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Abstract 

Classical approaches to estimating the rate of occurrence of events perform poorly 

when data are few.  Maximum Likelihood Estimators result in overly optimistic point 

estimates of zero for situations where there have been no events.  Alternative 

empirical based approaches have been proposed based on median estimators or non-

informative prior distributions.  While these alternatives offer an improvement over 

point estimates of zero, they can be overly conservative.  Empirical Bayes procedures 

offer an unbiased approach through pooling data across different hazards to support 

stronger statistical inference.   

This paper considers the application of Empirical Bayes to high consequence 

low frequency events, where estimates are required for risk mitigation decision 

support such as As Low As Reasonably Possible (ALARP).  A summary of Empirical 

Bayes methods is given and the choices of estimation procedures to obtain interval 

estimates are discussed. The approaches illustrated within the case study are based on 

the estimation of the rate of occurrence of train derailments within the UK.  The 

usefulness of Empirical Bayes within this context is discussed. 
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1. Introduction  

The Safety Risk Model (SRM) is a large scale Fault and Event Tree model 

used to assess risk on the UK Railways. The objectives of the SRM (see Risk Profile 

Bulletin [1]) are to provide an understanding of the nature of the current risk on the 

mainline railway and risk information and profiles relating to the mainline railway.  

The main purpose of the model is to assist in the validation and development of 

Railway Safety Cases and support ALARP (As Low As Reasonably Possible) 

assessments.  The model comprises 122 hazardous events and over 4000 end states.  

Developing reliable estimates for the rate of occurrence of rare events based on few 

data is a modern challenge facing the Railway Safety and Standards Board (RSSB), 

who are responsible for maintaining the SRM. 

Classical approaches to estimating the rate of occurrence of events include 

calculating the ratio of the number of events that have occurred to the duration of the 

period of observation.  In theory this procedure has desirable asymptotic properties, 

such as being an unbiased estimate of the rate of occurrence of such incidents, and 

being the Minimum Variance Unbiased Estimator.   However it performs poorly when 

few data are available.  For example, there are two obvious shortcomings with this 

approach.  Firstly, there is a significantly large probability that the estimate will be 0, 

which is inappropriate for many situations, e.g. an event that occurs at a rate of 1 in 20 

years has probability 0.6 of having an estimated rate of occurrence of 0 after 10 years 

of observation.  Secondly, the variability of the estimate can be substantial from year 

to year, as in the previous example with probability 0.05 there would be at least an 
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event per year, so the estimated rate of occurrence could switch from 0 events per 

annum after 10 years of observation to 0.091 events per annum in the eleventh year.   

There are a number of different methods for estimating failure rates based on 

zero failure data.  Direct assessment by an expert, such as advocated in a fully 

subjective approach, is one approach.  Statistically driven approaches include the chi-

squared method, which was developed in the early 1970’s as a way of making a 

frequency parameter choice when there is no data [2]; the median estimate, where the 

estimated rate of occurrence is obtained through matching the probability of realising 

zero events during the observed time period with 0.5 [3]; or through assigning a 

uninformative prior distribution about the parameter of interest [3].  These methods 

may be suitable for estimating the rate of occurrence of events in isolation; however, 

we have a portfolio of events and for each we require an estimate. 

The methodology we advocate is based on pooling data from various events to 

estimate an overall rate and then estimating appropriate adjustments from the pooled 

rate for each individual event.  Such approaches to estimation appear under different 

guises, e.g. Credibility Theory or Empirical Bayes, but adhere to a common principle 

of estimating individual rates relative to an overall rate.    

Credibility Theory began as an ad hoc method almost 100 years ago in the 

insurance industry.  The basis of the method was to predict an individual’s claim 

amount as a weighted average between the individuals past experience and the mean 

for individuals associated risk group.  The link between this method and Empirical 

Bayes became apparent when the former was more rigorously developed in the 1960’s 

[4].  For further discussion see [5]. 

Empirical Bayes (EB) methods are distinct from Bayesian methods as they use 

pooled data to estimate the prior distribution and therefore do not utilise subjective 
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probability distributions.  As such, construction of interval estimates is more 

complicated with EB because we must take account of the variability inherent in the 

occurrence of a particular event in addition to the estimation uncertainty associated 

with the construction of the empirical prior distribution. 

The application of EB within the context of risk or reliability is not new.  

Martz and Waller [6] discuss the technique generally, [7] discuss an application to 

emergency diesel generators for binary data, [8, 9] use EB for estimating the rate of 

common cause failures, [10] use EB to support inference for the Weibull distribution 

within a software reliability growth context, [11] combine spline density estimates for 

prior distributions with EB for inference with the exponential distribution, [12] use 

EB within a Poisson modelling framework, and [13] makes use of the methodology 

with response surface modelling of categorical quality characteristics of possible 

designs.          

A summary of the mechanics involved in EB procedures is presented in 

Section 2.  We restrict ourselves to the Homogenous Poisson Process (HPP) and its 

conjugate prior the Gamma distribution.  Point estimate procedures are provided 

together with discussion of the choices available for developing interval estimates.   

An illustrative example is provided in Section 3 where we explore the 

application of EB for a subset of the events within the SRM.  Point and interval 

estimates are provided, pool validation issues are discussed and the accuracy of the 

procedure is explored.   

Finally, in Section 4 we reflect on the strengths and weaknesses of EB and 

propose further direction for future research. 
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 2. Empirical Bayes – Background 

2.1 The model 

The prior distribution is used to describe the variability in the rate of 

occurrence within a pool of precursors, prior to observing any data.  The prior is 

denoted by which is the probability density function measuring the likelihood of 

an event, chosen at random having a rate of occurrence of .  We use the data for each 

specific precursor, i.e. hazardous event, to update the prior, refining the estimate 

uniquely for each precursor.  The updated prior is referred to as the posterior 

distribution. 

 The SRM assumes that the rate of occurrence of events follows a constant rate 

over distance, which implies a Homogeneous Poisson Process.  The distribution of 

iN , the number of events that are realised when ki miles are travelled, is Poisson.   
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An assumption about the parametric form of the prior distribution is made for 

numerical convenience.  As we are assuming that the number of events follows a 

Poisson Process, a computationally convenient distribution to describe the prior 

distribution would be a Gamma distribution.  This is a flexible distribution, which is 

able to describe a variety of different forms, defined by the following formula. 
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The rate of occurrence for any particular event is not known, only that the rate 

has been selected at random from a Gamma distribution.  We take an average of the 

Poisson distributions; weighted against the prior distribution.  This provides the 

probability distribution of the number of events that will occur for precursor i, based 

only on our knowledge of the pool, i.e. the prior distribution.  The following result 

due to Greenwood and Yule [14] (as cited by [15]) shows that the distribution of Ni is 

Negative Binomial.   

 

 
 

 

 

 

- 1 -

0
!

, 0, 0, 0,1,2,...
!

i i i i

i

n k

i i i
i i

i

n

i i
i

i i i

k e e
P N n d

n

n k
n

n k k

  



  




 
 

  



 


     
      
     


 (3) 

We treat the observed data as though they have been generated from this 

Negative Binomial distribution and estimate the parameters  and from the data.  

The following results concerning point and interval estimates assume a gamma 

prior distribution for the Homogeneous Poisson Process. The choice of parametric 

form for the prior should be verified for each specific application because it can have 

a significant impact on the estimates since it characterises the variability within the 

pool, from which we infer how much weight to place on an individual hazards 

experience compared with the pooled aggregate.  Non parametric EB methods exist 

but the rate of convergence to the minimum Bayes risk will be much slower, see [6].     

2.2 Point Estimates 

Maximum Likelihood Estimates (MLE) can be pursued pooling all the data 

from all the events, using the Negative Binomial model.  However, closed form MLE 
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estimation equations do not exist for these parameters.  If closed form equations are 

desired then the following approach can be used [16].     
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which is the overall rate of occurrence of events and 
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which captures information about the second moment within the pool of events.  

These estimates are consistent estimators of the parameters (see Appendix). The MLE 

approach will provide more accurate estimates but suffer from requiring more 

computational effort. 

Once an estimate of the prior distribution is obtained, Bayes Theorem is used 

to update the prior for each individual precursor to obtain the posterior distribution.  

The posterior distribution for the i
th

 event is: 
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The Empirical Bayes estimate of i is the mean of the posterior distribution. 

Therefore, the Empirical Bayes estimate of the rate of occurrence of event i is: 

   

 

0

^

^

^

^

, ,

1

i i i i i i i i

i

i

i

i

E N n N n d

n

k

n
z z

k

     











  






  



    (8) 

where: 
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The Empirical Bayes estimate is a weighted average between the estimates 

from the pool, i.e. 

^

^





, and the traditional estimate of the individual precursor, i.e. i

i

n

k
i.  

As more data are obtained, ki increases, and more weight is applied to the observed 

frequency.   

2.3 Interval Estimates 

The calculation of confidence intervals is not straightforward.  If the true 

values of  and  were known then the posterior distribution could be used to assess 

the uncertainty in estimating i.  However,  and  have been estimated and as such 

we must account for the uncertainty in these estimates when developing true 

confidence intervals.  Not accounting for the variability in the estimation of the 

posterior results in “naïve” intervals.   
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There are two sources of uncertainty within the estimation procedure.  Firstly, 

there is the characteristic of the pool, i.e. the variability of frequencies for precursors 

that exist.  Associated with this estimation will be sampling error.    The second form 

of uncertainty is in the estimation of the rate of occurrence of incidence for a 

particular precursor.  Naïve confidence intervals evaluate confidence intervals 

addressing only the second form of uncertainty, assuming the characteristics of the 

pool are known.  If the pool consists of a very large number of precursors then the 

sampling error associated with estimating the parameters of the pool will be small and 

the naïve confidence intervals will be accurate.  However, if sampling error is 

substantial then the naïve confidence intervals will under-estimate the true confidence 

intervals for each precursor. 

There are different approaches available to constructing interval estimates for 

this model.  We consider two approaches for assessing uncertainty with the prior 

distribution.  The first approach developed by [17] assumes that the shape parameter, 

i.e.  is known and the uncertainty is assessed through a distribution on the scale 

parameter, i.e. .  The second approach makes use of the limiting distribution of the 

Likelihood Ratio Statistic [18].  The latter approach does not rely on simplifying 

assumptions to the same extent as the former method but is more computationally 

demanding.  Both approaches could suffer from double counting the data if the data 

from a particular hazard are used to assess uncertainty in the estimate conditioned on 

the prior distributions as in (7) and subsequently the data from all hazards are used to 

assess the uncertainty within the estimates of the prior distribution.  This may be a 

problem if there are few hazards within the portfolio and as such the contribution 

from each hazard is significant.  The influence of the data from each hazard on the 

uncertainty of the prior distribution can be assessed by estimating the uncertainty 
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about the prior distribution using data from all hazards except the one being assessed 

for comparison.  It is argued in [12] that this shortcoming is not present in the point 

estimates.    

Other approaches exist such as using a non-informative improper joint prior 

distribution for  ,   such as [19, 20] but have been criticised for resulting in 

improper posterior distributions [21] and could also suffer from double counting data.   

 

2.3.1 Uniform Prior on 

Following this approach, we would use a non-informative prior distribution on 

, which is to say that prior to observing any data we have no information about the 

true value of .  If we possessed prior information about the value of  then we could 

use more informative priors, of which one with a Gamma distribution form would be 

numerically convenient.  

Updating the non-informative prior in light of the data provides the following 

posterior distribution. 
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If exposure was the same for all events, such that ki=k then (10) would reduce to the 

following. 



 11 

   

 

 

_

_

_

~

0

_

_

,

4

1 3

m

m n

m

m n

m mn

k
n

d

k

m m n
k

k
k k

m m n














  









 


 
 

 



 
 

 






 
        

    
          

 


 

where: 

_
1

m

i

i

n

n
m




 

 

which transforms to a Beta distribution with a change of variable. 
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This distribution accounts for uncertainty in estimating  and as such would be 

used formally with the posterior distribution for i to obtain confidence intervals. 

If the true value of  were known, the posterior could be used to evaluate 

confidence intervals.  While we do not know for certain the true value of  we do 

have a probability distribution describing the likelihood of it taking particular values.  

Therefore, we wish to average the posterior distribution for i across possible values 

of  weighted against the probability distribution (10). 
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Mathematically, this is not tractable.  However, it can be approximated by the 

following: 
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The choice of J depends on how accurate we wish to be.  The larger the value 

of J the greater the accuracy but the more calculations are required.    

Having approximated the posterior distribution, we solve the appropriate 

percentiles determined by the level of confidence we seek.  

One shortcoming with this approach lies in the assumption that  is known.  

The MLE of  and  are highly correlated hence assuming the value of 

severely restricts the variability in . 

 

2.1.2 Likelihood Ratio Statistic 

 The limiting distribution of –2 times the natural logarithm of the relative 

likelihood function has a 
2
 distribution with 2 degrees of freedom.  This is expressed 

in (14) where 
^ ^
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 are the MLE.  This can be used to construct a joint confidence 

region for the parameters.   
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To construct a tolerance interval about (7) we first determine the locus of point points 

for  and  such that the Cumulative Distribution Function (CDF) of (14) does not 

exceed a specified value assuming only one degree of freedom rather than two.  For 

further discussion see [18]. 

 There is no closed form solution for this approach to obtaining confidence 

intervals and computationally it can be intense.  However, we formally make use of 

the correlation between the estimates within this approach. 

 

3. Case Study – SRM 

The application of the methods described in Section 2 is illustrated using a 

subset of data from the SRM, namely the passenger derailment events.  There are 59 

possible events and there have been 66 relevant occurrences in the past 6 years 

providing an overall empirical estimate of the rate of 6.6E-10 events per mile. 54% of 

the 59 events have had no realisations in the past 6 years.   

The analysis protocol is as follows. First the prior distribution for the rate of 

occurrence of events for the group is determined and goodness-of-fit of a Gamma 

distribution as its parametric form is assessed.  Second, point estimates for the rate of 

occurrence of events for each precursor are derived.  Third confidence intervals for 

the parameters are obtained using both methods described in Section 2 for 

comparison.  Fourth, the impact of partitioning the precursors into sub-groups and re-
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assessing the rates is investigated.  Finally, we reflect upon the difference between the 

rates and the estimates currently used with the SRM. 

3.1 Empirical Prior Distribution for Number of Events  

Treating the number of occurrences as though they were realized from a 

Negative Binomial distribution, the MLE of  and  are: 
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While the MLE’s will be more accurate, they require solving equations involving the 

gamma function.  We calculated the point estimate using the closed form solutions in 

(4) for comparison, which resulted in (16).  
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The MLE’s in (15) produce an overall average rate of occurrence within the pool of 

7.22E-10 events per mile, which is less than 10% greater than the estimate obtained 

when using (16).  Figure 1 is an illustration of the empirical distribution compared 

with the Negative Binomial where the parameters were estimated through MLE (15). 

Figure 1 indicates a reasonably close fit between the data and the model. 

Formally a 
2
 goodness-of-fit test where the null model is a Negative Binomial with 

parameter values as in (15) was not rejected at the 1% significance level. 

 

INSERT FIGURE 1 
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3.2 Point Estimates for Event 

The traditional estimate for each precursor is to calculate the ratio between the 

number of events and the total number of train miles travelled.  Using the MLE for  

and  in (15) we propose the weight (9), i.e. z, applied to the traditional estimate to be 

0.72 for those precursors that have had an exposure of 2.57E+8 miles per annum and 

a weight of 0.76 for those precursors that have had an exposure of 3.1E+8 miles per 

annum. 

The EB estimate of the precursors and their observed frequencies, which are 

the traditional estimates, are illustrated in Figure 2.  The data are summarised into 

categories depending on the number of events that have been realised by each 

precursor. 

A phenomenon known as shrinkage is illustrated in Figure 2, whereby, the 

observed frequencies are drawn towards the pooled mean.  The high frequency 

precursors have a lower estimate and the estimates for the precursors that are 

infrequent are increased towards the mean.  

 

INSERT FIGURE 2 

3.3 Interval Estimates 

For comparison purposes we calculate the confidence interval for the shape 

parameter using the uniform prior approach as well as developing confidence 

intervals for the rate of occurrence of each event using the Likelihood Ratio approach.  

This results in the following posterior distribution for  and is illustrated in Figure 3. 
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The values of  range from approximately 0.4E+9 to 1.2E+9.  Compare this with the 

joint 95% confidence region displayed in Figure 4 where  ranges from 0.3E+9 to 

2.5E+9.  As discussed in section 2 the uniform prior approach over-estimates the 

confidence provided by the data with a narrower confidence interval due to the 

assumption  is known.   

 

INSERT FIGURE 3 

 

INSERT FIGURE 4 

3.4 Sensitivity of Pool Choice 

The estimates for the rates of occurrence are re-assessed based on smaller 

pools.  The events under consideration have one of two different annual miles 

exposure.  An obvious partitioning of these events would be based on the different 

rates of exposure.  We follow the same procedures used to evaluate the entire set, but 

for the two subsets. 

The MLE’s for the events with the annual exposure of 2.57E+8 miles per 

annum are: 
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and for the events with annual exposure of 3.1E+8 miles per annum are: 
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Both MLE’s are contained within the joint confidence interval of Figure 4.  The 

resulting difference in point estimates for the rate of occurrence of each of the events 

has not been greatly affected.  The arithmetic difference in the point estimates was 

negative for half the events and positive for the other half.  The maximum difference 

was 5.75E-10, the smallest –1.64E-10 and 70% of the events had a different with 

order of magnitude E-11.    

One effect of partitioning the pool was to alter the weight applied to the individual 

experience.  The group with the annual exposure of 3.10E+8 miles moved from 76% 

to 79%.  The reverse effect has occurred for the group with the smaller annual 

exposure of 2.57E+8 miles moving the weight from 72% to 53%.  

3.5 Comparison of Results with the SRM 

Estimates existed for these events prior to conducting this study.  These are 

based on past experience and expert judgment.  There was much agreement between 

the SRM and the Empirical Bayes estimates.  The EB estimate resulted in a higher 

frequency for 32 of the 59 events.  The minimum arithmetic difference was 

 –1.75E-10, where a negative number indicates the EB estimated a higher frequency 

and the maximum difference was 1.65E-8.  The mean difference was 4.4E-10 and 

only two events had a difference with order of magnitude greater than 10
-10

.  This 

methodology can be utilised to highlight those precursors where there is substantial 

difference for further investigation.  

3.6 Testing Pools 

The SRM is partitioned into a number of subsets of events based type of 

incidents being considered.  We have been studying one particular partition, namely 
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the passenger derailment events.  However, these subsets are not mutually exclusive.  

As such we would have a dilemma as to which group to assign a particular event.  We 

propose constructing a test to assess whether there is strong statistical evidence in 

favour of one pool, for a given event. 

For each pool we obtain an estimate of the set of parameters, i.e.  and .  We 

consider which one of two pools, say the null and alternative pools, to assign a 

precursor.  We have two probabilities measuring the likelihood of the observed 

number of events being observed from the precursor, the null and alterative.  We 

construct a test based on the ratio of these probabilities, the alternative divided by the 

null.  If the ratio is large then more evidence exists in support of the alternative 

compared with a low ratio.  We can define a critical value such that if the ratio is 

above the value then we do not have enough evidence to strongly support the null 

model.   

Consider the event having the greatest change in point estimate between the 

larger pool and the smaller pool, as discussed in the previous section.  This event 

belongs to the set of events with the smaller of the two exposures.  Essentially we 

wish to test whether the data for this event is better modelled with a Negative 

Binomial distribution with parameter values of =0.43 and =5.95E+08, or with 

parameters =1.06 and =1.36E+09.   

The bigger pooled group, i.e. using all the events, has been selected as the null 

model and the smaller pooled group as the alternative.  For this particular event there 

were 6 realizations.  The ratio of the probability of obtaining 6 realizations using the 

estimates obtained through the alternate model to the probability of obtaining 6 

realizations using the null model is 0.83.  Therefore, the evidence is on the side of the 

null model.  Assuming the null model to be the correct model, the probability of 
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obtaining a ratio of 0.83 or less is 0.62.  Therefore it is not an unusual observation and 

we do not reject the null model, i.e. the bigger pool. 

Reversing the labelling such that the smaller pool was the null model and the 

bigger pool was the alternative, we conclude that there was no strong evidence against 

the null model, i.e. the smaller pool, and as such there is no strong statistical evidence 

in favour of either pool.   

3.7 Summary 

The aim of this investigation was to determine a methodology that could be 

used to estimate the frequency of rare events where event data are not likely to exist.  

We have proposed an Empirical Bayes approach and illustrated its use with data. 

The assumptions made in developing the model are applicable to any of the 

events in the SRM which assumes the rate of occurrence is constant.  The EB 

estimates were in close agreement with the existing SRM estimates, although there 

were some notable differences.  While there may exist sound reasons for not relying 

on the data for each event, this process will help identify estimates for closer 

inspection.  

 

4. Conclusions 

Point estimates obtained from Empirical Bayes procedures have been shown 

to fare no worse than traditional methods with respect to accuracy when the pool is 

very heterogeneous and better than traditional methods when the pool is 

homogeneous [22].  This is not surprising as the more heterogeneous the pool, the 

more weight is applied to the individual observations.  Moreover, the approach of 

utilizing the data to estimate the prior distribution has been shown to be robust against 
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prior misspecification (see [23]).  Several case studies and investigations have been 

published illustrating the effectiveness of this methodology, see [22, 24, 25] for 

examples. 

This approach has focused entirely on the data.  However, a full Bayesian 

approach would utilise expert judgment.  This could easily be integrated within the 

framework present.  If we had prior knowledge of the relative difference in 

frequencies between events, rather than assuming they all are selected at random from 

the same pool, we could enhance the inference, and ensure that the overall subjective 

assessments were consistent with the data observed.  

The greatest challenge for using this approach in practice is with the definition 

of pool membership.  While in the example provided there was little difference 

between the frequency estimates in the two pools considered, the potential exists to 

greatly influence an estimated rate by assigning in to one pool or another.   This 

method offers a great deal in improved accuracy of estimates with few data, but could 

be subject to abuse in this regard.  As an illustration, through adding exceedingly rare 

hazardous events that have yet to be experienced to the pool, you would be decreasing 

the overall mean and therefore pull down the estimate of the rate of occurrence of 

each hazardous event.  We feel there would be benefits from using structured expert 

judgement to assign hazardous events to pools, justified on non-empirical grounds and 

then use Empirical Bayes methods for estimation.  We continue to research this issue.  
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Appendix 

We will demonstrate that the Empirical Bayes estimator obtained using (6) 

and (7) is a consistent estimator. 

The model describing the variability in the number of incidents is a Negative 

Binomial distribution. 
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where ki is the measure of exposure. 

The expectation and variance of the Negative Binomial distribution are: 

 

 i iE N k



  

  i
i i

k
Var N k



 

 
  

 
 

Consider the following. 

 1

1

m

i

i

m

i

i

N

U

k









 

The expectation of U is: 
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The variance of U is: 
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Substituting the variance of a Negative Binomial into this formula we have the 

following. 
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As exposure, i.e. ki, increases the variance of U decreases converging with its mean 

and therefore is a consistent estimator of . 
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The expectation of W is: 
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The variance of W is 
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A little manipulation results in the following. 
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As exposure increases the variance decreases to 0 and therefore W is a consistent 

estimator of 
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By Slutskys Theorem [26] any continuous mapping of estimators will converge to the 

continuous mapping of the asymptotic values of the estimators.  Substituting the 

expectations into the estimation formulas results in the following.   
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Therefore, (6) and (7) result in consistent estimators of the parameters.  Moreover, the 

estimator of the rate of occurrence of events for any event will converge in 

distribution to the following. 
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Figure 1 Comparison between empirical probability and model estimate 
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a) For events with exposure of 1.54E+9  

 

 

 

 

 

 

 

 

 

 

 

b) For events with exposure of 1.86E+9 

Figure 2 Comparison between observed and estimated frequency of occurrences 
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Figure 3 Posterior distribution used for scale parameter 
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Figure 4 Joint 95% Confidence Region of  and  

  

 

 


