Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis

J.C. Helton, J.D. Johnson, C.J. Sallaberry, C.B. Storlie

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doc.gov/bridge
Available to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis

J.C. Helton, ${ }^{\text {a J.D. Johnson, }}{ }^{\text {b C.J. Sallaberry, }}{ }^{\text {c C.B. Storlie }}{ }^{\text {d }}$
${ }^{\text {a D Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287-1804 USA }}$
bProStat, Mesa, AZ 85204-5326 USA
'Sandia National Laboratories, Albuquerque, NM 87185-0776 USA
${ }^{\mathrm{d}}$ Department of Statistics, Colorado State University, Fort Collins, CO 80523-1877 USA

Abstract

Sampling-based methods for uncertainty and sensitivity analysis are reviewed. The following topics are considered: (i) Definition of probability distributions to characterize epistemic uncertainty in analysis inputs, (ii) Generation of samples from uncertain analysis inputs, (iii) Propagation of sampled inputs through an analysis, (iv) Presentation of uncertainty analysis results, and (v) Determination of sensitivity analysis results. Special attention is given to the determination of sensitivity analysis results, with brief descriptions and illustrations given for the following procedures/techniques: examination of scatterplots, correlation analysis, regression analysis, partial correlation analysis, rank transformations, statistical tests for patterns based on gridding, entropy tests for patterns based on gridding, nonparametric regression analysis, squared rank differences/rank correlation coefficient test, two dimensional Kolmogorov-Smirnov test, tests for patterns based on distance measures, top down coefficient of concordance, and variance decomposition.

Key Words: Aleatory uncertainty, Epistemic uncertainty, Latin hypercube sampling, Monte Carlo, Sensitivity analysis, Uncertainty analysis.

Contents

Contents 4

1. Introduction 7
2. Characterization of Uncertainty 9
3. Generation of Sample 13
4. Propagation of Sample Through the Analysis 17
5. Presentation of Uncertainty Analysis Results 19
6. Determination of Sensitivity Analysis Results 23
6.1 Scatterplots 23
6.2 Correlation 23
6.3 Regression Analysis 24
6.4 Partial Correlation. 28
6.5 Rank Transformations 28
6.6 Statistical Tests for Patterns Based on Gridding 28
6.7 Entropy Tests for Patterns Based on Gridding 34
6.8 Nonparametric Regression 36
6.9 Squared Rank Differences/Rank Correlation Coefficient (SRD/RCC) Test 39
6.10 Two Dimensional Kolmogorov-Smirnov (KS) Test. 41
6.11 Tests for Patterns Based on Distance Measures 42
6.12 Top Down Coefficient of Concordance (TDCC) 44
6.13 Variance Decomposition 46
7. Summary 53
8. References 55

Figures

Fig. 1. Characterization of epistemic uncertainty: (a) Construction of CDF from specified quantile values (Fig. 4.1, Ref. 101), and (b) Construction of mean CDF by vertical averaging of CDFs defined by individual experts with equal weight (i.e., $1 / n E=1 / 3$, where $n E=3$ is the number of experts) given to each expert (Fig. 4.2, Ref. 101). 10
Fig. 2. Example of Latin hypercube sampling to generate a sample of size $n S=5$ from $\mathbf{x}=[U, V]$ with U normal on $[-1,1]$ (mean $=0.0 ; 0.01$ quantile $=-1 ; 0.99$ quantile $=1$) and V triangular on $[0,4]$ (mode = 1): (a, b) Upper frames illustrate sampling of values for U and V, and (c, d) Lower frames illustrate two different pairings of the sampled values of U and V in the construction of a LHS (Fig. 5.3, Ref. 101) 14
Fig. 3. Examples of rank correlations of $0.00,0.25,0.50,0.75,0.90$ and 0.99 imposed with the Iman/Conover restricted pairing technique for an LHS of size $n S=1000$ (Fig. 5.1, Ref. 138) 15
Fig. 4. Representation of uncertainty in scalar-valued analysis results: (a) CDFs and CCDFs (Fig. 7.2, Ref. 101) and (b) box plots (Fig. 7.4, Ref. 101) 19
Fig. 5. Representation of uncertainty in analysis results that are functions: (a, b) Pressure as a function of time (Figs. 7.5, 7.9, Ref. 101), and (c, d) Effects of aleatory uncertainty summarized as a CCDF (Fig 10.5, Ref. 101) 21
Fig. 6. Examples of scatterplots obtained in a sampling-based uncertainty/sensitivity analysis (Figs. 8.1, 8.2, Ref. 101). 24
Fig. 7. Example of three dimensional scatterplot obtained in a sampling-based uncertainty/sensitivity analysis (Fig. 13, Ref. 145) 24
Fig. 8. Illustration of correlation coefficients: (a) $c\left(x_{j}, y\right)=0.75$ with $x_{j}=H A L P O R$ and $y=R E P _S A T B$ (left frame), and (b) $c\left(x_{j}, y\right)=-0.41$ with $x_{j}=W G R C O R$ and $y=R E P _S A T B$ (right frame). 25
Fig. 9. Time-dependent sensitivity analysis results for uncertain pressure curves in Fig. 5a: (a) SRCs as a function of time, and (b) PCCs as a function of time (Fig. 8.3, Ref. 101). 27
Fig. 10. Illustration of failure of a sensitivity analysis based on rank-transformed data: (a) Pressures as a function of time and (b) PRCCs as a function of time (Fig. 8.7, Ref. 101) 29
Fig. 11. Grids used to test for nonrandom patterns: (a) Partitioning of range of x_{j} for CMNs and CLs tests and ranges of x_{j} and y for CMDs test (Fig. 8.8, Ref. 101), and (b) Partitioning of ranges of x_{j} and y for SI (Fig. 8.9, Ref. 101). 31
Fig. 12. Illustration of quadrants used with the two dimensional KS test for the variable WAS_PRES at 10,000 yr 42
Fig. 13. Scatterplots for model in Eq. (6-86) with grid for SI test with $n I=n D=5$ (adapted from Fig. 9.15, Ref. 101) 51

Tables

Table 1. Uncertain Variables $x_{1}, x_{2}, \ldots, x_{31}$ and Associated Uncertainty Distributions $D_{1}, D_{2}, \ldots, D_{31}$ Used in Illustration of Uncertainty and Sensitivity Analysis Procedures for Two Phase Flow Model (Table 1, Ref. 125) 10
Table 2. Definition of Dependent Variables Calculated by BRAGFLO Program for Two Phase Flow and Used in the Illustration of Uncertainty and Sensitivity Analysis Procedures 20
Table 3. Example of Stepwise Regression Analysis to Identify Uncertain Variables Affecting the Uncertainty in Pressure (WAS_PRES) at 10,000 yr in Fig. 5a (Table 8.6, Ref. 101) 27
Table 4. Comparison of Stepwise Regression Analyses with Raw and Rank-Transformed Data for Cumulative Brine Inflow to Vicinity of Repository over 10,000 yr from Anhydrite Marker Beds (BRAALIC) Under Undisturbed (i.e., E0) Conditions in Fig. 4b (Table 8.8, Ref. 101) 29
Table 5. Comparison of Statistical Tests for Patterns Based on Gridding for Pressure (WAS_PRES) at 10,000 yr under Undistributed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., E2) Conditions (Fig. 10a) (adapted from Tables 4 and 21 of Ref. 47) 32
Table 6. Comparison of Variable Rankings Obtained with Formal Statistical Procedures and Monte CarloProcedures for Statistical Tests for Patterns Based on Gridding for Pressure (WAS_PRES) at 10,000
yr Under Undisturbed (i.e., E0) Conditions (Adapted from Table 8 of Ref. 47; see Table 23, Ref. 47, for a similar comparison for pressure at $10,000 \mathrm{yr}$ under disturbed (i.e., E2) conditions)

Table 7. Examples of Entropy Measures to Identify Uncertain Variables Affecting the Uncertainty in Pressure
(WAS_PRES) at 10,000 yr under Undisturbed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., E2)
Conditions (Fig. 10a). 36

Table 8. Detailed Comparison of χ^{2}-statistic T and Entropy $U\left(y, x_{j}\right)$ Used to Identify Uncertain Variables
Affecting the Uncertainty in Pressure (WAS_PRES) at 10,000 yr under Undisturbed (i.e., E0)
Conditions (Fig. 5a) and Disturbed (i.e., E2) Conditions (Fig. 10a) 36

Table 9. Comparison of Variable Rankings Obtained with Parametric Regression (i.e., LIN_REG,
RANK_REG, RS_REG), Nonparametric Regression (i.e., LOESS, PP_REG, RP_REG, GAMs), and
the Squared Rank Differences/Rank Correlation (SRD/RCC) Test for Pressure at (WAS_PRES)
10,000 yr under Undisturbed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., E2) Conditions (Fig.
10a). 40
Table 11. Comparison of Tests for Patterns Based on Distance Measures for Pressure (WAS_PRES) at 10,000 yr under Undisturbed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., E2) Conditions (Fig. 10a) 45
Table 12. Sensitivity Analysis Results Based on SRRCs for Three Replicated Random Samples (RS1 RS2, RS3) of Size 100 for Cumulative Brine Flow into Repository (BRNREPTC) at 1000 yr Under Undisturbed (i.e., E0) Conditions (adapted from Table 8, Ref. 125) 46
Table 13. Sensitivity Analysis with the TDCC for Three Replicated Random Samples of Size 100 for Cumulative Brine Flow into Repository (BRNREPTC) at 1000 yr under Undisturbed (i.e., E0) Conditions (adapted from Table 9, Ref. 125) 47
Table 14. Evaluation of Variance Decompositions s_{j} and $s_{j T}$ for Model in Eq. (6-86) with Different Sample Sizes 49
Table 15. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Model in Eq. (6-86) (Table 9.14, Ref. 101) 50

1. Introduction

Uncertainty analysis and sensitivity analysis are essential parts of analyses for complex systems. ${ }^{1-14}$ Specifically, uncertainty analysis refers to the determination of the uncertainty in analysis results that derives from uncertainty in analysis inputs, and sensitivity analysis refers to the determination of the contributions of individual uncertain analysis inputs to the uncertainty in analysis results. The uncertainty under consideration here is often referred to as epistemic uncertainty; alternative designations for this form of uncertainty include state of knowledge, subjective, reducible, and type B. ${ }^{15-24}$ Epistemic uncertainty derives from a lack of knowledge about the appropriate value to use for a quantity that is assumed to have a fixed value in the context of a particular analysis. In the conceptual and computational organization of an analysis, epistemic uncertainty is generally considered to be distinct from aleatory uncertainty, which arises from an inherent randomness in the behavior of the system under study. ${ }^{15-24}$ Alternative designations for aleatory uncertainty include variability, stochastic, irreducible, and type A.

A number of approaches to uncertainty and sensitivity analysis have been developed, including differential analysis, ${ }^{25-33}$ response surface methodology, ${ }^{34-43}$ Monte Carlo analysis, ${ }^{44-55}$ and variance decomposition procedures. ${ }^{56-60}$ Overviews of these approaches are available in several reviews. ${ }^{61-68}$

The focus of this presentation is on Monte Carlo (i.e., sampling-based) approaches to uncertainty and sensitivity analysis. Sampling-based approaches to uncertainty and sensitivity analysis are both effective and widely used. ${ }^{69-83}$ Analyses of this type involve the generation and exploration of a mapping from uncertain analysis inputs to uncertain analysis results. The under-
lying idea is that analysis results $\mathbf{y}(\mathbf{x})=\left[y_{1}(\mathbf{x}), y_{2}(\mathbf{x})\right.$, $\left.\ldots, y_{n Y}(\mathbf{x})\right]$ are functions of uncertain analysis inputs \mathbf{x} $=\left[x_{1}, x_{2}, \ldots, x_{n X}\right]$. In turn, uncertainty in \mathbf{X} results in a corresponding uncertainty in $\mathbf{y}(\mathbf{x})$. This leads to two questions: (i) What is the uncertainty in $\mathbf{y}(\mathbf{x})$ given the uncertainty in \mathbf{x} ?, and (ii) How important are the individual elements of \mathbf{x} with respect to the uncertainty in $\mathbf{y}(\mathbf{x})$? The goal of uncertainty analysis is to answer the first question, and the goal of sensitivity analysis is to answer the second question. In practice, the implementation of an uncertainty analysis and the implementation of a sensitivity analysis are very closely connected on both a conceptual and a computational level.

The following sections summarize and illustrate the five basic components that underlie the implementation of a sampling-based uncertainty and sensitivity analysis: (i) Definition of distributions $D_{1}, D_{2}, \ldots, D_{n X}$ that characterize the epistemic uncertainty in the elements $x_{1}, x_{2}, \ldots, x_{n X}$ of \mathbf{x} (Sect. 2), (ii) Generation of a sample $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n s}$ from the \mathbf{x} 's in consistency with the distributions $D_{1}, D_{2}, \ldots, D_{n X}$ (Sect. 3), (iii) Propagation of the sample through the analysis to produce a mapping $\left[\mathbf{x}_{i}, \mathbf{y}\left(\mathbf{x}_{i}\right)\right], i=1,2, \ldots, n S$, from analysis inputs to analysis results (Sect. 4), (iv) Presentation of uncertainty analysis results (i.e., approximations to the distributions of the elements of \mathbf{y} constructed from the corresponding elements of $\mathbf{y}\left(\mathbf{x}_{i}\right), i=1,2, \ldots, n S$) (Sect. 5), and (v) Determination of sensitivity analysis results (i.e., exploration of the mapping $\left[\mathbf{x}_{i}, \mathbf{y}\left(\mathbf{x}_{i}\right)\right], i=1,2, \ldots$, $n S$) (Sect. 6). The presentation then ends with a concluding summary (Sect. 7).

Only probabilistic characterizations of uncertainty are considered in this presentation. Alternative uncertainty representations (e.g., evidence theory, possibility theory, fuzzy set theory, interval analysis) are active areas of research ${ }^{84-92}$ but are outside the intended scope of this presentation.

This page intentionally left blank.

2. Characterization of Uncertainty

Definition of the distributions $D_{1}, D_{2}, \ldots, D_{n X}$ that characterize the epistemic uncertainty in the elements $x_{1}, x_{2}, \ldots, x_{n X}$ of \mathbf{x} is the most important part of a sam-pling-based uncertainty and sensitivity analysis as these distributions determine both the uncertainty in \mathbf{y} and the sensitivity of the elements of \mathbf{y} to the elements of \mathbf{x}. The distributions $D_{1}, D_{2}, \ldots, D_{n X}$ are typically defined through an expert review process, ${ }^{93-100}$ and their development can constitute a major analysis cost. A possible analysis strategy is to perform an initial exploratory analysis with rather crude definitions for D_{1}, D_{2}, $\ldots, D_{n X}$ and use sensitivity analysis to identify the most important analysis inputs; then, resources can be concentrated on characterizing the uncertainty in these inputs and a second presentation or decision-aiding analysis can be carried out with these improved uncertainty characterizations.

The scope of an expert review process can vary widely depending on the purpose of the analysis, the size of the analysis, and the resources available to carry out the analysis. At one extreme is a relatively small study in which a single analyst both develops the uncertainty characterizations (e.g., on the basis of personal knowledge or a cursory literature review) and carries out the analysis. At the other extreme, is a large analysis on which important societal decisions will be based and for which uncertainty characterizations are carried out for a large number of variables by teams of outside experts who support the analysts actually performing the analysis.

Given the breadth of analysis possibilities, it is beyond the scope of this presentation to provide an ex-
haustive review of how the distributions $D_{1}, D_{2}, \ldots, D_{n X}$ might be developed. However, as general guidance, it is best to avoid trying to obtain these distributions by specifying the defining parameters (e.g., mean and standard deviation) for a particular distribution type. Rather, distributions can be defined by specifying selected quantiles (e.g., $0.0,0.1,0.25, \ldots, 0.9,1.0$) of the corresponding cumulative distribution functions (CDFs), which should keep the individual supplying the information in closer contact with the original sources of information or insight than is the case when a particular named distribution is specified (Fig. 1a). Distributions from multiple experts can be aggregated by averaging (Fig. 1b).

This presentation draws most of its examples from an uncertainty and sensitivity analysis carried out for a two phase flow model (implemented in the BRAGFLO program) ${ }^{102-104}$ in support of the 1996 Compliance Certification Application for the Waste Isolation Pilot Plant. ${ }^{105-107}$ The uncertain variables considered in the example results (i.e., $x_{1}, x_{2}, \ldots, x_{n X}$ with $n X=31$) and their associated distributions (i.e., $D_{1}, D_{2}, \ldots, D_{31}$) are summarized in Table 1. Additional information on the use of these variables in the two phase flow model and on the development of the associated uncertainty distributions is available in the original analysis documentation. ${ }^{102,} 108$

Additional information: Sect. 6.2, Ref. 46; Refs. 93-100, 109-119. As an example, Ref. 100 describes the approach used in the extensive expert review process that supported the U.S. Nuclear Regulatory Commission's (NRC's) reassessment of the risk from commercial nuclear power plants (i.e., NUREG-1150; see Refs. 82, 120-124).

Fig. 1. Characterization of epistemic uncertainty: (a) Construction of CDF from specified quantile values (Fig. 4.1, Ref. 101), and (b) Construction of mean CDF by vertical averaging of CDFs defined by individual experts with equal weight (i.e., $1 / n E=1 / 3$, where $n E=3$ is the number of experts) given to each expert (Fig. 4.2, Ref. 101).

Table 1. Uncertain Variables $x_{1}, x_{2}, \ldots, x_{31}$ and Associated Uncertainty Distributions $D_{1}, D_{2}, \ldots, D_{31}$ Used in Illustration of Uncertainty and Sensitivity Analysis Procedures for Two Phase Flow Model (Table 1, Ref. 125)

ANHBCEXP - Brooks-Corey pore distribution parameter for anhydrite (dimensionless). Distribution: Student's with 5 degree of freedom. Range: $0.491-0.842$. Mean, median: $0.644,0.644$.

ANHBCVGP - Pointer variable for selection of relative permeability model for use in anhydrite. Distribution: Discrete with $60 \% 0,40 \% 1$. Value of 0 implies Brooks-Corey model; value of 1 implies van Genuchten-Parker model.

ANHCOMP - Bulk compressibility of anhydrite (Pa^{-1}). Distribution: Student's with 3 degrees of freedom. Range: 1.09×10^{-11} to $2.75 \times 10^{-10} \mathrm{~Pa}^{-1}$. Mean, median: $8.26 \times 10^{-11} \mathrm{~Pa}^{-1}, 8.26 \times 10^{-11} \mathrm{~Pa}^{-1}$. Correlation: -0.99 rank correlation [136] with ANHPRM.

ANHPRM- Logarithm of anhydrite permeability $\left(\mathrm{m}^{2}\right)$. Distribution: Student's with 5 degrees of freedom. Range: -21.0 to -17.1 (i.e., permeability range is 1×10^{-21} to $1 \times 10^{-17.1} \mathrm{~m}^{2}$). Mean, median: $-18.9,-18.9$. Correlation: -0.99 rank correlation with ANHCOMP.

ANRBRSAT - Residual brine saturation in anhydrite (dimensionless). Distribution: Student's with 5 degrees of freedom. Range: 7.85×10^{-3} to 1.74×10^{-1}. Mean, median: $8.36 \times 10^{-2}, 8.36 \times 10^{-2}$.

ANRGSSAT - Residual gas saturation in anhydrite (dimensionless). Distribution: Student's with 5 degrees of freedom. Range 1.39×10^{-2} to 1.79×10^{-1}. Mean, median: $7.71 \times 10^{-2}, 7.71 \times 10^{-2}$.

BHPRM - Logarithm of borehole permeability $\left(\mathrm{m}^{2}\right)$. Distribution: Uniform. Range: -14 to -11 (i.e., permeability range is 1×10^{-14} to $1 \times 10^{-11} \mathrm{~m}^{2}$). Mean, median: $-12.5,-12.5$.

Table 1. Uncertain Variables $x_{1}, x_{2}, \ldots, x_{31}$ and Associated Uncertainty Distributions $D_{1}, D_{2}, \ldots, D_{31}$ Used in Illustration of Uncertainty and Sensitivity Analysis Procedures for Two Phase Flow Model (Table 1, Ref. 125) (Cont.)

BPCOMP - Logarithm of bulk compressibility of brine pocket (Pa^{-1}). Distribution: Triangular. Range: -11.3 to -8.00 (i.e., bulk compressibility range is $1 \times 10^{-11.3}-1 \times 10^{-8} \mathrm{~Pa}^{-1}$). Mean, mode: $-9.80,-10.0$. Correlation: -0.75 rank correlation with BPPRM.

BPINTPRS - Initial pressure in brine pocket (Pa). Distribution: Triangular. Range: $1.11 \times 10^{7}-1.70 \times 10^{7} \mathrm{~Pa}$. Mean, mode: $1.36 \times 10^{7} \mathrm{~Pa}, 1.27 \times 10^{7} \mathrm{~Pa}$.
$B P P R M$ - Logarithm of intrinsic brine pocket permeability (m^{2}). Distribution: Triangular. Range: -14.7 to -9.80 (i.e., permeability range is $1 \times 10^{-14.7}-1 \times 10^{-9.80} \mathrm{~m}^{2}$). Mean, mode: $-12.1,-11.8$. Correlation: -0.75 rank correlation with BPCOMP.

BPVOL - Pointer variable for selection of brine pocket volume. Distribution: Discrete, with integer values $1,2, \ldots$, 32 equally likely.

HALCOMP - Bulk compressibility of halite $\left(\mathrm{Pa}^{-1}\right)$. Distribution: Uniform. Range: 2.94×10^{-12} to 1.92×10^{-10} Pa^{-1}. Mean, median: $9.75 \times 10^{-11} \mathrm{~Pa}^{-1}, 9.75 \times 10^{-11} \mathrm{~Pa}^{-1}$. Correlation: -0.99 rank correlation with HALPRM.
$H A L P O R$ - Halite porosity (dimensionless). Distribution: Piecewise uniform. Range: 1.0×10^{-3} to 3×10^{-2}. Mean, median: $1.28 \times 10^{-2}, 1.00 \times 10^{-2}$.

HALPRM - Logarithm of halite permeability $\left(\mathrm{m}^{2}\right)$. Distribution: Uniform. Range: -24 to -21 (i.e., permeability range is 1×10^{-24} to $1 \times 10^{-21} \mathrm{~m}^{2}$). Mean, median: $-22.5,-22.5$. Correlation: -0.99 rank correlation with HALCOMP.

SALPRES - Initial brine pressure, without the repository being present, at a reference point located in the center of the combined shafts at the elevation of the midpoint of MB $139(\mathrm{~Pa})$. Distribution: Uniform. Range: 1.104×10^{7} to $1.389 \times 10^{7} \mathrm{~Pa}$. Mean, median: $1.247 \times 10^{7} \mathrm{~Pa}, 1.247 \times 10^{7} \mathrm{~Pa}$.

SHBCEXP - Brooks-Corey pore distribution parameter for shaft (dimensionless). Distribution: Piecewise uniform. Range: $0.11-8.10$. Mean, median: 2.52, 0.94 .

SHPRMASP - Logarithm of permeability $\left(\mathrm{m}^{2}\right)$ of asphalt component of shaft seal (m^{2}). Distribution: Triangular. Range: -21 to -18 (i.e., permeability range is 1×10^{-21} to $1 \times 10^{-18} \mathrm{~m}^{2}$). Mean, mode: $-19.7,-20.0$.

SHPRMCLY - Logarithm of permeability (m^{2}) for clay components of shaft. Distribution: Triangular. Range: -21 to -17.3 (i.e., permeability range is 1×10^{-21} to $1 \times 10^{-17.3} \mathrm{~m}^{2}$). Mean, mode: $-18.9,-18.3$.

SHPRMCON - Same as SHPRMASP but for concrete component of shaft seal for $0-400$ yr. Distribution: Triangular. Range: -17.0 to -14.0 (i.e., permeability range is 1×10^{-17} to $1 \times 10^{-14} \mathrm{~m}^{2}$). Mean, mode: $-15.3,-15.0$.

SHPRMDRZ - Logarithm of permeability (m^{2}) of DRZ surrounding shaft. Distribution: Triangular. Range: -17.0 to -14.0 (i.e., permeability range is 1×10^{-17} to $1 \times 10^{-14} \mathrm{~m}^{2}$). Mean, mode: $-15.3,-15.0$.

Table 1. Uncertain Variables $x_{1}, x_{2}, \ldots, x_{31}$ and Associated Uncertainty Distributions $D_{1}, D_{2}, \ldots, D_{31}$ Used in Illustration of Uncertainty and Sensitivity Analysis Procedures for Two Phase Flow Model (Table 1, Ref. 125) (Cont.)

SHPRMHAL - Pointer variable (dimensionless) used to select permeability in crushed salt component of shaft seal at different times. Distribution: Uniform. Range: $0-1$. Mean, mode: $0.5,0.5$. A distribution of permeability $\left(\mathrm{m}^{2}\right)$ in the crushed salt component of the shaft seal is defined for each of the following time intervals: [0,10 yr], [10, 25 yr$],[25,50 \mathrm{yr}],[50,100 \mathrm{yr}],[100,200 \mathrm{yr}],[200,10,000 \mathrm{yr}] . S H P R M H A L$ is used to select a permeability value from the cumulative distribution function for permeability for each of the preceding time intervals with result that a rank correlation of 1 exists between the permeabilities used for the individual time intervals.

SHRBRSAT - Residual brine saturation in shaft (dimensionless). Distribution: Uniform. Range: $0-0.4$. Mean, median: 0.2, 0.2.

SHRGSSAT - Residual gas saturation in shaft (dimensionless). Distribution: Uniform. Range: $0-0.4$. Mean, median: 0.2, 0.2.

WASTWICK - Increase in brine saturation of waste owing to capillary forces (dimensionless). Distribution: Uniform: Range: $0-1$. Mean, median: 0.5, 0.5.

WFBETCEL - Scale factor used in definition of stoichiometric coefficient for microbial gas generation (dimensionless). Distribution: Uniform. Range: $0-1$. Mean, median: 0.5, 0.5.

WGRCOR - Corrosion rate for steel under inundated conditions in the absence of $\mathrm{CO}_{2}(\mathrm{~m} / \mathrm{s})$. Distribution: Uniform. Range: $0-1.58 \times 10^{-14} \mathrm{~m} / \mathrm{s}$. Mean, median: $7.94 \times 10^{-15} \mathrm{~m} / \mathrm{s}, 7.94 \times 10^{-15} \mathrm{~m} / \mathrm{s}$.

WGRMICH - Microbial degradation rate for cellulose under humid conditions ($\mathrm{mol} / \mathrm{kg} \mathrm{s}$). Distribution: Uniform. Range: 0 to $1.27 \times 10^{-9} \mathrm{~mol} / \mathrm{kg} \mathrm{s}$. Mean, median: $6.34 \times 10^{-10} \mathrm{~mol} / \mathrm{kg} \mathrm{s}, 6.34 \times 10^{-10} \mathrm{~mol} / \mathrm{kg} \mathrm{s}$.

WGRMICI - Microbial degradation rate for cellulose under inundated conditions ($\mathrm{mol} / \mathrm{kg} \mathrm{s}$). Distribution: Uniform. Range: 3.17×10^{-10} to $9.51 \times 10^{-9} \mathrm{~mol} / \mathrm{kg}$ s. Mean, median: $4.92 \times 10^{-9} \mathrm{~mol} / \mathrm{kg} \mathrm{s}, 4.92 \times 10^{-9} \mathrm{~mol} / \mathrm{kg} \mathrm{s}$.

WMICDFLG - Pointer variable for microbial degradation of cellulose. Distribution: Discrete, with 50\% 0, 25\% 1, 25% 2. $W M I C D F L G=0,1,2$ implies no microbial degradation of cellulose, microbial degradation of only cellulose, microbial degradation of cellulose, plastic and rubber.

WRBRNSAT - Residual brine saturation in waste (dimensionless). Distribution: Uniform. Range: $0-0.552$. Mean, median: 0.276, 0.276.

WRGSSAT - Residual gas saturation in waste (dimensionless). Distribution: Uniform. Range: $0-0.15$. Mean, median: 0.075, 0.075.

3. Generation of Sample

Several sampling strategies are available, including random sampling, importance sampling, and Latin hypercube sampling. ${ }^{44,55}$ Latin hypercube sampling is very popular for use with computationally demanding models because its efficient stratification properties allow for the extraction of a large amount of uncertainty and sensitivity information with a relatively small sample size.

Latin hypercube sampling operates in the following manner to generate a sample of size $n S$ from the distributions $D_{1}, D_{2}, \ldots, D_{n X}$ associated with the elements of $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n X}\right]$. The range of each x_{j} is exhaustively divided into $n S$ disjoint intervals of equal probability and one value $x_{i j}$ is randomly selected from each interval. The $n S$ values for x_{1} are randomly paired without replacement with the $n S$ value for x_{2} to produce $n S$ pairs. These pairs are then randomly combined without replacement with the $n S$ values for x_{3} to produce $n S$ triples. This process is continued until a set of $n S n X$-tuples $\mathbf{x}_{i}=\left[x_{i 1}, x_{i 2}, \ldots, x_{i, n X}\right], i=1,2, \ldots, n S$, is obtained, with this set constituting the Latin hypercube sample (Fig. 2).

Latin hypercube sampling is a good choice for a sampling procedure when computationally demanding models are being studied. The popularity of Latin hypercube sampling recently led to the original article being designated a Technometrics classic in experimental design. ${ }^{126}$ When the model is not computationally demanding, many model evaluations can be performed and random sampling works as well as Latin hypercube sampling.

If large sample sizes are required to provide appropriate coverage of low probability/high consequence subsets of values for \mathbf{x}, then importance sampling may be a more effective sampling procedure than either random or Latin hypercube sampling. ${ }^{127-135}$ However, importance sampling complicates sensitivity analysis (Sect. 6) as the individual sample elements do not have equal weight (i.e., likelihood of occurrence). Often, some type of importance sampling is used to sample from aleatory uncertainty (e.g., possibly implemented
through the use of event trees as is typically the case in probabilistic risk assessments for complex engineered facilities such as nuclear power plants) and Latin hypercube sampling is used to sample from epistemic uncertainty. The NUREG-1150 analyses (see Refs. 82, 120-124) are an example of this approach to the propagation of uncertainty.

Control of correlations is an important aspect of sample generation. Specifically, correlated variables should have correlations close to their specified values, and uncorrelated variables should have correlations close to zero. In general, the imposition of complex correlation structures is not easy. However, Iman and Conover have developed a broadly applicable procedure to impose rank correlations on sampled values that (i) is distribution free (i.e., does not depend on the assumed marginal distributions for the sampled variables), (ii) can impose complex correlation structures involving multiple variables, (iii) works with both random and Latin hypercube sampling, and (iv) preserves the intervals used in Latin hypercube sampling. ${ }^{136,137}$ Details on the implementation of the procedure are available in the original reference; ${ }^{136}$ illustrative results are provided in Fig. 3.

The analysis involving the variables in Table 1 used three independently generated (i.e., replicated) Latin hypercube samples of size $n S=100$ each. The purpose of the replication was to provide a basis for testing the stability of uncertainty and sensitivity analysis results obtained with Latin hypercube sampling (Sects. 7, 8, Ref. 108). The Iman/Conover restricted pairing technique indicated in the preceding paragraph was used to control correlations within the individual samples. The analyses with the three replicated samples were sufficiently similar that each analysis would have independently lead to the same insights with respect to model behavior. ${ }^{125}$ However, to make full use of all model evaluations, final presentation results ${ }^{103}$, 104 were calculated with the three replicated samples pooled together to produce a single sample of size $n S=$ 300.

Additional information: Sect. 6.3, Ref. 46; Refs. 44, 50, 54, 55, 139.

Fig. 2. Example of Latin hypercube sampling to generate a sample of size $n S=5$ from $\mathbf{x}=[U, V]$ with U normal on $[-1,1]$ (mean $=0.0 ; 0.01$ quantile $=-1 ; 0.99$ quantile $=1$) and V triangular on $[0,4]($ mode $=1)$: (a, b) Upper frames illustrate sampling of values for U and V, and (c, d) Lower frames illustrate two different pairings of the sampled values of U and V in the construction of a LHS (Fig. 5.3, Ref. 101).

Fig. 3. Examples of rank correlations of $0.00,0.25,0.50,0.75,0.90$ and 0.99 imposed with the Iman/Conover restricted pairing technique for an LHS of size $n S=1000$ (Fig. 5.1, Ref. 138).

This page intentionally left blank.

4. Propagation of Sample Through the Analysis

Propagation of the sample through the analysis to produce the mapping $\left.\left[\mathbf{x}_{i}, \mathbf{y}\left(\mathbf{x}_{i}\right)\right)\right], i=1,2, \ldots, n S$, from analysis inputs to analysis results is often the most computationally demanding part of a sampling-based uncertainty and sensitivity analysis. The details of this propagation are analysis specific and can range from very simple for analyses that involve a single model to very complicated for large analyses that involve complex systems of linked models. ${ }^{82,107}$

When a single model is under consideration, this part of the analysis can involve little more than putting a DO loop around the model that (i) supplies the sampled input to the model, (ii) runs the model, and (iii) stores model results for later analysis. When more
complex analyses with multiple models are involved, considerable sophistication may be required in this part of the analysis. Implementation of such analyses can involve (i) development of simplified models to approximate more complex models, (ii) clustering of results at model interfaces, (ii) reuse of model results through interpolation or linearity properties, and (iv) complex procedures for the storage and retrieval of analysis results.

Additional information: The NUREG-1150 analyses, $82,120-124$ the analyses carried out in support of the Compliance Certification Application for the Waste Isolation Pilot Plant, ${ }^{105-107}$ and analyses carried out in support of the Yucca Mountain Project's development of a facility for the deep geologic disposal of high level radioactive waste ${ }^{140-142}$ provide examples of complex analyses that have used Latin hypercube sampling in the propagation of epistemic uncertainty.

This page intentionally left blank.

5. Presentation of Uncertainty Analysis Results

Presentation of uncertainty analysis results is generally straight forward and involves little more than displaying the results associated with the already calculated mapping $\left[\mathbf{x}_{i}, \mathbf{y}\left(\mathbf{x}_{i}\right)\right], i=1,2, \ldots, n S$. Presentation possibilities include means and standard deviations, density functions, cumulative distribution function (CDFs), complementary cumulative distribution functions (CCDFs), and box plots. Presentation formats such as CDFs (Fig. 4a), CCDFs (Fig. 4a) and box plots (Fig. 4b) are usually preferable to means and standard deviations because of the large amount of uncertainty information that is lost in the calculation of means and standard deviations (see Table 2 for definitions of dependent variables used to illustrate uncertainty and sensitivity analysis procedures). Owing to their flattened
shape, box plots are particularly useful when it is desired to the display and compare the uncertainty in a number of related variables.

The representational challenge is more complex when the analysis outcome of interest is a function rather than a scalar. For example, time-dependent system properties are common analysis outcomes. As another example, a CCDF that summarizes the effects of aleatory uncertainty is a standard analysis outcome in risk assessments. An effective display format for such analysis outcomes is to use two plot frames, with first frame displaying the analysis results for the individual sample elements and the second frame displaying summary results for the outcomes in the first frame (e.g., quantiles and means) (Fig. 5).

Additional information: Sect. 6.4, Ref. 46; Ref. 143, 144.

Fig. 4. Representation of uncertainty in scalar-valued analysis results: (a) CDFs and CCDFs (Fig. 7.2, Ref. 101), and (b) box plots (Fig. 7.4, Ref. 101).

Table 2. Definition of Dependent Variables Calculated by BRAGFLO Program for Two Phase Flow and Used in the Illustration of Uncertainty and Sensitivity Analysis Procedures

BNBHDNUZ - Cumulative brine flow (m^{3}) down borehole at Market Bed (MB) 138 (i.e., from cell 223 to cell 575 in Fig. 3, Ref. 102).

BRAABNIC - Cumulative brine flow $\left(\mathrm{m}^{3}\right)$ out of north anhydrites A and B into disturbed rock zone (DRZ) (i.e., from cell 556 to cell 527 in Fig. 3, Ref. 102).

BRAABSIC - Cumulative brine flow (m^{3}) out of south anhydrites A and B into DRZ (i.e., from cell 555 to cell 482 in Fig. 3, Ref. 102).

BRAALIC - Cumulative brine flow $\left(\mathrm{m}^{3}\right)$ out of all MBs into DRZ (i.e., BRAALIC $=B R M 38 N I C+B R A A B N I C+$ BRM39NIC + BRM38SIC + BRAABSIC + BRM39SIC).

BRM38NIC - Cumulative brine flow (m^{3}) out of north MB 138 into DRZ (i.e., from cell 588 to cell 587 in Fig. 3, Ref. 102).

BRM38SIC - Cumulative brine flow $\left(\mathrm{m}^{3}\right)$ out of south MB 138 into DRZ (i.e., from cell 571 to cell 572 in Fig. 3, Ref. 102).

BRM39NIC - Cumulative brine flow $\left(\mathrm{m}^{3}\right)$ out of north MB 139 to DRZ (i.e., from cell 540 to cell 465 in Fig. 3, Ref. 102).

BRM39SIC - Cumulative brine flow (m^{3}) out of south MB 139 into DRZ (i.e., from cell 539 to cell 436 in Fig. 3, Ref. 102).

BRNREPTC - Cumulative brine flow (m^{3}) into repository (i.e., into regions corresponding to cells 596 - 625, 638 640 in Fig. 3, Ref. 102).

REP_SATB - Brine saturation in upper waste panels (i.e., average brine saturation calculated over cells $617-625$ in Fig. 3, Ref. 102).

WAS_PRES - Pressure (Pa) in lower waste panel (i.e., average pressure calculated over cells $596-616$ in Fig. 3, Ref. 102).

WAS_SATB - Brine saturation in lower waste panel (i.e., average brine saturation calculated over cells 596 - 616 in Fig. 3, Ref. 102)

Notation: The designator E0 is used to indicate results calculated for undisturbed conditions, and the designator E2 is used to indicate results calculated for disturbed conditions due to a drilling intrusion that penetrates the lower waste panel of the repository 1000 yr after repository closure. Further, the designator R1 indicates results calculated for the first of the three replicated Latin hypercube samples described in Sect. 3, and the designators R1, R2, R3 collectively are used to indicate results calculated with the three replicates pooled together.

Fig. 5. Representation of uncertainty in analysis results that are functions: (a, b) Pressure as a function of time (Figs. 7.5, 7.9, Ref. 101), and (c, d) Effects of aleatory uncertainty summarized as a CCDF (Fig. 10.5, Ref. 101).

This page intentionally left blank.

6. Determination of Sensitivity Analysis Results

Determination of sensitivity analysis results is usually more demanding than the presentation of uncertainty analysis results due to the need to actually explore the mapping $\left[\mathbf{x}_{i}, \mathbf{y}\left(\mathbf{x}_{i}\right)\right], i=1,2, \ldots, n S$, to assess the effects of individual elements of \mathbf{x} on the elements of \mathbf{y}. A number of approaches to sensitivity analysis that can be used in conjunction with a sampling-based uncertainty analysis are briefly summarized in this section. In this summary, (i) x_{j} is an element of $\mathbf{x}=\left[x_{1}, x_{2}\right.$, $\left.\ldots, x_{n X}\right]$, (ii) y is an element of $\mathbf{y}(\mathbf{x})=\left[y_{1}(\mathbf{x}), y_{2}(\mathbf{x}), \ldots\right.$, $\left.y_{n Y}(\mathbf{x})\right]$, (iii) $\mathbf{x}_{i}=\left[x_{i 1}, x_{i 2}, \ldots, x_{i, n X}\right], i=1,2, \ldots, n S$, is a random or Latin hypercube sample from the possible values for \mathbf{x} generated in consistency with the joint distribution assigned to the x_{j} 's, (iv) $\mathbf{y}_{i}=\mathbf{y}\left(\mathbf{x}_{i}\right)$ for $i=1$, $2, \ldots, n S$, and (v) $x_{i j}$ and y_{i} are elements of \mathbf{x}_{i} and \mathbf{y}_{i}, respectively. Sensitivity analyses usually consider the effects of all elements of \mathbf{x} on individual elements of \mathbf{y}; for this reason and for notational simplification, the subscripted variables $x_{j}, j=1,2, \ldots, n X$, are used to represent the elements of \mathbf{x} but the unsubscripted variable y is used to represent an arbitrary element of \mathbf{y}.

6.1 Scatterplots

A plot of the points $\left[x_{i j}, y_{i}\right]$ for $i=1,2, \ldots, n S$ (i.e., a scatterplot of y versus x_{j}) can reveal nonlinear or other unexpected relationships between analysis inputs and analysis results (Fig. 6). Scatterplots are a natural starting point in a complex analysis that can help in the development of a sensitivity analysis strategy using one or more additional techniques. Often, the examination of scatterplots is all that is needed to understand the relationships between the uncertainty in analysis inputs and the uncertainty in analysis results.

Most analyses start with two dimensional scatterplots. However, when strong three-way interactions between variables are present, three-dimensional scatterplots (i.e., scatterplots involving three variables) can provide informative displays of analysis results (Fig. 7). The three-dimensional scatterplot in Fig. 7 involves one sampled variable (i.e., $x_{j}=W P R T D I A M$) and two calculated variables (i.e., $y_{k}=W A S _P R E S$ and $y_{l}=$ $\left.R E L _V O L\right)$. The result in Fig. 7 was calculated by a model that uses the calculated value for WAS_PRES under undisturbed conditions as an input and then determines the volume of material (i.e., $R E L _V O L$) released to the surface at the time of a drilling intrusion due to a pressure-driven spallings event; WPRTDIAM is
one of the uncertain (i.e., sampled) variables used in this calculation. ${ }^{145}$ Specifically, Fig. 7 contains a plot of the points $\left(x_{i j}, y_{i k}, y_{i l}\right)$ for $i=1,2, \ldots, n S$. As examination of Fig. 7 shows, (i) WAS_PRES acts as a switch that determines if $R E L_{-} V O L$ is nonzero, and (ii) WPRTDIAM determines the magnitude of the nonzero values for REL_VOL. Because of the large number of possible three-way variable combinations in most analyses, some initial insights with respect to variable interactions usually needs to be developed before a reasonable selection of three-dimensional scatterplots can be made.

Additional information: Sect. 6.6.1, Ref. 46; see Ref. 146 for additional plotting formats, including cobweb plots which provide a representation of multidimensional results (e.g., $\left[\mathbf{x}_{i}, y_{i}\right]=\left[x_{i 1}, x_{i 2}, \ldots, x_{i, n X}, y_{i}\right], i$ $=1,2, \ldots, n S$) in a two-dimensional plot.

6.2 Correlation

Correlation provides a measure of the strength of the linear relationship between x_{j} and y. Specifically, the (Pearson or sample) correlation coefficient (CC) $c\left(x_{j}, y\right)$ between x_{j} and y is defined by

$$
\begin{equation*}
c\left(x_{j}, y\right)=\frac{\sum_{i=1}^{n S}\left(x_{i j}-\bar{x}_{j}\right)\left(y_{i}-\bar{y}\right)}{\left[\sum_{i=1}^{n S}\left(x_{i j}-\bar{x}_{j}\right)^{2}\right]^{1 / 2}\left[\sum_{i=1}^{n S}\left(y_{i}-\bar{y}\right)^{2}\right]^{1 / 2}}, \tag{6-1}
\end{equation*}
$$

where
$\bar{x}_{j}=\sum_{i=1}^{n S} x_{i j} / n S$ and $\bar{y}=\sum_{i=1}^{n S} y_{i} / n S$.
The CC $c\left(x_{j}, y\right)$ has a value between -1 and 1 , with a positive value indicating that x_{j} and y tend to increase and decrease together and a negative value indicating that x_{j} and y tend to move in opposite directions. Further, gradations in the absolute value of $c\left(x_{j}, y\right)$ between 0 and 1 correspond to a trend from no linear relationship between x_{j} and y to an exact linear relationship between x_{j} and y. As an example, the CCs associated with the scatterplots in Fig. 8 are $c(H A L P O R$, $\left.R E P_{-} S A T B\right)=0.75$ (Fig. 8a) and $c(W G R C O R$, $R E P$ _SATB $)=-0.41$ (Fig. 8b).

The CC $c\left(x_{j}, y\right)$ is closely related to results obtained in a linear regression relating y to x_{j}. Specifically, $c\left(x_{j}, y\right)$ is equal to the standardized regression

Fig. 6. Examples of scatterplots obtained in a sampling-based uncertainty/sensitivity analysis (Figs. 8.1, 8.2, Ref. 101).

Fig. 7. Example of three dimensional scatterplot obtained in a sampling-based uncertainty/sensitivity analysis (Fig. 13, Ref. 145).
coefficient in the indicated regression, and the absolute value of $c\left(x_{i}, y\right)$ is equal to the square root of the corresponding R^{2} value (see Sect. 6.3). As a correlation of 0 only indicates the absence of a linear association between x_{j} and y, it does not preclude the existence of a well-defined nonlinear relationship between x_{j} and y (e.g., $y=\sin x_{j}$).

Additional information: Sect. 6.6.4, Ref. 46.

6.3 Regression Analysis

Regression analysis provides an algebraic representation of the relationships between y and one or more of the x_{j} 's. Unless stated otherwise, regression analysis is usually assumed to involve the construction of linear models of the form

$$
\begin{equation*}
\hat{y}=b_{0}+b_{j} x_{j} \tag{6-2}
\end{equation*}
$$

Fig. 8. Illustration of correlation coefficients: (a) $c\left(x_{j}, y\right)=0.75$ with $x_{j}=H A L P O R$ and $y=R E P$ _SATB (left frame), and (b) $c\left(x_{j}, y\right)=-0.41$ with $x_{j}=W G R C O R$ and $y=R E P _S A T B$ (right frame).
for a single independent variable (i.e., x_{j}) and
$\hat{y}=b_{0}+\sum_{j=1}^{n X} b_{j} x_{j}$
for multiple independent variables (i.e., $x_{1}, x_{2}, \ldots, x_{n X}$). The regression coefficients in Eqs. (6-2) and (6-3) are determined such that the sums
$\sum_{i=1}^{n S}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n S}\left[y_{i}-\left(b_{0}+b_{j} x_{i j}\right)\right]^{2}$
and
$\sum_{i=1}^{n S}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n S}\left[y_{i}-\left(b_{0}+\sum_{j=1}^{n S} b_{j} x_{i j}\right)\right]^{2}$,
respectively, are minimized. As a result, the regression models in Eqs. (6-2) and (6-3) are often referred to as least squares models due to the minimization of the sums of squares in Eqs. (6-4) and (6-5).

An important property of least squares regression models is the equality

$$
\begin{equation*}
\sum_{i=1}^{n S}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n S}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{n S}\left(\hat{y}_{i}-y_{i}\right)^{2} \tag{6-6}
\end{equation*}
$$

For notational convenience, the preceding equality is often written
$S S_{\text {tot }}=S S_{\text {reg }}+S S_{\text {res }}$,
where

$$
\begin{aligned}
& S S_{t o t}=\sum_{i=1}^{n S}\left(y_{i}-\bar{y}\right)^{2} \\
& S S_{r e g}=\sum_{i=1}^{n S}\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
& S S_{r e s}=\sum_{i=1}^{n S}\left(\hat{y}_{i}-y_{i}\right)^{2}
\end{aligned}
$$

and the three preceding summations are called the total sum of squares $\left(S S_{t o t}\right)$, regression sum of squares $\left(S S_{\text {reg }}\right)$ and residual sum of squares $\left(S S_{\text {res }}\right)$, respectively.

Since $S S_{\text {res }}$ provides a measure of variability about the regression model, the ratio

$$
\begin{equation*}
R^{2}=S S_{r e g} / S S_{t o t}=\sum_{i=1}^{n S}\left(\hat{y}_{i}-\bar{y}\right)^{2} / \sum_{i=1}^{n S}\left(y_{i}-\bar{y}\right)^{2} \tag{6-8}
\end{equation*}
$$

provides a measure of the extent to which the regression model can match the observed data. Specifically, when the variation about the regression model is small (i.e., $S S_{\text {res }}$ is small relative to $S S_{\text {reg }}$), then the corresponding R^{2} value is close to 1 , which indicates that the
regression model is accounting for most of the uncertainty in y. Conversely, an R^{2} value close to 0 indicates that the regression model is not very successful in accounting for the uncertainty in y. When the individual x_{j} in the regression model in Eq. (6-3) are independent, the R^{2} value for the regression model can be expressed as

$$
\begin{equation*}
R^{2}=S S_{\text {reg }} / S S_{\text {tot }}=R_{1}^{2}+R_{2}^{2}+\ldots+R_{n X}^{2} \tag{6-9}
\end{equation*}
$$

where R_{j}^{2} is the R^{2} value that results from regressing y on only x_{j}. Thus, R_{j}^{2} is equal to the contribution of x_{j} to the R^{2} value for the regression model in Eq. (6-3) when the x_{j} 's are independent.

The regression coefficients $b_{j}, j=1,2, \ldots, n X$, are not very useful in sensitivity analysis because each b_{j} is influenced by the units in which x_{j} is expressed and also does not incorporate any information on the distribution assigned to x_{j}. Because of this, the regression models in Eqs. (6-2) and (6-3) are usually reformulated as

$$
\begin{equation*}
(\hat{y}-\bar{y}) / \hat{s}=\left(b_{j} \hat{s}_{j} / \hat{s}\right)\left(x_{j}-\bar{x}_{j}\right) / \hat{s}_{j} \tag{6-10}
\end{equation*}
$$

and
$(\hat{y}-\bar{y}) / \hat{s}=\sum_{j=1}^{n X}\left(b_{j} \hat{s}_{j} / \hat{s}\right)\left(x_{j}-\bar{x}_{j}\right) / \hat{s}_{j}$,
respectively, where
$\hat{s}=\left[\sum_{i=1}^{n S}\left(y_{i}-\bar{y}\right)^{2} /(n S-1)\right]^{1 / 2}$,
$\hat{s}_{j}=\left[\sum_{i=1}^{n S}\left(x_{i j}-\bar{x}_{j}\right)^{2} /(n S-1)\right]^{1 / 2}$,
and \bar{y} and \bar{x}_{j} are defined in conjunction with Eq. (6-1). The coefficients $b_{j} \hat{s}_{j} / \hat{s}$ in Eqs. (6-10) and (6-11) are referred to as standardized regression coefficients (SRCs).

When the regression models in Eqs. (6-2) and (6-10) involving only x_{j} are under consideration, the SRC $b_{j} \hat{S}_{j} / \hat{s}$ provides a measure of variable importance based on the effect on y relative to the standard deviation \hat{s} of y of moving x_{j} away from its expected value \bar{x}_{j} by a fixed fraction of its standard deviation \hat{s}_{j}. Fur-
ther, when the x_{j} 's are independent, the inclusion or exclusion of an individual x_{j} from the regression models in Eqs. (6-3) and (6-11) has no effect on the SRCs for the remaining variables in the model. Thus, as long as the x_{j} 's are independent, the SRCs $b_{j} \hat{S}_{j} / \hat{s}$ in Eq. (611) provide a useful measure of variable importance, with (i) the absolute values of the coefficients $b_{j} \hat{S}_{j} / \hat{s}$ providing a comparative measure of variable importance (i.e., variable x_{u} is more important than variable x_{v} if $\left.\left|b_{u} \hat{s}_{u} / \hat{s}\right|>\left|b_{v} \hat{s}_{v} / \hat{s}\right|\right)$ and (ii) the sign of $b_{j} \hat{S}_{j} / \hat{s}$ indicating whether x_{j} and y tend to move in the same direction or in opposite directions. However, when x_{j} 's are not independent, SRCs do not provide reliable indications of variable importance (Sect. 6.6.7, Ref. 46).

For purposes of sensitivity analysis, there is usually no reason to construct a regression model containing all the uncertain variables (i.e., $x_{1}, x_{2}, \ldots, x_{n X}$) as indicated in Eqs. (6-3) and (6-11). Rather, a more appropriate procedure is to construct regression models in a stepwise manner. With this procedure, a regression model is first constructed with the most influential variable (e.g., \tilde{x}_{1} as determined based on R^{2} values for regression models containing only single variables). Then, a regression model is constructed with \tilde{x}_{1} and the next most influential variable (e.g., \tilde{x}_{2} as determined based on R^{2} values for regression models containing \tilde{x}_{1} and each of the remaining variables). The process then repeats to determine \tilde{x}_{3} in a similar manner and continues until no more variables with an identifiable effect on y can be found. Variable importance (i.e., sensitivity) is then indicated by the order in which variables are selected in the stepwise process, the changes in cumulative R^{2} values as additional variables are added to the regression model, and the SRCs for the variables in the final regression model. An example of a sensitivity analysis of this form is presented in Table 3.

A display of regression results of the form shown in Table 3 is very unwieldy when results at a sequence of times are under consideration. In this situation, a more compact display of regression results is provided by plotting SRCs as functions of time for all x_{j} that appear to have a significant effect on y at some point in the time interval under consideration (Fig. 9a).

This section only considers linear regression models. However, linear regression models also include models of forms such as

$$
\begin{equation*}
\hat{y}=b_{0}+\sum_{j=1}^{n X} b_{j} f_{j}\left(x_{j}\right)+\sum_{j=1}^{n X} \sum_{l=j}^{n X} b_{j l} f_{j l}\left(x_{j}, x_{l}\right) \tag{6-12}
\end{equation*}
$$

Table 3. Example of Stepwise Regression Analysis to Identify Uncertain Variables Affecting the Uncertainty in Pressure (WAS_PRES) at 10,000 yr in Fig. 5a (Table 8.6, Ref. 101)

Step $^{\mathrm{a}}$	Variable $^{\mathrm{b}}$	SRC $^{\mathrm{c}}$	$\boldsymbol{R}^{2 \mathrm{~d}}$
1	WMICDFLG	0.718	0.508
2	HALPOR	0.466	0.732
3	WGRCOR	0.246	0.792
4	ANHPRM	0.129	0.809
5	SHRGSSAT	0.070	0.814
6	SALPRES	0.063	0.818

${ }^{\text {a }}$ Steps in stepwise regression analysis.
b Variables listed in the order of selection in regression analysis.
c SRCs for variables in final regression model.
d Cumulative R^{2} value with entry of each variable into regression model.

Fig. 9. Time-dependent sensitivity analysis results for uncertain pressure curves in Fig. 5a: (a) SRCs as a function of time, and (b) PCCs as a function of time (Fig. 8.3, Ref. 101).

This inclusion exists because the preceding model is linear in its coefficients (i.e., b_{0}, the b_{j}, the $b_{j l}$); in essence, the indicated transformations involving the x_{j} (i.e., $\left.f_{j}\left(x_{j}\right), f_{j l}\left(x_{j}, x_{l}\right)\right)$ are simply defining a new set of analysis inputs to be used in a regression-based sensitivity analysis. Results can be improved in some analyses by well-chosen variable transformations of the form indicated in Eq. (6-12). However, in large analyses involving many uncertain analysis inputs (i.e., x_{j}) and many possibly time-dependent analysis results (i.e., many different elements of \mathbf{y}), the a priori determination of suitable transformations can be difficult. Also, care can be taken to suitably account for any correlations that may be introduced by the chosen transformations (i.e., $f_{j}\left(x_{j}\right)$ and $f_{j l}\left(x_{j}, x_{l}\right)$ may be highly correlated).

Nonlinear regression provides an alternative to linear regression that can be useful in some analyses. In nonlinear regression, at least some of the model coefficients are operated on by nonlinear functions. For example,

$$
\begin{equation*}
\hat{y}=b_{0}+b_{1} \exp \left(b_{2} x_{1}\right)+b_{3} \sin \left(b_{4} x_{2}\right) \tag{6-13}
\end{equation*}
$$

is a nonlinear model because b_{2} and b_{4} appear in expressions that are operated on by nonlinear functions. A major challenge in the use of nonlinear regression in sensitivity analysis is the determination of a suitable form for the nonlinear regression model. The following two alternatives to nonlinear regression for use in the presence of nonlinear relationships between model inputs (i.e., the x_{j}) and model results (i.e., the elements of
y) that place fewer a priori demands on the analyst are described later in this presentation: rank transformations (Sect. 6.5) and nonparametric regression (Sect. 6.8).

Additional information: Sects. 6.6.2, 6.6.3, 6.6.5, Ref. 46. Further, general information on regression analysis is available in a number of texts (e.g., Refs. 147-151).

6.4 Partial Correlation

The partial correlation coefficient (PCC) between x_{j} and y can be defined in the following manner. First, the two regression models indicated below are constructed:
$\hat{x}_{j}=c_{0}+\sum_{\substack{p=1 \\ p \neq j}}^{n X} c_{p} x_{p}$ and $\hat{y}=b_{0}+\sum_{\substack{p=1 \\ p \neq j}}^{n X} b_{p} x_{p}$.
Then, the results of the two preceding regressions are used to define the new variables $x_{j}-\hat{x}_{j}$ and $y-\hat{y}$. The PCC between x_{j} and y is the CC $c\left(x_{j}-\hat{x}_{j}, y-\hat{y}\right)$ (see Eq. (61)) between $x_{j}-\hat{x}_{j}$ and $y-\hat{y}$. As for SRCs, PCCs are often defined for variables that are functions of time and presented as time-dependent plots (Fig. 9b).

The PCC characterizes the linear relationship between x_{j} and y after a correction has been made for the linear effects on y of the remaining elements of \mathbf{x}, and the SRC characterizes the effect on y that results from perturbing x_{j} by a fixed fraction of its standard deviation. Thus, PCCs and SRCs provide related, but not identical, measures of variable importance. In particular, the PCC between x_{j} and y provides a measure of variable importance that tends to exclude the effects of the other elements of \mathbf{x}, the assumed distribution for x_{j}, and the magnitude of the impact of the uncertainty in x_{j} on the uncertainty in y. In contrast, the SRC relating x_{j} to y is more influenced by the distribution assigned to x_{j} and the magnitude of the impact of the uncertainty in x_{j} on the uncertainty in y. However, when the elements of \mathbf{x} are independent, PCCs and SRCs give the same rankings of variable importance. Specifically, an ordering of variable importance based on the absolute value of PCCs is the same as an ordering based on either the absolute value of CCs or the absolute value of SRCs (Sect. 6.6.4, Ref. 46). A cosmetic benefit of using PCCs is that PCCs tend to be spread out in value more than SRCs and thus produce results that are easier to read (e.g., compare Figs. 9a and 9b); however, the downside to this is that a variable can appear to have a
larger effect on the uncertainty in y than is actually the case.

As for analyses based on SRCs, analyses based on PCCs can give very misleading results when correlations exist between the elements of \mathbf{x}. Specifically, if \mathbf{x} contains two highly correlated variables, then each variable will cancel the other's effect when PCCs with y are calculated.

Additional information: Sect. 6.6.4, Ref. 46; Ref. 152.

6.5 Rank Transformations

A rank transformation can be used to convert a nonlinear but monotonic relationship between the x_{j} and y into a linear relationship. With this transformation, the values for the x_{j} and y are replaced by their corresponding ranks. Specifically, the smallest value for a variable is assigned a rank of 1 ; the next largest value is assigned a rank of 2 ; tied values are assigned their average rank; and so on up to the largest value, which is assigned a rank of $n S$. Use of the rank transformation results in rank (i.e., Spearman) correlation coefficients (RCCs), rank regressions, standardized rank regression coefficients (SRRCs) and partial rank correlation coefficients (PRCCs). In the presence of nonlinear but monotonic relationships between the x_{j} and y, use of the rank transform can substantially improve the resolution of sensitivity analysis results (Table 4).

Additional information: Sect. 6.6.6, Ref. 46; Ref. 153.

6.6 Statistical Tests for Patterns Based on Gridding

Analyses based on raw or rank-transformed data can fail when the underlying relationships between the x_{j} and y are nonlinear and nonmonotonic (Fig. 10). The scatterplot in Fig. 6 b is for the pressure at 10,000 yr in Fig. 10a versus the uncertain variable BHPRM. The partial correlation analyses summarized in Fig. 10b fail at later times because the pattern appearing in Fig. 6b is too complex to be captured with a partial correlation analysis based on raw or rank-transformed data; analyses with SRCs or SRRCs also fail for the same reason. An alternative analysis strategy for situations of this type is to place grids on the scatterplot for y and x_{j} and then perform various statistical tests to determine if the distribution of points across the grid cells appears to be

Table 4. Comparison of Stepwise Regression Analyses with Raw and Rank-Transformed Data for Cumulative Brine Inflow to Vicinity of Repository over 10,000 yr from Anhydrite Marker Beds (BRAALIC) Under Undisturbed (i.e., E0) Conditions in Fig. 4b (Table 8.8, Ref. 101).

Step ${ }^{\text {a }}$	Raw Data			Rank-Transformed Data		
	Variable ${ }^{\text {b }}$	SRC ${ }^{\text {c }}$	$R^{2 \mathrm{~d}}$	Variable ${ }^{\text {b }}$	SRRC ${ }^{\text {e }}$	$R^{2 \mathrm{~d}}$
1	ANHPRM	0.562	0.320	WMICDFLG	-0.656	0.425
2	WMICDFLG	-0.309	0.423	ANHPRM	0.593	0.766
3	WGRCOR	-0.164	0.449	HALPOR	-0.155	0.802
4	WASTWICK	-0.145	0.471	WGRCOR	-0.152	0.824
5	ANHBCEXP	-0.120	0.486	HALPRM	0.143	0.845
6	HALPOR	-0.101	0.496	SALPRES	0.120	0.860
7				WASTWICK	-0.010	0.869
${ }^{\text {a }}$ Steps in stepwise regression analysis. b Variables listed in order of selection in regression analysis. c SRCs for variables in final regression model. ${ }^{\text {d }}$ Cumulative R^{2} value with entry of each variable into regression model. e SRRCs for variables in final regression model.						

Fig. 10. Illustration of failure of a sensitivity analysis based on rank-transformed data: (a) Pressures as a function of time, and (b) PRCCs as a function of time (Fig. 8.7, Ref. 101)
nonrandom. Appearance of a nonrandom pattern indicates that x_{j} has an effect on y. Possibilities include tests for (i) common means (CMNs), (ii) common distributions or locations (CLs), (iii) common medians (CMDs), and (iv) statistical independence (SI). Descriptions of these tests follow.

The CMNs test is based on dividing the values of x_{j} (i.e., $x_{i j}, i=1,2, \ldots, n S$) into $n I$ classes and then testing to determine if y has a common mean across these classes (Sect. 3.1; Ref. 154). The required classes are obtained by dividing the range of x_{j} into a sequence of mutually exclusive and exhaustive subintervals contain-
ing equal numbers of sampled values (Fig. 11a). If x_{j} is discrete, individual classes are defined for each of the distinct values. For notational convenience, let $c, c=1$, $2, \ldots, n I$, designate the individual classes into which the values of x_{j} have been divided; let X_{C} designate the set such that $i \in X_{C}$ only if $x_{i j}$ belongs to class c; and let $n I_{C}$ equal the number of elements contained in X_{C} (i.e., the number of $x_{i j}$'s associated with class c).

The F-test can be used to test for the equality of the mean values of y for the classes into which the values of x_{j} have been divided (e.g., the intervals defined on the abscissa of the scatterplot in Fig. 11a). Specifically,
if the y values conditional on each class of x_{j} values are normally distributed with equal expected values, then
$F=\frac{\left[\sum_{c=1}^{n I} n I_{c} \bar{y}_{c}^{2}-n S \bar{y}^{2}\right] /(n I-1)}{\left[\sum_{i=1}^{n S} y_{i}^{2}-\sum_{c=1}^{n I} n I_{c} \bar{y}_{c}^{2}\right] /(n S-n I)}$
follows an F-distribution with ($n I-1, n S-n I$) degrees of freedom, where $\bar{y}_{c}=\sum_{i \in X_{C}} y_{i} / n I_{c}$ and \bar{y} is defined in conjunction with Eq. (6-1). Given that the indicated assumptions hold, the probability $\operatorname{prob}_{F}(\tilde{F}>F \mid n I-1, n S-n I)$ of obtaining an F-statistic of value \tilde{F} that exceeds the value of F in Eq. (6-15) can be obtained from an F-distribution with ($n I-1, n S-n I$) degrees of freedom. A low probability (i.e., p-value) of obtaining a larger value for F suggests that the observed pattern involving x_{j} and y did not arise by chance and hence that x_{j} has an effect on the behavior of y.

The CLs test employs the Kruskal-Wallis test statistic T, which is based on rank-transformed data and uses the same classes of x_{j} values as the F-statistic in Eq. (6-15) (pp. 229-230, Ref. 155). Specifically,

$$
\begin{equation*}
T=\left[\sum_{c=1}^{n I}\left(R_{c}^{2} / n I_{c}\right)-n S(n S+1)^{2} / 4\right] / s^{2}, \tag{6-16}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{c} & =\sum_{i \in X_{C}} r\left(y_{i}\right) \\
s^{2} & =\left[\sum_{i=1}^{n S} r\left(y_{i}\right)^{2}-n S(n S+1)^{2} / 4\right] /(n S-1)
\end{aligned}
$$

and $r\left(y_{i}\right)$ denotes the rank of y_{i}. If the y values conditional on each class of x_{j} values have the same distribution, then the statistic T in Eq. (6-16) approximately follows a χ^{2} distribution with $n I-1$ degrees of freedom (pp. 230 - 231, Ref. 155). Thus, the probability $\operatorname{prob}_{2}(\tilde{T}>T \mid n I-1)$ of obtaining a value \tilde{T} that exceeds T in the presence of identical y distributions for the individual classes can be obtained from a χ^{2} distribution with $n I-1$ degrees of freedom. A small value for $\operatorname{prob}_{\chi^{2}}(\tilde{T}>T \mid n X-1)$ (i.e., a p-value) indicates that the values for y 's conditional on individual classes have different distributions and thus, most
likely, different means and medians. Hence, a small p value indicates that x_{j} has an effect on y.

The CMDs test is based on the χ^{2}-test for contingency tables, which can be used to test for the equality of the median values of y for the classes into which the values of x_{j} have been divided (pp. 143-178, Ref. 155). First, the median $y_{0.5}$ for y is estimated using all $n S$ observations. Specifically,

$$
y_{0.5}= \begin{cases}y_{(n S / 2)} & \text { if } n S / 2 \text { is an integer } \tag{6-17}\\ {\left[y_{([n S / 2])}+y_{([n S / 2]+1)}\right] / 2} & \text { otherwise, }\end{cases}
$$

where $y_{(i)}, i=1,2, \ldots, n S$, denotes the ordering of the y-values such that $y_{(i)} \leq y_{(i+1)}$ and [~] designates the greatest integer function. The individual classes of x_{j} values are then further subdivided on the basis of whether y values fall above or below $y_{0.5}$ (Fig. 11a). For class c, let $n I_{1 c}$ equal the number of y values that exceed $y_{0.5}$, and let $n I_{2 c}$ equal the number of y values that are less than or equal to $y_{0.5}$.

The result of this partitioning is a $2 \times n I$ contingency table with $n I_{r c}$ observations in each cell (i.e., in cell (r, c), where r and c designate "row" and "column," respectively, in the corresponding contingency table). The following statistic can now be defined:

$$
\begin{equation*}
T=\sum_{c=1}^{n I} \sum_{r=1}^{2}\left(n I_{r c}-n E_{r c}\right)^{2} / n E_{r c} \tag{6-18}
\end{equation*}
$$

where

$$
\begin{aligned}
n E_{r c} & =\left(\sum_{p=1}^{2} n I_{p c} / n S\right)\left(\sum_{q=1}^{n I} n I_{r q} / n S\right) n S \\
& =\left(\sum_{p=1}^{2} n I_{p c}\right)\left(\sum_{q=1}^{n I} n I_{r q}\right) / n S
\end{aligned}
$$

and corresponds to the expected number of observations in cell (r, c). If the individual classes of x_{j} values have equal medians, then T approximately follows a χ^{2} distribution with $(n I-1)(2-1)=n I-1$ degrees of freedom (p. 156, Ref. 155). Thus, the probability of obtaining a value \tilde{T} that exceeds T in the presence of equal medians is given by $\operatorname{prob}_{\chi^{2}}(\tilde{T}>T \mid n I-1)$. A small value (i.e., p-value) for $\operatorname{prob}_{\chi^{2}}(\tilde{T}>T \mid n I-1)$ indicates that the y 's conditional on individual classes have different medians and hence that x_{j} has an influence on y.

Fig. 11. Grids used to test for nonrandom patterns: (a) Partitioning of range of x_{j} for CMNs and CLs tests and ranges of x_{j} and y for CMDs test (Fig. 8.8, Ref. 101), and (b) Partitioning of ranges of x_{j} and y for SI (Fig. 8.9, Ref. 101).

The SI test also uses the χ^{2}-test to indicate if the pattern appearing in a scatterplot appears to be nonrandom. The SI test uses the same partitioning of x_{j} values as used for the CMNs, CLs and CMDs tests. In addition, the y values are also partitioned in a manner analogous to that used for the x_{j} values (Fig. 11b). For notational convenience, let $r, r=1,2, \ldots, n D$, designate the individual classes into which the values of y are divided; let Υ_{r} designate the set such that $i \in \Upsilon_{r}$ only if y_{i} belongs to class r; and let $n D_{r}$ equal the number of elements contained in Υ_{r} (i.e., the number of y_{i} 's associated with class r).

The partitioning of x_{j} and y into $n I$ and $n D$ classes in turn partitions $\left(x_{j}, y\right)$ into $n I n D$ classes (Fig. 11b), where $\left(x_{i j}, y_{i}\right)$ belongs to class (r, c) only if $x_{i j}$ belongs to class c of the x_{j} values (i.e., $i \in X_{c}$) and y_{i} belongs to class r of the y values (i.e., $i \in \Upsilon_{r}$). For notational convenience, let $O_{r c}$ denote the set such that $x_{i j} \in O_{r c}$ only if $i \in X_{c}$ (i.e., $x_{i j}$ is in class c of x_{j} values) and also $i \in$ Υ_{r} (i.e., y_{i} is in class r of y values), and let $n O_{r c}$ equal the number of elements contained in $O_{r c}$. Further, if x_{j} and y are independent, then

$$
\begin{equation*}
n E_{r c}=\left(n D_{r} / n S\right)\left(n I_{c} / n S\right) n S=n D_{r} n I_{c} / n S \tag{6-19}
\end{equation*}
$$

is an estimate of the expected number of observations $\left(x_{j}, y\right)$ that should fall in class (r, c).

The following statistic can be defined:

$$
\begin{equation*}
T=\sum_{c=1}^{n I} \sum_{r=1}^{n D}\left(n O_{r c}-n E_{r c}\right)^{2} / n E_{r c} \tag{6-20}
\end{equation*}
$$

Asymptotically, T follows a χ^{2}-distribution with ($n I-$ 1) $(n D-1)$ degrees of freedom when x_{j} and y are independent (pp. 158-153, Ref. 155). Thus, prob χ^{2} $[\tilde{T}>T \mid \quad(n I-1)(n D-1)]$ is the probability (i.e., p value) of obtaining a value of \tilde{T} that exceeds T when x_{j} and y are independent. A small p-value indicates that the pattern in the scatterplot arose from some underlying relationship involving x_{j} and y rather than from chance alone. As shown by comparison of Eqs. (6-18) and (6-20), the CMDs and SI tests differ only in the partitionings used for the y values.

The four tests described in this section are illustrated in Table 5 for $y=$ WAS_PRES at 10,000 yr under undisturbed conditions (Fig. 5a) and disturbed conditions (Fig. 10a). Scatterplots illustrating the partitioning for $x_{j}=$ BHPRM and $y=$ WAS_PRES under disturbed conditions are given in Fig. 11. For perspective, rankings based on CCs and RCCs are also presented in Table 5. The relationships between $y=$ WAS_PRES and the dominant sampled variables under undisturbed conditions are fairly linear, with the result that all ranking procedures (i.e., CMNs, CLs, CMDs, SI, CCs, RCCs) give the same ordering of variable importance for the top four variables. In contrast, the relationship between $y=W A S _P R E S$ and $x_{j}=$ $B H P R M$ under disturbed conditions is both nonlinear and nonmonotonic (Fig. 11), with the result that the tests

Table 5. Comparison of Statistical Tests for Patterns Based on Gridding for Pressure (WAS_PRES) at 10,000 yr under Undistributed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., E2) Conditions (Fig. 10a) (adapted from Tables 4 and 21 of Ref. 47).

Variable ${ }^{\text {a }}$	CMNs: $1 \times 5^{\text {b }}$		CLs: $1 \times{ }^{\text {c }}$		CMDs: $2 \times 5^{\text {d }}$		SI: $5 \times 5^{\text {e }}$		CCs ${ }^{\text {f }}$		RCCs ${ }^{\text {g }}$	
	Rank	p-val	Ran	p-val								
Pressure, Undisturbed (i.e., E0) Conditions at 10,000 yr (Fig. 5a)												
WMICDFLG	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000
HALPOR	2	0.0000	2	0.0000	2	0.0000	2	0.0000	2	0.0000	2	0.0000
WGRCOR	3	0.0000	3	0.0000	3	0.0025	3	0.0003	3	0.0000	3	0.0000
ANHPRM	4	0.0195	4	0.0187	4	0.0663	4	0.0049	4	0.0241	4	0.0268
ANHBCVGP	18	0.8062	16	0.7686	14	0.6442	5	0.0194	20	0.8084	15	0.7686
Pressure, Disturbed (i.e., E2) Conditions at 10,00 yr (Fig. 10a)												
BHPRM	1	0.0000	1	0.0000	1	0.0000	1	0.0000	10	0.3651	6	0.1704
HALPRM	2	0.0000	2	0.0000	2	0.0000	2	0.0002	1	0.0000	1	0.0000
ANHPRM	3	0.0002	3	0.0000	3	0.0007	4	0.0049	2	0.0000	2	0.0000
ANHBCEXP	4	0.0405	4	0.0602	4	0.0595	14	0.4414	7	0.1786	8	0.2373
HALPOR	5	0.0415	5	0.0940	5	0.0700	11	0.3142	3	0.0090	3	0.0184
WGRCOR	17	0.5428	9	0.2242	14.5	0.5249	3	0.0002	20	0.7676	17	0.6560

Table includes only variables that had a p-value less than 0.05 for at least one of the procedures although the variable rankings for a specific procedure are based on the p-values obtained for that procedure for all variables considered in the analysis (see Table 1; variable BHPRM not included in analyses for undisturbed conditions).
Variable ranks and p-values for CMNs test with 1×5 grid; see Eq. (6-15). Exceptions for CMNs, CLs, CMDs and SI tests: because variables $A N H B C V G P$ and $W M I C D F L G$ are discrete with 2 and 3 values, respectively (see Table 1), $n I=2$ and 3 rather than 5 for these two variables.
Variable ranks and p-values for CLs test with 1×5 grid; see Eq. (6-16).
Variable ranks and p-values for CMDs test with 2×5 grid; see Eq. (6-18).
Variable ranks and p-values for SI test with 5×5 grid; see Eq. (6-20).
Variable ranks and p-values for CC; see Eq. (6-24), Ref. 47.
Variable ranks and p-values for RCC; see Eq. (6-38), Ref. 47.
based on gridding (i.e., CMNs, CLs, CMDs, SI) all identify BHPRM as being the dominant variable influencing the uncertainty in WAS_PRES; in contrast, the effect of BHPRM was completely missed by tests based on CCs and RCCs.

The CMNs, CLs, CMDs and SI tests discussed in this section are all based on p-values that derive from statistical tests predicated on assumptions that are certainly not satisfied in their entirety in sampling-based sensitivity analyses. Thus, it is possible that the violation of these assumptions could be leading to misrankings of variable importance. Such a possibility can be explored by using a Monte Carlo procedure to assess if the use of formal statistical procedures to determine p values is producing misleading results (Ref. 156; Sect. 14.5 , Ref. 157). Specifically, $n R$ samples of the form
$\left(x_{i j}, y_{i}\right), i=1,2, \ldots, n S$,
can be generated by pairing the $n S$ values for x_{j} randomly and without replacement with the $n S$ values for
y. This random assignment is repeated $n R$ times to produce $n R$ samples of the form in Eq. (6-21) for each uncertain input x_{j} under consideration. In this example, $n R=10,000$ and $n S=300$. For a given procedure (i.e., CMNs, CLs, CMDs, SI), each of the $n R$ samples can be used to calculate the value of the statistic used to determine the corresponding p-value. The resulting empirical distribution of the statistic can then be used to estimate the p-value for the statistic actually observed in the analysis. Comparison of the p-value obtained for a given set of statistical assumptions with the p-value obtained from the empirical distribution of the corresponding statistic provides an indication of the robustness of the variable rankings with respect to possible deviations from the assumptions underlying the formal statistical procedure. As examination of Table 6 shows, the variable rankings illustrated in this section are quite robust with respect to possible deviations from the underlying statistical assumptions on which they are predicated.

Additional Information: Sects. 6.6.8, 6.6.9, Ref. 46; Refs. 47, 158-160.

Table 6. Comparison of Variable Rankings Obtained with Formal Statistical Procedures and Monte Carlo Procedures for Statistical Tests for Patterns Based on Gridding for Pressure (WAS_PRES) at 10,000 yr Under Undisturbed (i.e., EO) Conditions (Adapted from Table 8 of Ref. 47; see Table 23, Ref. 47, for a similar comparison for pressure at $10,000 \mathrm{yr}$ under disturbed (i.e., E2) conditions)

Variable ${ }^{\text {a }}$ Name	CMN: $1 \times 5^{\text {b }}$		CMNMC: $1 \times 5^{\text {c }}$		Variable ${ }^{\text {a }}$ Name	CL: $1 \times 5^{\text {b }}$		CLMC: $1 \times 5^{\text {c }}$	
	Rank	p-Val	Rank	p-Val		Rank	p-Val	Rank	p-Val
WMICDFLG	1.0	0.0000	2.0	0.0000	WMICDFLG	1.0	0.0000	2.0	0.0000
HALPOR	2.0	0.0000	2.0	0.0000	HALPOR	2.0	0.0000	2.0	0.0000
WGRCOR	3.0	0.0000	2.0	0.0000	WGRCOR	3.0	0.0000	2.0	0.0000
ANHPRM	4.0	0.0195	4.0	0.0214	ANHPRM	4.0	0.0187	4.0	0.0212
SHPRMASP	5.0	0.1439	5.0	0.1495	SHPRMASP	5.0	0.1237	5.0	0.1277
WRBRNSAT	6.0	0.1506	6.0	0.1526	WRBRNSAT	6.0	0.2042	6.0	0.2053
SHRGSSAT	7.0	0.2488	7.0	0.2497	ANRBRSAT	7.0	0.2710	7.0	0.2710
ANRBRSAT	8.0	0.3034	8.0	0.3027	SHRGSSAT	8.0	0.3153	8.0	0.3167
\ldots	...								
WGRMICI	23.0	0.9705	23.0	0.9717	WGRMICI	23.0	0.9649	23.0	0.9663
WGRMICH	24.0	0.9975	24.0	0.9973.	WGRMICH	24.0	0.9865	24.0	0.9839
TDCC ${ }^{\text {d }}$			0.970		TDCC ${ }^{\text {d }}$			0.971	
Variable ${ }^{\text {a }}$ Name	CMD: $2 \times 5^{\text {b }}$		CMDMC: $2 \times 5^{\text {c }}$		Variable ${ }^{\text {a }}$ Name	SI: $5 \times 5^{\text {b }}$		SIMC: $5 \times 5^{\text {c }}$	
	Rank	p-Val	Rank	p-Val		Rank	p-Val	Rank	p-Val
WMICDFLG	1.0	0.0000	1.5	0.0000	WMICDFLG	1.0	0.0000	1.5	0.0000
HALPOR	2.0	0.0000	1.5	0.0000	HALPOR	2.0	0.0000	1.5	0.0000
WGRCOR	3.0	0.0025	3.0	0.0018	WGRCOR	3.0	0.0003	3.0	0.0003
ANHPRM	4.0	0.0663	4.0	0.0690	ANHPRM	4.0	0.0049	4.0	0.0038
SHPRMASP	5.0	0.2427	5.0	0.2401	ANHBCVGP	5.0	0.0194	5.0	0.0178
SHPRMCON	6.0	0.2674	6.0	0.2718	WRGSSAT	6.0	0.1229	6.0	0.1196
ANRBRSAT	7.0	0.3386	7.0	0.3329	SHPRMCON	7.0	0.1487	7.0	0.1529
HALPRM	8.0	0.3883	8.0	0.3967	WASTWICK	8.0	0.1850	8.0	0.1829
\ldots	...								
WGRMICH	23.0	0.9554	23.0	0.9439	WGRMICH	23.0	0.9437	23.0	0.9429
WGRMICI	24.0	0.9702	24.0	0.9664	ANRGSSAT	24.0	0.9763	24.0	0.9791
TDCC ${ }^{\text {d }}$			0.986		TDCC ${ }^{\text {d }}$			0.988	
a Twenty-four (24) variables included in analysis; highly correlated variables and variables not relevant to E0 conditions not included. b Variable rankings obtained with a maximum of five classes of x values (i.e., $n I=5$; see Footnote b, Table 5) and analytic determination of p values. c Variable rankings obtained with a maximum of five classes of x values (i.e., $n I=5$; see Footnote b, Table 5) and Monte Carlo determination of p-values. d Top down coefficient of concordance (TDCC, see Sect. 6.12) with variable rankings obtained with a maximum of five classes of x values (i.e., $n I=5$; see Footnote b, Table 5) and analytic determination of p-values.									

6.7 Entropy Tests for Patterns Based on Gridding

Measures of entropy provide another grid-based procedure to assess the strength of nonlinear relationships between the x_{j} and y. Specifically, the following quantities can be defined (pp. $480-484$, Ref. 157):

$$
\begin{align*}
& H(y)=-\sum_{r=1}^{n D}\left(n D_{r} / n S\right) \ln \left(n D_{r} / n S\right), \tag{6-22}\\
& H\left(x_{j}\right)=-\sum_{c=1}^{n I}\left(n I_{c} / n S\right) \ln \left(n I_{c} / n S\right), \tag{6-23}\\
& H\left(y, x_{j}\right)=-\sum_{r=1}^{n D} \sum_{c=1}^{n I}\left(n O_{r c} / n S\right) \ln \left(n O_{r c} / n S\right), \tag{6-24}\\
& H\left(x_{j} \mid y\right)= \sum_{r=1}^{n D}\left\{\frac{n D_{r}}{n S}\right\}\left\{-\sum_{c=1}^{n I}\left[\left(n O_{r c} / n S\right) /\left(n D_{r} / n S\right)\right]\right. \\
&\left.\quad \cdot \ln \left[\left(n O_{r c} / n S\right) /\left(n D_{r} / n S\right)\right]\right\} \\
&=-\sum_{r=1}^{n D} \sum_{c=1}^{n I}\left(n O_{r c} / n S\right) \ln \left(n O_{r c} / n D_{r}\right) \\
& H\left(y \mid x_{j}\right)= \sum_{c=1}^{n I}\left\{\frac{n I_{c}}{n S}\right\}\left\{-\sum_{r=1}^{n D}\left[\left(n O_{r c} / n S\right) /\left(n I_{c} / n S\right)\right]\right. \tag{6-25}\\
&\left.\cdot \ln \left[\left(n O_{r c} / n S\right) /\left(n I_{c} / n S\right)\right]\right\} \\
&=-\sum_{c=1}^{n I} \sum_{r=1}^{n D}\left(n O_{r c} / n S\right) \ln \left(n O_{r c} / n I_{c}\right) \\
&= H\left(y, x_{j}\right)-H\left(x_{j}\right), \\
& U\left(y \mid x_{j}\right)=\left[H(y)-H\left(y \mid x_{j}\right)\right] / H(y) \tag{6-26}\\
&= {\left[H(y)+H\left(x_{j}\right)-H\left(y, x_{j}\right)\right] / H(y), } \\
& U\left(x_{j} \mid y\right)=\left[H\left(x_{j}\right)-H\left(x_{j} \mid y\right)\right] / H\left(x_{j}\right) \tag{6-27}\\
&= {\left[H(y)+H\left(x_{j}\right)-H\left(y, x_{j}\right)\right] / H\left(x_{j}\right), } \\
& H-2 \tag{6-28}
\end{align*}
$$

$$
\begin{align*}
U\left(y, x_{j}\right)= & 2\left[H(y)+H\left(x_{j}\right)-H\left(y, x_{j}\right)\right] \\
& /\left[H(y)+H\left(x_{j}\right)\right] \\
= & {\left[H(y) U\left(y \mid x_{j}\right)+H(x) U\left(x_{j} \mid y\right)\right] } \\
& /\left[H(y)+H\left(x_{j}\right)\right] \tag{6-29}
\end{align*}
$$

where (i) $H(y)$ and $H\left(x_{j}\right)$ are estimates of the entropy associated with y and x_{j}, respectively, (ii) $H\left(y, x_{j}\right)$ is an estimate of the entropy associated with y and x_{j}, (iii) $H\left(x_{j} \mid y\right)$ and $H\left(y \mid x_{j}\right)$ are estimates of the expected entropy of x_{j} conditional on y and the expected entropy of y conditional on x_{j}, respectively, (iv) $U\left(x_{j} \mid y\right)$ and $U\left(y \mid x_{j}\right)$ are measures (i.e., uncertainty coefficients) of the contributions of y to the entropy associated with x_{j} and of x_{j} to the entropy associated with y, respectively, (v) $U(y, x)$ is an entropy-based measure of the strength of the association between x_{j} and y, (vi) the remaining expressions are the same as defined in Sect. 6.6, and (vii) the defined quantities in Eqs. (6-22) - (6-29) are conditional on the grid structure in use.

The quantities $U\left(y \mid x_{j}\right)$ and $U\left(y, x_{j}\right)$ can be used as sensitivity measures, with $U\left(y \mid x_{j}\right)$ providing a measure of the effect of the uncertainty in x_{j} on the uncertainty in y and $U\left(y, x_{j}\right)$ providing a measure of the joint behavior of x_{j} and y. Both quantities equal zero when there is no relationship between y and x_{j} that is identifiable with the grid structure in use and equal one when there is a perfect association between y and x_{j} with the grid structure in use. Values between zero and one are indicative of intermediate levels of association. Specifically,
$U\left(y \mid x_{j}\right)=U\left(y, x_{j}\right)=0$
if

$$
\begin{equation*}
n O_{r c}=n S /\left(n D_{r} n I_{c}\right) \tag{6-31}
\end{equation*}
$$

for $r=1,2, \ldots, n D$ and $c=1,2, \ldots, n I$, and
$U\left(y \mid x_{j}\right)=U\left(y, x_{j}\right)=1$
if each interval of values for x_{j} is associated with only one interval of values for y and each interval of values for y is associated with only one interval of values for x_{j}. Necessary, but not sufficient, conditions for the equality in Eq. (6-31) are (i) $n I=n D$, and (ii) $n I_{c}=n D_{c}$, $c=1,2, \ldots, n I(=n D)$.

When the $n I$ and $n D$ intervals into which the values for x_{j} and y are divided contain equal numbers of sampled values (i.e., $n S / n I$ and $n S / n D$ values for the intervals associated with x_{j} and y, respectively), then the following simpler expressions result:

$$
\begin{align*}
& H\left(x_{j}\right)=\ln (n I), H(y)=\ln (n D), \tag{6-33}\\
& H\left(y \mid x_{j}\right)=H\left(y, x_{j}\right)-\ln (n I), \tag{6-34a}\\
& H(x \mid y)=H\left(y, x_{j}\right)-\ln (n D), \tag{6-34b}\\
& U\left(y \mid x_{j}\right)=\left[\ln (n I)+\ln (n D)-H\left(y, x_{j}\right)\right] / \ln (n D), \tag{6-35}\\
& U\left(x_{j} \mid y\right)=\left[\ln (n I)+\ln (n D)-H\left(y, x_{j}\right)\right] / \ln (n I), \tag{6-36}\\
& U\left(y, x_{j}\right)=2\left[\ln (n I)+\ln (n D)-H\left(y, x_{j}\right)\right] \\
& \quad /[\ln (n I)+\ln (n D)] . \tag{6-37}
\end{align*}
$$

Further,

$$
\begin{equation*}
U\left(y \mid x_{j}\right)=U\left(x_{j} \mid y\right)=U\left(y, x_{j}\right)=2-H\left(y, x_{j}\right) / \ln (n I) \tag{6-38}
\end{equation*}
$$

if $n I=n D$.
As shown by comparison of Eqs. (6-35) and (637), use of either $U\left(y \mid x_{j}\right)$ or $U\left(y, x_{j}\right)$ will produce identical rankings of variable importance based on the size of $H\left(y, x_{j}\right)$ when the same values for $n I$ and $n D$ and also for $n I_{c}=n S / n I$ and $n D_{r}=n S / n D$ are used in the determination of $U\left(y \mid x_{j}\right)$ and $U\left(y, x_{j}\right)$ for each of the independent variables under consideration. Specifically, $U\left(y \mid x_{j}\right)$ and $U\left(y, x_{j}\right)$ increase in size as the entropy $H(y$, x_{j}) associated with joint distribution for x_{j} and y decreases. Thus, $U\left(y \mid x_{j}\right)$ and $U\left(y, x_{j}\right)$ are really sensitivity measures that quantify variable importance on the basis of the entropy $H\left(y, x_{j}\right)$ associated with x_{j} and y. Specifically, the smaller the entropy $H\left(y, x_{j}\right)$, the more important x_{j} is assessed to be in affecting the value of y. As shown in Eq. (6-38), $U\left(y \mid x_{j}\right)$ and $U\left(y, x_{j}\right)$ have identical numerical values when $n I=n D$ and $n I_{c}=n D_{r}=$ $n S / n D$.

A closely related measure of association is given by
$R\left(y, x_{j}\right)=\left\{1-\exp \left(-2\left[H\left(x_{j}\right)+H(y)-H\left(y, x_{j}\right)\right]\right)\right\}^{1 / 2}$,
which has (i) a value of zero if there is no association between x_{j} and y in the sense indicated in Eq. (6-30), (ii) a value that approaches one as $n I$ and $n D$ increase if there is perfect association between x_{j} and y in the sense indicated in conjunction with Eq. (6-32), and (iii) intermediate values for intermediate levels of association (Ref. 161). If x_{j} and y have a bivariate normal distribution, then $R\left(y, x_{j}\right)$ approaches the absolute value of the correlation coefficient between x_{j} and y as the sample and grid sizes increase. ${ }^{161}$

As suggested by Mishra and Knowlton, ${ }^{162}$ the SI test (i.e., a χ^{2}-test on the same grid used to define entropy measures) can be used to identify important variables, and then the entropy measures $U\left(y, x_{j}\right), U\left(y \mid x_{j}\right)$ and $R\left(y, x_{j}\right)$ can be used to provide a numerical representation of variable importance. The result of this approach is illustrated in Table 7, with the top two sets of results corresponding to the use of $n I=n D=5$, and the lower two sets corresponding to the use of $n I=10$ and $n D=5$. As should be the case, the values for $U(y$, x_{j}) and $U\left(y \mid x_{j}\right)$ are the same when $n I=n D$ and are somewhat different when $n I \neq n D$. Further, there is little difference in the variable rankings based on the SI test and on the entropy measures $U\left(y, x_{j}\right), U\left(y \mid x_{j}\right)$ and $R\left(y, x_{j}\right)$. Although $U\left(y, x_{j}\right), U\left(y \mid x_{j}\right)$ and $R\left(y, x_{j}\right)$ result in the same rankings of variable importance because of the underlying dependence on $H\left(y, x_{j}\right)$, the normalization associated with the definition of $R\left(y, x_{j}\right)$ produces results that are more widely spread over the interval $[0$, 1]. Although not presented, similar normalizations referred to as Cramer's V and the contingency coefficient, respectively, are also possible for the χ^{2}-statistic T in Eq. (6-20) associated with the SI test (see Sect. 13.6, Ref. 157). The right most columns in Table 7 labeled "KS Test" and "KSMC Test" relate to a sensitivity analysis procedure based on a two-dimensional Kolmogorov-Smirnov test that will be discussed in Sect. 6.10.

The similarity between the ranking of variable importance with the SI test and with entropy-based measures is quite striking (Table 8). For all practical purposes, the χ^{2}-statistic T defined in Eq. (6-20) associated with the SI test and the entropy-based measures $U(y$, x_{j}), $U\left(y \mid x_{j}\right)$ and $R\left(y, x_{j}\right)$ defined in Eqs. (6-28), (6-29) and (6-39) give the same rankings of variable importance. However, when discrete variables such as

Table 7. Examples of Entropy Measures to Identify Uncertain Variables Affecting the Uncertainty in Pressure (WAS_PRES) at 10,000 yr under Undisturbed (i.e., EO) Conditions (Fig. 5a) and Disturbed (i.e., E2) Conditions (Fig. 10a)

Variable ${ }^{\text {a }}$	SI Test ${ }^{\text {b }}$			Entropy ${ }^{\text {c }}$		Cond. Entropy ${ }^{\text {d }}$		R-Statistic ${ }^{\text {e }}$	
	χ^{2}	p-value	Rank	$U\left(y, x_{j}\right)$	Rank	$U\left(y \mid x_{j}\right)$	Rank	$R\left(y, x_{j}\right)$	Rank
Pressure, Undisturbed (i.e., E0) Conditions at 10,000 yr (Fig. 5a): $n I=5, n D=5$									
WMICDFLG	198.6	0.0000	1	0.2868	1	0.2361	1	0.7296	1
HALPOR	127.2	0.0000	2	0.1350	2	0.1350	2	0.5930	2
WGRCOR	42.5	0.0003	3	0.0485	3	0.0485	3	0.3800	3
ANHPRM	34.3	0.0049	4	0.0420	4	0.0420	4	0.3560	4
ANHBCVGP	11.7	0.0194	5	0.0172	15.5	0.0123	25	0.1970	25
Pressure, Disturbed (i.e., E2) Conditions at 10,000 yr (Fig. 10a): $n I=5, n D=5$									
BHPRM	337.2	0.0000	1	0.3700	1	0.3700	1	0.8340	1
HALPRM	43.7	0.0002	2	0.0526	2	0.0526	2	0.3940	2
WGRCOR	43.7	0.0002	3	0.0456	3	0.0456	3	0.3690	3
ANHPRM	34.3	0.0049	4	0.0405	4	0.0405	4	0.3500	4
Pressure, Undisturbed (i.e., E0) Conditions at 10,000 yr (Fig. 5a): $n I=10, n D=5$									
WMICDFLG	198.6	0.0000	1	0.1868	1	0.2361	1	0.7296	1
HALPOR	140.2	0.0000	2	0.1240	2	0.1510	2	0.6200	2
WGRCOR	56.3	0.0167	3	0.0515	4.	0.0626	4	0.4270	4
ANHPRM	53.3	0.0314	4	0.0547	3	0.0664	3	0.4390	3
Pressure, Disturbed (i.e., E2) Conditions at 10,000 yr (Fig. 10a); $n I=10, n D=5$									
BHPRM	402.3	0.0000	1	0.3490	1	0.4240	1	08630	1
WGRCOR	69.0	0.0008	2	0.0616	2	0.0749	2	0.4630	2
HALPRM	63.0	0.0035	3	0.0601	3	0.0731	3	0.4580	3
ANHPRM	63.0	0.0035	4	0.0594	4	0.0722	4	0.4550	4
a Table includes only variables that had a p-value less than 0.05 for SI test. ${ }^{\text {b }} \chi^{2}$ value, p-value and variable rank for SI test with 5×5 grid for $n I=5, n D=5$ and 10×5 grid for $n I=10, n D=5$; see Eq. (6 -20). Exception: because variables ANHBCVGP and WMICDFLG are discrete with 2 and 3 values, respectively (see Table 1), $n I=2$ and 3 rather than 5 for these two variables. ${ }^{\text {c }}$ Entropy $U\left(y, x_{j}\right)$ and variable rank; see Eq. (6-29). ${ }^{\text {d }}$ Conditional entropy $U\left(y \mid x_{j}\right)$ and variable rank; see Eq. ($6-28$). ${ }^{\text {e }} R$-statistic $R\left(y, x_{i}\right)$ and variable rank; see Eq. (6 -39).									

ANHBCVGP and WMICDFLG are under consideration, there can be some differences between rankings based on p-values for the χ^{2} statistic and rankings based on either the χ^{2} statistic itself or entropy measures because of the effects of the resultant different degrees of freedom associated with different variables on the p-values for the χ^{2} statistic. Clearly, there is a close algebraic connection between T and the entropy-based measures $U\left(y, x_{j}\right), U\left(y \mid x_{j}\right)$ and $R\left(y, x_{j}\right)$. As previously illustrated, p-values for the χ^{2}-statistic provide a way to discern influential from noninfluential variables for both the SI test and the entropy-based measures. Although not illustrated, the Monte Carlo procedure discussed in conjunction with Eq. (6-21) and Table 6 for the empirical
determination of p-values could be used to directly determine p-values for $U\left(y, x_{j}\right), U\left(y \mid x_{j}\right)$ and $R\left(y, x_{j}\right)$.

Additional information: pp. 480 - 484, Ref. 157; Refs. 161-164.

6.8 Nonparametric Regression

There are drawbacks to the parametric regression techniques indicated in Sect. 6.3 that can reduce their effectiveness in some sensitivity analyses. First, it is necessary to provide an a priori specification of the form of the regression model (e.g., linear as in Eqs. (63) and (6-12), nonlinear as in Eq. (6-13), or linear with

Table 8. Detailed Comparison of χ^{2}-statistic T and Entropy $U\left(y, x_{j}\right)$ Used to Identify Uncertain Variables Affecting the Uncertainty in Pressure (WAS_PRES) at 10,000 yr under Undisturbed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., E2) Conditions (Fig. 10a)

Variables ordered by χ^{2}-statistic for SI test.
χ^{2}-statistic for SI test with 5×5 grid (see footnote b, Tables 5 and 7, and Eq. (6-20)) and variable rank based on values of χ^{2}-statistic.
Degrees of freedom for χ^{2}-statistic.
${ }^{\text {d }} p$-value for χ^{2}-statistic and variable rank based on p-value for χ^{2}-statistic.
e Entropy $U\left(y, x_{j}\right)$ based on 5×5 grid (see footnote b, Tables 5 and 7, and Eq. (6-29)) and variable rank based on $U\left(y, x_{j}\right.$).
rank transformed data as discussed in Sect. 6.5). Unfortunately, when complex patterns of behavior are present, it can be difficult to determine the appropriate form for a regression model. Such determinations can be a particular challenge in exploratory analyses that can involve 10s or even 100s of analysis results, with each result potentially requiring the specification of a different regression model. Second, the specified form for the regression is required to hold across the entire
mapping from analysis inputs to analysis results, which makes the representation of local behavior and/or asymptotes difficult. In addition, the grid-based procedures discussed in Sects. 6.6 and 6.7 have the drawback that the associated sensitivity results can be dependent on the particular grid selected for use. Unfortunately, the most appropriate grid for use with these procedures is not always apparent.

Nonparametric regression procedures provide an alternative to parametric regression procedures and grid-based procedures that can mitigate the potential problems indicated in the preceding paragraph. With nonparametric regression procedures, an a priori specification of the exact algebraic form of the regression model is not required. Rather, an iterative procedure is used to construct a model that captures the relationships that are present in the mapping between analysis inputs and a particular analysis result. This iterative construction procedure does not require the use of a grid and produces a model that can represent local patterns of behavior. Nonparametric regression is often referred to as smoothing. Popular nonparametric regression procedures include (i) locally weighted regression (LOESS), (ii) generalized additive models (GAMs), (iii) projection pursuit regression (PP_REG), and (iv) recursive partitioning regression (RP_REG). These procedures are briefly described below.

The LOESS technique is based on the assumption that the relationship between y and \mathbf{x} is of the form
$y=f(\mathbf{x})=\alpha(\mathbf{x})+\beta(\mathbf{x}) \mathbf{x}$,
where $\beta(\mathbf{x})=\left[\beta_{1}(\mathbf{x}), \beta_{2}(\mathbf{x}), \ldots, \beta_{n X}(\mathbf{x})\right]$ and $\mathbf{x}=\left[x_{1}, x_{2}\right.$, $\left.\ldots, x_{n X}\right]^{\mathrm{T}}$. In turn, an approximate relationship of the form
$\hat{y}=\hat{f}(\mathbf{x})=\hat{\alpha}(\mathbf{x})+\hat{\boldsymbol{\beta}}(\mathbf{x}) \mathbf{x}$
is sought with LOESS. The quantities $\hat{\alpha}(\mathbf{x})$ and $\hat{\beta}(\mathbf{x})$ for a given value of \mathbf{x} are defined to be the values for α and $\beta=\left[\beta_{1}, \beta_{2}, \ldots, \beta_{n X}\right]$ that minimize the sum

$$
\begin{equation*}
\sum_{i=1}^{n S}\left(\alpha+\beta \mathbf{x}_{i}-y_{i}\right)^{2}\left[1-\left(\frac{\left\|\mathbf{x}-\mathbf{x}_{i}\right\|}{d_{r}(\mathbf{x})}\right)^{3}\right]^{3} I_{\left[0, d_{r}(\mathbf{x})\right)}\left(\left\|\mathbf{x}-\mathbf{x}_{i}\right\|\right) \tag{6-42}
\end{equation*}
$$

where (i) $d_{r}(\mathbf{x})$ is the distance to the $r^{\text {th }}$ nearest neighbor of \mathbf{x} in $n X$-dimensional Eulidean space, (ii) $I_{\left[0, d_{r}(\mathbf{x})\right)}\left(\left\|\mathbf{x}-\mathbf{x}_{i}\right\|\right.$ equals 1 if $\left\|\mathbf{x}-\mathbf{x}_{i}\right\|<d_{r}(\mathbf{x})$ and equals 0 otherwise, and (iii) the individual independent variables (i.e., $x_{1}, x_{2}, \ldots, x_{n X}$) are normalized to mean zero and standard deviation one so that the value of the norm $\|\cdot\|$ is not dominated by the units used for these variables. The determination of α and β is straightforward with the use of appropriate matrix techniques (p . 139, Ref. 165).

For GAMs, the function $f(\mathbf{x})$ is assumed to have the form
$f(\mathbf{x})=\sum_{j=1}^{n X} f_{j}\left(x_{j}\right)$,
where the f_{j} are arbitrary functions that will be determined as part of the analysis process. In turn, the observed values for y are assumed to be of the form
$y_{i}=f\left(\mathbf{x}_{i}\right)=\sum_{j=1}^{n X} f_{j}\left(x_{i j}\right)$.
Given initial estimates $\hat{f}_{2}, \hat{f}_{3}, \ldots, \hat{f}_{n X}$ for f_{2}, f_{3}, \ldots, $f_{n X}$, an estimate \hat{f}_{1} for f_{1} can be obtained through use of the relationship
$y_{i}-\sum_{j=2}^{n X} \hat{f}_{j}\left(x_{i j}\right) \cong f_{1}\left(x_{i 1}\right)$
for $i=1,2, \ldots, n S$. In particular, a scatterplot smoother (e.g., LOESS with only one independent variable) can be used to smooth the partial residuals on the left hand side of Eq. (6-45) across x_{1}. This produces an estimate \hat{f}_{1} for f_{1} defined across the range of values for x_{1}. Given this estimate for f_{1}, the estimate \hat{f}_{2} for f_{2} can be refined in the same manner across the range of values for x_{2} with $\hat{f}_{1}, \hat{f}_{3}, \hat{f}_{4}, \ldots, \hat{f}_{n X}$. This procedure then continues and repetitively cycles through the variables. The cycling continues until convergence is achieved. The result is \hat{f}_{j} defined at $x_{1 j}, x_{2 j}, \ldots, x_{n S, j}$ for $j=1,2$, $\ldots, n X$. Additional detail is available elsewhere (pp. 90 - 91, Ref. 166; pp. 300 - 302, Ref. 167).

The PP_REG procedure involves both dimension reduction and additive modeling and is based on the assumption that $f(\mathbf{x})$ has the form

$$
\begin{equation*}
f(\mathbf{x})=\sum_{s=1}^{n D} g_{s}\left(\alpha_{s} \mathbf{x}\right) \tag{6-46}
\end{equation*}
$$

where $\alpha_{s}=\left[\alpha_{1 s}, \alpha_{2 s}, \ldots, \alpha_{n X, s}\right], \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n X}\right]^{T}$, $\alpha_{s} \mathbf{x}$ corresponds to a linear combination of the elements of \mathbf{x}, and g_{s} is an arbitrary function. Values for g_{s}, α_{s} and $n D$ are determined as part of the analysis procedure. The expression in Eq. (6-46) is an additive model with the quantities $\alpha_{s} \mathbf{x}$ replacing the elements x_{j} of \mathbf{x} as the independent variables. Further, this expression involves a reduction in dimension as $n D$ is usually smaller than $n X$. The entities $\hat{\alpha}_{1}, \hat{\alpha}_{2}, \ldots, \hat{\alpha}_{n D}$ and $\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{n D}$ are estimated as part of the construction
process. This is accomplished by first estimating α_{1} and g_{1}. Specifically, $\hat{\alpha}_{1}$ and \hat{g}_{1} are defined to be the values for α and g_{α} that minimize the sum
$\sum_{i=1}^{n S}\left[y_{i}-g_{\alpha}\left(\alpha \mathbf{x}_{i}\right)\right]^{2}$,
where $\alpha \in R^{n X},\|\alpha\|=1$, and g_{α} is the outcome of using a scatterplot smoother (e.g., LOESS) on the points $\left[y_{i}\right.$, $\left.\alpha \mathbf{x}_{i}\right], i=1,2, \ldots, n S$. Once $\hat{\alpha}_{1}$ and \hat{g}_{1} are estimated, the partial residuals $y_{i}-\hat{g}_{1}\left(\hat{\alpha}_{1} \mathbf{x}_{i}\right), i=1,2, \ldots, n S$, are used to obtain $\hat{\alpha}_{2}$ and \hat{g}_{2}. Specifically, $\hat{\alpha}_{2}$ and \hat{g}_{2} are defined to be the values for α and g_{α} that minimize the sum
$\sum_{i=1}^{n S}\left\{\left[y_{i}-\hat{g}_{1}\left(\hat{\alpha}_{1} \mathbf{x}_{i}\right)-g_{\alpha}\left(\boldsymbol{\alpha} \mathbf{x}_{i}\right)\right]\right\}^{2}$,
where $\alpha \in R^{n X},\|\alpha\|=1$, and g_{α} is the outcome of using a scatterplot smoother on the points $\left[y_{i}-\hat{g}_{1}\left(\hat{\alpha}_{1} \mathbf{x}_{i}\right)\right.$, $\left.\alpha \mathbf{x}_{i}\right], i=1,2, \ldots, n S$. This process continues until no appreciable improvement based on a relative error criterion is observed.

The RP_REG procedure is based on splitting the data into subgroups where observations within each subgroup are more homogeneous than they are over the set of all observations. Then, $f(\mathbf{x})$ is estimated with regression models defined for each subgroup. Specifically, $f(\mathbf{x})$ is estimated by
$\hat{f}(\mathbf{x})=\sum_{s=1}^{n P}\left(\hat{\alpha}_{s}+\hat{\boldsymbol{\beta}}_{s} \mathbf{x}\right) I_{s}(\mathbf{x})$,
where (i) $\mathcal{A}_{s}, s=1,2, \ldots, n P$, designate the subgroups into which the data are partitioned, (ii) $\hat{y}=\hat{\alpha}_{s}+\hat{\beta}_{s} \mathbf{x}$ is the least squares approximation to y associated with \mathcal{A}_{s}, and (iii) I_{S} is the indicator function such $I_{s}(\mathbf{x})=1$ if \mathbf{x} is associated with \mathcal{A}_{s} and $I_{s}(\mathbf{x})=0$ otherwise. The subgroups $\mathcal{A}_{s}, s=1,2, \ldots, n P$, are developed algorithmically from the observations $\left[\mathbf{x}_{i}, y_{i}\right], i=1,2, \ldots, n S$.

The preceding procedures can all be carried out in a stepwise manner to determine variable importance, with (i) the most important variable \tilde{x}_{1} being the variable that results in the single-variable model with the most predictive capability, (ii) the second most important variable \tilde{x}_{2} being the variable that in conjunction with \tilde{x}_{1} results in the two-variable model with the most predictive capability, and so on until (iii) some stopping criteria is reached that indicates that the consideration of additional variables does not produce models with
improved predictive capability. Order of selection in the stepwise construction process and fraction of variability explained (i.e., R^{2} as defined in Eq. (6-8)) can be used to indicate variable importance. The F-statistic with appropriate degrees of freedom (a topic too complicated for consideration here; see Ref. 168 and Sect. 3.13, Ref. 169) can be used to determine a stopping point in the stepwise variable selection procedure.

Nonparametric regression procedures are illustrated in Table 9 for the pressures in Figs. 5a and 10a at 10,000 yr. For comparison, Table 9 also contains results obtained with parametric regression procedures, with LIN_REG indicating linear regression (see Eq. (6-3)), RANK_REG indicating rank regression (see Sect. 6.5), and RS_REG indicating response surface regression (i.e., the regression model in Eq. (6-12) with $f_{j}\left(x_{j}\right)=x_{j}$ and $\left.f_{j l}\left(x_{j}, x_{l}\right)=x_{j} x_{l}\right)$. For the result in Fig. 5a (i.e., pressure at $10,000 \mathrm{yr}$ under undisturbed conditions), the relationship between pressure and the dominant independent variables is fairly monotonic, with the result that all the regression procedures perform reasonably well (i.e., R^{2} values between 0.80 and 0.97 for the first five variables selected in the individual regressions). As shown in Fig. 6b, there is a strong nonlinear relationship between the result in Fig. 10a (i.e., pressure at $10,000 \mathrm{yr}$ under disturbed conditions) and the variable BHPRM. The stepwise regressions with the four nonparametric procedures all identify BHPRM as the most important variable. In contrast, the linear regressions with raw and rank-transformed data fail to identify an effect for BHPRM. For this particular variable, the parametric response surface regression (i.e., RS_REG in Table 9) also performs well and results in a regression model with an R^{2} value of 0.87 ; however, in many situations the nonparametric regression procedures will outperform response surface regression.

Additional information: A more detailed discussion of the use of nonparametric regression in sensitivity is given in Ref. 168. General discussions of nonparametric regression procedures appear in Refs. 165167, 169. The use of regression trees ${ }^{170}$ in sensitivity analysis is discussed and illustrated in Ref. 171.

6.9 Squared Rank Differences/Rank Correlation Coefficient (SRD/RCC) Test

The SRD/RCC test is the result of combining a test for nonrandomness in the relationship between an independent and a dependent variable called the squared

Table 9. Comparison of Variable Rankings Obtained with Parametric Regression (i.e., LIN_REG, RANK_REG, RS_REG), Nonparametric Regression (i.e., LOESS, PP_REG, RP_REG, GAMs), and the Squared Rank Differences/Rank Correlation (SRD/RCC) Test for Pressure at (WAS_PRES) 10,000 yr under Undisturbed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., E2) Conditions (Fig. 10a)

Variable ${ }^{\text {a }}$	$R^{2 \mathrm{~b}}$	$d f^{\text {c }}$	\boldsymbol{p}-Val ${ }^{\text {d }}$	Variable	\boldsymbol{R}^{2}	df	p-Val	Variable	\boldsymbol{R}^{2}	df	p-Val
Pressure, Undisturbed (i.e., E0) Conditions at 10,000 yr (Fig. 5a)											
LIN_REG				RANK_REG				RS_REG			
WMICDFLG	0.5076	1.0	0.0000	WMICDFLG	0.5226	1.0	0.0000	WMICDFLG	0.5098	2.0	0.0000
HALPOR	0.7316	1.0	0.0000	HALPOR	0.7320	1.0	0.0000	HALPOR	0.7462	3.0	0.0000
WGRCOR	0.7923	1.0	0.0000	WGRCOR	0.7859	1.0	0.0000	WGRCOR	0.8812	4.0	0.0000
ANHPRM	0.8088	1.0	0.0000	ANHPRM	0.7975	1.0	0.0001	ANHPRM	0.9160	5.0	0.0000
SHRGSSAT	0.8137	1.0	0.0056	SALPRES	0.8027	1.0	0.0058	WASTWICK	0.9304	6.0	0.0000
SALPRES	0.8177	1.0	0.0119	SHRGSSAT	0.8064	1.0	0.0187	SALPRES	0.9383	7.0	0.0000
LOESS				PP_REG				ANHBCEXP	0.9427	8.0	0.0119
WMICDFLG	0.5098	2.0	0.0000	WMICDFLG	0.5098	2.0	0.0000	RP_REG			
HALPOR	0.7662	6.1	0.0000	HALPOR	0.7617	5.4	0.0000	WMICDFLG	0.5076	1.0	0.0000
WGRCOR	0.9186	33.1	0.0000	WGRCOR	0.9236	21.5	0.0000	HALPOR	0.8205	17.0	0.0000
ANHPRM	0.9477	25.1	0.0000	ANHPRM	0.9623	11.3	0.0000	WGRCOR	0.9220	3.0	0.0000
GAM				WASTWICK	0.9711	10.1	0.0000	ANHPRM	0.9662	16.0	0.0000
WMICDFLG	0.5098	2.0	0.0000	ANHBCVGP	0.9755	9.1	0.0000	WASTWICK	0.9823	40.0	0.0000
HALPOR	0.7448	4.0	0.0000	WRBRNSAT	0.9813	10.5	0.0000	SRD/RCC TEST			
WGRCOR	0.8556	4.0	0.0000	WFBETCEL	0.9851	11.6	0.0000	WMICDFLG	$\mathrm{NA}^{\text {e }}$	4.0	0.0000
ANHPRM	0.8854	4.0	0.0000	HALPRM	0.9874	9.3	0.0000	HALPOR	NA	4.0	0.0000
WASTWICK	0.8921	4.0	0.0019	SALPRES	0.9901	8.2	0.0000	WGRCOR	NA	4.0	0.0001
SHRGSSAT	0.9007	10.0	0.0116	SHPRMCLY	0.9929	13.3	0.0000				
SALPRES	0.9042	1.0	0.0018	SHRBRSAT	0.9944	9.4	0.0000				
				SHPRMDRZ	0.9969	10.1	0.0000				
Pressure, Disturbed (i.e., E2) Conditions at 10,000 yr (Fig. 10a)											
LIN_REG				RANK_REG				RS_REG			
HALPRM	0.1410	1.0	0.0000	HALPRM	0.1289	1.0	0.0000	BHPRM	0.6098	2.0	0.0000
ANHPRM	0.1999	1.0	0.0000	ANHPRM	0.1866	1.0	0.0000	HALPRM	0.7006	3.0	0.0000
HALPOR	0.2203	1.0	0.0057	HALPOR	0.2049	1.0	0.0094	ANHPRM	0.7902	4.0	0.0000
LOESS				PP_REG				HALPOR	0.8291	5.0	0.0000
BHPRM	0.6625	8.8	0.0000	BHPRM	0.6646	9.0	0.0000	ANHBCVGP	0.8400	6.0	0.0023
ANHPRM	0.7321	12.8	0.0000	ANHPRM	0.7603	10.7	0.0000	WGRCOR	0.8532	7.0	0.0013
HALPRM	0.7894	10.5	0.0000	HALPRM	0.8440	9.8	0.0000	SHRBRSAT	0.8654	8.0	0.0030
ANHBCVGP	0.8286	28.9	0.0058	HALPOR	0.8965	10.4	0.0000	RP_REG			
GAM								BHPRM	0.7163	17.0	0.0000
BHPRM	0.6654	10.0	0.0000					HALPRM	0.8474	15.0	0.0000
ANHPRM	0.7555	4.0	0.0000					ANHPRM	0.8894	-9.0	0.0000
HALPRM	0.8242	2.0	0.0000					ANRGSSAT	0.9726	81.0	0.0000
HALPOR	0.8590	2.0	0.0000					SRD/RCC TEST			
								BHPRM	NA	4.0	0.0000
a Variables listed in order of selection.								HALPRM	NA	4.0	0.0000
								ANHPRM	NA	4.0	0.0001
c Incrementa	grees of fr	edom	entry of	each variable i				SHPRMDRZ	NA	4.0	0.0150

c Incremental degrees of freedom with entry of each variable into model for all cases except SHPRMDRZ SRD/RCC test; $d f$ fixed at 4.0 for all variables for SRD/RCC test.
d p-value for model with addition of each new variable. Stepwise procedure terminates at a p-value of 0.02 .
e NA indicates that result is not applicable.
rank differences (SRD) test with the Spearman rank correlation coefficient (RCC). ${ }^{172}$ This test is effective at identifying linear and very general nonlinear patterns in analysis results. However, unlike the regression procedures introduced in Sects. 6.3 and 6.8, the SRD/RCC test does not involve the development of a model that approximates the relationship between independent and dependent variables. Further, unlike the grid-based procedures introduced in Sects. 6.6 and 6.7, the SRD/RCC test does not require the introduction and use of a grid.

A brief description of the SRD/RCC test follows. The test is used to assess the relationships between individual elements x_{j} of $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n X}\right]$ and a predicted variable y of interest for a random or LHS and a functional relationship of the form $y=f(\mathbf{x})$. The SRD component of the test is based on the statistic

$$
\begin{equation*}
Q_{j}=\sum_{i=1}^{n S-1}\left(r_{i+1, j}-r_{i j}\right)^{2}, \tag{6-50}
\end{equation*}
$$

where $r_{i j}, i=1,2, \ldots, n S$, is the rank of y obtained with the sample element in which x_{j} has rank i. Under the null hypothesis of no relationship between x_{j} and y, the quantity
$S_{j}=\left\{Q_{j}-\left[n S\left(n S^{2}-1\right) / 6\right]\right\} /\left\{\sqrt{n S^{5}} / 6\right\}$
approximately follows a standard normal distribution for $n S>40$. Thus, a p-value $p_{r j}$ indicative of the strength of the nonlinear relationship between x_{j} and y can be obtained from Q_{j}. Specifically, $p_{r j}$ is the probability that a value $\tilde{Q}_{j}>Q_{j}$ would occur due to chance if there was no relationship between x_{j} and y.

The RCC component of the test is based on the rank (i.e., Spearman) correlation coefficient

$$
\begin{align*}
r c\left(x_{j}, y\right)= & \left\{\sum_{i=1}^{n S}\left[r\left(x_{i j}\right)-(n S+1) / 2\right]\right. \\
& \left.\cdot\left[r\left(y_{i}\right)-(n S+1) / 2\right]\right\} \\
& \cdot\left\{\sum_{i=1}^{n S}\left[r\left(x_{i j}\right)-(n S+1) / 2\right]^{2}\right\}^{-1 / 2} \\
& \cdot\left\{\sum_{i=1}^{n S}\left[r\left(y_{i}\right)-(n S+1) / 2\right]^{2}\right\}^{-1 / 2}, \tag{6-52}
\end{align*}
$$

where $r\left(x_{i j}\right)$ and $r\left(y_{i}\right)$ are the ranks associated x_{j} and y for sample element i. Under the null hypothesis of no rank correlation between x_{j} and y, the quantity $r c\left(x_{j}, y\right)$ has a known distribution (Table 10, Ref. 155). Thus, a p-value $p_{c j}$ indicative of the strength of the monotonic relationship between x_{j} and y can be obtained from $r c\left(x_{j}, y\right)$.

The SRD/RCC test is obtained from combining the p-values $p_{r j}$ and $p_{c j}$ to obtain the statistic
$\chi_{4}^{2}=-2\left[\ln \left(p_{r j}\right)+\ln \left(p_{c j}\right)\right]$,
which has a chi-square distribution with four degrees of freedom. The p-value associated with χ_{4}^{2} constitutes the SRD/RCC test for the strength of the relationship between x_{j} and y.

Results obtained with SRD/RCC test are illustrated in Table 9. Like the nonparametric regression procedures, the SRD/RCC test is able to identify the nonlinear effect associated with BHPRM for the result in Fig. 10a (i.e., pressure at $10,000 \mathrm{yr}$ under disturbed conditions), which is completely missed with the linear regression procedures with raw and rank-transformed data.

Additional information: A detailed description of the SRD/RCC test and the determination of the associated p-value is available in the original article. ${ }^{172}$

6.10 Two Dimensional KolmogorovSmirnov (KS) Test

The two dimensional KS test provides a way to test for a pattern in a scatterplot without the use of a grid. ${ }^{173-175}$ With this test, each point $\left[x_{i j}, y_{i}\right]$ in the sample $\left[x_{i j}, y_{i}\right], i=1,2, \ldots, n S$, is used to divide the $x_{j} y$ plane into four quadrants (Fig. 12):

$$
\begin{align*}
& Q_{i 1}=\left\{\left(x_{j}, y\right): \quad x_{i j}<x_{j}, y_{i}<y\right\}, \tag{6-54}\\
& Q_{i 2}=\left\{\left(x_{j}, y\right): \quad x_{j}<x_{i j}, y_{i}<y\right\}, \tag{6-55}\\
& Q_{i 3}=\left\{\left(x_{j}, y\right): \quad x_{j}<x_{i j}, y<y_{i}\right\}, \tag{6-56}\\
& Q_{i 4}=\left\{\left(x_{j}, y\right): \quad x_{i j}<x_{j}, y<y_{i}\right\} . \tag{6-57}
\end{align*}
$$

Fig. 12. Illustration of quadrants used with the two dimensional KS test for the variable WAS_PRES at $10,000 \mathrm{yr}$.

In turn, two fractions are defined for each quadrant:

$$
\begin{align*}
f E_{i k}= & \text { expected fraction of observations in quadrant } \\
& \begin{array}{l}
Q_{i k} \text { if there is no relationship between } x_{j} \\
\\
\text { and } y,
\end{array} \\
f O_{i k}= & \text { observed fraction of observations in } \tag{6-58}\\
& \text { quadrant } Q_{i k} .
\end{align*}
$$

The quantity

$$
\begin{equation*}
D=\max \left\{\left|f E_{i k}-f O_{i k}\right|, k=1,2,3,4, i=1,2, \ldots, n S\right\} \tag{6-60}
\end{equation*}
$$

is the KS statistic for the scatterplot.
The probability $\operatorname{prob}(\tilde{D}>D)$ of exceeding D given that there is no relationship between x_{j} and y can be approximated by

$$
\begin{equation*}
\operatorname{prob}(\tilde{D}>D) \cong Q_{K S}\left(\frac{D \sqrt{n S}}{1+\left[1-c\left(x_{j}, y\right)\right]^{1 / 2}[0.25-0.75 / \sqrt{n S}]}\right), \tag{6-61}
\end{equation*}
$$

where $Q_{K S}$ is the function defined by

$$
\begin{equation*}
Q_{K S}(\lambda)=2 \sum_{j=1}^{\infty}(-1)^{j-1} \exp \left(-2 j^{2} \lambda^{2}\right) \tag{6-62}
\end{equation*}
$$

and $c\left(x_{j}, y\right)$ is the estimated CC between x_{j} and y (Sect. 14.7, Ref. 157). Alternatively, $\operatorname{prob}(\tilde{D}>D)$ can be estimated by a Monte Carlo procedure in which D is repeatedly estimated with randomly shuffled values (without replacement) of the $x_{i j}$'s and y_{i} 's as previously illustrated in conjunction with Eq. (6-21) and Table 6 for the CMNs, CLs, CMDs and SI tests.

The result of applying the KS test is illustrated in Table 10, with p-values being calculated as indicated in Eq. (6-61) and also calculated with the previously indicated Monte Carlo procedure. This table also presents the results of using the SI test with a 5×5 grid. The direct calculation of p-values as indicated in Eq. (6-61) performs rather poorly and produces p-values that are much larger than those obtained with the Monte Carlo procedure. In contrast, the Monte Carlo calculation of p-values for the KS test produces results that are generally similar to, but not the same as, the results obtained with the SI test. In particular, the KS test with Monte Carlo calculation of p-values and the SI test agree on the most important variables but show some differences on the less important variables.

Additional information: Ref. 157, Sect. 14.7; Refs. 173-175.

6.11 Tests for Patterns Based on Distance Measures

Tests for patterns based on distance measures provide possible alternatives to tests based on gridding as described in Sects. 6.6 and 6.7. Distance-based tests for patterns have a potential advantage over grid-based tests in that they do not require the definition and use of a grid that can possibly influence the outcome of the test. Such tests have a long history of use in the ecological sciences. ${ }^{176-189}$

Three distance-based tests will be illustrated: nearest neighbor (NN) test, total distance (TD) test, and coefficient of aggregation (CA) test. Each of these tests involves the consideration of a set of points of the form $\left[x_{i j}, y_{i}\right], i=1,2, \ldots, n S$. Further, the $x_{i j}$'s and y_{i} 's are assumed to be normalized to mean zero and standard deviation one.

The NN test ${ }^{190}$ is based on the statistic
$d_{j}=\sum_{i=1}^{n S} d_{i j} / n S$,

Table 10. Comparison of Formal Statistical and Monte Carlo Determination of p-Values for the SI Test and the Two Dimensional KS Test for Pressure (WAS_PRES) at 10,000 yr under Undisturbed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., E2) Conditions (Fig. 10a)

	SI Test: $5 \times 5^{\text {b }}$		SIMC Test: $5 \times{ }^{\text {c }}$		KS Test ${ }^{\text {d }}$		KSMC Test ${ }^{\text {e }}$	
Variable ${ }^{\text {a }}$	p-value	Rank	p-value	Rank	p-value	Rank	p-value	Rank
Pressure, Undisturbed (i.e., E0) Conditions at 10,000 yr (Fig. 5a)								
WMICDFLG	0.0000	1	0.0000	1.5	0.0001	1	0.0000	1.5
HALPOR	0.0000	2	0.0000	1.5	0.0077	2	0.0000	1.5
WGRCOR	0.0003	3	0.0003	3	0.2979	3	0.0002	3
ANHPRM	0.0049	4	0.0031	4	0.8228	4	0.0257	4
ANHBCVGP	0.0194	5	0.0181	5	1.0000	24	0.4975	16
Pressure, Disturbed (i.e., E2) Conditions at 10,000 yr (Fig. 10a)								
BHPRM	0.0000	1	0.0000	1	0.0048	1	0.0000	1.5
HALPRM	0.0002	2	0.0003	3	0.1302	2	0.0000	1.5
WGRCOR	0.0002	3	0.0001	2	0.9609	5	0.1540	6
ANHPRM	0.0049	4	0.0039	4	0.6102	3	0.0023	3
HALPOR	0.3142	12	0.3164	12	0.7830	4	0.0178	4
${ }^{\text {a }}$ Variables ordered by p-values for SI test. Table includes only variables that had a p-value less than 0.05 for at least one of the procedures. ${ }^{\text {b }} p$-values and variable ranks for SI test with 5×5 grid (see Footnote b in Tables 5 and 7) determined from χ^{2} distribution; see Eq. (6-20). c p-values and variable ranks for SI test with 5×5 grid (see Footnote b in Tables 5 and 7) determined with Monte Carlo procedure; see discus- sion associated with Eq. (6-21). d p-values and variable ranks for KS test determined from Eq. (6-61). ${ }^{\text {e }} p$-values and variable ranks for KS test determined with Monte Carlo procedure; see discussion associated with Eq. (6-21).								

where $d_{i j}$ is the distance from the point $\left(x_{i j}, y_{i}\right)$ to its nearest neighbor among the points $\left(x_{k j}, y_{k}\right)$ for $k=1,2$, $\ldots, n S$ and $k \neq i$. If x_{j} has an effect on y, then the value for d_{j} should tend to be smaller than would be the case if x_{j} had no effect on y. Determination of values \tilde{d}_{j} for samples $\left(\tilde{x}_{i j}, \tilde{y}_{i}\right), i=1,2, \ldots, n S$, obtained by randomly pairing, without replacement, the values for the $x_{i j}$'s and y_{i} 's in the original sample allows the determination of a distribution for d_{j} under the null hypothesis that there is no relationship between x_{j} and y. Thus, conditional on the observed distributions for x_{j} and y, the probability (i.e., a p-value) of obtaining a smaller value \tilde{d}_{j} than the observed value d_{j} by chance alone can be determined. A small value for this probability (e.g., < 0.01) indicates that x_{j} does indeed have an effect on y.

The TD test is a variant of the NN test and is based on the statistic

$$
\begin{equation*}
d_{t j}=\sum_{i=1}^{n S} \sum_{k=i+1}^{n S} d_{i k} / n D \tag{6-64}
\end{equation*}
$$

where $d_{i k}$ is the distance between the points $\left(x_{i j}, y_{i}\right)$ and $\left(x_{k j}, y_{k}\right)$ and $n D=n S(n S-1) / 2$ is the total number of distances $d_{i k}$. As for the NN statistic d_{j}, the value for $d_{t j}$ will tend to be smaller than would otherwise be the case if x_{j} has an effect on y. Similarly to d_{j}, a Monte Carlo procedure can be used to develop a distribution for $d_{t j}$ under the assumption that x_{j} has no effect on y. Then, conditional on the observed distributions for x_{j} and y, the probability of obtaining a smaller value for $d_{t j}$ by chance alone can be estimated.

The CA test ${ }^{179,191}$ is based on the statistic
$A_{j}=\sum_{i=1}^{n S} \tilde{d}_{i j}^{2} /\left[\sum_{i=1}^{n S} d_{i j}^{2}+\sum_{i=1}^{n S} \tilde{d}_{i j}^{2}\right]$,
where $d_{i j}$ is defined the same as in Eq. (6-63) for the NN test and $\tilde{d}_{i j}$ is defined similarly but for a sample ($\tilde{x}_{i j}, \tilde{y}_{i}$), $i=1,2, \ldots, n S$, obtained by randomly permuting the values for the $x_{i j}$'s and y_{i} 's in the sample $\left(x_{i j}, y_{i}\right), i=1,2, \ldots, n S$. If x_{j} has an effect on y, then the value for A_{j} will tend to be larger than would otherwise be the case because of the presence of $\sum_{i} d_{i j}^{2}$ in the
denominator in the definition of A_{j}. A Monte Carlo procedure involving repeated calculations of A_{j} with two different random permutations of the $x_{i j}$'s and y_{i} 's in the sample $\left(x_{i j}, y_{i}\right), i=1,2, \ldots, n S$, can be used to estimate a distribution for A_{j} under the assumption that x_{j} has no effect on y. Then, conditional on the observed distributions for x_{j} and y, the probability of obtaining a larger value for A_{j} for A_{j} than the observed value by chance alone can be estimated.

The SI, NN, TD and CA tests are illustrated in Table 11. On the whole, the results obtained with the distance-based tests show considerable disagreement with results obtained with the SI test and also with other grid-based techniques illustrated in Table 5. Of the distance-based tests, the TD test compares best with results obtained with the grid-based techniques. This lack of agreement suggests that the NN, TD and CA tests are less effective sensitivity analysis procedures than some of the other techniques introduced in this survey. However, the idea of using a grid-free, dis-tance-based measure of sensitivity is very appealing. It is certainly possible that more appropriate distancebased measures of sensitivity can be found than those used in the presented tests. This is an area that merits additional investigation. For example, the use of ranktransformed data might yield more informative results.

Additional information: Refs. 176-189; Sect. 8.2.5, Ref. 192.

6.12 Top Down Coefficient of Concordance (TDCC)

The TDCC was introduced by Iman and Conover as a way to test agreement between different sensitivity analysis procedures. ${ }^{193}$ However, it also provides a way to identify significant sets of variables in a sam-pling-based sensitivity analysis that does not rely on statistical tests predicated on distributional assumptions that may not be satisfied. In this application, the TDCC is used in a stepwise manner to test for agreement of sensitivity results obtained when a particular sensitivity analysis procedure is applied individually to each sample in a sequence of replicated samples of the same size (e.g., the three replicated samples of size $n S=100$ indicated in Sect. 3). The significant variables are those which the TDCC indicates are identified as being important across all replicates.

The TDCC is based on the consideration of arrays of the form

$$
\begin{array}{ccccc}
& R_{1} & R_{2} & \cdots & R_{n R} \\
x_{1} & r\left(O_{11}\right) & r\left(O_{12}\right) & \cdots & r\left(O_{1, n R}\right) \\
x_{2} & r\left(O_{21}\right) & r\left(O_{22}\right) & \cdots & r\left(O_{2, n R}\right) \tag{6-66}\\
\vdots & \vdots & \vdots & \cdots & \vdots \\
x_{n X} & r\left(O_{n X, 1}\right) & r\left(O_{n S, 2}\right) & \cdots & r\left(O_{n X, n R}\right),
\end{array}
$$

where (i) $x_{1}, x_{2}, \ldots, x_{n X}$ are the variables under consideration, (ii) $R_{1}, R_{2}, \ldots, R_{n R}$ designate the replicates, (iii) $O_{j k}$ is the outcome (i.e., sensitivity measure) for variable x_{j} and replicate R_{k}, and (iv) $r\left(O_{j k}\right), j=1,2, \ldots, n X$, are the ranks assigned to the outcomes associated with replicate R_{k}. In the assigning of ranks, (i) a rank of 1 is assigned to the outcome $O_{j k}$ with the largest value for $\left|O_{j k}\right|$, (ii) a rank of 2 is assigned the outcome $O_{j k}$ with the second largest value for $\left|O_{j k}\right|$, and so on, and (iii) averaged ranks are assigned to equal values of $O_{j k}$. This is the reverse of the procedure used to assign ranks for use in rank regression.

The TDCC is a measure of agreement between multiple rankings that emphasizes agreement between rankings assigned to important variables and deemphasizes disagreement between rankings assigned to less important/unimportant variables. For the TDCC, the ranks $r\left(O_{j k}\right)$ in Eq. (6-66) are replaced by the corresponding Savage scores $s s\left(O_{i j}\right)$, where

$$
\begin{equation*}
s s\left(O_{j k}\right)=\sum_{s=r\left(O_{j k}\right)}^{n X} 1 / s \tag{6-67}
\end{equation*}
$$

and average Savage scores are assigned in the event of ties. The result is an array of the form

$$
\begin{array}{ccccc}
& R_{1} & R_{2} & \cdots & R_{n R} \\
x_{1} & s s\left(O_{11}\right) & s s\left(O_{12}\right) & \cdots & s s\left(O_{1, n R}\right) \\
x_{2} & s s\left(O_{21}\right) & s s\left(O_{22}\right) & \cdots & s s\left(O_{2, n R}\right) \tag{6-68}\\
\vdots & \vdots & \vdots & \cdots & \vdots \\
x_{n X} & s s\left(O_{n X, 1}\right) & \operatorname{ss}\left(O_{n s, 2}\right) & \cdots & \operatorname{ss}\left(O_{n X, n R}\right),
\end{array}
$$

which has the same form as the array in Eq. (6-66) except that the ranks $r\left(O_{j k}\right)$ have been replaced by the corresponding Savage scores $s s\left(O_{j k}\right)$.

The TDCC is defined by

Table 11. Comparison of Tests for Patterns Based on Distance Measures for Pressure (WAS_PRES) at 10,000 yr under Undisturbed (i.e., E0) Conditions (Fig. 5a) and Disturbed (i.e., E2) Conditions (Fig. 10a)

	SI Test: $5 \times 5^{\text {b }}$		NN Test ${ }^{\text {c }}$		TD Test ${ }^{\text {d }}$		CA Test ${ }^{\text {e }}$	
Variable ${ }^{\text {a }}$	p-value	Rank	p-value	Rank	p-value	Rank	p-value	Rank
Pressure, Undisturbed (i.e., E0) Conditions at 10,000 yr (Fig. 5a)								
WMICDFLG	0.0000	1	0.0001	2	0.0000	2	0.6664	21
HALPOR	0.0000	2	0.0000	1	0.0000	2	0.0014	1
WGRCOR	0.0003	3	0.0327	3	0.0000	2	0.0049	2
ANHPRM	0.0049	4	0.3669	15	0.6348	21	0.3302	9
ANHBCVGP	0.0194	5	0.4745	7	0.4563	14	0.7544	24
Pressure, Disturbed (i.e., E2) Conditions at 10,000 yr (Fig. 10a)								
BHPRM	0.0000	1	0.0000	1	0.0000	2	0.0020	2
HALPRM	0.0002	2	0.3511	13	0.0000	2	0.0752	4
WGRCOR	0.0002	3	0.0095	2	0.7210	22	0.3420	12
ANHPRM	0.0049	4	0.0732	4	0.0000	2	0.0018	1
HALPOR	0.3142	12	0.2280	8	0.0210	4	0.2245	9
${ }^{\text {a }}$ Variables ordered by p-values for SI test. Table includes only variables that had a p-value less than 0.05 for at least one of the procedures. ${ }^{\text {b }} p$-values and variable ranks for SI test with 5×5 grid (see Footnote b in Tables 5 and 7) determined from χ^{2} distribution; see Eq. ($6-20$). c p-values and variable ranks for NN test (see Eq. (6-63)) determined with Monte Carlo procedures; see discussion associated with Eq. (6-21). ${ }^{d}$ Same as c but for TD test (see Eq. (6-64)). ${ }^{\text {e }}$ Same as c but for CA test (see Eq. (6-65)).								

$$
\begin{equation*}
C_{T}=\frac{\sum_{j=1}^{n X}\left[\sum_{k=1}^{n R} s s\left(O_{j k}\right)\right]^{2}-n R^{2} n X}{n R^{2}\left(n X-\sum_{j=1}^{n X} 1 / j\right)} \tag{6-69}
\end{equation*}
$$

and is equivalent to Kendall's coefficient of concordance (p. 305, Ref. 155) calculated with Savage scores rather than ranks. Under repeated random assignment of the integers in the columns of Eq. (6-66),
$T=n R(n X-1) C_{T}$
approximately follows a χ^{2}-distribution with $n X-1$ degrees of freedom and thus provides the basis for a statistical test of agreement.

The procedure to identify a significant set of variables with the TDCC operates in the following manner: (i) The sensitivity analysis technique in use (e.g., stepwise regression analysis) is applied to each replicate to rank variable importance. (ii) The TDCC is applied to
the variable rankings obtained with each replicate to determine if there is a significant agreement between the replicates (e.g., as defined by a specified p-value for the TDCC). (iii) If there is significant agreement, the top ranked variable (i.e., rank 1) for each replicate is removed from consideration for all replicates; this results in the removal of one variable if all replicates assign the same variable a rank of 1 and more than one variable if different variables are assigned a rank of 1 in different replicates. (iv) A new sensitivity analysis is then performed for each replicate with the remaining variables, the remaining variables are reranked for each replicate, and Steps (ii) and (iii) are repeated with the reduced set of variables. (v) The process is continued until the deleted variable result in the analysis reaches a point at which the TDCC indicates that there is no significant agreement between the variable rankings obtained with the individual replicates. (vi) At this point, the analysis ends, and the significant set of variables are those deleted before the TDCC indicated no significant agreement between the variable rankings obtained with the individual replicates.

This procedure is illustrated for rank regression analysis with the three replicated random samples (i.e., RS1, RS2, RS3) from the variables in Table 1 for cumulative brine flow into the repository (BRNREPTC) at 1000 yr. The individual regression analyses all rank $H A L P O R$ as the most important variable (Table 12) and have a TDCC of 0.80 with a p-value of 5.2E-5 (Table 13). As a result, $H A L P O R$ is removed from consideration, which reduces the number of independent variables from 29 to 28 . A new rank regression is then performed for each replicate with the remaining 28 variables, and the variables are reranked (i.e., from 1 to 28) on the basis of their SRRCs, with ANHPRM having a rank of 1 in one replicate and WMICDFLG having a rank of 1 in two replicates. For this new ranking (i.e., without HALPOR), the TDCC has a value of 0.71 with a p-value of $5.0 \mathrm{E}-4$ (Table 13). As this is considered to be significant agreement, ANHPRM and WMICDFLG are dropped; the remaining 26 variables are reranked; new regressions are performed for each replicate; and a resultant TDCC of 0.46 with a p-value of $9.8 \mathrm{E}-2$ is calculated (Table 13). If a p-value of $9.8 \mathrm{E}-2$ is considered to be insignificant, then the analysis ends, and the set of significant variables is taken to be $\{H A L P O R, ~ A N H P R M, W M I C D F L G\}$.

If a p-value of $9.8 \mathrm{E}-2$ is considered to be significant (e.g., if the analysis was using 0.1 as the p-value above which the analysis stopped), then the analysis would continue with the top ranked variables in the individual replicates being dropped (i.e., SALPRES, $H A L P R M, B P P R M$) and the TDCC recalculated for the remaining 23 variables. This process would continue until either an insignificant value for the TDCC was obtained or all variables were dropped, with the latter being an unlikely outcome.

Additional information: Refs. 125, 193. Content of this section is an adaptation of material contained in Sects. 5 and 6 of Ref. 125.

6.13 Variance Decomposition

An informative, but potentially computationally expensive, sensitivity analysis procedure is based on a complete variance decomposition of the uncertainty associated with $y .{ }^{56-59}$ With this procedure, the variance $V(y)$ of y is expressed as

$$
\begin{equation*}
V(y)=\sum_{j=1}^{n X} V_{j}+\sum_{j=1}^{n X} \sum_{k=j+1}^{n X} V_{j k}+\ldots+V_{12 \ldots n X} \tag{6-71}
\end{equation*}
$$

Table 12. Sensitivity Analysis Results Based on SRRCs for Three Replicated Random Samples (RS1 RS2, RS3) of Size 100 for Cumulative Brine Flow into Repository (BRNREPTC) at 1000 yr Under Undisturbed (i.e., E0) Conditions (adapted from Table 8, Ref. 125)

Variable $^{\mathbf{a}}$	RS1 $^{\mathbf{b}}$	RS2	RS3
HALPOR	$9.93 \mathrm{E}-01(1)^{\mathrm{C}}$	$9.67 \mathrm{E}-01(1)$	$9.73 \mathrm{E}-01(1)$
WMICDFLG	$-9.72 \mathrm{E}-02(2)$	$-6.92 \mathrm{E}-02(4)$	$-1.13 \mathrm{E}-01(2)$
ANHPRM	$6.49 \mathrm{E}-02(3)$	$1.33 \mathrm{E}-01(2)$	$9.84 \mathrm{E}-02(3)$
SALPRES	$-4.00 \mathrm{E}-02(4)$	$-2.70 \mathrm{E}-03(26)$	$-1.41 \mathrm{E}-02(13)$
HALPRM	$3.53 \mathrm{E}-02(5)$	$7.67 \mathrm{E}-02(3)$	$4.05 \mathrm{E}-02(5)$
WRBRNSAT	$-3.08 \mathrm{E}-02(6)$	$-1.79 \mathrm{E}-02(14)$	$9.13 \mathrm{E}-03(17)$
WASTWICK	$-2.82 \mathrm{E}-02(7)$	$-2.27 \mathrm{E}-02(10)$	$-4.47 \mathrm{E}-03(21)$
BPCOMP	$-2.61 \mathrm{E}-02(8)$	$2.36 \mathrm{E}-02(9)$	$-8.05 \mathrm{E}-04(29)$
SHPRMDRZ	$2.29 \mathrm{E}-02(9)$	$-1.37 \mathrm{E}-02(17)$	$2.58 \mathrm{E}-02(8)$
BPPRM	$-1.85 \mathrm{E}-02(10)$	$1.27 \mathrm{E}-02(19)$	$5.08 \mathrm{E}-02(4)$
\ldots			
...	\ldots	\ldots	
BPVOL	$-1.58 \mathrm{E}-03(27)$	$6.54 \mathrm{E}-03(23)$	$4.64 \mathrm{E}-03(20)$
ANHBCEXP	$-1.30 \mathrm{E}-03(28)$	$4.32 \mathrm{E}-03(25)$	$2.88 \mathrm{E}-02(6)$
WRGSSAT	$-1.19 \mathrm{E}-03(29)$	$1.32 \mathrm{E}-02(18)$	$-5.33 \mathrm{E}-03(19)$
a Variables in regression model ordered by SRRCs for sample RS1. b c SRRC in model containing all variables for indicated sample. c Variable rank based on absolute value of SRRC for indicated sample.			

Table 13. Sensitivity Analysis with the TDCC for Three Replicated Random Samples of Size 100 for Cumulative Brine Flow into Repository (BRNREPTC) at 1000 yr under Undisturbed (i.e., E0) Conditions (adapted from Table 9, Ref. 125)

Step ${ }^{\text {a }}$	TDCC ${ }^{\text {b }}$	p-value ${ }^{\text {c }}$	Variable(s) Removed ${ }^{\text {d }}$
1	0.80	5.2E-05	HALPOR
2	0.71	$5.0 \mathrm{E}-04$	WMICDFLG, ANHPRM
3	0.46	$9.8 \mathrm{E}-02$	SALPRES, HALPRM, BPPRM
Steps in analysis. TDCC at beginning of step. p-value for TDCC at beginning of step. Variable(s) removed at end of step.			

where V_{j} is the contribution of x_{j} to $V(y), V_{j k}$ is the contribution of the interaction of x_{j} and x_{k} to $V(y)$, and so on up to $V_{12 \ldots n X}$, which is the contribution of the interaction of $x_{1}, x_{2}, \ldots, x_{n X}$ to $V(y)$. Sensitivity measures are provided by
$s_{j}=V_{j} / V(y)$
and
$s_{j T}=\left(V_{j}+\sum_{\substack{k=1 \\ k \neq j}}^{n X} V_{j k}+\ldots+V_{12 \ldots n X}\right) / V(y)$,
where s_{j} is the fraction of $V(y)$ contributed by x_{j} alone and $s_{j T}$ is the fraction of $V(y)$ contributed x_{j} and interactions of x_{j} with other variables.

The contributions to variance $V_{j}, V_{j k}, \ldots, V_{12 \ldots n X}$ in Eqs. (6-71) and (6-72) are defined by multidimensional integrals involving $y=f(\mathbf{x})$ and the individual elements x_{j} of \mathbf{x}. Specifically,

$$
\begin{align*}
E(y) & =\int_{X} f(\mathbf{x}) \prod_{j=1}^{n X} d_{j}\left(x_{j}\right) \prod_{j=1}^{n X} \mathrm{~d} x_{j}, \tag{6-73}\\
V(y) & =\int_{X}[f(\mathbf{x})-E(y)]^{2} \prod_{j=1}^{n X} d_{j}\left(x_{j}\right) \prod_{j=1}^{n X} \mathrm{~d} x_{j} \\
& =\int_{X} f^{2}(\mathbf{x}) \prod_{j=1}^{n X} d_{j}\left(x_{j}\right) \prod_{j=1}^{n X} \mathrm{~d} x_{j}-E^{2}(y), \tag{6-74}
\end{align*}
$$

$$
V_{j}=\int_{X_{j}}\left[\int_{X_{-j}} f(\mathbf{x}) \prod_{\substack{k=1 \\ k \neq j}}^{n X} d_{k}\left(x_{k}\right) \prod_{\substack{k=1 \\ k \neq j}}^{n X} \mathrm{~d}_{k} x_{k}\right]^{2}
$$

$$
\begin{align*}
V_{j k}= & \int_{X_{j}} \int_{X_{k}}\left[\int_{X_{-j, k}} f(\mathbf{x}) \prod_{\substack{l=1 \\
l \neq j, k}}^{n X} d_{l}\left(x_{l}\right) \prod_{\substack{l=1 \\
l \neq j, k}}^{n X} \mathrm{~d} x_{l}\right]^{2} \\
& \bullet d_{j}\left(x_{j}\right) d_{k}\left(x_{k}\right) \mathrm{d} x_{j} \mathrm{~d} x_{k}-E^{2}(y)-V_{j}-V_{k} \tag{6-76}
\end{align*}
$$

and

$$
\begin{align*}
& V_{j}+\sum_{\substack{k=1 \\
k \neq j}}^{n X} V_{j k}+\ldots+V_{12 \ldots n X} \\
& =V(f)-\left\{\int _ { X _ { - j } } \int _ { X _ { j } } \int _ { \tilde { X } _ { j } } \left[f(\mathbf{x}) f(\tilde{\mathbf{x}}) d_{j}\left(\tilde{x}_{j}\right) d_{j}\left(x_{j}\right)\right.\right. \\
& \left.\left.\quad \cdot \prod_{\substack{k=1 \\
k \neq j}}^{n X} d_{k}\left(x_{k}\right)\right] \mathrm{d} \tilde{x}_{j} \mathrm{~d} x_{j} \prod_{\substack{k=1 \\
k \neq j}}^{n X} \mathrm{~d} x_{k}-E^{2}(y)\right\}, \tag{6-77}
\end{align*}
$$

where (i) X_{j} is the sample space for $x_{j}, d_{j}\left(x_{j}\right)$ is the density function for x_{j} and the resultant quantities

$$
X=\prod_{j=1}^{n X} X_{j} \text { and } d(\mathbf{x})=\prod_{j=1}^{n X} d_{j}\left(x_{j}\right)
$$

are the sample space and density function, respectively, for \mathbf{x}, (ii) X_{-j} and $X_{-j, k}$ correspond to the reduced sample spaces defined by

$$
X_{-j}=\prod_{\substack{k=1 \\ k \neq j}}^{n X} X_{k} \text { and } X_{-j, k}=\prod_{\substack{l=1 \\ l \neq j, k}}^{n X} X_{l},
$$

and (iii) $X_{j}=\tilde{X}_{j}$ in Eq. (6-77) with the value for $\tilde{x}_{j} \in \tilde{X}_{j}$ replacing the value for $x_{j} \in X_{j}$ in the vector $\tilde{\tilde{x}}$ (i.e., the variables x_{j} and \tilde{x}_{j} associated with X_{j} and \tilde{X}_{j} have identical distributions but are assumed to be independent and the vectors \mathbf{x} and $\tilde{\mathbf{x}}$ are the same except that x_{j} appears as element j in \mathbf{X} and \tilde{x}_{j} appears as element j in $\tilde{\mathbf{x}}$).

As a result, the determination of s_{j} and $s_{j T}$ is a problem in the evaluation of multidimensional integrals. In practice, this evaluation is carried out with sampling-based methods of the form indicated in the following algorithm.

Step 1. Generate a random or LHS
$\mathbf{x}_{i}=\left[x_{i 1}, x_{i 2}, \ldots, x_{i, n X}\right], i=1,2, \ldots, n S$,
from $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n X}\right]$ in consistency with the distributions assigned to the individual x_{j}.

Step 2. Estimate the mean and variance for y with the approximations
$\hat{E}(y)=\sum_{i=1}^{n S} f\left(\mathbf{x}_{i}\right) / n S$
and
$\hat{V}(y)=\sum_{i=1}^{n S}\left[f\left(\mathbf{x}_{i}\right)-\hat{E}(y)\right]^{2} / n S=\sum_{i=1}^{n S} f^{2}\left(\mathbf{x}_{i}\right) / n S-\hat{E}^{2}(y)$.

The estimation of $\hat{E}(y)$ and $\hat{V}(y)$ requires $n S$ evaluations of the function f.

Step 3. Generate a second random or LHS
$\mathbf{r}_{i}=\left[r_{i 1}, r_{i 2}, \ldots, r_{i, n X}\right], i=1,2, \ldots, n S$,
by randomly permuting, without replacement, the individual variable values associated with the sample generated in Step 1.

Step 4. For each variable x_{j}, generate a reordering
$\mathbf{r}_{i j}=\left[r_{i j 1}, r_{i j 2}, \ldots, r_{i j, n X}\right], i=1,2, \ldots, n S$,
of the sample generated in Step 3 such that $r_{i j j}=x_{i j}$. This step only involves a change in the numbering associated with the sample generated in Step 3 for each x_{j}; no changes to the sample itself are involved.

Step 5. For each variable x_{j}, estimate s_{j} by
$s_{j} \cong\left[\sum_{i=1}^{n S} f\left(\mathbf{x}_{i}\right) f\left(\mathbf{r}_{i j}\right) / n S-\hat{E}^{2}(y)\right] / \hat{V}(y)$.
The estimation of s_{j} for all x_{j} requires only $n S$ additional evaluations of the function f as a result of the efficient reuse of the function evaluations for the sample generated in Step 3.

Step 6. For each variable x_{j}, generate an additional sample

$$
\begin{equation*}
\mathbf{x}_{i j}=\left[x_{i j 1}, x_{i j 2}, \ldots, x_{i j, n X}\right], i=1,2, \ldots, n S \tag{6-84}
\end{equation*}
$$

where $x_{i j j}$ is generated as a random or LHS from x_{j} and $x_{i j k}=x_{i k}$ for $k \neq j$. The sample generated for x_{j} in this step differs from the sample generated in Step 1 only in the values associated with x_{j}.

Step 7. Estimate $s_{j T}$ by
$s_{j T} \cong \sum_{i=1}^{n S} f\left(\mathbf{x}_{i}\right)\left[f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{i j}\right)\right] /[n S \hat{V}(y)]$
for each x_{j}. The estimation of $s_{j T}$ for all x_{j} requires an additional $(n X)(n S)$ evaluations of the function f.

Although the sensitivity measures s_{j} and $s_{j T}$ provide valuable sensitivity information, their determination can be computationally expensive due to the large number of function evaluations that could be required. Specifically, $2(n S)$, $(n X+1)(n S)$ and $(n X+2)(n S)$ function evaluations are required to estimate $s_{j}, \mathrm{~s}_{j T}$ and both s_{j} and $s_{j T}$, respectively, for $n X$ uncertain variables. Further, because integrals are being approximated, the basic sample size $n S$ required for the preceding algorithm to produce acceptable approximations to s_{j} and $s_{j T}$ is
likely to be much larger than the sample sizes required for other sampling-based sensitivity measures.

Sensitivity analysis based on variance decomposition is illustrated with a simple test function introduced as part of a review of uncertainty and sensitivity analysis procedures (Model 9 in Ref. 194). Specifically, this test function is defined by

$$
\begin{align*}
y & =f(\mathbf{x}), \mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right] \tag{6-86}\\
& =\sin x_{1}+A \sin ^{2} x_{2}+B x_{3}^{4} \sin x_{1},
\end{align*}
$$

with $A=7, B=0.1$ and each x_{j} uniform on $[-\pi, \pi]$. Unfortunately, the fluid flow model that has been used to illustrate other sensitivity analysis procedures is too computationally demanding for use with the procedures discussed in this section. Values of s_{j} and $s_{j T}$ obtained with a base sample size of $n S=10,000$ are
$s_{1}=0.30, s_{2}=0.46, s_{3}=0.00$
and
$s_{1 T}=0.53, s_{2 T}=0.45, s_{3 T}=0.23$.
Further, results obtained with different values for $n S$ are illustrated in Table 14 and suggest that the approximations of the integrals appearing in the definitions of s_{j} and $s_{j T}$ are close to being converged with $n S$ $=10,000$.

For perspective, sensitivity results based on CCs, RCCs, CMNs, CLs, CMDs and SI are presented in Table 15 and scatterplots for x_{1}, x_{2} and x_{3} are given in Fig. 13. The model in Eq. (6-86) was constructed to have patterns that would be difficult to identify with regression-based sensitivity analysis procedures. Thus, although x_{2} is a major contributor to the uncertainty in y, this effect is completely missed by the analyses based on CCs and RCCs in Table 15 owing to the oscillatory relationship between x_{2} and y (Fig. 13b). Similarly, the CMDs test does not identify x_{3} as having an effect on y owing to the constancy of the median values for y across the range of x_{3} (Fig. 13c). Of the tests presented in Table 15, the SI test has the best performance and gives a reasonable indication of the importance of x_{1}, x_{2} and x_{3} with respect to the uncertainty in y for $n S=100$ and $n S=1000$. This is not surprising as the SI test is effective at identifying nonlinear relationships. Fullest representation of the effects of x_{1}, x_{2} and x_{3} on the uncertainty in y is given by the variance decomposition results in Eqs. (6-87) and (6-88). However, this enhanced resolution comes at a cost as the results in Eqs. (6-87) and (6-88) required more function evaluations (i.e., $n S=10,000$) than the SI results (i.e., $n S=100$ and $n S=1000$) in Table 15.

Additional Information: Refs. 56-60, 195-210.

Table 14. Evaluation of Variance Decompositions s_{j} and $s_{j T}$ for Model in Eq. (6-86) with Different Sample Sizes

$n S^{\text {a }}$	$\hat{E}(y)^{\text {b }}$	$\hat{V}(y)^{\text {c }}$	$\hat{s}_{1}{ }^{\text {d }}$	$\hat{s}_{2}{ }^{\text {d }}$	$\hat{s}_{3}{ }^{\text {d }}$	$\hat{s}_{1 T}{ }^{\text {e }}$	$\hat{s}_{2 T}{ }^{\text {e }}$	$\hat{s}_{3 T}{ }^{\text {e }}$
10	3.7	16.5	0.70	0.65	-0.04	0.84	-0.09	-0.24
100	3.9	13.1	0.10	0.37	-0.24	0.79	0.80	0.45
1000	3.5	14.2	0.30	0.44	-0.02	0.56	0.53	0.24
10,000	3.5	14.0	0.30	0.46	0.00	0.53	0.45	0.23
100,000	3.5	13.9	0.32	0.44	-0.00	0.56	0.44	0.24
1,000,000	3.5	13.8	0.32	0.44	0.00	0.56	0.44	0.24
a Sample size. b Estimate for expected value of y; see Eqs. (6-73) and (6-79). ${ }^{\text {c }}$ Estimate for variance of y; see Eqs. (6-74) and (6-80). d Estimate for contribution of $x_{j}, j=1,2,3$, to variance of y; see Eqs. (6-72) and (6-83) e Estimate for contribution of $x_{j}, j=1,2,3$, and its interactions with the other two variables to the variance of y; see Eqs. (6-72) and (6-85).								

Table 15. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Model in Eq. (6-86) (Table 9.14, Ref. 101)

Variable Name ${ }^{\text {a }}$	CC ${ }^{\text {b }}$		RCC ${ }^{\text {c }}$		CMN: $1 \times 5^{\text {d }}$		CL: $1 \times 5^{\text {e }}$		CMD: 2×5 f		SI: $5 \times 5 \mathrm{~g}$	
	Rank	p-Val										
Sample Size $n L H S=100$												
x_{1}	1.0	0.0000	1.0	0.0000	1.0	0.0000	1.0	0.0000	2.0	0.0001	1.0	0.0000
x_{3}	2.0	0.5667	2.0	0.6361	3.0	0.6917	3.0	0.5495	3.0	0.9384	3.0	0.0615
χ_{2}	3.0	0.8327	3.0	0.8393	2.0	0.0000	2.0	0.0000	1.0	0.0000	2.0	0.0008
Sample Size $n L H S=1000$												
x_{1}	1.0	0.0000	1.0	0.0000	1.5	0.0000	1.5	0.0000	2.0	0.0000	1.5	0.0000
x_{3}	2.0	0.0162	2.0	0.0187	3.0	0.0438	3.0	0.0347	3.0	0.1446	3.0	0.0000
x_{2}	3.0	0.9799	3.0	0.9999	1.5	0.0000	1.5	0.0000	1.0	0.0000	1.5	0.0000
a Variables ordered by p-values for CCs. ${ }^{\text {b }}$ Ranks and p-values for CCs; see Eq. (6-24), Ref. 47. Ranks and p-values for RCCs; see Eq. (6-38), Ref. 47. ${ }^{\text {d }}$ Ranks and p-values for CMNs test with 1×5 grid; see Eq. (6-15). e Ranks and p-values for CLs test with 1×5 grid; see Eq. (6-16) ${ }^{f}$ Ranks and p-values for CMDs test with 2×5 grid; see Eq. (6-18). g Ranks and p-values for SI test with 5×5 grid; see Eq. (6-20).												

Fig. 13. Scatterplots for model in Eq. (6-86) with grid for SI test with $n I=n D=5$ (adapted from Fig. 9.15, Ref. 101)

This page intentionally left blank.

7. Summary

Sampling-based uncertainty and sensitivity analysis is widely used, and as a result, is a fairly mature area of study. However, there remain a number of important challenges and areas for additional study. For example, there is a need for sensitivity analysis procedures that are more effective at revealing nonlinear relations than the parametric regression procedures (Sect. 6.3) and partial correlation procedures (Sect. 6.4) currently in wide use. Among the approaches to sensitivity analysis described in the preceding section, statistical tests for patterns based on gridding (Sect. 6.6), nonparametric regression (Sect. 6.8), the squared rank differences/rank correlation test (Sect. 6.9), the two dimensional Kol-mogorov-Smirnov test (Sect. 6.10), and complete variance decomposition (Sect. 6.13) have not been as widely used as approaches based on parametric regression and partial correlation and merit additional investigation and use.

As another example, sampling-based procedures for uncertainty and sensitivity analysis usually use probability as the model, or representation, for uncertainty. However, when limited information is available with which to characterize uncertainty, probabilistic characterizations can give the appearance of more knowledge than is really present. Alternative representations for uncertainty such as evidence theory and possibility theory merit consideration for their potential to represent uncertainty in situations where little information is available. ${ }^{84-92}$

Finally, a significant challenge is the education of potential users of uncertainty and sensitivity analysis about (i) the importance of such analyses and their role in both large and small analyses, (ii) the need for appropriate separation of aleatory and epistemic uncertainty in the conceptual and computational implementation of analyses of complex systems, ${ }^{15-24}$ (iii) the need for a clear conceptual view of what an analysis is intended to represent and a computational design that is consistent with that view, ${ }^{15}, 124,211,212$ (iv) the role that uncertainty and sensitivity analysis plays in model and analysis verification, ${ }^{5,6}$ and (v) the importance of avoiding deliberately conservative assumptions if meaningful uncertainty and sensitivity analysis results are to be obtained. ${ }^{213-217}$

Some thoughts and personal preferences of the authors are now given. The appropriate characterization of the uncertainty in analysis inputs is essential to the performance of a meaningful uncertainty and sensitivity
analysis (Sect. 2). In particular, it is important to avoid deliberately conservative assumptions if informative uncertainty and sensitivity analysis results are to be obtained. However, developing uncertainty distributions that appropriately characterize the uncertainty in analysis inputs can be a time-consuming and expensive process. This is especially true in analyses that involve tens to hundreds of uncertain inputs. In such situations, a reasonable strategy is to perform an initial uncertainty and sensitivity analysis with rather crude (i.e., exploratory) uncertainty characterizations to identify the most important variables. Then, resources can be concentrated on obtaining refined distributions for the most important variables, and a second analysis can be carried out with the refined distributions for the important variables.

In characterizing uncertainty, careful thought must be given to what constitutes an appropriate separation of aleatory and epistemic uncertainty in a particular analysis. ${ }^{15-24}$ An important aspect of this separation is having a conceptual model for the overall structure of the analysis that clearly describes the roles played by aleatory and epistemic uncertainties and leads naturally to the computational implementation of the analysis.

Latin hypercube sampling is our preferred sampling procedure (Sect. 3). The efficient stratification properties associated with Latin hypercube sampling make its use very effective in analyses that involve large numbers of independent and dependent variables. Further, the Iman/Conover restricted pairing technique provides an effective way to control correlations within LHSs.

The presentation of uncertainty analysis results is usually straightforward in a sampling-based uncertainty and sensitivity analysis (Sect. 5). The performance of effective sensitivity analyses is typically a larger challenge (Sect. 6).

The authors' preferred sensitivity analysis approach is to initially perform stepwise regression analyses (Sect. 6.3) with raw and rank transformed data (Sect. 6.5) and to examine the scatterplots (Sect. 6.1) for the variables identified in the stepwise regressions. For most dependent variables, this approach is sufficient to identify the dominant independent (i.e., input) variables. The rank transform is effective because it (i) linearizes monotonic relationships, (ii) reduces problems associated with variable ranges that cover many orders of magnitude, (iii) eliminates the problems of zero values that complicate the use of logarithmic trans-
formations, and (iv) reduces the disproportionate effects of outliers.

For time-dependent results, plots of SRCs (Sect. 6.3) and PCCs (Sect. 6.4) as functions of time provide a compact and approachable summary of variable effects. However, such plots provide less information than stepwise regression analyses. An effective presentation strategy is to present plots of SRCs and PCCs as compact analysis summaries and to present more detailed stepwise regression results at selected times.

Sensitivity analyses based on stepwise regression with raw and rank transformed data will fail when the relationships between independent and dependent variables are both nonlinear and nonmonotonic. Then, alternative approaches to sensitivity analysis are needed. Approaches that are likely to be effective in this situation include the χ^{2} test for statistical independence
(Sect 6.6), nonparametric regression (Sect. 6.8), and the SRD/RCC test (Sect. 6.9). The χ^{2} and SRD/RCC tests are easier to implement than nonparametric regression procedures. However, like traditional regression procedures, nonparametric regression procedures can be implemented in a stepwise manner and provide more information (e.g., order of selection, fraction of uncertainty explained) than the χ^{2} and SRD/RCC tests. Further, the nonparametric regression procedures actually produce a surrogate model (i.e., a response surface) that can be useful to have in some analysis contexts.

Variance decomposition procedures (Sect. 6.13) can be very effective sensitivity analysis tools in situations that involve relationships that are both nonlinear and nonmonotonic. However, the large number of model evaluations required in the implementation of these procedures restricts their use to models where thousands of model evaluations are possible.

8. References

1. Christie, M.A., J. Glimm, J.W. Grove, D.M. Higdon, D.H. Sharp, and M.M. Wood-Schultz. 2005. "Error Analysis and Simulations of Complex Phenomena," Los Alamos Science. Vol. 29, pp. 6-25.
2. Nikolaidis, E., D.M. Ghiocel, and S. Singhal (eds). 2004. Engineering Design Reliability Handbook. Boca Raton, FL: CRC Press.
3. Sharp, D.H. and M.M. Wood-Schultz. 2003. "QMU and Nuclear Weapons Certification: What's Under the Hood?," Los Alamos Science. Vol. 28, pp. 47-53.
4. Wagner, R.L. 2003. "Science, Uncertainty and Risk: The Problem of Complex Phenomena," APS News. Vol. 12, no. 1, pp. 8.
5. Oberkampf, W.L., S.M. DeLand, B.M. Rutherford, K.V. Diegert, and K.F. Alvin. 2002. "Error and Uncertainty in Modeling and Simulation," Reliability Engineering and System Safety. Vol. 75, no. 3, pp. 333-357.
6. Roache, P.J. 1998. Verification and Validation in Computational Science and Engineering. Albuquerque, NM: Hermosa Publishers.
7. Ayyub, B.M., (ed.). 1997. Uncertainty Modeling and Analysis in Civil Engineering. Boca Raton, FL: CRC Press.
8. Risk Assessment Forum. 1997. Guiding Principles for Monte Carlo Analysis, EPA/630/R97/001. Washington DC: U.S. Environmental Protection Agency. (Available from the NTIS as PB97-188106/XAB.).
9. NCRP (National Council on Radiation Protection and Measurements). 1996. A Guide for Uncertainty Analysis in Dose and Risk Assessments Related to Environmental Contamination, NCRP Commentary No. 14. Bethesda, MD: National Council on Radiation Protection and Measurements.
10. NRC (National Research Council). 1994. Science and Judgment in Risk Assessment, Washington, DC: National Academy Press.
11. NRC (National Research Council). 1993. Issues in Risk Assessment. Washington, DC: National Academy Press.
12. U.S. EPA (U.S. Environmental Protection Agency). 1993. An SAB Report: Multi-Media Risk Assessment for Radon, Review of Uncertainty Analysis of Risks Associated with Exposure to Radon, EPA-SAB-RAC-93-014. Washington, DC: U.S. Environmental Protection Agency.
13. IAEA (International Atomic Energy Agency). 1989. Evaluating the Reliability of Predictions Made Using Environmental Transfer Models, Safety Series No. 100. Vienna: International Atomic Energy Agency.
14. Beck, M.B. 1987. "Water-Quality Modeling: A Review of the Analysis of Uncertainty," Water Resources Research. Vol. 23, no. 8, pp. 13931442.
15. Helton, J.C. 1997. "Uncertainty and Sensitivity Analysis in the Presence of Stochastic and Subjective Uncertainty," Journal of Statistical Computation and Simulation. Vol. 57, no. 1-4, pp. 376.
16. Helton, J.C. and D.E. Burmaster. 1996. "Guest Editorial: Treatment of Aleatory and Epistemic Uncertainty in Performance Assessments for Complex Systems," Reliability Engineering and System Safety. Vol. 54, no. 2-3, pp. 91-94.
17. Paté-Cornell, M.E. 1996. "Uncertainties in Risk Analysis: Six Levels of Treatment," Reliability Engineering and System Safety. Vol. 54, no. 2-3, pp. 95-111.
18. Winkler, R.L. 1996. "Uncertainty in Probabilistic Risk Assessment," Reliability Engineering and System Safety. Vol. 54, no. 2-3, pp. 127-132.
19. Hoffman, F.O. and J.S. Hammonds. 1994. "Propagation of Uncertainty in Risk Assessments: The Need to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability," Risk Analysis. Vol. 14, no. 5, pp. 707-712.
20. Helton, J.C. 1994. "Treatment of Uncertainty in Performance Assessments for Complex Sys-
tems," Risk Analysis. Vol. 14, no. 4, pp. 483511.
21. Apostolakis, G. 1990. "The Concept of Probability in Safety Assessments of Technological Systems," Science. Vol. 250, no. 4986, pp. 13591364.
22. Haan, C.T. 1989. "Parametric Uncertainty in Hydrologic Modeling," Transactions of the ASAE. Vol. 32, no. 1, pp. 137-146.
23. Parry, G.W. and P.W. Winter. 1981. "Characterization and Evaluation of Uncertainty in Probabilistic Risk Analysis," Nuclear Safety. Vol. 22, no. 1, pp. 28-42.
24. Kaplan, S. and B.J. Garrick. 1981. "On the Quantitative Definition of Risk," Risk Analysis. Vol. 1, no. 1, pp. 11-27.
25. Cacuci, D.G. 2003. Sensitivity and Uncertainty Analysis, Vol. 1: Theory. Boca Raton, FL: Chapman and Hall/CRC Press.
26. Griewank, A. 2000. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Philadelphia, PA: Society for Industrial and Applied Mathematics.
27. Berz, M., C. Bischof, G. Corliss, and A. Griewank. 1996. Computational Differentiation: Techniques, Applications, and Tools. Philadelphia, PA: Society for Industrial and Applied Mathematics.
28. Cacuci, D.G. and M.E. Schlesinger. 1994. "On the Application of the Adjoint Method of Sensitivity Analysis to Problems in the Atmospheric Sciences," Atmósfera. Vol. 7, no. 1, pp. 47-59.
29. Turányi, T. 1990. "Sensitivity Analysis of Complex Kinetic Systems. Tools and Applications," Journal of Mathematical Chemistry. Vol. 5, no. 3, pp. 203-248.
30. Rabitz, H., M. Kramer, and D. Dacol. 1983. "Sensitivity Analysis in Chemical Kinetics," Annual Review of Physical Chemistry. Vol. 34. Eds. B.S. Rabinovitch, J.M. Schurr, and H.L. Strauss. Palo Alto, CA: Annual Reviews Inc, pp. 419-461.
31. Lewins, J. and M. Becker, eds. 1982. Sensitivity and Uncertainty Analysis of Reactor Performance Parameters. Vol. 14. New York, NY: Plenum Press.
32. Frank, P.M. 1978. Introduction to System Sensitivity Theory. New York, NY: Academic Press.
33. Tomovic, R. and M. Vukobratovic. 1972. General Sensitivity Theory. New York, NY: Elsevier.
34. Myers, R.H., D.C. Montgomery, G.G. Vining, C.M. Borror, and S.M. Kowalski. 2004. "Response Surface Methodology: A Retrospective and Literature Review," Journal of Quality Technology. Vol. 36, no. 1, pp. 53-77.
35. Myers, R.H. 1999. "Response Surface Methodology - Current Status and Future Directions," Journal of Quality Technology. Vol. 31, no. 1, pp. 30-44.
36. Andres, T.H. 1997. "Sampling Methods and Sensitivity Analysis for Large Parameter Sets," Journal of Statistical Computation and Simulation. Vol. 57, no. 1-4, pp. 77-110.
37. Kleijnen, J.P.C. 1997. "Sensitivity Analysis and Related Analyses: A Review of Some Statistical Techniques," Journal of Statistical Computation and Simulation. Vol. 57, no. 1-4, pp. 111-142.
38. Kleijnen, J.P.C. 1992. "Sensitivity Analysis of Simulation Experiments: Regression Analysis and Statistical Design," Mathematics and Computers in Simulation. Vol. 34, no. 3-4, pp. 297315.
39. Myers, R.H., A.I. Khuri, J. Carter, and H. Walter. 1989. "Response Surface Methodology: 1966-1988," Technometrics. Vol. 31, no. 2, pp. 137-157.
40. Sacks, J., W.J. Welch, T.J. Mitchel, and H.P. Wynn. 1989. "Design and Analysis of Computer Experiments," Statistical Science. Vol. 4, no. 4, pp. 409-435.
41. Morton, R.H. 1983. "Response Surface Methodology," Mathematical Scientist. Vol. 8, pp. 3152.
42. Mead, R. and D.J. Pike. 1975. "A Review of Response Surface Methodology from a Biometric Viewpoint," Biometrics. Vol. 31, pp. 803851.
43. Myers, R.H. 1971. Response Surface Methodology. Boston, MA: Allyn and Bacon.
44. Helton, J.C. and F.J. Davis. 2003. "Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems," Reliability Engineering and System Safety. Vol. 81, no. 1, pp. 23-69.
45. Helton, J.C. and F.J. Davis. 2002. "Illustration of Sampling-Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis. Vol. 22, no. 3, pp. 591-622.
46. Helton, J.C. and F.J. Davis. 2000. "SamplingBased Methods," Sensitivity Analysis. Ed. A. Saltelli, K. Chan, and E.M. Scott. New York, NY: Wiley. pp. 101-153.
47. Kleijnen, J.P.C. and J.C. Helton. 1999. "Statistical Analyses of Scatterplots to Identify Important Factors in Large-Scale Simulations, 1: Review and Comparison of Techniques," Reliability Engineering and System Safety. Vol. 65, no. 2, pp. 147-185.
48. Blower, S.M. and H. Dowlatabadi. 1994. "Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: an HIV Model, as an Example," International Statistical Review. Vol. 62, no. 2, pp. 229-243.
49. Saltelli, A., T.H. Andres, and T. Homma. 1993. "Sensitivity Analysis of Model Output. An Investigation of New Techniques," Computational Statistics and Data Analysis. Vol. 15, no. 2, pp. 445-460.
50. Iman, R.L. 1992. "Uncertainty and Sensitivity Analysis for Computer Modeling Applications," Reliability Technology - 1992, The Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, California, November 8-13, 1992. Eds. T.A. Cruse. Vol. 28, pp. 153-168. New York, NY: American Society of Mechanical Engineers, Aerospace Division.
51. Saltelli, A. and J. Marivoet. 1990. "NonParametric Statistics in Sensitivity Analysis for

Model Output. A Comparison of Selected Techniques," Reliability Engineering and System Safety. Vol. 28, no. 2, pp. 229-253.
52. Iman, R.L., J.C. Helton, and J.E. Campbell. 1981. "An Approach to Sensitivity Analysis of Computer Models, Part 1. Introduction, Input Variable Selection and Preliminary Variable Assessment," Journal of Quality Technology. Vol. 13, no. 3, pp. 174-183.
53. Iman, R.L., J.C. Helton, and J.E. Campbell. 1981. "An Approach to Sensitivity Analysis of Computer Models, Part 2. Ranking of Input Variables, Response Surface Validation, Distribution Effect and Technique Synopsis," Journal of Quality Technology. Vol. 13, no. 4, pp. 232240.
54. Iman, R.L. and W.J. Conover. 1980. "Small Sample Sensitivity Analysis Techniques for Computer Models, with an Application to Risk Assessment," Communications in Statistics: Theory and Methods. Vol. A9, no. 17, pp. 17491842.
55. McKay, M.D., R.J. Beckman, and W.J. Conover. 1979. "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code," Technometrics. Vol. 21, no. 2, pp. 239-245.
56. Li, G., C. Rosenthal, and H. Rabitz. 2001. "High-Dimensional Model Representations," The Journal of Physical Chemistry. Vol. 105, no. 33, pp. 7765-7777.
57. Rabitz, H. and O.F. Alis. 1999. "General Foundations of High-Dimensional Model Representations," Journal of Mathematical Chemistry. Vol. 25, no. 2-3, pp. 197-233.
58. Saltelli, A., S. Tarantola, and K.P.-S. Chan. 1999. "A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output," Technometrics. Vol. 41, no. 1, pp. 39-56.
59. Sobol', I.M. 1993. "Sensitivity Estimates for Nonlinear Mathematical Models," Mathematical Modeling \& Computational Experiment. Vol. 1, no. 4, pp. 407-414.
60. Cukier, R.I., H.B. Levine, and K.E. Shuler. 1978. "Nonlinear Sensitivity Analysis of Multiparameter Model Systems," Journal of Computational Physics. Vol. 26, no. 1, pp. 1-42.
61. Ionescu-Bujor, M. and D.G. Cacuci. 2004. "A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems--I: Deterministic Methods," Nuclear Science and Engineering. Vol. 147, no. 3, pp. 189-2003.
62. Cacuci, D.G. and M. Ionescu-Bujor. 2004. "A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems--II: Statistical Methods," Nuclear Science and Engineering. Vol. 147, no. 3, pp. 204-217.
63. Frey, H.C. and S.R. Patil. 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis. Vol. 22, no. 3, pp. 553-578.
64. Saltelli, A., K. Chan, and E.M. Scott (eds). 2000. Sensitivity Analysis. New York, NY: Wiley.
65. Hamby, D.M. 1994. "A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models," Environmental Monitoring and Assessment. Vol. 32, no. 2, pp. 135-154.
66. Helton, J.C. 1993. "Uncertainty and Sensitivity Analysis Techniques for Use in Performance Assessment for Radioactive Waste Disposal," Reliability Engineering and System Safety. Vol. 42, no. 2-3, pp. 327-367.
67. Ronen, Y. 1988. Uncertainty Analysis., Воса Raton, FL: CRC Press, Inc.
68. Iman, R.L. and J.C. Helton. 1988. "An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models," Risk Analysis. Vol. 8, no. 1, pp. 71-90.
69. Blower, S.M., H.B. Gershengorn, and R.M. Grant. 2000. "A Tale of Two Futures: HIV and Antiretroviral Therapy in San Francisco," Science. Vol. 287, no. 5453, pp. 650-654.
70. Cohen, C., M. Artois, and D. Pontier. 2000. "A Discrete-Event Computer Model of Feline Herpes Virus Within Cat Populations," Preventative Veterinary Medicine. Vol. 45, no. 3-4, pp. 163181.
71. Hofer, E. 1999. "Sensitivity Analysis in the Context of Uncertainty Analysis for Computationally Intensive Models," Computer Physics Communications. Vol. 117, no. 1-2, pp. 21-34.
72. Caswell, H., S. Brault, A.J. Read, and T.D. Smith. 1998. "Harbor Porpoise and Fisheries: An Uncertainty Analysis of Incidental Mortality," Ecological Applications. Vol. 8, no. 4, pp. 1226-1238.
73. Sanchez, M.A. and S.M. Blower. 1997. "Uncertainty and Sensitivity Analysis of the Basic Reproductive Rate: Tuberculosis as an Example," American Journal of Epidemiology. Vol. 145, no. 12, pp. 1127-1137.
74. Chan, M.S. 1996. "The Consequences of Uncertainty for the Prediction of the Effects of Schistosomiasis Control Programmes," Epidemiology and Infection. Vol. 117, no. 3, pp. 537-550.
75. Gwo, J.P., L.E. Toran, M.D. Morris, and G.V. Wilson. 1996. "Subsurface Stormflow Modeling with Sensitivity Analysis Using a LatinHypercube Sampling Technique," Ground Water. Vol. 34, no. 5, pp. 811-818.
76. Helton, J.C., D.R. Anderson, B.L. Baker, J.E. Bean, J.W. Berglund, W. Beyeler, K. Economy, J.W. Garner, S.C. Hora, H.J. Iuzzolino, P. Knupp, M.G. Marietta, J. Rath, R.P. Rechard, P.J. Roache, D.K. Rudeen, K. Salari, J.D. Schreiber, P.N. Swift, M.S. Tierney, and P. Vaughn. 1996. "Uncertainty and Sensitivity Analysis Results Obtained in the 1992 Performance Assessment for the Waste Isolation Pilot Plant," Reliability Engineering and System Safety. Vol. 51, no. 1, pp. 53-100.
77. Kolev, N.I. and E. Hofer. 1996. "Uncertainty and Sensitivity Analysis of a Postexperiment Simulation of Nonexplosive Melt-Water Interaction," Experimental Thermal and Fluid Science. Vol. 13, no. 2, pp. 98-116.
78. Whiting, W.B., T.-M. Tong, and M.E. Reed. 1993. "Effect of Uncertainties in Thermodynamic Data and Model Parameters on Calculated Process Performance," Industrial and Engineering Chemistry Research. Vol. 32, no. 7, pp. 1367-1371.
79. Ma, J.Z., E. Ackerman, and J.-J. Yang. 1993. "Parameter Sensitivity of a Model of Viral Epidemics Simulated with Monte Carlo Techniques. I. Illness Attack Rates," International Journal of Biomedical Computing. Vol. 32, no. 3-4, pp. 237-253.
80. Ma, J.Z. and E. Ackerman. 1993. "Parameter Sensitivity of a Model of Viral Epidemics Simulated with Monte Carlo Techniques. II. Durations and Peaks," International Journal of Biomedical Computing. Vol. 32, no. 3-4, pp. 255268.
81. Breshears, D.D., T.B. Kirchner, and F.W. Whicker. 1992. "Contaminant Transport Through Agroecosystems: Assessing Relative Importance of Environmental, Physiological, and Management Factors," Ecological Applications. Vol. 2, no. 3, pp. 285-297.
82. Breeding, R.J., J.C. Helton, E.D. Gorham, and F.T. Harper. 1992. "Summary Description of the Methods Used in the Probabilistic Risk Assessments for NUREG-1150," Nuclear Engineering and Design. Vol. 135, no. 1, pp. 1-27.
83. MacDonald, R.C. and J.E. Campbell. 1986. "Valuation of Supplemental and Enhanced Oil Recovery Projects with Risk Analysis," Journal of Petroleum Technology. Vol. 38, no. 1, pp. 5769.
84. Helton, J.C., J.D. Johnson, and W.L. Oberkampf. 2004. "An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions," Reliability Engineering and System Safety. Vol. 85, no. 1-3, pp. 39-71.
85. Klir, G.J. 2004. "Generalized Information Theory: Aims, Results, and Open Problems," Reliability Engineering and System Safety. Vol. 85, no. 1-3, pp. 21-38.
86. Ross, T.J. 2004. Fuzzy Logic with Engineering Applications. 2nd ed. New York, NY: Wiley.
87. Halpern, J.Y. 2003. Reasoning about Uncertainty. Cambridge, MA: MIT Press.
88. Ross, T.J., J.M. Booker, and W.J. Parkinson (eds.). 2002. Fuzzy Logic and Probability Applications: Bridging the Gap. Philadelphia, PA: Society for Industrial and Applied Mathematics.
89. Jaulin, L., M. Kieffer, O. Didrit, and E. Walter. 2001. Applied Interval Analysis. New York, NY: Springer-Verlag.
90. Wolkenhauer, O. 2001. Data Engineering: Fuzzy Mathematics in Systems Theory and Data Analysis. New York, NY: Wiley.
91. Klir, G.J. and M.J. Wierman. 1999. UncertaintyBased Information, New York, NY: PhysicaVerlag.
92. Yager, R.R., J. Kacprzyk, and M. Fedrizzi (eds). 1994. Advances in the Dempster-Shafer Theory of Evidence. New York, NY: Wiley.
93. Cooke, R.M. and L.H.J. Goossens. 2004. "Expert Judgement Elicitation for Risk Assessment of Critical Infrastructures," Journal of Risk Research. Vol. 7, no. 6, pp. 643-656.
94. Ayyub, B.M. 2001. Elicitation of Expert Opinions for Uncertainty and Risks, Boca Raton, FL: CRC Press.
95. McKay, M. and M. Meyer. 2000. "Critique of and Limitations on the use of Expert Judgements in Accident Consequence Uncertainty Analysis," Radiation Protection Dosimetry. Vol. 90, no. 3, pp. 325-330.
96. Budnitz, R.J., G. Apostolakis, D.M. Boore, L.S. Cluff, K.J. Coppersmith, C.A. Cornell, and P.A. Morris. 1998. "Use of Technical Expert Panels: Applications to Probabilistic Seismic Hazard Analysis," Risk Analysis. Vol. 18, no. 4, pp. 463469.
97. Thorne, M.C. and M.M.R. Williams. 1992. "A Review of Expert Judgement Techniques with Reference to Nuclear Safety," Progress in Nuclear Safety. Vol. 27, no. 2-3, pp. 83-254.
98. Cooke, R.M. 1991. Experts in Uncertainty: Opinion and Subjective Probability in Science. Oxford; New York: Oxford University Press.
99. Meyer, M.A. and J.M. Booker. 1991. Eliciting and Analyzing Expert Judgment: A Practical Guide. New York, NY: Academic Press.
100. Hora, S.C. and R.L. Iman. 1989. "Expert Opinion in Risk Analysis: The NUREG-1150 Meth-
odology," Nuclear Science and Engineering. Vol. 102, no. 4, pp. 323-331.
101. Helton, J.C. and F.J. Davis. 2000. SamplingBased Methods for Uncertainty and Sensitivity Analysis, SAND99-2240. Albuquerque, NM: Sandia National Laboratories.
102. Vaughn, P., J.E. Bean, J.C. Helton, M.E. Lord, R.J. MacKinnon, and J.D. Schreiber. 2000. "Representation of Two-Phase Flow in the Vicinity of the Repository in the 1996 Performance Assessment for the Waste Isolation Pilot Plant," Reliability Engineering and System Safety. Vol. 69, no. 1-3, pp. 205-226.
103. Helton, J.C., J.E. Bean, K. Economy, J.W. Garner, R.J. MacKinnon, J. Miller, J.D. Schreiber, and P. Vaughn. 2000. "Uncertainty and Sensitivity Analysis for Two-Phase Flow in the Vicinity of the Repository in the 1996 Performance Assessment for the Waste Isolation Pilot Plant: Undisturbed Conditions," Reliability Engineering and System Safety. Vol. 69, no. 1-3, pp. 227-261.
104. Helton, J.C., J.E. Bean, K. Economy, J.W. Garner, R.J. MacKinnon, J. Miller, J.D. Schreiber, and P. Vaughn. 2000. "Uncertainty and Sensitivity Analysis for Two-Phase Flow in the Vicinity of the Repository in the 1996 Performance Assessment for the Waste Isolation Pilot Plant: Disturbed Conditions," Reliability Engineering and System Safety. Vol. 69, no. 1-3, pp. 263-304.
105. U.S. DOE (U.S. Department of Energy). 1996. Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant, DOE/CAO-1996-2184, Vols. I-XXI. Carlsbad, NM: U.S. Department of Energy, Carlsbad Area Office, Waste Isolation Pilot Plant.
106. Helton, J.C., J.E. Bean, J.W. Berglund, F.J. Davis, K. Economy, J.W. Garner, J.D. Johnson, R.J. MacKinnon, J. Miller, D.G. O’Brien, J.L. Ramsey, J.D. Schreiber, A. Shinta, L.N. Smith, D.M. Stoelzel, C. Stockman, and P. Vaughn. 1998. Uncertainty and Sensitivity Analysis Results Obtained in the 1996 Performance Assessment for the Waste Isolation Pilot Plant, SAND98-0365. Albuquerque, NM: Sandia National Laboratories.
107. Helton, J.C. and M.G. Marietta. 2000. "Special Issue: The 1996 Performance Assessment for the

Waste Isolation Pilot Plant," Reliability Engineering and System Safety. Vol. 69, no. 1-3, pp. 1-451.
108. Helton, J.C., M.-A. Martell, and M.S. Tierney. 2000. "Characterization of Subjective Uncertainty in the 1996 Performance Assessment for the Waste Isolation Pilot Plant," Reliability Engineering and System Safety. Vol. 69, no. 1-3, pp. 191-204.
109. Goossens, L.H.J., F.T. Harper, B.C.P. Kraan, and H. Metivier. 2000. "Expert Judgement for a Probabilistic Accident Consequence Uncertainty Analysis," Radiation Protection Dosimetry. Vol. 90, no. 3, pp. 295-301.
110. Goossens, L.H.J. and F.T. Harper. 1998. "Joint EC/USNRC Expert Judgement Driven Radiological Protection Uncertainty Analysis," Journal of Radiological Protection. Vol. 18, no. 4, pp. 249-264.
111. Siu, N.O. and D.L. Kelly. 1998. "Bayesian Parameter Estimation in Probabilistic Risk Assessment," Reliability Engineering and System Safety. Vol. 62, no. 1-2, pp. 89-116.
112. Evans, J.S., G.M. Gray, R.L. Sielken Jr., A.E. Smith, C. Valdez-Flores, and J.D. Graham. 1994. "Use of Probabilistic Expert Judgement in Uncertainty Analysis of Carcinogenic Potency," Regulatory Toxicology and Pharmacology. Vol. 20, no. 1, pt. 1, pp. 15-36.
113. Chhibber, S., G. Apostolakis, and D. Okrent. 1992. "A Taxonomy of Issues Related to the Use of Expert Judgments in Probabilistic Safety Studies," Reliability Engineering and System Safety. Vol. 38, no. 1-2, pp. 27-45.
114. Kaplan, S. 1992. "Expert Information Versus Expert Opinions: Another Approach to the Problem of Eliciting Combining Using Expert Knowledge in PRA," Reliability Engineering and System Safety. Vol. 35, no. 1, pp. 61-72.
115. Otway, H. and D.V. Winterfeldt. 1992. "Expert Judgement in Risk Analysis and Management: Process, Context, and Pitfalls," Risk Analysis. Vol. 12, no. 1, pp. 83-93.
116. Bonano, E.J. and G.E. Apostolakis. 1991. "Theoretical Foundations and Practical Issues
for Using Expert Judgments in Uncertainty Analysis of High-Level Radioactive Waste Disposal," Radioactive Waste Management and the Nuclear Fuel Cycle. Vol. 16, no. 2, pp. 137-159.
117. Keeney, R.L. and D.V. Winterfeldt. 1991. "Eliciting Probabilities from Experts in Complex Technical Problems," IEEE Transactions on Engineering Management. Vol. 38, no. 3, pp. 191201.
118. Svenson, O. 1989. "On Expert Judgments in Safety Analyses in the Process Industries," Reliability Engineering and System Safety. Vol. 25, no. 3, pp. 219-256.
119. Mosleh, A., V.M. Bier, and G. Apostolakis. 1988. "A Critique of Current Practice for the Use of Expert Opinions in Probabilistic Risk Assessment," Reliability Engineering and System Safety. Vol. 20, no. 1, pp. 63-85.
120. Breeding, R.J., J.C. Helton, W.B. Murfin, L.N. Smith, J.D. Johnson, H.-N. Jow, and A.W. Shiver. 1992. "The NUREG-1150 Probabilistic Risk Assessment for the Surry Nuclear Power Station," Nuclear Engineering and Design. Vol. 135, no. 1, pp. 29-59.
121. Payne, A.C., Jr., R.J. Breeding, J.C. Helton, L.N. Smith, J.D. Johnson, H.-N. Jow, and A.W. Shiver. 1992. "The NUREG-1150 Probabilistic Risk Assessment for the Peach Bottom Atomic Power Station," Nuclear Engineering and Design. Vol. 135, no. 1, pp. 61-94.
122. Gregory, J.J., R.J. Breeding, J.C. Helton, W.B. Murfin, S.J. Higgins, and A.W. Shiver. 1992. "The NUREG-1150 Probabilistic Risk Assessment for the Sequoyah Nuclear Plant," Nuclear Engineering and Design. Vol. 135, no. 1, pp. 92115.
123. Brown, T.D., R.J. Breeding, J.C. Helton, H.-N. Jow, S.J. Higgins, and A.W. Shiver. 1992. "The NUREG-1150 Probabilistic Risk Assessment for the Grand Gulf Nuclear Station," Nuclear Engineering and Design. Vol. 135, no. 1, pp. 117137.
124. Helton, J.C. and R.J. Breeding. 1993. "Calculation of Reactor Accident Safety Goals," Reliability Engineering and System Safety. Vol. 39, no. 2, pp. 129-158.
125. Helton, J.C., F.J. Davis, and J.D. Johnson. 2005. "A Comparison of Uncertainty and Sensitivity Analysis Results Obtained with Random and Latin Hypercube Sampling," Reliability Engineering and System Safety. Vol. 89, no. 3, pp. 305-330.
126. Morris, M.D. 2000. "Three Technometrics Experimental Design Classics," Technometrics. Vol. 42, no. 1, pp. 26-27.
127. Evans, M. and T. Swartz. 2000. Approximating Integrals via Monte Carlo and Deterministic Methods. Oxford, New York: Oxford University Press.
128. Hurtado, J.E. and A.H. Barbat. 1998. "Monte Carlo Techniques in Computational Stochastic Mechanics," Archives of Computational Methods in Engineering. Vol. 5, no. 1, pp. 3-330.
129. Nicola, V.F., P. Shahabuddin, and M.K. Nakayama. 2001. "Techniques for Fast Simulation of Models of Highly Dependable Systems," IEEE Transactions on Reliability. Vol. 50, no. 3, pp. 246-264.
130. Owen, A. and Y. Zhou. 2000. "Safe and Effective Importance Sampling," Journal of American Statistical Association. Vol. 95, no. 449, pp. 135-143.
131. Heidelberger, P. 1995. "Fast Simulation of Rare Events in Queueing and Reliability Models," ACM Transactions on Modeling and Computer Simulation. Vol. 5, no. 1, pp. 43-85.
132. Shahabuddin, P. 1994. "Importance Sampling for the Simulation of Highly Reliable Markovian Systems," Management Science. Vol. 40, no. 3, pp. 333-352.
133. Goyal, A., P. Shahabuddin, P. Heidelberger, V.F. Nicola, and P.W. Glynn. 1992. "A Unified Framework for Simulating Markovian Models of Highly Dependable Systems," IEEE Transactions on Computers. Vol. 41, no. 1, pp. 36-51.
134. Melchers, R.E. 1990. "Search-Based Importance Sampling," Structural Safety. Vol. 9, no. 2, pp. 117-128.
135. Glynn, P.W. and D.L. Iglehart. 1989. "Importance Sampling for Stochastic Simulations,"

Management Science. Vol. 35, no. 11, pp. 13671392.
136. Iman, R.L. and W.J. Conover. 1982. "A Distri-bution-Free Approach to Inducing Rank Correlation Among Input Variables," Communications in Statistics: Simulation and Computation. Vol. B11, no. 3, pp. 311-334.
137. Iman, R.L. and J.M. Davenport. 1982. "Rank Correlation Plots for Use with Correlated Input Variables," Communications in Statistics: Simulation and Computation. Vol. B11, no. 3, pp. 335-360.
138. Helton, J.C. and F.J. Davis. 2002. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems, SAND2001-0417. Albuquerque, NM: Sandia National Laboratories.
139. Kleinjen, J.P.C. 2005. "An Overview of the Design and Analysis of Simulation Experiments for Sensitivity Analysis," European Journal of Operational Research. Vol. 164, no. 2, pp. 287300.
140. CRWMS M\&O (Civilian Radioactive Waste Management System Management and Operating Contractor). 2000. Total System Performance Assessment (TSPA) Model for Site Recommendation, MDL-WIS-PA-000002 REV 00. Las Vegas, NV: CRWMS M\&O.
141. CRWMS M\&O (Civilian Radioactive Waste Management System Management and Operating Contractor). 2000. Total System Performance Assessment for the Site Recommendation, TDR-WIS-PA-000001 REV 00. Las Vegas, NV: CRWMS M\&O.
142. U.S. DOE (U.S. Department of Energy). 1998. Viability Assessment of a Repository at Yucca Mountain, DOE/RW-0508. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management.
143. Ibrekk, H. and M.G. Morgan. 1987. "Graphical Communication of Uncertain Quantities to Nontechnical People," Risk Analysis. Vol. 7, no. 4, pp. 519-529.
144. Tufte, E.R. 1983. The Visual Display of Quantitative Information. Cheshire, CN: Graphics Press.
145. Berglund, J.W., J.W. Garner, J.C. Helton, J.D. Johnson, and L.N. Smith. 2000. "Direct Releases to the Surface and Associated Complementary Cumulative Distribution Functions in the 1996 Performance Assessment for the Waste Isolation Pilot Plant: Cuttings, Cavings and Spallings," Reliability Engineering and System Safety. Vol. 69, no. 1-3, pp. 305-330.
146. Cooke, R.M. and J.M. van Noortwijk. 2000. "Graphical Methods," Sensitivity Analysis. Ed. A. Saltelli, K. Chan, and E.M. Scott. New York, NY: Wiley. pp. 245-264.
147. Myers, R.H. 1989. Classical and Modern Regression with Applications. 2nd ed. Boston, MA: Duxbury Press.
148. Draper, N.R. and H. Smith. 1981. Applied Regression Analysis. 2nd ed. New York, NY: John Wiley \& Sons.
149. Daniel, C., F.S. Wood, and J.W. Gorman. 1980. Fitting Equations to Data: Computer Analysis of Multifactor Data. 2nd ed. New York, NY: John Wiley \& Sons.
150. Seber, G.A. 1977. Linear Regression Analysis. New York, NY: John Wiley \& Sons.
151. Neter, J. and W. Wasserman. 1974. Applied Linear Statistical Models: Regression, Analysis of Variance, and Experimental Designs. Homewood, IL: Richard D. Irwin.
152. Iman, R.L., M.J. Shortencarier, and J.D. Johnson. 1985. A FORTRAN 77 Program and User's Guide for the Calculation of Partial Correlation and Standardized Regression Coefficients, NUREG/CR-4122, SAND85-0044. Albuquerque, NM: Sandia National Laboratories.
153. Iman, R.L. and W.J. Conover. 1979. "The Use of the Rank Transform in Regression," Technometrics. Vol. 21, no. 4, pp. 499-509.
154. Scheffé, H. 1959. The Analysis of Variance. New York, NY: John Wiley \& Sons, Inc.
155. Conover, W.J. 1980. Practical Nonparametric Statistics. 2nd ed. New York, NY: John Wiley \& Sons.
156. Barnard, G.A. 1963. "Contribution to the Discussion of Professor Bartlett's Paper," Journal Of The Royal Statistical Society Series B. Vol. 26, pp. 294.
157. Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 1992. Numerical Recipes in FORTRAN: The Art of Scientific Computing. 2nd ed. Cambridge: Cambridge University Press.
158. Kleijnen, J.P.C. and J.C. Helton. 1999. "Statistical Analyses of Scatterplots to Identify Important Factors in Large-Scale Simulations, 2: Robustness of Techniques," Reliability Engineering and System Safety. Vol. 65, no. 2, pp. 187-197.
159. Kleijnen, J.P.C. and J.C. Helton. 1999. Statistical Analyses of Scatterplots to Identify Important Factors in Large-Scale Simulations, SAND982202. Albuquerque, NM: Sandia National Laboratories.
160. Wagner, H.M. 1995. "Global Sensitivity Analysis," Operations Research. Vol. 43, pp. 948-969.
161. Granger, C. and J.-L. Lin. 1994. "Using the Mutual Information Coefficient to Identify Lags in Nonlinear Models," Journal of Time Series Analysis. Vol. 15, no. 4, pp. 371-384.
162. Mishra, S. and R.G. Knowlton. 2003. "Testing for Input-Output Dependence in Performance Assessment Models," Proceedings of the 10th International High-Level Radioactive Waste Management Conference (IHLRWM), March 30 - April 2, 2003. Las Vegas, Nevada. La Grange Park, IL: American Nuclear Society. 882-887.
163. Bonnlander, B.V. and A.S. Weigend. 1994. "Selecting Input Variables Using Mutual Information and Nonparametric Density Estimation," Proceedings of the International Symposium on Artificial Neural Networks (ISANN’94). Tainan, Taiwan: 42-50.
164. Moddemeijer, R. 1989. "On the Estimation of Entropy and Mutual Information of Continuous Distributions," Signal Processing. Vol. 16, no. 3, pp. 233-248.
165. Simonoff, J.S. 1996. Smoothing Methods in Statistics. New York, NY: Springer-Verlag.
166. Hastie, T.J. and R.J. Tibshirani. 1990. Generalized Additive Models. London: Chapman \& Hall.
167. Chambers, J.M. and T.J. Hastie. 1992. Statistical Models in S. Pacific Grove, CA: Wadsworth \& Brooks.
168. Storlie, C.B. and J.C. Helton. To Appear. Multiple Predictor Smoothing Methods for Sensitivity Analysis, SAND2006-???? Albuquerque, NM: Sandia National Laboratories.
169. Ruppert, D., M.P. Ward, and R.J. Carroll. 2003. Semiparametric Regression. Cambridge: Cambridge University Press.
170. Breiman, L., J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984. Classification and Regression Trees. Belmont, CA: Wadsworth Intl.
171. Mishra, S., N.E. Deeds, and B.S. RamaRao. 2003. "Application of Classification Trees in the Sensitivity Analysis of Probabilistic Model Results," Reliability Engineering and System Safety. Vol. 79, no. 2, pp. 123-129.
172. Hora, S.C. and J.C. Helton. 2003. "A Distribu-tion-Free Test for the Relationship Between Model Input and Output when Using Latin Hypercube Sampling," Reliability Engineering and System Safety. Vol. 79, no. 3, pp. 333-339.
173. Peacock, J.A. 1983. "Two-Dimensional Good-ness-Of-Fit Testing in Astronomy," Monthly Notices of the Royal Astronomical Society. Vol. 202, no. 2, pp. 615-627.
174. Fasano, G. and A. Franceschini. 1987. "A Multidimensional Version of the KolmogorovSmirnov Test," Monthly Notices of the Royal Astronomical Society. Vol. 225, no. 1, pp. 155-170.
175. Garvey, J.E., E.A. Marschall, and R.A. Wright. 1998. "From Star Charts to Stoneflies: Detecting Relationships in Continuous Bivariate Data," Ecology. Vol. 79, no. 2, pp. 442-447.
176. Ripley, B.D. 1987. "Spatial Point Pattern Analysis in Ecology," Developments in Numerical Ecology. NATO ASI Series, Series G: Ecological Sciences. Vol. 14. Eds. P. Legendre and L.

Legendre. Berlin; New York: Springer-Verlag, pp. 407-430.
177. Zeng, G. and R.C. Dubes. 1985. "A Comparison of Tests for Randomness," Pattern Recognition. Vol. 18, no. 2, pp. 191-198.
178. Diggle, P.J. 1983. Statistical Analysis of Spatial Point Patterns. New York, NY: Academic Press.
179. Diggle, P.J. and T.F. Cox. 1983. "Some Dis-tance-Based Tests of Independence for SparselySampled Multivariate Spatial Point Patterns," International Statistical Review. Vol. 51, no. 1, pp. 11-23.
180. Byth, K. 1982. "On Robust Distance-Based Intensity Estimators," Biometrics. Vol. 38, no. 1, pp. 127-135.
181. Byth, K. and B.D. Ripley. 1980. "On Sampling Spatial Patterns by Distance Methods," Biometrics. Vol. 36, no. 2, pp. 279-284.
182. Diggle, P.J. 1979. "On Parameter Estimation and Goodness-of-Fit Testing for Spatial Point Patterns," Biometrics. Vol. 35, no. 1, pp. 87-101.
183. Diggle, P.J. 1979. "Statistical Methods for Spatial Point Patterns in Ecology," Spatial and Temporal Analysis in Ecology. Ed. R.M. Cormack and J.K. Ord. Fairfield, MD: International Cooperative Pub. House. 95-150.
184. Ripley, B.D. 1979. "Tests of Randomness for Spatial Point Patterns," Journal of the Royal Statistical Society. Vol. 41, no. 3, pp. 368-374.
185. Besag, J. and P.J. Diggle. 1977. "Simple Monte Carlo Tests for Spatial Pattern," Applied Statistics. Vol. 26, no. 3, pp. 327-333.
186. Diggle, P.J., J. Besag, and J.T. Gleaves. 1976. "Statistical Analysis of Spatial Point Patterns by Means of Distance Methods," Biometrics. Vol. 32, pp. 659-667.
187. Cox, T.F. and T. Lewis. 1976. "A Conditioned Distance Ratio Method for Analyzing Spatial Patterns," Biometrika. Vol. 63, no. 3, pp. 483491.
188. Holgate, P. 1972. "The Use of Distance Methods for the Analysis of Spatial Distribution of

Points," Stochastic Point Processes: Statistical Analysis, Theory, and Applications. Eds. P.A.W. Lewis. New York, NY: Wiley-Interscience. 122-135.
189. Holgate, P. 1965. "Tests of Randomness Based on Distance Methods," Biometrika. Vol. 52, no. 3-4, pp. 345-353.
190. Clark, P.J. and F.C. Evans. 1954. "Distance to Nearest Neighbour as a Measure of Spatial Relationships in Populations," Ecology. Vol. 35, pp. 23-30.
191. Hopkins, B. and J.G. Shellam. 1954. "A New Method for Determining the Type of Distribution of Plant Individuals," Annals of Botany. Vol. 18, no. 70, pp. 213-227.
192. Cressie, N.A.C. 1993. Statistics for Spatial Data. New York, NY: Wiley.
193. Iman, R.L. and W.J. Conover. 1987. "A Measure of Top-Down Correlation," Technometrics. Vol. 29, no. 3, pp. 351-357.
194. Campolongo, F., A. Saltelli, T. Sorensen, and S. Tarantola. 2000. "Hitchhiker's Guide to Sensitivity Analysis," Sensitivity Analysis. Ed. A. Saltelli, K. Chan, and M. Scott. New York, NY: John Wiley \& Sons. 15-47.
195. Saltelli, A., S. Tarantola, F. Campolongo, and M. Ratto. 2004. Sensitivity Analysis in Practice. New York, NY: Wiley.
196. Cukier, R.I., C.M. Fortuin, K.E. Shuler, A.G. Petschek, and J.H. Schaibly. 1973. "Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients, I. Theory," Journal of Chemical Physics. Vol. 59, no. 8, pp. 3873-3878.
197. Schaibly, J.H. and K.E. Shuler. 1973. "Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients, II. Applications," Journal of Chemical Physics. Vol. 59, no. 8, pp. 3879-3888.
198. McRae, G.J., J.W. Tilden, and J.H. Seinfeld. 1981. "Global Sensitivity Analysis - A Computational Implementation of the Fourier Amplitude Sensitivity Test (FAST)," Computers \& Chemical Engineering. Vol. 6, no. 1, pp. 15-25.
199. Saltelli, A. and I.M. Sobol'. 1995. "About the Use of Rank Transformation in Sensitivity Analysis of Model Output," Reliability Engineering and System Safety. Vol. 50, no. 3, pp. 225-239.
200. Homma, T. and A. Saltelli. 1996. "Importance Measures in Global Sensitivity Analysis of Nonlinear Models," Reliability Engineering and System Safety. Vol. 52, no. 1, pp. 1-17.
201. Archer, G.E.B., A. Saltelli, and I.M. Sobol’. 1997. "Sensitivity Measures, ANOVA-like Techniques and the Use of Bootstrap," Journal of Statistical Computation and Simulation. Vol. 58, no. 2, pp. 99-120.
202. Saltelli, A. and R. Bolado. 1998. "An Alternative Way to Compute Fourier Amplitude Sensitivity Test (FAST)," Computational Statistics \& Data Analysis. Vol. 26, no. 4, pp. 267-279.
203. Saltelli, A., S. Tarantola, and F. Campolongo. 2000. "Sensitivity Analysis as an Ingredient of Modeling," Statistical Science. Vol. 15, no. 4, pp. 377-395.
204. Chan, K., A. Saltelli, and S. Tarantola. 2000. "Winding Stairs: A Sampling Tool to Compute Sensitivity Indices," Statistics and Computing. Vol. 10, no. 3, pp. 187-196.
205. Rabitz, H., O.F. Alis, J. Shorter, and K. Shim. 1999. "Efficient Input-Output Model Representations," Computer Physics Communications. Vol. 117, no. 1-2, pp. 11-20.
206. Jansen, M.J.W., W.A.H. Rossing, and R.A. Daamen. 1994. "Monte Carlo Estimation of Uncertainty Contributions from Several Independent Multivariate Sources," Predictability and Nonlinear Modeling in Natural Sciences and Economics. Ed. J. Grasman and G. van Straten. Boston, MA: Kluwer Academic Publishers. 334-343.
207. Jansen, M.J.W. 1999. "Analysis of Variance Designs for Model Output," Computer Physics Communications. Vol. 117, no. 1-2, pp. 35-43.
208. McKay, M.D. 1995. Evaluating Prediction Uncertainty, LA-12915-MS; NUREG/CR-6311. Los Alamos, NM: Los Alamos National Laboratory.
209. McKay, M.D. 1997. "Nonparametric VarianceBased Methods of Assessing Uncertainty Importance," Reliability Engineering and System Safety. Vol. 57, no. 3, pp. 267-279.
210. McKay, M.D., J.D. Morrison, and S.C. Upton. 1999. "Evaluating Prediction Uncertainty in Simulation Models," Computer Physics Communications. Vol. 117, no. 1-2, pp. 44-51.
211. Helton, J.C. 2003. "Mathematical and Numerical Approaches in Performance Assessment for Radioactive Waste Disposal: Dealing with Uncertainty," Modelling Radioactivity in the Environment. Eds. E.M. Scott. New York, NY: Elsevier Science. 353-390.
212. Helton, J.C., D.R. Anderson, G. Basabilvazo, H.-N. Jow, and M.G. Marietta. 2000. "Conceptual Structure of the 1996 Performance Assessment for the Waste Isolation Pilot Plant," Reliability Engineering and System Safety. Vol. 69, no. 1-3, pp. 151-165.
213. Diaz, N.J. 2003. "Realism and Conservatism, Remarks by Chairman Diaz at the 2003 Nuclear Safety Research Conference, October 20, 2003," NRC News. No. S-03-023. Washington, D.C.: U.S. Nuclear Regulatory Commission.
214. Paté-Cornell, E. 2002. "Risk and Uncertainty Analysis in Government Safety Decisions," Risk Analysis. Vol. 22, no. 3, pp. 633-646.
215. Caruso, M.A., M.C. Cheok, M.A. Cunningham, G.M. Holahan, T.L. King, G.W. Parry, A.M. Ramey-Smith, M.P. Rubin, and A.C. Thadani. 1999. "An Approach for Using Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis," Reliability Engineering and System Safety. Vol. 63, pp. 231242.
216. Sielken, R.L., Jr., R.S. Bretzlaff, and D.E. Stevenson. 1995. "Challenges to Default Assumptions Stimulate Comprehensive Realism as a New Tier in Quantitative Cancer Risk Assessment," Regulatory Toxicology and Pharmacology. Vol. 21, pp. 270-280.
217. Nichols, A.L. and R.J. Zeckhauser. 1988. "The Perils of Prudence: How Conservative Risk Assessments Distort Regulation," Regulatory Toxicology and Pharmacology. Vol. 8, pp. 61-75.

DISTRIBUTION

External Distribution

M. A. Adams

Jet Propulsion Laboratory
4800 Oak Grove Drive, MS 97
Pasadena, CA 91109

Prof. Harish Agarwal
University of Notre Dame
Dept. of Aerospace \& Mechanical Engineering
Notre Dame, IN 46556

Prof. M. Aivazis
Center for Advanced Computing Research
California Institute of Technology
1200 E. California Blvd./MS 158-79
Pasadena, CA 91125

Prof. G. E. Apostolakis
Department of Nuclear Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139-4307

Mick Apted
Monitor Scientific, LLC
3900 S. Wadsworth Blvd., Suite 555
Denver, CO 80235

Prof. Bilal Ayyub
University of Maryland
Center for Technology \& Systems Management
Civil \& Environmental Engineering
Rm. 0305 Martin Hall
College Park, MD 20742-3021

Prof. Ivo Babuska
TICAM
Mail Code C0200
University of Texas at Austin
Austin, TX 78712-1085

Prof. S. Balachandar
Theoretical and Applied Mechanics Dept. 216 Talbot Laboratory, MC 262
104 S. Wright St.
University of Illinois
Urbana, IL 61801

Prof. Ha-Rok Bae
Wright State University
Mechanical Engineering Dept.
MS 209RC
3640 Colonel Glenn Highway
Dayton, OH 45435

Prof. Osman Balci
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
Timothy M. Barry
National Center for Environmental Economics
U.S. Environmental Protection Agency

1200 Pennsylvanis Ave., NW
MC 1809
Washington, DC 20460
Steven M. Bartell
The Cadmus Group, Inc.
339 Whitecrest Dr.
Maryville, TN 37801
J. Michael Barton

HQ Army Developmental Test Command
Technology Management Div., Rm 245
314 Longs Corner Road
Aberdeen Proving Ground, MD 21005-5005
Prof. Steven Batill
Dept. of Aerospace \& Mechanical Engr.
University of Notre Dame
Notre Dame, IN 46556

Bechtel SAIC Company, LLC (10)
Attn: Bob Andrews
Bryan Bullard
Brian Dunlap
Rob Howard
Jerry McNeish
Sunil Mehta
Kevin Mons
Larry Rickertsen
Michael Voegele
Jean Younker
1180 Town Center Drive
Las Vegas, NV 89134

Prof. Bruce Beck
University of Georgia
D.W. Brooks Drive

Athens, GA 30602-2152

Prof. Ted Belytschko
Department of Mechanical Engineering
Northwestern University
2145 Sheridan Road
Evanston, IL 60208
John Benek
AFRL/VAAC
2210 Eighth St.
Wright-Patterson AFB, OH 45433
Prof. James Berger
Inst. of Statistics and Decision Science
Duke University
Box 90251
Durham, NC 27708-0251

Prof. Daniel Berleant
Iowa State University
Department of EE \& CE
2215 Coover Hall
Ames, IA 50014
Prof. V. M. Bier
Department of Industrial Engineering
University of Wisconsin
Madison, WI 53706

Prof. S.M. Blower
Department of Biomathematics
UCLA School of Medicine
10833 Le Conte Avenue
Los Angeles, CA 90095-1766

Kenneth T. Bogen
P.O. Box 808

Livermore, CA 94550
E. Bonano

Beta Corporation Int.
6613 Esther, NE
Albuquerque, NM 87109
Pavel A. Bouzinov
ADINA R\&D, Inc.
71 Elton Avenue
Watertown, MA 02472

Prof. Mark Brandyberry
Computational Science and Engineering
2264 Digital Computer Lab, MC-278
1304 West Springfield Ave.
University of Illinois
Urbana, IL 61801
John A. Cafeo
General Motors R\&D Center
Mail Code 480-106-256
30500 Mound Road
Box 9055
Warren, MI 48090-9055
Andrew Cary
The Boeing Company
MC S106-7126
P.O. Box 516

St. Louis, MO 63166-0516
James C. Cavendish
General Motors R\&D Center
Mail Code 480-106-359
30500 Mound Road
Box 9055
Warren, MI 48090-9055
Prof. Chun-Hung Chen
Department of Systems Engineering \& Operations Research
George Mason University
4400 University Drive, MS 4A6
Fairfax, VA 22030
Prof. Wei Chen
Department of Mechanical Engineering
Northwestern University
2145 Sheridan Road, Tech B224
Evanston, IL 60208-3111
Prof. Kyeongjae Cho
Dept. of Mechanical Engineering
MC 4040
Stanford University
Stanford, CA 94305-4040
Prof. Hugh Coleman
Department of Mechanical \& Aero. Engineering
University of Alabama/Huntsville
Huntsville, AL 35899
Prof. W. J. Conover
College of Business Administration
Texas Tech. University
Lubbock, TX 79409

Prof. Allin Cornel1
Department of Civil and Environmental
Engineering
Terman Engineering Center
Stanford University
Stanford, CA 94305-4020

Raymond Cosner
Boeing-Phantom Works
MC S106-7126
P. O. Box 516

St. Louis, MO 63166-0516

Thomas A. Cruse
AFRL Chief Technologist
1981 Monahan Way
Bldg., 12, Room 107
Wright-Patterson AFB, OH 45433-7132
Prof. Alison Cullen
University of Washington
Box 353055
208 Parrington Hall
Seattle, WA 98195-3055
Prof. F.J. Davis
Department of Mathematics, Physical Sciences, and Engineering Technology
West Texas A\&M University
P.O. Box 60787

Cannon, TX 79016

Prof. U. M. Diwekar
Center for Energy and Environmental Studies
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Pamela Doctor
Battelle Northwest
P.O. Box 999

Richland, WA 99352

Prof. David Dolling
Department of Aerospace Engineering
\& Engineering Mechanics
University of Texas at Austin
Austin, TX 78712-1085

Prof. David Draper
Applied Math \& Statistics
147 J. Baskin Engineering Bldg.
University of California
1156 High St.
Santa Cruz, CA 95064

Prof. Isaac Elishakoff
Dept. of Mechanical Engineering
Florida Atlantic University
777 Glades Road
Boca Raton, FL 33431-0991

Prof. Ashley Emery
Dept. of Mechanical Engineering
Box 352600
University of Washingtion
Seattle, WA 98195-2600
Paul W. Eslinger
Environmental Technology Division
Pacific Northwest National Laboratory
Richland, WA 99352-2458

Prof. John Evans
Harvard Center for Risk Analysis
718 Huntington Avenue
Boston, MA 02115

Prof. Rodney C. Ewing
Nuclear Engineering and Radiological Science
University of Michigan
Ann Arbor, MI 48109-2104
Prof. Charles Fairhurst
$4175^{\text {th }}$ Avenue N
South Saint Paul, MN 55075
Scott Ferson
Applied Biomathematics
100 North Country Road
Setauket, New York 11733-1345
James J. Filliben
Statistical Engineering Division
ITL, M.C. 8980
100 Bureau Drive, N.I.S.T.
Gaithersburg, MD 20899-8980
Prof. Joseph E. Flaherty
Dept. of Computer Science
Rensselaer Polytechnic Institute
Troy, NY 12181
Jeffrey T. Fong
Mathematical \& Computational Sciences Division
M.C. 8910

100 Bureau Drive, N.I.S.T.
Gaithersburg, MD 20899-8910

John Fortna
ANSYS, Inc.
275 Technology Drive
Canonsburg, PA 15317

Michael V. Frank
Safety Factor Associates, Inc.
1410 Vanessa Circle, Suite 16
Encinitas, CA 92024
Prof. C. Frey
Department of Civil Engineering
Box 7908, NCSU
Raleigh, NC 27659-7908

Prof. Marc Garbey
Dept. of Computer Science
Univ. of Houston
501 Philipp G. Hoffman Hall
Houston, Texas 77204-3010
B. John Garrick

Garrick Consulting
923 SouthRiver Road, Suite 204
St. George, UT 84790-6801

Prof. Roger Ghanem
254C Kaprielian Hall
Dept. of Civil Engineering
3620 S. Vermont Ave.
University of Southern California
Los Angles, CA 90089-2531
Mike Giltrud
Defense Threat Reduction Agency DTRA/CPWS
6801 Telegraph Road
Alexandria, VA 22310-3398

Prof. James Glimm
Dept. of Applied Math \& Statistics P138A
State University of New York
Stony Brook, NY 11794-3600

James Gran
SRI International
Poulter Laboratory AH253
333 Ravenswood Avenue
Menlo Park, CA 94025

Prof. Ramana Grandhi
Dept. of Mechanical and Materials Engineering
3640 Colonel Glenn Hwy.
Dayton, OH 45435-0001

Michael B. Gross
Michael Gross Enterprises
21 Tradewind Passage
Corte Madera, CA 94925

Bernard Grossman
The National Institute of Aerospace
144 Research Drive
Hampton, VA 23666
Sami Habchi
CFD Research Corp.
Cummings Research Park
215 Wynn Drive
Huntsville, AL 35805

Prof. Raphael Haftka
Dept. of Aerospace and Mechanical
Engineering and Engineering Science
P.O. Box 116250

University of Florida
Gainsville, F L 3261 1-6250

Prof. Yacov Y. Haimes
Center for Risk Management of Engineering Systems
D111 Thornton Hall
University of Virginia
Charlottesville, VA 22901
Prof. Achintya Haldar
Dept. of Civil Engineering \& Engineering Mechanics
University of Arizona
Tucson, AZ 85721

John Hall
6355 Alderman Drive
Alexandria, VA 22315
Prof. David M. Hamby
Department of Nuclear Engineering and Radiation Health Physics
Oregon State University
Corvallis, OR 97331
F. E. Haskin

901 Brazos Place, SE
Albuquerque, NM 87123

Tim Hasselman
ACTA
2790 Skypark Dr., Suite 310
Torrance, CA 90505-5345

George Hazelrigg

Division of Design, Manufacturing \& Innovation
Room 508N
4201 Wilson Blvd.
Arlington, VA 22230
Prof. Richard Hills
New Mexico State University
College of Engineering, MSC 3449
P.O. Box 30001

Las Cruces, NM 88003
F. Owen Hoffman

SENES
102 Donner Drive
Oak Ridge, TN 37830
Prof. Steve Hora
Institute of Business and Economic Studies
University of Hawaii, Hilo
523 W. Lanikaula
Hilo, HI 96720-409 1
Prof. G. M. Hornberger
Dept. of Environmental Science
University of Virginia
Charlottesville, VA 22903
R.L. Iman

Southwest Design Consultants
12005 St. Mary’s Drive, NE
Albuquerque, NM 87111
George Ivy
Northrop Grumman Information Technology
222 West Sixth St.
P.O. Box 471

San Pedro, CA 90733-0471
Rima Izem
Sience and Technology Policy Intern
Board of Mathematical Sciences and Applications
500 5th Street, NW
Washington, DC 20001
Ralph Jones
Sverdrup Tech. Inc./AEDC Group
1099 Avenue C
Arnold AFB, TN 37389-9013

Prof. Leo Kadanoff
Research Institutes Building
University of Chicago
5640 South Ellis Ave.
Chicago, IL 60637
Prof. George Karniadakis
Division of Applied Mathematics
Brown University
192 George St., Box F
Providence, RI 02912
Prof. Alan Karr
Inst. of Statistics and Decision Science
Duke University
Box 90251
Durham, NC 27708-0251
Prof. W. E. Kastenberg
Department of Nuclear Engineering
University of California, Berkeley
Berkeley, CA 94720
J. J. Keremes

Boeing Company
Rocketdyne Propulsion \& Power
MS AC-15
P. O. Box 7922

6633 Canoga Avenue
Canoga Park, CA 91309-7922

John Kessler
HLW and Spent Fuel Management Program
Electric Power Research Institute
1300 West W.T. Harris Blvd.
Charlotte, NC 28262
K. D. Kimsey
U.S. Army Research Laboratory

Weapons \& Materials Research Directorate
AMSRL-WM-TC 309 120A
Aberdeen Proving Gd, MD 21005-5066
Prof. George Klir
Binghamton University
Thomas J. Watson School of Engineering \&
Applied Sciences
Engineering Building, T-8
Binghamton NY 13902-6000
B. A. Kovac

Boeing - Rocketdyne Propulsion \& Power
MS AC-15
P. O. Box 7922

6633 Canoga Avenue
Canoga Park, CA 91309-7922

Prof. Vladik Kreinovich
University of Texas at El Paso
Computer Science Department
500 West University
El Paso, TX 79968

Averill M. Law
6601 E. Grant Rd.
Suite 110
Tucson, AZ 85715

Chris Layne
AEDC
Mail Stop 6200
760 Fourth Street
Arnold AFB, TN 37389-6200

Prof. W. K. Liu
Northwestern University
Dept. of Mechanical Engineering
2145 Sheridan Road
Evanston, IL 60108-3111

Robert Lust
General Motors, R\&D and Planning
MC 480-106-256
30500 Mound Road
Warren, MI 48090-9055
Prof. Sankaran Mahadevan
Vanderbilt University
Department of Civil and Environmental
Engineering
Box 6077, Station B
Nashville, TN 37235
Hans Mair
Institute for Defense Analysis
Operational Evaluation Division
4850 Mark Center Drive
Alexandria VA 22311-1882
M.G. Marietta

1905 Gwenda
Carlsbad, NM 88220

Don Marshall
84250 Indio Springs Drive, \#291
Indio, CA 92203

Jean Marshall
84250 Indio Springs Drive, \#291
Indio, CA 92203
W. McDonald

NDM Solutions
1420 Aldenham Lane
Reston, VA 20190-3901

Prof. Thomas E. McKone
School of Public Health
University of California
Berkeley, CA 94270-7360
Prof. Gregory McRae
Dept. of Chemical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

Michael Mendenhall
Nielsen Engineering \& Research, Inc.
605 Ellis St., Suite 200
Mountain View, CA 94043
Juan Meza
High Performance Computing Research
Lawrence Berkeley National Laboratory
One Cyclotron Road, MS: 50B-2239
Berkeley, CA 94720

Ian Miller
Goldsim Technology Group
22516 SE $64^{\text {th }}$ Place, Suite 110
Issaquah, WA 98027-5379

Prof. Sue Minkoff
Dept. of Mathematics and Statistics
University of Maryland
1000 Hilltop Circle
Baltimore, MD 21250
Srikanta Mishra
Intera, Inc.
9111A Research Blvd.
Austin, TX 78758

Prof. Max Morris
Department of Statistics
Iowa State University
304A Snedecor-Hall
Ames, IW 50011-1210

Prof. Ali Mosleh
Center for Reliability Engineering University of Maryland
College Park, MD 207 14-21 15
Prof. Rafi Muhanna
Regional Engineering Program
Georgia Tech
210 Technology Circle
Savannah, GA 31407-3039
R. Namburu
U.S. Army Research Laboratory

AMSRL-CI-H
Aberdeen Proving Gd, MD 21005-5067
NASA/Glen Research Center (2)
Attn: John Slater, MS 86-7
Chris Steffen, MS 5-11
21000 Brookpark Road
Cleveland, OH 44135
NASA/Ames Research Center (2)
Attn: Unmeel Mehta, MS 229-3
David Thompson, MS 269-1
Moffett Field, CA 94035-1000
NASA/Langley Research Center (8)
Attn: Dick DeLoach, MS 236
Michael Hemsch, MS 499
Tianshu Liu, MS 238
Jim Luckring, MS 286
Joe Morrison, MS 128
Ahmed Noor, MS 369
Sharon Padula, MS 159
Thomas Zang, MS 449
Hampton, VA 23681-0001
Naval Research Laboratory (4)
Attn: Jay Borris
Allen J. Goldberg
Robert Gover
John G. Michopoulos
4555 Overlook Avenue
S.W. Washington D.C. 20375
C. Needham

Applied Research Associates, Inc. 4300 San Mateo Blvd., Suite A-220
Albuquerque, NM 87110
Prof. Robert Nelson
Dept. of Aerospace \& Mechanical Engr.
University of Notre Dame
Notre Dame, IN 46556

Prof. Shlomo Neuman
Department of Hydrology and Water Resources
University of Arizona
Tucson, AZ 85721

Thomas J. Nicholson
Office of Nuclear Regulatory Research
Mail Stop T-9C34
U.S. Nuclear Regulatory Commission

Washington, DC 20555
Prof. Efstratios Nikolaidis
MIME Dept.
4035 Nitschke Hall
University of Toledo
Toledo, OH 43606-3390
D. Warner North

North Works, Inc.
1002 Misty Lane
Belmont, C.A. 94002
Nuclear Waste Technical Review Board (2)
Attn: Chairman
2300 Clarendon Blvd. Ste 1300
Arlington, VA 22201-3367
D. L. O'Connor

Boeing Company
Rocketdyne Propulsion \& Power
MS AC-15
P. O. Box 7922

6633 Canoga Avenue
Canoga Park, CA 91309-7922
Prof. Tinsley Oden
TICAM
Mail Code C0200
University of Texas at Austin
Austin, TX 78712-1085
Prof. David Okrent
Mechanical and Aerospace Engineering Department
University of California
48-121 Engineering IV Building
Los Angeles, CA 90095-1587
Prof. Michael Ortiz
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125

Dale K. Pace
4206 Southfield Rd
Ellicott City, MD 21042-5906

Prof. Alex Pang
Computer Science Department
University of California
Santa Cruz, CA 95064

Prof. Chris Paredis
School of Mechanical Engineering
Georgie Institute of Technology
813 Ferst Drive, MARC Rm. 256
Atlanta, GA 30332-0405

Gareth Parry
19805 Bodmer Ave
Poolesville, MD 200837
Prof. M. Elisabeth Paté-Cornel1
Department of Industrial Engineering and Management
Stanford University
Stanford, CA 94305

Prof. Chris L. Pettit
Aerospace Engineering Dept.
MS-11B
590 Holloway Rd.
Annapolis, MD 21402

Allan Pifko
2 George Court
Melville, NY 11747

Prof. Thomas H. Pigford
Department of Nuclear Engineering
4159 Etcheverry Hall
University of California
Berkeley, CA 94720

Prof. Joseph Powers
Dept. of Aerospace and Mechanical Engr.
University of Notre Dame
Notre Dame, IN 46556-5637
Cary Presser
Process Measurements Div.
National Institute of Standards and Technology
Bldg. 221, Room B312
Gaithersburg, MD 20899

Gerald R. Prichard
Principal Systems Analyst
Dynetics, Inc.
1000 Explorer Blvd.
Huntsville, AL 35806

Thomas A. Pucik
Pucik Consulting Services
13243 Warren Avenue
Los Angles, CA 90066-1750
Prof. Herschel Rabitz
Princeton University
Department of Chemistry
Princeton, NJ 08544

Prof. P. Radovitzky
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125
W. Rafaniello

DOW Chemical Company
1776 Building
Midland, MI 48674

Prof. Adrian E. Raftery
Department of Statistics
University of Washington
Seattle, WA 98195

Chris Rahaim
Rotordynamics-Seal Research
3302 Swetzer Road
Loomis, CA 95650
Kadambi Rajagopal
The Boeing Company
6633 Canoga Avenue
Canoga Park, CA 91309-7922

Banda S. Ramarao
Framatome ANP DE\&S
9111B Research Blvd.
Austin, TX 78758

Grant Reinman
Pratt \& Whitney
400 Main Street, M/S 162-01
East Hartford, CT 06108

Prof. John Renaud
Dept. of Aerospace \& Mechanical Engr.
University of Notre Dame
Notre Dame, IN 46556
Prof. James A. Reneke
Department of Mathematical Sciences
Clemson University
Clemson, SC 29634-0975
Patrick J. Roache
1215 Apache Drive
Socorro, NM 87801
Prof. A. J. Rosakis
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125
Prof. Tim Ross
Dept. of Civil Engineering
University of New Mexico
Albuquerque, NM 87131
Prof. Chris Roy
Dept. of Aerospace Engineering
211 Aerospace Engineering Bldg.
Auburn University, AL 36849-5338
Prof. J. Sacks
Inst. of Statistics and Decision Science
Duke University
Box 90251
Durham, NC 27708-0251
Prof. Sunil Saigal
Carnegie Mellon University
Department of Civil and Environmental Engineeering
Pittsburgh, PA 15213
Larry Sanders
DTRA/ASC
8725 John J. Kingman Rd
MS 6201
Ft. Belvoir, VA 22060-6201

Len Schwer
Schwer Engineering \& Consulting
6122 Aaron Court
Windsor, CA 95492

Nell Sedransk
Statistical Engineering Division ITL, M.C. 8980
100 Bureau Drive, N.I.S.T.
Gaithersburg, MD 20899-8980
Paul Senseny
Factory Mutual Research Corporation
1151 Boston-Providence Turnpike
P.O. Box 9102

Norwood, MA 02062
E. Sevin

Logicon RDA, Inc.
1782 Kenton Circle
Lyndhurst, OH 44124
Prof. Mark Shephard
Rensselaer Polytechnic Institute
Scientific Computation Research Center
Troy, NY 12180-3950
Prof. Tom I-P. Shih
Dept. of Mechanical Engineering
2452 Engineering Building
East Lansing, MI 48824-1226
T. P. Shivananda

Bldg. SB2/Rm. 1011
TRW/Ballistic Missiles Division
P.O. Box 1310

San Bernardino, CA 92402-1310
Don Simons
Northrop Grumman Information Tech.
222 W. Sixth St.
P.O. Box 471

San Pedro, CA 90733-0471
Munir M. Sindir
Boeing - Rocketdyne Propulsion \& Power
MS GB-11
P.O. Box 7922

6633 Canoga Avenue
Canoga Park, CA 91309-7922
Ashok Singhal
CFD Research Corp.
Cummings Research Park
215 Wynn Drive
Huntsville, AL 35805
R. Singleton

Engineering Sciences Directorate
Army Research Office
4300 S. Miami Blvd.
P.O. Box 1221

Research Triangle Park, NC 27709-2211

Prof. Nozer D. Singpurwalla
The George Washington University
Department of Statistics
2140 Pennsylvania Ave. NW
Washington, DC 20052

Nathan Siu
Probabilistic Risk Analysis Branch
MS 10E50
U.S. Nuclear Regulatory Commission

Washington, DC 20555-0001
W. E. Snowden

DARPA
7120 Laketree Drive
Fairfax Station, VA 22039
Southwest Research Institute (8)
Attn: C.E. Anderson
C.J. Freitas
L. Huyse
S. Mohanty
O. Osidele
O. Pensado
B. Sagar
B. Thacker
P.O. Drawer 28510

622 Culebra Road
San Antonio, TX 78284
Prof. Bill Spencer
Dept. of Civil Engineering and Geological Sciences
University of Notre Dame
Notre Dame, IN 46556-0767
G. R. Srinivasan

Org. L2-70, Bldg. 157
Lockheed Martin Space \& Strategic Missiles
1111 Lockheed Martin Way
Sunnyvale, CA 94089
Prof. Fred Stern
Professor Mechanical Engineering
Iowa Institute of Hydraulic Research
The University of Iowa
Iowa City, Iowa 52242

Prof. D. E. Stevenson
Computer Science Department
Clemson University
442 Edwards Hall, Box 341906
Clemson, SC 29631-1906
Prof. C.B. Storlie (10)
Department of Statistics
North Carolina State University
Raleigh, NC 27695
Tim Swafford
Sverdrup Tech. Inc./AEDC Group
1099 Avenue C
Arnold AFB, TN 37389-9013

Kenneth Tatum
Sverdrup Tech. Inc./AEDC Group
740 Fourth Ave.
Arnold AFB, TN 37389-6001
Prof. T. G. Theofanous
Department of Chemical and Nuclear Engineering
University of California
Santa Barbara, CA 93106
Prof. K.M. Thompson
Harvard School of Public Health
677 Huntington Avenue
Boston, MA 02115
Martin Tierney
Plantae Research Associates
415 Camino Manzano
Santa Fe, NM 87505
Prof. Fulvio Tonon
Department of Civil Engineering
University of Texas at Austin
1 University Station C1792
Austin, TX 78712-0280
Stephen D. Unwin
Pacific Northwest National Laboratory
P.O. Box 999

Mail Stop K6-52
Richland, WA 99354
U.S. Nuclear Regulatory Commission

Advisory Committee on Nuclear Waste
Attn: A.C. Campbell
Washington, DC 20555
U.S. Nuclear Regulatory Commission (4)

Office of Nuclear Material Safety and Safeguards
Attn: R.B. Codell (MS TWFN-7F27)
K.W. Compton (MS TWFN-7F27)
B.W. Leslie (MS TWFN-7F27)
T.J. McCartin (MS TWFN-7F3)

Washington, DC 20555-0001
Prof. Robert W. Walters
Aerospace and Ocean Engineering
Virginia Tech
215 Randolph Hall, MS 203
Blacksburg, VA 24061-0203
Leonard Wesley
Intellex Inc.
5932 Killarney Circle
San Jose, CA 95138
Christopher G. Whipple
Environ
Marketplace Tower
6001 Shellmound St. Suite 700
Emeryville, C.A. 94608
Justin Y-T Wu
8540 Colonnade Center Drive, Ste 301
Raleigh, NC 27615
Prof. Ron Yager
Machine Intelligence Institute
Iona College
715 North Avenue
New Rochelle, NY 10801
Ren-Jye Yang
Ford Research Laboratory
MD2115-SRL
P.O.Box 2053

Dearborn, MI 4812
Simone Youngblood
DOD/DMSO
Technical Director for VV\&A
1901 N. Beauregard St., Suite 504
Alexandria, VA 22311
Prof. Robert L. Winkler
Fuqua School of Business
Duke University
Durham, NC 27708-0120

Prof. Martin A. Wortman
Dept. of Industrial Engineering
Texas A\&M University
TAMU 3131
College Station, TX 77843-3131
Prof. M. A. Zikry
North Carolina State University
Mechanical \& Aerospace Engineering
2412 Broughton Hall, Box 7910
Raleigh, NC 27695

Foreign Distribution

Jesus Alonso
ENRESA
Calle Emillo Vargas 7
28043 MADRID
SPAIN
Prof. Tim Bedford
Department of Management Sciences
Strathclyde University
40 George Street
Glasgow G630NF
UNITED KINGDOM
Prof. Yakov Ben-Haim
Department of Mechanical Engineering
Technion-Israel Institute of Technology
Haifa 32000
ISRAEL
Prof. Ricardo Bolado
Polytechnical University of Madrid
Jose Gutierrez, Abascal, 2
28006 Madrid
SPAIN

Prof. A.P. Bourgeat
UMR 5208 - UCB Lyon1, MCS, Bât. ISTIL
Domaine de la Doua; 15 Bd. Latarjet
69622 Villeurbanne Cedex
FRANCE
Prof. Enrique Castillo
Department of Applied Mathematics and Computational Science
University of Cantabria
Santandar
SPAIN

CEA Cadarache (2)
Attn: Nicolas Devictor
Bertrand Iooss
DEN/CAD/DER/SESI/CFR
Bat 212
13108 Saint Paul lez Durance cedex FRANCE

Prof. Russell Cheng
University of Kent at Canterbury
Comwallis Building
Canterbury, Kent, CT2 7NF
UNITED KINGDOM

Prof. Roger Cooke
Department of Mathematics
Delft University of Technology
P.O. Box 50312800 GA Delft

THE NETHERLANDS

Prof. Gert de Cooman
Universiteit Gent
Onderzoeksgroep, SYSTeMS
Technologiepark - Zwijnaarde 9
9052 Zwijnaarde
BELGIUM

Etienne de Rocquigny
EDF R\&D MRI/T56
6 quai Watier
78401 Chatou Cedex
FRANCE

Prof. Graham de Vahl Davis
CFD Research Laboratory
University of NSW
Sydney, NSW 2052
AUSTRALIA

Andrzej Dietrich
Oil and Gas Institute
Lubicz 25 A
31-305 Krakow
POLAND

Prof. Luis Eca
Instituto Superior Tecnico
Department of Mechanical Engineering
Av. Rovisco Pais
1096 Lisboa CODEX
PORTUGAL

Prof. Christian Ekberg
Chalmers University of Technology
Department of Nuclear Chemistry
41296 Goteborg
SWEDEN

European Commission (5)
Attn: Francesca Campolongo
Mauro Ciechetti
Marco Ratto
Andrea Saltelli
Stefano Tarantola
JRC Ispra, ISIS
21020 Ispra
ITALY

Prof. Thomas Fetz
University of Innsbruck
Technikerstr 13
Inmbruck AUSTRIA 6020
Forshunginstitute GRS (2)
Attn: Eduard Hofer
B. Kryzkacz-Hausmann

Forschungsgelande Nebau 2
85748 Garching
GERMANY
Forschungszentrum Karlsruhe (2)
Attn: F. Fischer
J. Ehrhardt

Inst. Kern \& Energietechn
Postfach 3640, D-76021
Karlsruhe
GERMANY
Prof. Simon French
School of Informatics
University of Manchester
Coupland 1
Manchester M13 9pl
UNITED KINGDOM
Prof. Louis Goossens
Safety Science Group
Delft University of Technology
P.O. Box 50312800 GA Delft

THE NETHERLANDS

Prof. Jim Hall
University of Bristol
Department of Civil Engineering
Queens Building, University Walk
Bristol UK 8581TR

Prof. Charles Hirsch
Department of Fluid Mechanics
Vrije Universiteit Brussel
Pleinlaan, 2
B-1050 Brussels
BELGIUM

Keith Hayes
Csiro Marine Research
P.O. Box 1538

Hobart TAS Australia 7001

Toshimitsu Homma
Nuclear Power Engineering Corporation
3-17-1 Toranomon, Minato-Ku
Tokyo 1015
JAPAN

Prof. David Rios Insua
University Rey Juan Carlos
ESCET-URJC, C. Humanes 63
28936 Mostoles
SPAIN

Mikhail Iosjpe
Protection Authority
Norwegian Radiation
Grini Naringspark 13
P.O. Box 55

1332 Oesteraas
NORWAY
J. Jaffré

INRIA - Roquencourt
B.P. 105

78153 Le Chesnay Cedex
FRANCE

Michiel J.W. Jansen
Centre for Biometry Wageningen
P.O. Box 16, 6700 AA Wageningen

THE NETHERLANDS

Arthur Jones
Nat. Radio. Prot. Board
Chilton, Didcot
Oxon OX110RQ
UNITED KINGDOM
Prof. J.P.C. Kleijnen
Department of Information Systems
Tilburg University
5000 LE Tilburg
THE NETHERLANDS

Bulent Korkem
P.O. Box 18 Kavaklidere

06692 Ankara
TURKEY

Prof. Igor Kozine
Systems Analysis Department
Riso National Laboratory
P. O. Box 49

DK-4000 Roskilde
DENMARK

Prof. Sergei Kucherenko
Imperial College London
Centre for Process Systems Engineering
London, SW7 2AZ
UNITED KINGDOM

Prof. S.E. Magnusson
Lund University
P.O. Box 118

22100 Lund
SWEDEN

Jan Marivoet
Centre d'Etudes de L'Energie
Nucleaire
Boeretang 200
2400 MOL
BELGIUM

Prof. Ghislain de Marsily
University Pierre et Marie Curie
Laboratorie de Geologie Applique
4, Place Jussieu
T. 26 - 5e etage

75252 Paris Cedex 05
FRANCE

Jean-Marc Martinez
DM2S/SFME Centre d’Etudes de Saclay
91191 Gif sur Yvette
FRANCE

Prof. D. Moens
K. U. Leuven

Dept. of Mechanical Engineering, Div. PMA
Kasteelpark Arenberg 41
B - 3001 Heverlee
BELGIUM

Prof. Nina Nikolova - Jeliazkova
Institute of Parallel Processing
Bulgarian Academy of Sciences
25a "acad. G. Bonchev" str.
Sofia 1113
BULGARIA

Prof. Michael Oberguggenberger
University of Innsbruck
Technikerstr 13
Innsbruck AUSTRIA 6020

Professor A. O'Hagan
Department of Probability and Statistics
University of Sheffield
Hicks Building
Sheffield S3 7RH
UNITED KINGDOM

Prof. I. Papazoglou
Institute of Nuclear Technology-Radiation
Protection
N.C.S.R. Demolaitos

Agha Papakevi
153-10 Athens
GREECE
K. Papoulia

Inst. Eng. Seismology \& Earthquake Engineering
P.O. Box 53, Finikas GR-55105

Thessaloniki
GREECE

Prof. Roberto Pastres
University of Venice
Dorsuduro 2137
30123 Venice
Dorsuduro 2137
ITALY

Prof. Dominique Pelletier
Genie Mecanique
Ecole Polytechnique de Montreal
C.P. 6079, Succursale Centre-ville

Montreal, H3C 3A7
CANADA
Guillaume Pepin
ANDRA - Service DS/CS
Parc de la Croix Blanche
1/7 rue Jean Monnet
92298 Chatenay-Malabry Cedex
FRANCE

Vincent Sacksteder
Via Eurialo 28, Int. 13
00181 Rome
ITALY

Prof. G.I. Schuëller
Institute of Engineering Mechanics
Leopold-Franzens University
Technikerstrasse 13
6020 Innsbruck
AUSTRIA

Prof. Marian Scott
Department of Statistics
University of Glasgow
Glasgow G12 BQW
UNITED KINGDOM

Prof. Ilya Sobol’
Russian Academy of Sciences
Miusskaya Square
125047 Moscow
RUSSIA

Prof. Alex Mara Thierry
Université de la Réunion
Lab. De Génie Industriel
15, Avenue René Cassin
BP 7151
97715 St. Denis
La Réunion
FRANCE

Prof. D. Thunnissen
School of Mech. and Aerospace Engineering
Nanyang Technical University
50 Mamuamg Ave.
SINGAPORE 639798

Prof. Tamas Turanyi
Eotvos University (ELTE)
P.O. Box 32

1518 Budapest
HUNGARY
Prof. Willem Van Groenendaal
Tilburg University
P.O. Box 90153

5000 LE Tilburg
THE NETHERLANDS

Malcolm Wallace
Computational Dynamics Ltd.
200 Shepherds Bush Road
London W6 7NY
UNITED KINGDOM
Prof. Enrico Zio
Politecnico di Milano
Via Ponzia 3413
20133 Milan
ITALY

Prof. Lev Utkin Institute of Statistics
Munich University
Ludwigstr. 33
80539, Munich
GERMANY

Department of Energy Laboratories

Argonne National Laboratory (2)
Attn: Paul Hovland Mike Minkoff
MCS Division
Bldg. 221, Rm. C-236
9700 S. Cass Ave.
Argonne, IL 60439
Los Alamos National Laboratory (50)
Mail Station 5000
P.O. Box 1663

Los Alamos, NM 87545
Attn: Peter Adams, MS B220
Mark C. Anderson, MS T080
Cuauhtemoc Aviles-Ramos, MS P946
Terrence Bott, MS K557
Jerry S. Brock, MS F663
D. Cagliostro, MS F645
C. Chiu, MS F600

David L. Crane, MS P946
John F. Davis, MS B295
Helen S. Deaven, MS B295
Barbara DeVolder, MS B259
Scott Doebling, MS T080
Sunil Donald, MS K557
S. Eisenhawer, MS K557

Dawn Flicker, MS F664
George T. Gray, MS G755
Alexandra Heath, MS F663
Francois Hemez, MS T006
Karen Hench, MS P946
R. Henninger, MS D413

David Higdon, MS F600
Kathleen Holian, MS B295

Darryl Holm, MS B284
Jason Hundhausen, MS T001
James Hyman, MS B284
Cliff Joslyn, MS B265
James Kamm, MS D413
Kinnan Kline, MS T001
Ken Koch, MS F652
Douglas Kothe, MS B250
Jeanette Lagrange, MS D445
Jonathan Lucero, MS C926
Len Margolin, MS D413
Kelly McLenithan, MS F664
Mark P. Miller, MS P946
John D. Morrison, MS F602
Karen I. Pao, MS B256
James Peery, MS F652
M. Peterson-Schnell, MS B295

William Rider, MS D413
Mandy Rutherford, MS T080
Tom Seed, MS F663
David Sigeti, MS F645
Kari Sentz, MS F600
David Sharp, MS B213
Richard N. Silver, MS D429
Ronald E. Smith, MS J576
Christine Treml, MS J570
Daniel Weeks, MS B295
Morgan White, MS F663
Alyson G. Wilson, MS F600
Lawrence Livermore National Laboratory (25)
7000 East Ave.
P.O. Box 808

Livermore, CA 94550
Attn: Thomas F. Adams, MS L-095
Steven Ashby, MS L-561
Robert J. Budnitz, MS L-632
John Bolstad, MS L-023
Peter N. Brown, MS L-561
T. Scott Carman, MS L-031
R. Christensen, MS L-160

Evi Dube, MS L-095
Frank Graziani, MS L-095
Henry Hsieh, MS L-229
Richard Klein, MS L-023
Roger Logan, MS L-125
C. F. McMillan, MS L-098
C. Mailhiot, MS L-055
J. F. McEnerney, MS L-023
M. J. Murphy, MS L-282

Daniel Nikkel, MS L-342
Cynthia Nitta, MS L-096
Peter Raboin, MS L-125
Edward Russell, MS L-631
Kambiz Salari, MS L-228

David D. Sam, MS L-125
Joe Sefcik, MS L-160
Peter Terrill, MS L-125
Charles Tong, MS L-560
Carol Woodward, MS L-561
U.S. Department of Energy (5)

Attn: Kevin Greenaugh, NA-115
D. Kusnezov, NA-114

Jamileh Soudah, NA-114
K. Sturgess, NA-115
J. Van Fleet, NA-113

Forrestal Building
1000 Independence Ave., SW
Washington, DC 20585
U.S. Department of Energy (5)

Yucca Mountain Site Characterization Office
Attn: William Boyle
Mark Nutt
Mark Tynan
Abraham VanLuik
Eric Zwahlen
P.O. 1551 Hillshire Drive

Las Vegas, NV 89134

Sandia Internal Distribution

1	MS 0825	0003	C. W. Peterson
1	MS 1056	1112	S. M. Meyers
1	MS 0321	1400	W. J. Camp
1	MS 0318	1400	G. S. Davidson
1	MS 1110	1410	D. E. Womble
1	MS 0370	1411	B. Adams
1	MS 1110	1411	D. Dunlavy
1	MS 1110	1411	J. Hill
1	MS 1111	1411	P. Knupp
1	MS 0370	1411	S. A. Mitchell
1	MS 0370	1411	R. A. Bartlett
1	MS 0370	1411	M. S. Eldred
1	MS 0370	1411	D. M. Gay
1	MS 0370	1411	L. P. Swiler
1	MS 0370	1411	S. Thomas
5	MS 0370	1411	T. G. Trucano
1	MS 0370	1411	B. G. van Bloemen
1	MS 0310	1412	M. D. Rintoul
1	MS 1110	1412	S. J. Plimpton
1	MS 1110	1414	S. S. Collis
1	MS 1110	1414	M. Heroux
1	MS 1110	1414	R. B. Lehoucq
1	MS 1110	1415	S. K. Rountree
1	MS 1110	1415	J. Berry
1	MS 1110	1415	R. Carr
1	MS 1110	1415	W. E. Hart
1	MS 1111	1415	B. A. Hendrickson

1	MS 1110	1415	V. J. Leung
1	MS 1110	1415	C. A. Phillips
1	MS 1111	1416	A. G. Salinger
1	MS 0316	1420	S. S. Dosanjh
1	MS 1109	1420	J. Tompkins
1	MS 0376	1421	T. D. Blacker
1	MS 0817	1422	J. A. Ang
1	MS 0817	1422	R. Benner
1	MS 1110	1423	N. D. Pundit
1	MS 0817	1423	J. VanDyke
1	MS 0822	1424	C. F. Diegert
1	MS 0822	1424	D. Rogers
1	MS 0321	1430	J. E. Nelson
1	MS 0378	1431	R. J. MacKinnon
1	MS 0378	1431	R. M. Summers
1	MS 0378	1431	R. R. Drake
1	MS 0370	1431	M. E. Kipp
1	MS 0378	1431	S. Mosso
1	MS 0378	1431	A. C. Robinson
1	MS 0378	1431	G. Scovazzi
1	MS 0378	1431	S. A. Silling
1	MS 0378	1431	P. A. Taylor
1	MS 0370	1431	G. Weirs
1	MS 0378	1431	M. K. Wong
1	MS 0378	1433	J. Strickland
1	MS 0370	1433	G. Backus
1	MS 0318	1433	M. Boslough
1	MS 0763	1433	C. Jorgensen
1	MS 0370	1433	R. Pryor
1	MS 0318	1433	D. Schoenwald
1	MS 0318	1433	J. Siirola
1	MS 0316	1433	B. Spotz
1	MS 0370	1433	M. Taylor
1	MS 0378	1433	T. Voth
1	MS 1110	1435	J. B. Aidun
1	MS 1110	1435	H. P. Hjalmarson
1	MS 0316	1437	S. A. Hutchinson
1	MS 0316	1437	J. Castro
1	MS 0316	1437	J. N. Shadid
1	MS 0384	1500	A.C. Ratzel
1	MS 0824	1500	T.Y. Chu
1	MS 0825	1510	W. Hermina
1	MS 0826	1500	D. K. Gartling
1	MS 0834	1512	S. J. Beresh
1	MS 0834	1512	J. E. Johannes
1	MS 1310	1513	S. N. Kempka
1	MS 0834	1514	K. S. Chen
1	MS 0834	1514	R. R. Rao
1	MS 0834	1514	P. R. Schunk
1	MS 0825	1515	W. P. Wolfe
1	MS 0825	1515	B. Hassan
1	MS 0825	1515	M. Barone
1	MS 0825	1515	F. G. Blottner
1	MS 0825	1515	D. W. Kuntz
1	MS 0825	1515	J. L. Payne

1	MS 0836	1516	E. S. Hertel	1	MS 0139	1902	P. Yarrington
1	MS 0836	1516	D. Dobranich	1	MS 0139	1904	R. K. Thomas
1	MS 0836	1516	R. E. Hogan	1	MS 0437	2100	B. C. Walker
1	MS 0836	1517	R. O. Griffith	1	MS 0453	2110	L. S. Walker
1	MS 0836	1517	R. J. Buss	1	MS 0447	2111	P. D. Hoover
1	MS 0847	1520	P. J. Wilson	1	MS 0447	2111	J. D. Mangum
1	MS 0555	1522	M. S. Garrett	1	MS 0483	2112	A. L. Hillhouse
1	MS 0893	1523	J. Pott	1	MS 0427	2118	S. E. Klenke
1	MS 0553	1524	D. O. Smallwood	1	MS 0427	2118	R. A. Paulsen
1	MS 0557	1524	T. G. Carne	1	MS 0453	2120	M. R. Sjulin
1	MS 0557	1524	T. Simmermacher	1	MS 0482	2123	E. R. Hoover
1	MS 0847	1524	J. M. Redmond	1	MS 0487	2124	P. A. Sena
1	MS 0847	1524	R. V. Field	1	MS 0453	2130	M. A. Rosenthal
1	MS 0557	1525	T. J. Baca	1	MS 0481	2132	S. G. Barnhart
1	MS 0557	1525	C. C. O'Gorman	1	MS 0481	2137	J. F. Nagel
1	MS 0372	1526	T. D. Hinnerichs	1	MS 0479	2138	J. O. Harrison
1	MS 0372	1526	R. A. May	1	MS 0509	2300	M. W. Callahan
1	MS 0372	1526	K. E. Metzinger	1	MS 0529	2345	G. K. Froehlich
1	MS 0372	1527	J. Jung	1	MS 0512	2500	T. E. Blejwas
1	MS 0824	1530	A.L. Thornton	1	MS 1310	2614	S. E. Lott
1	MS 1135	1532	L. A. Gritzo	1	MS 0873	2717	M. S. Shortencarrier
1	MS 1135	1532	J. T. Nakos	1	MS 0437	2820	K. D. Meeks
1	MS 1135	1532	S. R. Tieszen	1	MS 0437	2830	J. M. McGlaun
1	MS 0836	1532	C. Romero	1	MS 0769	4100	D. S. Miyoshi
3	MS 0828	1533	M. Pilch	1	MS 0768	4140	A. L. Camp
1	MS 0828	1533	A. R. Black	1	MS 0757	4142	R. D. Waters
1	MS 0828	1533	K. J. Dowding	1	MS 0757	4142	G. D. Wyss
1	MS 0828	1533	A. A. Giunta	1	MS 1153	5131	L. C. Sanchez
50	MS 0779	1533	J. C. Helton	1	MS 1162	5422	W. H. Rutledge
5	MS 0828	1533	W. L. Oberkampf	1	MS 1158	5424	K. V. Chavez
1	MS 0557	1533	T. L. Paez	1	MS 0831	5500	M. O. Vahle
1	MS 0828	1533	J. R. Red-Horse	1	MS 0670	5526	J. R. Weatherby
1	MS 0828	1533	V. J. Romero	1	MS 0958	5714	E. A. Boucheron
1	MS 0828	1533	A. Urbina	1	MS 1393	6002	H. J. Abeyta
1	MS 0847	1533	W. R. Witkowski	1	MS 0751	6111	L. S. Costin
1	MS 1135	1534	S. Heffelfinger	1	MS 0735	6115	S. C. James
1	MS 0847	1534	S. W. Attaway	1	MS 0751	6117	R. M. Brannon
1	MS 0384	1540	H. S. Morgan	1	MS 0751	6117	A. F. Fossum
1	MS 0380	1542	K. F. Alvin	1	MS 0708	6214	P. S. Veers
1	MS 0380	1542	M. L. Blanford	1	MS 1138	6221	G. E. Barr
1	MS 0380	1542	M. W. Heinstein	1	MS 1138	6221	S. M. DeLand
1	MS 0380	1542	S. W. Key	1	MS 1138	6222	P. G. Kaplan
1	MS 0380	1542	G. M. Reese	1	MS 1138	6222	D. J. Pless
1	MS 0382	1543	J. R. Stewart	1	MS 1138	6223	L. M. Claussen
1	MS 0382	1543	K. M. Aragon	1	MS 1137	6223	G. D. Valdez
1	MS 0382	1543	K. D. Copps	1	MS 0615	6252	J. A. Cooper
1	MS 0382	1543	H. C. Edwards	1	MS 0757	6442	J. L. Darby
1	MS 0382	1543	G. D. Sjaardema	1	MS 1002	6630	P. D. Heermann
1	MS 1152	1652	M. L. Kiefer	1	MS 1005	6640	R. D. Skocypec
1	MS 1186	1674	R. J. Lawrence	1	MS 1176	6642	D. J. Anderson
1	MS 0525	1734	P. V. Plunkett	1	MS 1176	6642	J. E. Campbell
1	MS 0525	1734	R. B. Heath	1	MS 1176	6643	R. M. Cranwell
1	MS 0525	1734	S. D. Wix	1	MS 1169	6700	J. R. Lee
1	MS 0886	1812	S. E. Lott	1	MS 1179	6741	L. Lorence
1	MS 0139	1900	A. Hale	1	MS 1146	6784	P. J. Griffin

1	MS 0771	6800	D. L. Berry	1	MS 0748	6862	N. Bixler
1	MS 1399	6820	A. Orrell	1	MS 0748	6862	R. Gauntt
1	MS 1395	6820	M. J. Chavez	1	MS 1399	6862	D. Kalinich
1	MS 1395	6821	D. Kessel	1	MS 0771	6870	J. E. Kelly
1	MS 1395	6821	J. W. Garner	1	MS 0742	6870	D. A. Powers
1	MS 0776	6821	A. Gilkey	1	MS 0779	6874	H.-N. Jow
1	MS 1395	6821	J. Kanney	1	MS 0779	6874	C. Axness
1	MS 1395	6821	T. Kirchner	1	MS 0779	6874	L. Dotson
1	MS 1395	6821	C. Leigh	1	MS 0779	6874	J. Johnson
1	MS 1395	6821	M. Nemer	1	MS 0779	6874	J. Jones
1	MS 0776	6821	D. Rudeen	1	MS 0779	6874	R. Knowlton
1	MS 1395	6821	E. Vugrin	1	MS 1399	6874	M. A. Martell
1	MS 1395	6821	K. Vugrin	1	MS 1379	6957	A. Johnson
1	MS 1395	6822	M. Rigali	1	MS 0839	7000	L. A. McNamara
1	MS 1395	6822	R. Beauheim	1	MS 9153	8200	D. R. Henson
1	MS 1395	6822	L. Brush	1	MS 9202	8205	R. M. Zurn
1	MS 0778	6822	P. Domski	1	MS 9014	8242	A. R. Ortega
1	MS 0778	6822	M. Wallace	1	MS 0630	8600	K. E. Washington
1	MS 0778	6851	P. N. Swift	1	MS 9409	8754	W. A. Kawahara
1	MS 0778	6851	B. W. Arnold	1	MS 9042	8763	E. P. Chen
1	MS 0778	6851	C. Jove-Colon	1	MS 9042	8763	R. E. Jones
1	MS 0778	6851	S. Miller	1	MS 9042	8763	P. A. Klein
1	MS 0776	6852	K. Economy	1	MS 9405	8763	R. A. Regueiro
1	MS 0776	6852	G. Freeze	1	MS 9042	8774	J. J. Dike
1	MS 0776	6852	T. Hadgu	1	MS 9409	8775	C. D. Moen
1	MS 0776	6852	H. Iuzzolino	1	MS 9003	8900	C. M. Hartwig
1	MS 0748	6852	E. A. Kalinina	1	MS 9151	8900	J. L. Handrock
1	MS 0776	6852	S. Kuzio	1	MS 9159	8962	P. D. Hough
1	MS 0776	6852	P. Mattie	1	MS 9159	8962	K. R. Long
1	MS 0776	6852	R. McCurley	1	MS 9159	8962	M. L. Martinez-Canales
1	MS 0776	6852	A. Reed	1	MS 0428	12330	T. R. Jones
10	MS 0776	6852	C. Sallaberry	1	MS 0434	12334	B. M. Mickelsen
1	MS 0776	6852	J. Schreiber	1	MS 0830	12335	K. V. Diegert
1	MS 0776	6852	J. S. Stein	1	MS 0829	12337	W. C. Moffatt
1	MS 0776	6852	B. Walsh	1	MS 0829	12337	B. M. Rutherford
1	MS 0776	6852	Y. Wang	1	MS 0829	12337	J. M. Sjulin
1	MS 0771	6853	F. Hansen	1	MS 0829	12337	F. W. Spencer
1	MS 0776	6853	M. K. Knowles	1	MS 0428	12340	V. J. Johnson
1	MS 0776	6853	R. P. Rechard	1	MS 0428	12341	N. J. DeReu
1	MS 1399	6853	D. Sevougian	1	MS 0638	12341	D. L. Knirk
1	MS 0776	6853	M. Tierney	1	MS 0638	12341	D. E. Peercy
1	MS 1399	6853	P. Vaughn	1	MS 0405	12346	S. E. Camp
1	MS 1399	6855	C. Howard	1	MS 0405	12346	R. Kreutzfeld
1	MS 0778	6855	C. Bryan	1	MS 0405	12347	T. D. Brown
1	MS 0778	6855	R. L. Jarek	1	MS 0405	12347	L.-J. Shyr
1	MS 0778	6855	P. Mariner	1	MS 1030	12870	J. G. Miller
1	MS 0748	6861	M. Allen	2	MS 9960	8945-1	Central Technical Files
1	MS 0748	6861	D. G. Robinson	2	MS 0899	04536	Technical Library
1	MS 0748	6861	S. P. Burns				

(1) Sandia National Laboratories

