0.0228 ( 6.0) SHBCEXP 23.5 ( 6.0) 16 0.1010 ( 6.0) 0.0260 ( 6.0) 

WASTWICK 20.8 ( 7.0) 16 0.1850 ( 8.0) 0.0223 ( 7.0) WGRMICI 20.5 ( 7.0) 16 0.1985 ( 7.0) 0.0213 ( 7.0) 

SHBCEXP 19.5 ( 8.0) 16 0.2436 ( 9.0) 0.0212 ( 8.0) WRBRNSAT 19.5 ( 8.0) 16 0.2436 ( 9.0) 0.0198 ( 8.0) 

SHPRMHAL 19.3 ( 9.0) 16 0.2518 (10.0) 0.0200 (10.0) ANRBRSAT 19.3 ( 9.0) 16 0.2518 (10.0) 0.0197 ( 9.0) 

SHPRMSAP 19.2 (10.0) 16 0.2601 (11.0) 0.0190 (12.0) SHRBRSAT 18.2 (10.5) 16 0.3142 (11.5) 0.0186 (11.0) 

SHPRMDRZ 18.2 (11.0) 16 0.3142 (12.0) 0.0204 ( 9.0) HALPOR 18.2 (10.5) 16 0.3142 (11.5) 0.0190 (10.0) 

WGRMICI 18.0 (12.0) 16 0.3239 (13.0) 0.0191 (11.0) WFBETCEL 16.8 (12.0) 16 0.3965 (13.0) 0.0175 (12.0) 

ANHBCEXP 17.7 (13.0) 16 0.3438 (14.0) 0.0179 (13.5) ANHBCEXP 16.2 (13.0) 16 0.4414 (14.0) 0.0170 (13.0) 

WFBETCEL 17.0 (14.0) 16 0.3856 (15.0) 0.0179 (13.5) WASTWICK 15.2 (14.0) 16 0.5125 (15.0) 0.0164 (14.0) 

SHRBRSAT 16.3 (15.0) 16 0.4299 (16.0) 0.0169 (17.0) WGRMICH 14.7 (15.0) 16 0.5492 (16.0) 0.0148 (15.5) 

ANRBRSAT 15.7 (16.0) 16 0.4765 (17.0) 0.0172 (15.5) SHPRMDRZ 13.8 (16.0) 16 0.6111 (17.0) 0.0148 (15.5) 

HALPRM 13.7 (17.0) 16 0.6235 (18.0) 0.0156 (18.0) SHPRMCLY 13.3 (18.0) 16 0.6482 (19.0) 0.0133 (20.0) 

SHRGSSAT 13.3 (18.0) 16 0.6482 (19.0) 0.0141 (19.0) ANRGSSAT 13.3 (18.0) 16 0.6482 (19.0) 0.0137 (19.0) 

WRBRNSAT 12.8 (19.0) 16 0.6849 (20.0) 0.0131 (20.0) SHPRMSAP 13.3 (18.0) 16 0.6482 (19.0) 0.0145 (17.5) 

SALPRES 11.8 (20.0) 16 0.7554 (21.0) 0.0125 (21.0) SALPRES 12.5 (20.0) 16 0.7089 (21.0) 0.0145 (17.5) 

ANHBCVGP 11.7 (21.0) 4 0.0197 ( 5.0) 0.0172 (15.5) WRGSSAT 10.2 (21.0) 16 0.8578 (22.0) 0.0102 (21.0) 

SHPRMCLY 8.7 (22.0) 16 0.9265 (22.0) 0.0093 (22.0) SHPRMHAL 9.2 (22.0) 16 0.9064 (24.0) 0.0099 (22.0) 

WGRMICH 8.2 (23.0) 16 0.9437 (23.0) 0.0085 (23.0) SHPRMCON 5.8 (23.0) 16 0.9898 (25.0) 0.0059 (24.0) 

ANRGSSAT 6.8 (24.0) 16 0.9763 (24.0) 0.0072 (24.0) ANHBCVGP 5.5 (24.0) 4 0.2427 ( 8.0) 0.0080 (23.0) 

     WMICDFLG 3.7 (25.0) 8 0.8859 (23.0) 0.0045 (25.0) 
a Variables ordered by χ2-statistic for SI test. 
b χ2-statistic for SI test with 5 × 5 grid (see footnote b, Tables 5 and 7, and Eq. (6-20)) and variable rank based on values of χ2-statistic. 
c Degrees of freedom for χ2-statistic. 
d p-value for χ2-statistic and variable rank based on p-value for χ2-statistic. 
e Entropy U(y, xj) based on 5 × 5 grid (see footnote b, Tables 5 and 7, and Eq. (6-29)) and variable rank based on U(y, xj). 

 
 
rank transformed data as discussed in Sect. 6.5).  Un-
fortunately, when complex patterns of behavior are 
present, it can be difficult to determine the appropriate 
form for a regression model.  Such determinations can 
be a particular challenge in exploratory analyses that 
can involve 10s or even 100s of analysis results, with 
each result potentially requiring the specification of a 
different regression model.  Second, the specified form 
for the regression is required to hold across the entire 

mapping from analysis inputs to analysis results, which 
makes the representation of local behavior and/or as-
ymptotes difficult.  In addition, the grid-based proce-
dures discussed in Sects. 6.6 and 6.7 have the drawback 
that the associated sensitivity results can be dependent 
on the particular grid selected for use.  Unfortunately, 
the most appropriate grid for use with these procedures 
is not always apparent. 
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Nonparametric regression procedures provide an 
alternative to parametric regression procedures and 
grid-based procedures that can mitigate the potential 
problems indicated in the preceding paragraph.  With 
nonparametric regression procedures, an a priori speci-
fication of the exact algebraic form of the regression 
model is not required.  Rather, an iterative procedure is 
used to construct a model that captures the relationships 
that are present in the mapping between analysis inputs 
and a particular analysis result.  This iterative construc-
tion procedure does not require the use of a grid and 
produces a model that can represent local patterns of 
behavior.  Nonparametric regression is often referred to 
as smoothing.  Popular nonparametric regression pro-
cedures include (i) locally weighted regression 
(LOESS), (ii) generalized additive models (GAMs), 
(iii) projection pursuit regression (PP_REG), and (iv) 
recursive partitioning regression (RP_REG).  These 
procedures are briefly described below. 

The LOESS technique is based on the assumption 
that the relationship between y and x is of the form 

( ) ( ) ( ) ,y f α= = +x x x xβ  (6-40) 

where β(x) = [β1(x), β2(x), …, βnX(x)] and x = [x1, x2, 
…, xnX]T.  In turn, an approximate relationship of the 
form 

( ) ( ) ( )ˆ ˆˆŷ f α= = +x x x xβ  (6-41) 

is sought with LOESS.  The quantities ˆ ( )α x  and ˆ ( )xβ  
for a given value of x are defined to be the values for α 
and β = [β1, β2, …, βnX] that minimize the sum 
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where (i) dr(x) is the distance to the rth nearest 
neighbor of x in nX-dimensional Eulidean space, (ii) 
I[0,dr(x))(||x – xi|| equals 1 if ||x – xi|| < dr(x) and equals 
0 otherwise, and (iii) the individual independent vari-
ables (i.e., x1, x2, …, xnX) are normalized to mean zero 
and standard deviation one so that the value of the 
norm || ⋅ || is not dominated by the units used for these 
variables.  The determination of α and β is straightfor-
ward with the use of appropriate matrix techniques (p. 
139, Ref. 165). 

For GAMs, the function f(x) is assumed to have 
the form 

( ) ( )
1

,
nX

j j
j

f f x
=

= ∑x
 

(6-43)
 

where the fj are arbitrary functions that will be deter-
mined as part of the analysis process.  In turn, the ob-
served values for y are assumed to be of the form 

( ) ( )
1

.
nX

i i j ij
j

y f f x
=

= = ∑x
 

(6-44)
 

Given initial estimates 2̂f , 3̂f , …, n̂Xf  for f2, f3, …, 
fnX, an estimate 1̂f  for f1 can be obtained through use 
of the relationship 

( ) ( )1 1
2

ˆ
nX

i j ij i
j

y f x f x
=

− ≅∑  (6-45) 

for i = 1, 2, …, nS.  In particular, a scatterplot smoother 
(e.g., LOESS with only one independent variable) can 
be used to smooth the partial residuals on the left hand 
side of Eq. (6-45) across x1.  This produces an estimate 

1̂f  for f1 defined across the range of values for x1.  
Given this estimate for f1, the estimate 2̂f  for f2 can be 
refined in the same manner across the range of values 
for x2 with 1̂f , 3̂f , 4̂f , …, n̂Xf .  This procedure then 
continues and repetitively cycles through the variables.  
The cycling continues until convergence is achieved.  
The result is ˆ

jf  defined at x1j, x2j, …, xnS,j for j = 1, 2, 
…, nX.  Additional detail is available elsewhere (pp. 90 
− 91, Ref. 166; pp. 300 – 302, Ref. 167). 

The PP_REG procedure involves both dimension 
reduction and additive modeling and is based on the 
assumption that f(x) has the form 

( ) ( )
1

,
nD

s s
s

f g
=

= ∑x xα  (6-46) 

where αs = [α1s, α2s, …, αnX,s], x = [x1, x2, …, xnX]T, 
αsx corresponds to a linear combination of the elements 
of x, and gs is an arbitrary function.  Values for gs, αs 
and nD are determined as part of the analysis proce-
dure.  The expression in Eq. (6-46) is an additive model 
with the quantities αsx replacing the elements xj of x as 
the independent variables.  Further, this expression 
involves a reduction in dimension as nD is usually 
smaller than nX.  The entities 1α̂ , 2α̂ , …, ˆ nDα  and 
ĝ1, ĝ2, …, ĝnD are estimated as part of the construction 
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process.  This is accomplished by first estimating α1 
and g1.  Specifically, 1α̂  and ĝ1 are defined to be the 
values for α and gα that minimize the sum 

( ) 2

1
,

nS

i i
i

y g
=
⎡ ⎤−⎣ ⎦∑ xα α  (6-47) 

where α ∈ RnX, ||α|| = 1, and gα is the outcome of using a 
scatterplot smoother (e.g., LOESS) on the points [yi, 
αxi], i = 1, 2, …, nS.  Once 1α̂  and ĝ1 are estimated, the 
partial residuals yi − ĝ1( 1ˆ ixα ), i = 1, 2, …, nS, are used 
to obtain 2α̂  and ĝ2.  Specifically, 2α̂  and ĝ2 are de-
fined to be the values for α and gα that minimize the sum 
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where α ∈ RnX, ||α|| = 1, and gα is the outcome of using 
a scatterplot smoother on the points [yi − ĝ1( 1α̂  xi), 
αxi], i = 1, 2, …, nS.  This process continues until no 
appreciable improvement based on a relative error cri-
terion is observed. 

The RP_REG procedure is based on splitting the 
data into subgroups where observations within each 
subgroup are more homogeneous than they are over the 
set of all observations.  Then, f(x) is estimated with 
regression models defined for each subgroup.  Specifi-
cally, f(x) is estimated by 

( ) ( ) ( )
1

ˆ ˆˆ ,
nP

s s s
s

f Iα
=

= +∑x x xβ  (6-49) 

where (i) As, s = 1, 2, …, nP, designate the subgroups 
into which the data are partitioned, (ii) ŷ = ˆsα + ˆ

sxβ  is 
the least squares approximation to y associated with As, 
and (iii) Is is the indicator function such Is(x) = 1 if x is 
associated with As and Is(x) = 0 otherwise.  The sub-
groups As, s = 1, 2, …, nP, are developed algorithmi-
cally from the observations [xi, yi], i = 1, 2, …, nS. 

The preceding procedures can all be carried out in 
a stepwise manner to determine variable importance, 
with (i) the most important variable 1x  being the vari-
able that results in the single-variable model with the 
most predictive capability, (ii) the second most impor-
tant variable 2x  being the variable that in conjunction 
with 1x  results in the two-variable model with the most 
predictive capability, and so on until (iii) some stopping 
criteria is reached that indicates that the consideration 
of additional variables does not produce models with 

improved predictive capability.  Order of selection in 
the stepwise construction process and fraction of vari-
ability explained (i.e., R2 as defined in Eq. (6-8)) can be 
used to indicate variable importance.  The F-statistic 
with appropriate degrees of freedom (a topic too com-
plicated for consideration here; see Ref. 168 and Sect. 
3.13, Ref. 169) can be used to determine a stopping 
point in the stepwise variable selection procedure. 

Nonparametric regression procedures are illus-
trated in Table 9 for the pressures in Figs. 5a and 10a at 
10,000 yr.  For comparison, Table 9 also contains re-
sults obtained with parametric regression procedures, 
with LIN_REG indicating linear regression (see Eq. 
(6-3)), RANK_REG indicating rank regression (see 
Sect. 6.5), and RS_REG indicating response surface 
regression (i.e., the regression model in Eq. (6-12) with 
fj(xj) = xj and fjl(xj, xl) = xjxl). For the result in Fig. 5a 
(i.e., pressure at 10,000 yr under undisturbed condi-
tions), the relationship between pressure and the domi-
nant independent variables is fairly monotonic, with the 
result that all the regression procedures perform rea-
sonably well (i.e., R2 values between 0.80 and 0.97 for 
the first five variables selected in the individual regres-
sions).  As shown in Fig. 6b, there is a strong nonlinear 
relationship between the result in Fig. 10a (i.e., pres-
sure at 10,000 yr under disturbed conditions) and the 
variable BHPRM.  The stepwise regressions with the 
four nonparametric procedures all identify BHPRM as 
the most important variable.  In contrast, the linear re-
gressions with raw and rank-transformed data fail to 
identify an effect for BHPRM.  For this particular vari-
able, the parametric response surface regression (i.e., 
RS_REG in Table 9) also performs well and results in a 
regression model with an R2 value of 0.87; however, in 
many situations the nonparametric regression proce-
dures will outperform response surface regression. 

Additional information:  A more detailed discus-
sion of the use of nonparametric regression in sensitiv-
ity is given in Ref. 168.  General discussions of non-
parametric regression procedures appear in Refs. 165-
167, 169.  The use of regression trees170 in sensitivity 
analysis is discussed and illustrated in Ref. 171. 

6.9 Squared Rank Differences/Rank 
Correlation Coefficient 
(SRD/RCC) Test 

The SRD/RCC test is the result of combining a test 
for nonrandomness in the relationship between an inde-
pendent and a dependent variable called the squared 



 

40 

Table 9. Comparison of Variable Rankings Obtained with Parametric Regression (i.e., LIN_REG, 
RANK_REG, RS_REG), Nonparametric Regression (i.e., LOESS, PP_REG, RP_REG, GAMs), 
and the Squared Rank Differences/Rank Correlation (SRD/RCC) Test for Pressure at 
(WAS_PRES) 10,000 yr under Undisturbed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., 
E2) Conditions (Fig. 10a) 

Variablea R2b dfc p-Vald Variable R2 df p-Val Variable R2 df p-Val 

Pressure, Undisturbed (i.e., E0) Conditions at 10,000 yr (Fig. 5a) 

LIN_REG RANK_REG RS_REG 
WMICDFLG 0.5076 1.0 0.0000 WMICDFLG 0.5226 1.0 0.0000 WMICDFLG 0.5098 2.0 0.0000 
HALPOR 0.7316 1.0 0.0000 HALPOR 0.7320 1.0 0.0000 HALPOR 0.7462 3.0 0.0000 
WGRCOR 0.7923 1.0 0.0000 WGRCOR 0.7859 1.0 0.0000 WGRCOR 0.8812 4.0 0.0000 
ANHPRM 0.8088 1.0 0.0000 ANHPRM 0.7975 1.0 0.0001 ANHPRM 0.9160 5.0 0.0000 
SHRGSSAT 0.8137 1.0 0.0056 SALPRES 0.8027 1.0 0.0058 WASTWICK 0.9304 6.0 0.0000 
SALPRES 0.8177 1.0 0.0119 SHRGSSAT 0.8064 1.0 0.0187 SALPRES 0.9383 7.0 0.0000 

LOESS PP_REG ANHBCEXP 0.9427 8.0 0.0119 
WMICDFLG 0.5098 2.0 0.0000 WMICDFLG 0.5098 2.0 0.0000 RP_REG 
HALPOR 0.7662 6.1 0.0000 HALPOR 0.7617 5.4 0.0000 WMICDFLG 0.5076 1.0 0.0000 
WGRCOR 0.9186 33.1 0.0000 WGRCOR 0.9236 21.5 0.0000 HALPOR 0.8205 17.0 0.0000 
ANHPRM 0.9477 25.1 0.0000 ANHPRM 0.9623 11.3 0.0000 WGRCOR 0.9220 3.0 0.0000 

GAM WASTWICK 0.9711 10.1 0.0000 ANHPRM 0.9662 16.0 0.0000 
WMICDFLG 0.5098 2.0 0.0000 ANHBCVGP 0.9755 9.1 0.0000 WASTWICK 0.9823 40.0 0.0000 
HALPOR 0.7448 4.0 0.0000 WRBRNSAT 0.9813 10.5 0.0000 SRD/RCC TEST 
WGRCOR 0.8556 4.0 0.0000 WFBETCEL 0.9851 11.6 0.0000 WMICDFLG NAe 4.0 0.0000 
ANHPRM 0.8854 4.0 0.0000 HALPRM 0.9874 9.3 0.0000 HALPOR NA 4.0 0.0000 
WASTWICK 0.8921 4.0 0.0019 SALPRES 0.9901 8.2 0.0000 WGRCOR NA 4.0 0.0001 
SHRGSSAT 0.9007 10.0 0.0116 SHPRMCLY 0.9929 13.3 0.0000     
SALPRES 0.9042 1.0 0.0018 SHRBRSAT 0.9944 9.4 0.0000     
    SHPRMDRZ 0.9969 10.1 0.0000     

Pressure, Disturbed (i.e., E2) Conditions at 10,000 yr (Fig. 10a) 

LIN_REG RANK_REG RS_REG 
HALPRM 0.1410 1.0 0.0000 HALPRM 0.1289 1.0 0.0000 BHPRM 0.6098 2.0 0.0000 
ANHPRM 0.1999 1.0 0.0000 ANHPRM 0.1866 1.0 0.0000 HALPRM 0.7006 3.0 0.0000 
HALPOR 0.2203 1.0 0.0057 HALPOR 0.2049 1.0 0.0094 ANHPRM 0.7902 4.0 0.0000 

LOESS PP_REG HALPOR 0.8291 5.0 0.0000 
BHPRM 0.6625 8.8 0.0000 BHPRM 0.6646 9.0 0.0000 ANHBCVGP 0.8400 6.0 0.0023 
ANHPRM 0.7321 12.8 0.0000 ANHPRM 0.7603 10.7 0.0000 WGRCOR 0.8532 7.0 0.0013 
HALPRM 0.7894 10.5 0.0000 HALPRM 0.8440 9.8 0.0000 SHRBRSAT 0.8654 8.0 0.0030 
ANHBCVGP 0.8286 28.9 0.0058 HALPOR 0.8965 10.4 0.0000 RP_REG 

GAM     BHPRM 0.7163 17.0 0.0000 
BHPRM 0.6654 10.0 0.0000     HALPRM 0.8474 15.0 0.0000 
ANHPRM 0.7555 4.0 0.0000     ANHPRM 0.8894 -9.0 0.0000 
HALPRM 0.8242 2.0 0.0000     ANRGSSAT 0.9726 81.0 0.0000 
HALPOR 0.8590 2.0 0.0000     SRD/RCC TEST 

BHPRM NA 4.0 0.0000 
HALPRM NA 4.0 0.0000 
ANHPRM NA 4.0 0.0001 
SHPRMDRZ NA 4.0 0.0150 

__________________________  
a Variables listed in order of selection. 
b Cumulative R2 value with entry of each variable into model. 
c Incremental degrees of freedom with entry of each variable into model for all cases except 

SRD/RCC test; df fixed at 4.0 for all variables for SRD/RCC test.     
d p-value for model with addition of each new variable.  Stepwise procedure terminates at a p-value of 0.02. 
e NA indicates that result is not applicable. 
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rank differences (SRD) test with the Spearman rank 
correlation coefficient (RCC).172  This test is effective 
at identifying linear and very general nonlinear patterns 
in analysis results.  However, unlike the regression pro-
cedures introduced in Sects. 6.3 and 6.8, the SRD/RCC 
test does not involve the development of a model that 
approximates the relationship between independent and 
dependent variables.  Further, unlike the grid-based 
procedures introduced in Sects. 6.6 and 6.7, the 
SRD/RCC test does not require the introduction and 
use of a grid. 

A brief description of the SRD/RCC test follows.  
The test is used to assess the relationships between in-
dividual elements xj of x = [x1, x2, …, xnX] and a pre-
dicted variable y of interest for a random or LHS and a 
functional relationship of the form y = f(x).  The SRD 
component of the test is based on the statistic 

( )
1 2

1,
1

,
nS

j i j ij
i

Q r r
−

+
=

= −∑  (6-50) 

where rij, i = 1, 2, …, nS, is the rank of y obtained with 
the sample element in which xj has rank i.  Under the 
null hypothesis of no relationship between xj and y, the 
quantity 

( ){ } { }2 51 6 6⎡ ⎤= − −⎢ ⎥⎣ ⎦j jS Q nS nS nS  (6-51) 

approximately follows a standard normal distribution 
for nS > 40.  Thus, a p-value prj indicative of the 
strength of the nonlinear relationship between xj and y 
can be obtained from Qj.  Specifically, prj is the prob-
ability that a value jQ  > Qj would occur due to chance 
if there was no relationship between xj and y.   

The RCC component of the test is based on the 
rank (i.e., Spearman) correlation coefficient 
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where r(xij) and r(yi) are the ranks associated xj and y 
for sample element i.  Under the null hypothesis of no 
rank correlation between xj and y, the quantity rc(xj, y) 
has a known distribution (Table 10, Ref. 155).  Thus, a 
p-value pcj indicative of the strength of the monotonic 
relationship between xj and y can be obtained from 
rc(xj, y).   

The SRD/RCC test is obtained from combining the 
p-values prj and pcj to obtain the statistic 

( ) ( )2
4 2 ln ln ,rj cjp pχ ⎡ ⎤= − +⎣ ⎦  (6-53) 

which has a chi-square distribution with four degrees of 
freedom.  The p-value associated with 2

4χ  constitutes 
the SRD/RCC test for the strength of the relationship 
between xj and y. 

Results obtained with SRD/RCC test are illustrated 
in Table 9.  Like the nonparametric regression proce-
dures, the SRD/RCC test is able to identify the nonlin-
ear effect associated with BHPRM for the result in Fig. 
10a (i.e., pressure at 10,000 yr under disturbed condi-
tions), which is completely missed with the linear re-
gression procedures with raw and rank-transformed 
data. 

Additional information:  A detailed description of 
the SRD/RCC test and the determination of the associ-
ated p-value is available in the original article.172 

6.10 Two Dimensional Kolmogorov-
Smirnov (KS) Test 

The two dimensional KS test provides a way to test 
for a pattern in a scatterplot without the use of a 
grid.173-175  With this test, each point [xij, yi] in the 
sample [xij, yi], i = 1, 2, …, nS, is used to divide the xjy 
plane into four quadrants (Fig. 12): 

( ){ }1 , : ,i j ij j iQ x y x x y y= < < , (6-54) 

( ){ }2 , : ,i j j ij iQ x y x x y y= < < , (6-55) 

( ){ }3 , : ,i j j ij iQ x y x x y y= < < , (6-56) 

( ){ }4 , : , .i j ij j iQ x y x x y y= < <  (6-57) 
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BRAGFLO (E2 at 1000 yr, R1, R2, R3)
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Fig. 12. Illustration of quadrants used with the two 

dimensional KS test for the variable 
WAS_PRES at 10,000 yr. 

In turn, two fractions are defined for each quadrant: 

fEik = expected fraction of observations in quadrant 
Qik if there is no relationship between xj  
and y, (6-58) 

fOik = observed fraction of observations in  
quadrant Qik. (6-59) 

The quantity 

{ }max , 1, 2, 3, 4, 1, 2, ,ik ikD fE fO k i nS= − = = …   
  (6-60) 

is the KS statistic for the scatterplot. 

The probability prob( D  > D) of exceeding D 
given that there is no relationship between xj and y can 
be approximated by 
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where QKS is the function defined by 

( ) ( ) ( )1 2 2
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2 1 exp 2j

KS
j

Q jλ λ
∞

−

=
= − −∑  (6-62) 

and c(xj, y) is the estimated CC between xj and y (Sect. 
14.7, Ref. 157).  Alternatively, prob( D  > D) can be 
estimated by a Monte Carlo procedure in which D is 
repeatedly estimated with randomly shuffled values 
(without replacement) of the xij’s and yi’s as previously 
illustrated in conjunction with Eq. (6-21) and Table 6 
for the CMNs, CLs, CMDs and SI tests. 

The result of applying the KS test is illustrated in 
Table 10, with p-values being calculated as indicated in 
Eq. (6-61) and also calculated with the previously indi-
cated Monte Carlo procedure.  This table also presents 
the results of using the SI test with a 5 × 5 grid.  The 
direct calculation of p-values as indicated in Eq. (6-61) 
performs rather poorly and produces p-values that are 
much larger than those obtained with the Monte Carlo 
procedure.  In contrast, the Monte Carlo calculation of 
p-values for the KS test produces results that are gener-
ally similar to, but not the same as, the results obtained 
with the SI test.  In particular, the KS test with Monte 
Carlo calculation of p-values and the SI test agree on 
the most important variables but show some differences 
on the less important variables. 

Additional information:  Ref. 157, Sect. 14.7; Refs. 
173-175. 

6.11 Tests for Patterns Based on  
Distance Measures 

Tests for patterns based on distance measures pro-
vide possible alternatives to tests based on gridding as 
described in Sects. 6.6 and 6.7.  Distance-based tests 
for patterns have a potential advantage over grid-based 
tests in that they do not require the definition and use of 
a grid that can possibly influence the outcome of the 
test.  Such tests have a long history of use in the eco-
logical sciences.176-189 

Three distance-based tests will be illustrated:  near-
est neighbor (NN) test, total distance (TD) test, and 
coefficient of aggregation (CA) test.  Each of these 
tests involves the consideration of a set of points of the 
form [xij, yi], i = 1, 2, …, nS.  Further, the xij’s and yi’s 
are assumed to be normalized to mean zero and stan-
dard deviation one. 

The NN test190 is based on the statistic 

1
,

nS

j ij
i

d d nS
=

= ∑  (6-63) 
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Table 10. Comparison of Formal Statistical and Monte Carlo Determination of p-Values for the SI Test 
and the Two Dimensional KS Test for Pressure (WAS_PRES) at 10,000 yr under Undis-
turbed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., E2) Conditions (Fig. 10a) 

 SI Test:  5 × 5b SIMC Test:  5 × 5c KS Testd KSMC Teste 

Variablea p-value Rank p-value Rank p-value Rank p-value Rank 
Pressure, Undisturbed (i.e., E0) Conditions at 10,000 yr (Fig. 5a) 

WMICDFLG 0.0000 1 0.0000 1.5 0.0001 1 0.0000 1.5 
HALPOR 0.0000 2 0.0000 1.5 0.0077 2 0.0000 1.5 
WGRCOR 0.0003 3 0.0003 3 0.2979 3 0.0002 3 
ANHPRM 0.0049 4 0.0031 4 0.8228 4 0.0257 4 
ANHBCVGP 0.0194 5 0.0181 5 1.0000 24 0.4975 16 

Pressure, Disturbed  (i.e., E2) Conditions at 10,000 yr (Fig. 10a) 
BHPRM 0.0000 1 0.0000 1 0.0048 1 0.0000 1.5 
HALPRM 0.0002 2 0.0003 3 0.1302 2 0.0000 1.5 
WGRCOR 0.0002 3 0.0001 2 0.9609 5 0.1540 6 
ANHPRM 0.0049 4 0.0039 4 0.6102 3 0.0023 3 
HALPOR 0.3142 12 0.3164 12 0.7830 4 0.0178 4 
a Variables ordered by p-values for SI test.  Table includes only variables that had a p-value less than 0.05 for at least one of the procedures. 
b p-values and variable ranks for SI test with 5 × 5 grid (see Footnote b in Tables 5 and 7) determined from χ2 distribution; see Eq. (6-20). 
c p-values and variable ranks for SI test with 5 × 5 grid (see Footnote b in Tables 5 and 7) determined with Monte Carlo procedure; see discus-

sion associated with Eq. (6-21). 
d p-values and variable ranks for KS test determined from Eq. (6-61). 
e p-values and variable ranks for KS test determined with Monte Carlo procedure; see discussion associated with Eq. (6-21). 

 

where dij is the distance from the point (xij, yi) to its 
nearest neighbor among the points (xkj, yk) for k = 1, 2, 
…, nS and k ≠ i.  If xj has an effect on y, then the value 
for dj should tend to be smaller than would be the case 
if xj had no effect on y.  Determination of values jd  for 
samples ( ijx , iy ), i = 1, 2, …, nS, obtained by ran-
domly pairing, without replacement, the values for the 
xij’s and yi’s in the original sample allows the determi-
nation of a distribution for dj under the null hypothesis 
that there is no relationship between xj and y.  Thus, 
conditional on the observed distributions for xj and y, 
the probability (i.e., a p-value) of obtaining a smaller 
value jd  than the observed value dj by chance alone 
can be determined.  A small value for this probability 
(e.g., < 0.01) indicates that xj does indeed have an ef-
fect on y. 

The TD test is a variant of the NN test and is based 
on the statistic 

1 1
,

nS nS

tj ik
i k i

d d nD
= = +

= ∑ ∑  (6-64) 

where dik is the distance between the points (xij, yi) and 
(xkj, yk) and nD = nS(nS − 1)/2 is the total number of 
distances dik.  As for the NN statistic dj, the value for 
dtj will tend to be smaller than would otherwise be the 
case if xj has an effect on y.  Similarly to dj, a Monte 
Carlo procedure can be used to develop a distribution 
for dtj under the assumption that xj has no effect on y.  
Then, conditional on the observed distributions for xj 
and y, the probability of obtaining a smaller value for 
dtj by chance alone can be estimated. 

The CA test179, 191 is based on the statistic 

2 2 2
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j ij ij ij
i i i

A d d d
= = =

⎡ ⎤
= +⎢ ⎥
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∑ ∑ ∑  (6-65) 

where dij is defined the same as in Eq. (6-63) for the 
NN test and ijd  is defined similarly but for a sample 
( ijx , iy ), i = 1, 2, …, nS, obtained by randomly per-
muting the values for the xij’s and yi’s in the sample 
(xij, yi), i = 1, 2, …, nS.  If xj has an effect on y, then the 
value for Aj will tend to be larger than would otherwise 
be the case because of the presence of 2

iji d∑  in the 
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denominator in the definition of Aj.  A Monte Carlo 
procedure involving repeated calculations of Aj with 
two different random permutations of the xij’s and yi’s 
in the sample (xij, yi), i = 1, 2, …, nS, can be used to 
estimate a distribution for Aj under the assumption that 
xj has no effect on y.  Then, conditional on the observed 
distributions for xj and y, the probability of obtaining a 
larger value for Ãj for Aj than the observed value by 
chance alone can be estimated. 

The SI, NN, TD and CA tests are illustrated in Ta-
ble 11.  On the whole, the results obtained with the 
distance-based tests show considerable disagreement 
with results obtained with the SI test and also with 
other grid-based techniques illustrated in Table 5.  Of 
the distance-based tests, the TD test compares best with 
results obtained with the grid-based techniques.  This 
lack of agreement suggests that the NN, TD and CA 
tests are less effective sensitivity analysis procedures 
than some of the other techniques introduced in this 
survey.  However, the idea of using a grid-free, dis-
tance-based measure of sensitivity is very appealing.  It 
is certainly possible that more appropriate distance-
based measures of sensitivity can be found than those 
used in the presented tests.  This is an area that merits 
additional investigation.  For example, the use of rank-
transformed data might yield more informative results. 

Additional information: Refs. 176-189; Sect. 8.2.5, 
Ref. 192. 

6.12 Top Down Coefficient of  
Concordance (TDCC) 

The TDCC was introduced by Iman and Conover 
as a way to test agreement between different sensitivity 
analysis procedures.193  However, it also provides a 
way to identify significant sets of variables in a sam-
pling-based sensitivity analysis that does not rely on 
statistical tests predicated on distributional assumptions 
that may not be satisfied.  In this application, the TDCC 
is used in a stepwise manner to test for agreement of 
sensitivity results obtained when a particular sensitivity 
analysis procedure is applied individually to each sam-
ple in a sequence of replicated samples of the same size 
(e.g., the three replicated samples of size nS = 100 indi-
cated in Sect. 3).  The significant variables are those 
which the TDCC indicates are identified as being im-
portant across all replicates. 

The TDCC is based on the consideration of arrays 
of the form 

( ) ( ) ( )
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where (i) x1, x2, …, xnX are the variables under consid-
eration, (ii) R1, R2, …, RnR designate the replicates, (iii) 
Ojk is the outcome (i.e., sensitivity measure) for vari-
able xj and replicate Rk, and (iv) r(Ojk), j = 1, 2, …, nX, 
are the ranks assigned to the outcomes associated with 
replicate Rk.  In the assigning of ranks, (i) a rank of 1 is 
assigned to the outcome Ojk with the largest value for 
|Ojk|, (ii) a rank of 2 is assigned the outcome Ojk with 
the second largest value for |Ojk|, and so on, and (iii) 
averaged ranks are assigned to equal values of Ojk.  
This is the reverse of the procedure used to assign ranks 
for use in rank regression. 

The TDCC is a measure of agreement between 
multiple rankings that emphasizes agreement between 
rankings assigned to important variables and deempha-
sizes disagreement between rankings assigned to less 
important/unimportant variables.  For the TDCC, the 
ranks r(Ojk) in Eq. (6-66) are replaced by the corre-
sponding Savage scores ss(Oij), where 

( )
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1/
nX

jk
s r O jk

ss O s
=

= ∑  (6-67) 

and average Savage scores are assigned in the event of 
ties.  The result is an array of the form 
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which has the same form as the array in Eq. (6-66) ex-
cept that the ranks r(Ojk) have been replaced by the 
corresponding Savage scores ss(Ojk). 

The TDCC is defined by 
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Table 11. Comparison of Tests for Patterns Based on Distance Measures for Pressure (WAS_PRES) 
at 10,000 yr under Undisturbed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., E2) Condi-
tions (Fig. 10a) 

 SI Test:  5×5b NN Testc TD Testd CA Teste 

Variablea p-value Rank p-value Rank p-value Rank p-value Rank 
Pressure, Undisturbed (i.e., E0) Conditions at 10,000 yr (Fig. 5a) 

WMICDFLG 0.0000 1 0.0001 2 0.0000 2 0.6664 21 
HALPOR 0.0000 2 0.0000 1 0.0000 2 0.0014 1 
WGRCOR 0.0003 3 0.0327 3 0.0000 2 0.0049 2 
ANHPRM 0.0049 4 0.3669 15 0.6348 21 0.3302 9 
ANHBCVGP 0.0194 5 0.4745 7 0.4563 14 0.7544 24 

Pressure, Disturbed (i.e., E2) Conditions at 10,000 yr (Fig. 10a) 
BHPRM 0.0000 1 0.0000 1 0.0000 2 0.0020 2 
HALPRM 0.0002 2 0.3511 13 0.0000 2 0.0752 4 
WGRCOR 0.0002 3 0.0095 2 0.7210 22 0.3420 12 
ANHPRM 0.0049 4 0.0732 4 0.0000 2 0.0018 1 
HALPOR 0.3142 12 0.2280 8 0.0210 4 0.2245 9 
a Variables ordered by p-values for SI test.  Table includes only variables that had a p-value less than 0.05 for at least one of the procedures. 
b p-values and variable ranks for SI test with 5 × 5 grid (see Footnote b in Tables 5 and 7) determined from χ2 distribution; see Eq. (6-20). 
c p-values and variable ranks for NN test (see Eq. (6-63)) determined with Monte Carlo procedures; see discussion associated with Eq. (6-21). 
d Same as c but for TD test (see Eq. (6-64)). 
e Same as c but for CA test (see Eq. (6-65)). 
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and is equivalent to Kendall’s coefficient of concor-
dance (p. 305, Ref. 155) calculated with Savage scores 
rather than ranks.  Under repeated random assignment 
of the integers in the columns of Eq. (6-66), 

( )1 TT nR nX C= −  (6-70) 

approximately follows a χ2-distribution with nX – 1 
degrees of freedom and thus provides the basis for a 
statistical test of agreement. 

The procedure to identify a significant set of vari-
ables with the TDCC operates in the following manner:  
(i) The sensitivity analysis technique in use (e.g., step-
wise regression analysis) is applied to each replicate to 
rank variable importance.  (ii) The TDCC is applied to 

the variable rankings obtained with each replicate to 
determine if there is a significant agreement between 
the replicates (e.g., as defined by a specified p-value for 
the TDCC).  (iii) If there is significant agreement, the 
top ranked variable (i.e., rank 1) for each replicate is 
removed from consideration for all replicates; this re-
sults in the removal of one variable if all replicates as-
sign the same variable a rank of 1 and more than one 
variable if different variables are assigned a rank of 1 in 
different replicates.  (iv) A new sensitivity analysis is 
then performed for each replicate with the remaining 
variables, the remaining variables are reranked for each 
replicate, and Steps (ii) and (iii) are repeated with the 
reduced set of variables.  (v) The process is continued 
until the deleted variable result in the analysis reaches a 
point at which the TDCC indicates that there is no sig-
nificant agreement between the variable rankings ob-
tained with the individual replicates.  (vi) At this point, 
the analysis ends, and the significant set of variables 
are those deleted before the TDCC indicated no signifi-
cant agreement between the variable rankings obtained 
with the individual replicates. 



 

46 

This procedure is illustrated for rank regression 
analysis with the three replicated random samples (i.e., 
RS1, RS2, RS3) from the variables in Table 1 for cu-
mulative brine flow into the repository (BRNREPTC) at 
1000 yr.  The individual regression analyses all rank 
HALPOR as the most important variable (Table 12) and 
have a TDCC of 0.80 with a p-value of 5.2E−5 (Table 
13).  As a result, HALPOR is removed from considera-
tion, which reduces the number of independent vari-
ables from 29 to 28.  A new rank regression is then 
performed for each replicate with the remaining 28 
variables, and the variables are reranked (i.e., from 1 to 
28) on the basis of their SRRCs, with ANHPRM having 
a rank of 1 in one replicate and WMICDFLG having a 
rank of 1 in two replicates.  For this new ranking (i.e., 
without HALPOR), the TDCC has a value of 0.71 with 
a p-value of 5.0E−4 (Table 13).  As this is considered 
to be significant agreement, ANHPRM and 
WMICDFLG are dropped; the remaining 26 variables 
are reranked; new regressions are performed for each 
replicate; and a resultant TDCC of 0.46 with a p-value 
of 9.8E−2 is calculated (Table 13).  If a p-value of 
9.8E-2 is considered to be insignificant, then the analy-
sis ends, and the set of significant variables is taken to 
be {HALPOR, ANHPRM, WMICDFLG}. 

If a p-value of 9.8E−2 is considered to be signifi-
cant (e.g., if the analysis was using 0.1 as the p-value 
above which the analysis stopped), then the analysis 
would continue with the top ranked variables in the 
individual replicates being dropped (i.e., SALPRES, 
HALPRM, BPPRM) and the TDCC recalculated for the 
remaining 23 variables.  This process would continue 
until either an insignificant value for the TDCC was 
obtained or all variables were dropped, with the latter 
being an unlikely outcome. 

Additional information:  Refs. 125, 193.  Content 
of this section is an adaptation of material contained in 
Sects. 5 and 6 of Ref. 125. 

6.13 Variance Decomposition 

An informative, but potentially computationally 
expensive, sensitivity analysis procedure is based on a 
complete variance decomposition of the uncertainty 
associated with y.56-59  With this procedure, the vari-
ance V(y) of y is expressed as 

( ) 12
1 1 1
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nX nX nX

j jk nX
j j k j

V y V V V
= = = +

= + + +∑ ∑ ∑ ……  (6-71) 

Table 12. Sensitivity Analysis Results Based on SRRCs for Three Replicated Random Samples (RS1 
RS2, RS3) of Size 100 for Cumulative Brine Flow into Repository (BRNREPTC) at 1000 yr 
Under Undisturbed (i.e., E0) Conditions (adapted from Table 8, Ref. 125) 

Variablea RS1b RS2 RS3 
HALPOR 9.93E−01(1)c 9.67E−01(1) 9.73E−01(1) 
WMICDFLG −9.72E−02(2) −6.92E−02(4) −1.13E−01(2) 
ANHPRM 6.49E−02(3) 1.33E−01(2) 9.84E−02(3) 
SALPRES −4.00E−02(4) −2.70E−03(26) −1.41E−02(13) 
HALPRM 3.53E−02(5) 7.67E−02(3) 4.05E−02(5) 
WRBRNSAT −3.08E−02(6) −1.79E−02(14) 9.13E−03(17) 
WASTWICK −2.82E−02(7) −2.27E−02(10) −4.47E−03(21) 
BPCOMP −2.61E−02(8) 2.36E−02(9) −8.05E−04(29) 
SHPRMDRZ 2.29E−02(9) −1.37E−02(17) 2.58E−02(8) 
BPPRM −1.85E−02(10) 1.27E−02(19) 5.08E−02(4) 

… … … … 
BPVOL −1.58E−03(27) 6.54E−03(23) 4.64E−03(20) 
ANHBCEXP −1.30E−03(28) 4.32E−03(25) 2.88E−02(6) 
WRGSSAT −1.19E−03(29) 1.32E−02(18) −5.33E−03(19) 
a Variables in regression model ordered by SRRCs for sample RS1. 
b SRRC in model containing all variables for indicated sample. 
c Variable rank based on absolute value of SRRC for indicated sample. 
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Table 13. Sensitivity Analysis with the TDCC for Three Replicated Random Samples of Size 100 for 
Cumulative Brine Flow into Repository (BRNREPTC) at 1000 yr under Undisturbed (i.e., E0) 
Conditions (adapted from Table 9, Ref. 125) 

Stepa TDCCb p-valuec Variable(s) Removedd 
1 0.80 5.2E−05 HALPOR 
2 0.71 5.0E−04 WMICDFLG, ANHPRM 
3 0.46 9.8E−02 SALPRES, HALPRM, BPPRM 

a Steps in analysis. 
b TDCC at beginning of step. 
c p-value for TDCC at beginning of step. 
d Variable(s) removed at end of step. 

 
 
where Vj is the contribution of xj to V(y), Vjk is the con-
tribution of the interaction of xj and xk to V(y), and so 
on up to V12…nX, which is the contribution of the inter-
action of x1, x2, …, xnX to V(y).  Sensitivity measures 
are provided by 
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where sj is the fraction of V(y) contributed by xj alone 
and sjT is the fraction of V(y) contributed xj and interac-
tions of xj with other variables. 

The contributions to variance Vj, Vjk, …, V12…nX 
in Eqs. (6-71) and (6-72) are defined by multidimen-
sional integrals involving y = f(x) and the individual 
elements xj of x.  Specifically, 
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where (i) Xj is the sample space for xj, dj(xj) is the den-
sity function for xj and the resultant quantities 
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1 1
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j j j
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are the sample space and density function, respectively, 
for x, (ii) X−j and X−j,k correspond to the reduced sam-
ple spaces defined by 
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and (iii) Xj = jX  in Eq. (6-77) with the value for 
j jx X∈  replacing the value for xj ∈ Xj in the vector x 

(i.e., the variables xj and jx  associated with Xj and jX  
have identical distributions but are assumed to be inde-
pendent and the vectors x and x are the same except 
that xj appears as element j in x and jx  appears as ele-
ment j in x). 

As a result, the determination of sj and sjT is a 
problem in the evaluation of multidimensional inte-
grals.  In practice, this evaluation is carried out with 
sampling-based methods of the form indicated in the 
following algorithm. 

Step 1.  Generate a random or LHS 

1 2 ,, , , , 1, 2, , ,i i i i nXx x x i nS⎡ ⎤= =⎣ ⎦… …x  (6-78) 

from x = [x1, x2, …, xnX] in consistency with the distri-
butions assigned to the individual xj. 

Step 2.  Estimate the mean and variance for y with 
the approximations 
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and 
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The estimation of Ê(y) and ˆ( )V y  requires nS evalua-
tions of the function f. 

Step 3.  Generate a second random or LHS 

1 2 ,, , , , 1, 2, , ,i i i i nXr r r i nS⎡ ⎤= =⎣ ⎦… …r  (6-81) 

by randomly permuting, without replacement, the indi-
vidual variable values associated with the sample gen-
erated in Step 1. 

Step 4.  For each variable xj, generate a reordering 

1 2 ,, , , , 1, 2, , ,ij ij ij ij nXr r r i nS⎡ ⎤= =⎣ ⎦… …r  (6-82) 

of the sample generated in Step 3 such that rijj = xij.  
This step only involves a change in the numbering as-
sociated with the sample generated in Step 3 for each 
xj; no changes to the sample itself are involved. 

Step 5.  For each variable xj, estimate sj by 

( ) ( ) ( ) ( )2

1

ˆ ˆ .
nS

j i ij
i

s f f nS E y V y
=

⎡ ⎤
≅ −⎢ ⎥
⎢ ⎥⎣ ⎦
∑ x r  (6-83) 

The estimation of sj for all xj requires only nS addi-
tional evaluations of the function f as a result of the 
efficient reuse of the function evaluations for the sam-
ple generated in Step 3. 

Step 6.  For each variable xj, generate an additional 
sample 

1 2 ,, , , , 1, 2, , ,ij ij ij ij nXx x x i nS⎡ ⎤= =⎣ ⎦… …x  (6-84) 

where xijj is generated as a random or LHS from xj and 
xijk = xik for k ≠ j.  The sample generated for xj in this 
step differs from the sample generated in Step 1 only in 
the values associated with xj. 

Step 7.  Estimate sjT by 

( ) ( ) ( ) ( )
1

ˆ
nS

jT i i ij
i

s f f f nS V y
=

⎡ ⎤ ⎡ ⎤≅ − ⎣ ⎦⎣ ⎦∑ x x x  (6-85) 

for each xj.  The estimation of sjT for all xj requires an 
additional (nX)(nS) evaluations of the function f. 

Although the sensitivity measures sj and sjT pro-
vide valuable sensitivity information, their determina-
tion can be computationally expensive due to the large 
number of function evaluations that could be required.  
Specifically, 2(nS), (nX + 1)(nS) and (nX + 2)(nS) func-
tion evaluations are required to estimate sj, sjT and both 
sj and sjT, respectively, for nX uncertain variables.  Fur-
ther, because integrals are being approximated, the ba-
sic sample size nS required for the preceding algorithm 
to produce acceptable approximations to sj and sjT is 



 

49 

likely to be much larger than the sample sizes required 
for other sampling-based sensitivity measures. 

Sensitivity analysis based on variance decomposi-
tion is illustrated with a simple test function introduced 
as part of a review of uncertainty and sensitivity analy-
sis procedures (Model 9 in Ref. 194).  Specifically, this 
test function is defined by 

( ) [ ]1 2 3
2 4

1 2 3 1

, , ,

sin sin sin ,

y f x x x

x A x Bx x

= =

= + +

x x
 (6-86) 

with A = 7, B = 0.1 and each xj uniform on [−π,π].  Un-
fortunately, the fluid flow model that has been used to 
illustrate other sensitivity analysis procedures is too 
computationally demanding for use with the procedures 
discussed in this section.  Values of sj and sjT obtained 
with a base sample size of nS = 10,000 are 

s1 = 0.30, s2 = 0.46, s3 = 0.00 (6-87) 

and 

s1T = 0.53, s2T = 0.45, s3T = 0.23. (6-88) 

Further, results obtained with different values for nS 
are illustrated in Table 14 and suggest that the ap-
proximations of the integrals appearing in the defini-
tions of sj and sjT are close to being converged with nS 
= 10,000. 

For perspective, sensitivity results based on CCs, 
RCCs, CMNs, CLs, CMDs and SI are presented in Ta-
ble 15 and scatterplots for x1, x2 and x3 are given in 
Fig. 13.  The model in Eq. (6-86) was constructed to 
have patterns that would be difficult to identify with 
regression-based sensitivity analysis procedures.  Thus, 
although x2 is a major contributor to the uncertainty in 
y, this effect is completely missed by the analyses based 
on CCs and RCCs in Table 15 owing to the oscillatory 
relationship between x2 and y (Fig. 13b).  Similarly, the 
CMDs test does not identify x3 as having an effect on y 
owing to the constancy of the median values for y 
across the range of x3 (Fig. 13c).  Of the tests presented 
in Table 15, the SI test has the best performance and 
gives a reasonable indication of the importance of x1, x2 
and x3 with respect to the uncertainty in y for nS = 100 
and nS = 1000.  This is not surprising as the SI test is 
effective at identifying nonlinear relationships.  Fullest 
representation of the effects of x1, x2 and x3 on the un-
certainty in y is given by the variance decomposition 
results in Eqs. (6-87) and (6-88).  However, this en-
hanced resolution comes at a cost as the results in Eqs. 
(6-87) and (6-88) required more function evaluations 
(i.e., nS = 10,000) than the SI results (i.e., nS = 100 and 
nS = 1000) in Table 15. 

Additional Information:  Refs. 56-60, 195-210. 

Table 14. Evaluation of Variance Decompositions sj and sjT for Model in Eq. (6-86) with Different Sam-
ple Sizes 

nSa Ê(y)b V̂ (y)c 1ŝ d 2ŝ d 3ŝ d 1ˆ Ts e 2ˆ Ts e 3ˆ Ts e 

10 3.7 16.5 0.70 0.65 −0.04 0.84 −0.09 −0.24 
100 3.9 13.1 0.10 0.37 −0.24 0.79 0.80 0.45 

1000 3.5 14.2 0.30 0.44 −0.02 0.56 0.53 0.24 

10,000 3.5 14.0 0.30 0.46 0.00 0.53 0.45 0.23 
100,000 3.5 13.9 0.32 0.44 −0.00 0.56 0.44 0.24 

1,000,000 3.5 13.8 0.32 0.44 0.00 0.56 0.44 0.24 
a Sample size. 
b Estimate for expected value of y; see Eqs. (6-73) and (6-79). 
c Estimate for variance of y; see Eqs. (6-74) and (6-80). 
d Estimate for contribution of xj, j = 1, 2, 3, to variance of y; see Eqs. (6-72) and (6-83) 
e Estimate for contribution of xj, j = 1, 2, 3, and its interactions with the other two variables to the variance of y; see Eqs. (6-72) and (6-85). 
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Table 15. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Model in Eq. (6-86) 
(Table 9.14, Ref. 101) 

CCb RCCc CMN: 1 × 5d CL: 1 × 5e CMD: 2 × 5f SI: 5 × 5g Variable 
Namea Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val 

Sample Size nLHS = 100 
x1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 2.0 0.0001 1.0 0.0000
x3 2.0 0.5667 2.0 0.6361 3.0 0.6917 3.0 0.5495 3.0 0.9384 3.0 0.0615
x2 3.0 0.8327 3.0 0.8393 2.0 0.0000 2.0 0.0000 1.0 0.0000 2.0 0.0008

Sample Size nLHS = 1000 
x1 1.0 0.0000 1.0 0.0000 1.5 0.0000 1.5 0.0000 2.0 0.0000 1.5 0.0000
x3 2.0 0.0162 2.0 0.0187 3.0 0.0438 3.0 0.0347 3.0 0.1446 3.0 0.0000
x2 3.0 0.9799 3.0 0.9999 1.5 0.0000 1.5 0.0000 1.0 0.0000 1.5 0.0000

a Variables ordered by p-values for CCs. 
b Ranks and p-values for CCs; see Eq. (6-24), Ref. 47. 
c Ranks and p-values for RCCs; see Eq. (6-38), Ref. 47. 
d Ranks and p-values for CMNs test with 1×5 grid; see Eq. (6-15). 
e Ranks and p-values for CLs test with 1×5 grid; see Eq. (6-16) 
f Ranks and p-values for CMDs test with 2×5 grid; see Eq. (6-18). 
g Ranks and p-values for SI test with 5×5 grid; see Eq. (6-20). 
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Nonmonotonic Test Problem : nLHS = 1000

Frame
13c

–3.4 –2.0 –0.7 0.7 2.0 3.4
–1.0

–0.4

0.1

0.7

1.3

1.8

Sampled Value x3 TRI-6342-6063-4.ai

P
re

di
ct

ed
 V

al
ue

: f
(x

) (
×1

0)

Nonmonotonic Test Problem : nLHS = 1000

–3.4 –2.0 –0.7 0.7 2.0 3.4
–1.0

–0.4

0.1

0.7

1.3

1.8

Sampled Value x2

P
re

di
ct

ed
 V

al
ue

: f
(x

) (
×1

0)

Frame
13b

–3.4 –2.0 –0.7 0.7 2.0 3.4
–1.0

–0.4

0.1

0.7

1.3

1.8
Nonmonotonic Test Problem : nLHS = 1000

Sampled Value x1

P
re

di
ct

ed
 V

al
ue

: f
(x

) (
×1

0)
Frame
13a

 
Fig. 13. Scatterplots for model in Eq. (6-86) with grid for SI test with nI = nD = 5 (adapted from Fig. 9.15, 

Ref. 101) 
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7.  Summary 

Sampling-based uncertainty and sensitivity analy-
sis is widely used, and as a result, is a fairly mature area 
of study. However, there remain a number of important 
challenges and areas for additional study.  For example, 
there is a need for sensitivity analysis procedures that 
are more effective at revealing nonlinear relations than 
the parametric regression procedures (Sect. 6.3) and 
partial correlation procedures (Sect. 6.4) currently in 
wide use.  Among the approaches to sensitivity analysis 
described in the preceding section, statistical tests for 
patterns based on gridding (Sect. 6.6), nonparametric 
regression (Sect. 6.8), the squared rank differences/rank 
correlation test (Sect. 6.9), the two dimensional Kol-
mogorov-Smirnov test (Sect. 6.10), and complete vari-
ance decomposition (Sect. 6.13) have not been as 
widely used as approaches based on parametric regres-
sion and partial correlation and merit additional inves-
tigation and use.   

As another example, sampling-based procedures 
for uncertainty and sensitivity analysis usually use 
probability as the model, or representation, for uncer-
tainty.  However, when limited information is available 
with which to characterize uncertainty, probabilistic 
characterizations can give the appearance of more 
knowledge than is really present.  Alternative represen-
tations for uncertainty such as evidence theory and pos-
sibility theory merit consideration for their potential to 
represent uncertainty in situations where little informa-
tion is available.84-92   

Finally, a significant challenge is the education of 
potential users of uncertainty and sensitivity analysis 
about (i) the importance of such analyses and their role 
in both large and small analyses, (ii) the need for ap-
propriate separation of aleatory and epistemic uncer-
tainty in the conceptual and computational implementa-
tion of analyses of complex systems,15-24 (iii) the need 
for a clear conceptual view of what an analysis is in-
tended to represent and a computational design that is 
consistent with that view,15, 124, 211, 212 (iv) the role 
that uncertainty and sensitivity analysis plays in model 
and analysis verification,5, 6 and (v) the importance of 
avoiding deliberately conservative assumptions if 
meaningful uncertainty and sensitivity analysis results 
are to be obtained.213-217 

Some thoughts and personal preferences of the au-
thors are now given.  The appropriate characterization 
of the uncertainty in analysis inputs is essential to the 
performance of a meaningful uncertainty and sensitivity 

analysis (Sect. 2).  In particular, it is important to avoid 
deliberately conservative assumptions if informative 
uncertainty and sensitivity analysis results are to be 
obtained.  However, developing uncertainty distribu-
tions that appropriately characterize the uncertainty in 
analysis inputs can be a time-consuming and expensive 
process.  This is especially true in analyses that involve 
tens to hundreds of uncertain inputs.  In such situations, 
a reasonable strategy is to perform an initial uncertainty 
and sensitivity analysis with rather crude (i.e., explora-
tory) uncertainty characterizations to identify the most 
important variables.  Then, resources can be concen-
trated on obtaining refined distributions for the most 
important variables, and a second analysis can be car-
ried out with the refined distributions for the important 
variables. 

In characterizing uncertainty, careful thought must 
be given to what constitutes an appropriate separation 
of aleatory and epistemic uncertainty in a particular 
analysis.15-24  An important aspect of this separation is 
having a conceptual model for the overall structure of 
the analysis that clearly describes the roles played by 
aleatory and epistemic uncertainties and leads naturally 
to the computational implementation of the analysis. 

Latin hypercube sampling is our preferred sam-
pling procedure (Sect. 3).  The efficient stratification 
properties associated with Latin hypercube sampling 
make its use very effective in analyses that involve 
large numbers of independent and dependent variables.  
Further, the Iman/Conover restricted pairing technique 
provides an effective way to control correlations within 
LHSs. 

The presentation of uncertainty analysis results is 
usually straightforward in a sampling-based uncertainty 
and sensitivity analysis (Sect. 5).  The performance of 
effective sensitivity analyses is typically a larger chal-
lenge (Sect. 6). 

The authors’ preferred sensitivity analysis ap-
proach is to initially perform stepwise regression analy-
ses (Sect. 6.3) with raw and rank transformed data 
(Sect. 6.5) and to examine the scatterplots (Sect. 6.1) 
for the variables identified in the stepwise regressions.  
For most dependent variables, this approach is suffi-
cient to identify the dominant independent (i.e., input) 
variables.  The rank transform is effective because it (i) 
linearizes monotonic relationships, (ii) reduces prob-
lems associated with variable ranges that cover many 
orders of magnitude, (iii) eliminates the problems of 
zero values that complicate the use of logarithmic trans-
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formations, and (iv) reduces the disproportionate ef-
fects of outliers. 

For time-dependent results, plots of SRCs (Sect. 
6.3) and PCCs (Sect. 6.4) as functions of time provide a 
compact and approachable summary of variable effects.  
However, such plots provide less information than 
stepwise regression analyses.  An effective presentation 
strategy is to present plots of SRCs and PCCs as com-
pact analysis summaries and to present more detailed 
stepwise regression results at selected times. 

Sensitivity analyses based on stepwise regression 
with raw and rank transformed data will fail when the 
relationships between independent and dependent vari-
ables are both nonlinear and nonmonotonic.  Then, al-
ternative approaches to sensitivity analysis are needed.  
Approaches that are likely to be effective in this situa-
tion include the χ2 test for statistical independence 

(Sect 6.6), nonparametric regression (Sect. 6.8), and the 
SRD/RCC test (Sect. 6.9).  The χ2 and SRD/RCC tests 
are easier to implement than nonparametric regression 
procedures.  However, like traditional regression pro-
cedures, nonparametric regression procedures can be 
implemented in a stepwise manner and provide more 
information (e.g., order of selection, fraction of uncer-
tainty explained) than the χ2 and SRD/RCC tests.  Fur-
ther, the nonparametric regression procedures actually 
produce a surrogate model (i.e., a response surface) that 
can be useful to have in some analysis contexts. 

Variance decomposition procedures (Sect. 6.13) 
can be very effective sensitivity analysis tools in situa-
tions that involve relationships that are both nonlinear 
and nonmonotonic.  However, the large number of 
model evaluations required in the implementation of 
these procedures restricts their use to models where 
thousands of model evaluations are possible. 
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